| //== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines MIGChecker, a Mach Interface Generator calling convention |
| // checker. Namely, in MIG callback implementation the following rules apply: |
| // - When a server routine returns an error code that represents success, it |
| // must take ownership of resources passed to it (and eventually release |
| // them). |
| // - Additionally, when returning success, all out-parameters must be |
| // initialized. |
| // - When it returns any other error code, it must not take ownership, |
| // because the message and its out-of-line parameters will be destroyed |
| // by the client that called the function. |
| // For now we only check the last rule, as its violations lead to dangerous |
| // use-after-free exploits. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/AnyCall.h" |
| #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| namespace { |
| class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>, |
| check::EndFunction> { |
| BugType BT{this, "Use-after-free (MIG calling convention violation)", |
| categories::MemoryError}; |
| |
| // The checker knows that an out-of-line object is deallocated if it is |
| // passed as an argument to one of these functions. If this object is |
| // additionally an argument of a MIG routine, the checker keeps track of that |
| // information and issues a warning when an error is returned from the |
| // respective routine. |
| std::vector<std::pair<CallDescription, unsigned>> Deallocators = { |
| #define CALL(required_args, deallocated_arg, ...) \ |
| {{{__VA_ARGS__}, required_args}, deallocated_arg} |
| // E.g., if the checker sees a C function 'vm_deallocate' that is |
| // defined on class 'IOUserClient' that has exactly 3 parameters, it knows |
| // that argument #1 (starting from 0, i.e. the second argument) is going |
| // to be consumed in the sense of the MIG consume-on-success convention. |
| CALL(3, 1, "vm_deallocate"), |
| CALL(3, 1, "mach_vm_deallocate"), |
| CALL(2, 0, "mig_deallocate"), |
| CALL(2, 1, "mach_port_deallocate"), |
| CALL(1, 0, "device_deallocate"), |
| CALL(1, 0, "iokit_remove_connect_reference"), |
| CALL(1, 0, "iokit_remove_reference"), |
| CALL(1, 0, "iokit_release_port"), |
| CALL(1, 0, "ipc_port_release"), |
| CALL(1, 0, "ipc_port_release_sonce"), |
| CALL(1, 0, "ipc_voucher_attr_control_release"), |
| CALL(1, 0, "ipc_voucher_release"), |
| CALL(1, 0, "lock_set_dereference"), |
| CALL(1, 0, "memory_object_control_deallocate"), |
| CALL(1, 0, "pset_deallocate"), |
| CALL(1, 0, "semaphore_dereference"), |
| CALL(1, 0, "space_deallocate"), |
| CALL(1, 0, "space_inspect_deallocate"), |
| CALL(1, 0, "task_deallocate"), |
| CALL(1, 0, "task_inspect_deallocate"), |
| CALL(1, 0, "task_name_deallocate"), |
| CALL(1, 0, "thread_deallocate"), |
| CALL(1, 0, "thread_inspect_deallocate"), |
| CALL(1, 0, "upl_deallocate"), |
| CALL(1, 0, "vm_map_deallocate"), |
| // E.g., if the checker sees a method 'releaseAsyncReference64()' that is |
| // defined on class 'IOUserClient' that takes exactly 1 argument, it knows |
| // that the argument is going to be consumed in the sense of the MIG |
| // consume-on-success convention. |
| CALL(1, 0, "IOUserClient", "releaseAsyncReference64"), |
| CALL(1, 0, "IOUserClient", "releaseNotificationPort"), |
| #undef CALL |
| }; |
| |
| CallDescription OsRefRetain{"os_ref_retain", 1}; |
| |
| void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const; |
| |
| public: |
| void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
| |
| // HACK: We're making two attempts to find the bug: checkEndFunction |
| // should normally be enough but it fails when the return value is a literal |
| // that never gets put into the Environment and ends of function with multiple |
| // returns get agglutinated across returns, preventing us from obtaining |
| // the return value. The problem is similar to https://reviews.llvm.org/D25326 |
| // but now we step into it in the top-level function. |
| void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { |
| checkReturnAux(RS, C); |
| } |
| void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const { |
| checkReturnAux(RS, C); |
| } |
| |
| }; |
| } // end anonymous namespace |
| |
| // A flag that says that the programmer has called a MIG destructor |
| // for at least one parameter. |
| REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool) |
| // A set of parameters for which the check is suppressed because |
| // reference counting is being performed. |
| REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *) |
| |
| static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C, |
| bool IncludeBaseRegions = false) { |
| // TODO: We should most likely always include base regions here. |
| SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions); |
| if (!Sym) |
| return nullptr; |
| |
| // If we optimistically assume that the MIG routine never re-uses the storage |
| // that was passed to it as arguments when it invalidates it (but at most when |
| // it assigns to parameter variables directly), this procedure correctly |
| // determines if the value was loaded from the transitive closure of MIG |
| // routine arguments in the heap. |
| while (const MemRegion *MR = Sym->getOriginRegion()) { |
| const auto *VR = dyn_cast<VarRegion>(MR); |
| if (VR && VR->hasStackParametersStorage() && |
| VR->getStackFrame()->inTopFrame()) |
| return cast<ParmVarDecl>(VR->getDecl()); |
| |
| const SymbolicRegion *SR = MR->getSymbolicBase(); |
| if (!SR) |
| return nullptr; |
| |
| Sym = SR->getSymbol(); |
| } |
| |
| return nullptr; |
| } |
| |
| static bool isInMIGCall(CheckerContext &C) { |
| const LocationContext *LC = C.getLocationContext(); |
| assert(LC && "Unknown location context"); |
| |
| const StackFrameContext *SFC; |
| // Find the top frame. |
| while (LC) { |
| SFC = LC->getStackFrame(); |
| LC = SFC->getParent(); |
| } |
| |
| const Decl *D = SFC->getDecl(); |
| |
| if (Optional<AnyCall> AC = AnyCall::forDecl(D)) { |
| // Even though there's a Sema warning when the return type of an annotated |
| // function is not a kern_return_t, this warning isn't an error, so we need |
| // an extra sanity check here. |
| // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked |
| // for now. |
| if (!AC->getReturnType(C.getASTContext()) |
| .getCanonicalType()->isSignedIntegerType()) |
| return false; |
| } |
| |
| if (D->hasAttr<MIGServerRoutineAttr>()) |
| return true; |
| |
| // See if there's an annotated method in the superclass. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) |
| for (const auto *OMD: MD->overridden_methods()) |
| if (OMD->hasAttr<MIGServerRoutineAttr>()) |
| return true; |
| |
| return false; |
| } |
| |
| void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { |
| if (Call.isCalled(OsRefRetain)) { |
| // If the code is doing reference counting over the parameter, |
| // it opens up an opportunity for safely calling a destructor function. |
| // TODO: We should still check for over-releases. |
| if (const ParmVarDecl *PVD = |
| getOriginParam(Call.getArgSVal(0), C, /*IncludeBaseRegions=*/true)) { |
| // We never need to clean up the program state because these are |
| // top-level parameters anyway, so they're always live. |
| C.addTransition(C.getState()->add<RefCountedParameters>(PVD)); |
| } |
| return; |
| } |
| |
| if (!isInMIGCall(C)) |
| return; |
| |
| auto I = llvm::find_if(Deallocators, |
| [&](const std::pair<CallDescription, unsigned> &Item) { |
| return Call.isCalled(Item.first); |
| }); |
| if (I == Deallocators.end()) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| unsigned ArgIdx = I->second; |
| SVal Arg = Call.getArgSVal(ArgIdx); |
| const ParmVarDecl *PVD = getOriginParam(Arg, C); |
| if (!PVD || State->contains<RefCountedParameters>(PVD)) |
| return; |
| |
| const NoteTag *T = C.getNoteTag([this, PVD](BugReport &BR) -> std::string { |
| if (&BR.getBugType() != &BT) |
| return ""; |
| SmallString<64> Str; |
| llvm::raw_svector_ostream OS(Str); |
| OS << "Value passed through parameter '" << PVD->getName() |
| << "\' is deallocated"; |
| return OS.str(); |
| }); |
| C.addTransition(State->set<ReleasedParameter>(true), T); |
| } |
| |
| // Returns true if V can potentially represent a "successful" kern_return_t. |
| static bool mayBeSuccess(SVal V, CheckerContext &C) { |
| ProgramStateRef State = C.getState(); |
| |
| // Can V represent KERN_SUCCESS? |
| if (!State->isNull(V).isConstrainedFalse()) |
| return true; |
| |
| SValBuilder &SVB = C.getSValBuilder(); |
| ASTContext &ACtx = C.getASTContext(); |
| |
| // Can V represent MIG_NO_REPLY? |
| static const int MigNoReply = -305; |
| V = SVB.evalEQ(C.getState(), V, SVB.makeIntVal(MigNoReply, ACtx.IntTy)); |
| if (!State->isNull(V).isConstrainedTrue()) |
| return true; |
| |
| // If none of the above, it's definitely an error. |
| return false; |
| } |
| |
| void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const { |
| // It is very unlikely that a MIG callback will be called from anywhere |
| // within the project under analysis and the caller isn't itself a routine |
| // that follows the MIG calling convention. Therefore we're safe to believe |
| // that it's always the top frame that is of interest. There's a slight chance |
| // that the user would want to enforce the MIG calling convention upon |
| // a random routine in the middle of nowhere, but given that the convention is |
| // fairly weird and hard to follow in the first place, there's relatively |
| // little motivation to spread it this way. |
| if (!C.inTopFrame()) |
| return; |
| |
| if (!isInMIGCall(C)) |
| return; |
| |
| // We know that the function is non-void, but what if the return statement |
| // is not there in the code? It's not a compile error, we should not crash. |
| if (!RS) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| if (!State->get<ReleasedParameter>()) |
| return; |
| |
| SVal V = C.getSVal(RS); |
| if (mayBeSuccess(V, C)) |
| return; |
| |
| ExplodedNode *N = C.generateErrorNode(); |
| if (!N) |
| return; |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| BT, |
| "MIG callback fails with error after deallocating argument value. " |
| "This is a use-after-free vulnerability because the caller will try to " |
| "deallocate it again", |
| N); |
| |
| R->addRange(RS->getSourceRange()); |
| bugreporter::trackExpressionValue(N, RS->getRetValue(), *R, |
| bugreporter::TrackingKind::Thorough, false); |
| C.emitReport(std::move(R)); |
| } |
| |
| void ento::registerMIGChecker(CheckerManager &Mgr) { |
| Mgr.registerChecker<MIGChecker>(); |
| } |
| |
| bool ento::shouldRegisterMIGChecker(const LangOptions &LO) { |
| return true; |
| } |