| // RUN: %clang_cc1 -fsyntax-only -verify %s |
| // RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s |
| // RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s |
| |
| template<template<typename T> class X> struct A; // expected-note 2{{previous template template parameter is here}} |
| |
| template<template<typename T, int I> class X> struct B; // expected-note{{previous template template parameter is here}} |
| |
| template<template<int I> class X> struct C; // expected-note 2{{previous non-type template parameter with type 'int' is here}} |
| |
| template<class> struct X; // expected-note{{too few template parameters in template template argument}} |
| template<int N> struct Y; // expected-note{{template parameter has a different kind in template argument}} |
| template<long N> struct Ylong; // expected-note{{template non-type parameter has a different type 'long' in template argument}} |
| template<const int &N> struct Yref; // expected-note{{template non-type parameter has a different type 'const int &' in template argument}} |
| |
| namespace N { |
| template<class> struct Z; |
| } |
| template<class, class> struct TooMany; // expected-note{{too many template parameters in template template argument}} |
| |
| |
| A<X> *a1; |
| A<N::Z> *a2; |
| A< ::N::Z> *a3; |
| |
| A<Y> *a4; // expected-error{{template template argument has different template parameters than its corresponding template template parameter}} |
| A<TooMany> *a5; // expected-error{{template template argument has different template parameters than its corresponding template template parameter}} |
| B<X> *a6; // expected-error{{template template argument has different template parameters than its corresponding template template parameter}} |
| C<Y> *a7; |
| C<Ylong> *a8; // expected-error{{template template argument has different template parameters than its corresponding template template parameter}} |
| C<Yref> *a9; // expected-error{{template template argument has different template parameters than its corresponding template template parameter}} |
| |
| template<typename T> void f(int); |
| |
| A<f> *a9; // expected-error{{must be a class template}} |
| |
| // Evil digraph '<:' is parsed as '[', expect error. |
| A<::N::Z> *a10; |
| #if __cplusplus <= 199711L |
| // expected-error@-2 {{found '<::' after a template name which forms the digraph '<:' (aka '[') and a ':', did you mean '< ::'?}} |
| #endif |
| |
| // Do not do a digraph correction here. |
| A<: :N::Z> *a11; // expected-error{{expected expression}} \ |
| expected-error{{C++ requires a type specifier for all declarations}} |
| |
| // PR7807 |
| namespace N { |
| template <typename, typename = int> |
| struct X |
| { }; |
| |
| template <typename ,int> |
| struct Y |
| { X<int> const_ref(); }; |
| |
| template <template<typename,int> class TT, typename T, int N> |
| int operator<<(int, TT<T, N> a) { // expected-note{{candidate template ignored}} |
| 0 << a.const_ref(); // expected-error{{invalid operands to binary expression ('int' and 'X<int>')}} |
| } |
| |
| void f0( Y<int,1> y){ 1 << y; } // expected-note{{in instantiation of function template specialization 'N::operator<<<Y, int, 1>' requested here}} |
| } |
| |
| // PR12179 |
| template <typename Primitive, template <Primitive...> class F> |
| #if __cplusplus <= 199711L |
| // expected-warning@-2 {{variadic templates are a C++11 extension}} |
| #endif |
| |
| struct unbox_args { |
| typedef typename Primitive::template call<F> x; |
| }; |
| |
| template <template <typename> class... Templates> |
| #if __cplusplus <= 199711L |
| // expected-warning@-2 {{variadic templates are a C++11 extension}} |
| #endif |
| |
| struct template_tuple { |
| #if __cplusplus >= 201103L |
| static constexpr int N = sizeof...(Templates); |
| #endif |
| }; |
| template <typename T> |
| struct identity {}; |
| template <template <typename> class... Templates> |
| #if __cplusplus <= 199711L |
| // expected-warning@-2 {{variadic templates are a C++11 extension}} |
| #endif |
| |
| template_tuple<Templates...> f7() {} |
| |
| #if __cplusplus >= 201103L |
| struct S : public template_tuple<identity, identity> { |
| static_assert(N == 2, "Number of template arguments incorrect"); |
| }; |
| #endif |
| |
| void foo() { |
| f7<identity>(); |
| } |
| |
| namespace CheckDependentNonTypeParamTypes { |
| template<template<typename T, typename U, T v> class X> struct A { |
| void f() { |
| X<int, void*, 3> x; // expected-error {{does not refer to any declaration}} |
| } |
| void g() { |
| X<int, long, 3> x; |
| } |
| void h() { |
| // FIXME: If we accept A<B> at all, it's not obvious what should happen |
| // here. While parsing the template, we form |
| // X<unsigned char, int, (unsigned char)1234> |
| // but in the final instantiation do we get |
| // B<unsigned char, int, (int)1234> |
| // or |
| // B<unsigned char, int, (int)(unsigned char)1234> |
| // ? |
| X<unsigned char, int, 1234> x; |
| int check[x.value == 1234 ? 1 : -1]; |
| } |
| }; |
| |
| template<typename T, typename U, U v> struct B { // expected-note {{parameter}} |
| static const U value = v; |
| }; |
| |
| // FIXME: This should probably be rejected, but the rules are at best unclear. |
| A<B> ab; |
| |
| void use() { |
| ab.f(); // expected-note {{instantiation of}} |
| ab.g(); |
| ab.h(); |
| } |
| } |
| |
| namespace PR32185 { |
| template<template<typename T, T> class U> struct A {}; |
| template<template<typename T, T> class U> struct B : A<U> {}; |
| } |
| |
| namespace PR10147 { |
| template<typename T> struct A {}; |
| template<typename T = int> struct A; |
| template<template<typename...> class A> void f(A<int>*) { A<> a; } // expected-warning 0-1{{extension}} |
| void g() { f((A<>*)0); } |
| } |