blob: 3e89586be3a5f7ac1c7bd6e89e15b0dc1475501f [file] [log] [blame]
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#include "CGBuilder.h"
#include "CGDebugInfo.h"
#include "CGLoopInfo.h"
#include "CGValue.h"
#include "CodeGenModule.h"
#include "CodeGenPGO.h"
#include "EHScopeStack.h"
#include "VarBypassDetector.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/SanitizerStats.h"
namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
class CallSite;
}
namespace clang {
class ASTContext;
class BlockDecl;
class CXXDestructorDecl;
class CXXForRangeStmt;
class CXXTryStmt;
class Decl;
class LabelDecl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
class ObjCAutoreleasePoolStmt;
namespace analyze_os_log {
class OSLogBufferLayout;
}
namespace CodeGen {
class CodeGenTypes;
class CGCallee;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
class CGCXXABI;
class BlockByrefHelpers;
class BlockByrefInfo;
class BlockFlags;
class BlockFieldFlags;
class RegionCodeGenTy;
class TargetCodeGenInfo;
struct OMPTaskDataTy;
struct CGCoroData;
/// The kind of evaluation to perform on values of a particular
/// type. Basically, is the code in CGExprScalar, CGExprComplex, or
/// CGExprAgg?
///
/// TODO: should vectors maybe be split out into their own thing?
enum TypeEvaluationKind {
TEK_Scalar,
TEK_Complex,
TEK_Aggregate
};
#define LIST_SANITIZER_CHECKS \
SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
SANITIZER_CHECK(MissingReturn, missing_return, 0) \
SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
enum SanitizerHandler {
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
LIST_SANITIZER_CHECKS
#undef SANITIZER_CHECK
};
/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public CodeGenTypeCache {
CodeGenFunction(const CodeGenFunction &) = delete;
void operator=(const CodeGenFunction &) = delete;
friend class CGCXXABI;
public:
/// A jump destination is an abstract label, branching to which may
/// require a jump out through normal cleanups.
struct JumpDest {
JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
JumpDest(llvm::BasicBlock *Block,
EHScopeStack::stable_iterator Depth,
unsigned Index)
: Block(Block), ScopeDepth(Depth), Index(Index) {}
bool isValid() const { return Block != nullptr; }
llvm::BasicBlock *getBlock() const { return Block; }
EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
unsigned getDestIndex() const { return Index; }
// This should be used cautiously.
void setScopeDepth(EHScopeStack::stable_iterator depth) {
ScopeDepth = depth;
}
private:
llvm::BasicBlock *Block;
EHScopeStack::stable_iterator ScopeDepth;
unsigned Index;
};
CodeGenModule &CGM; // Per-module state.
const TargetInfo &Target;
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
LoopInfoStack LoopStack;
CGBuilderTy Builder;
// Stores variables for which we can't generate correct lifetime markers
// because of jumps.
VarBypassDetector Bypasses;
// CodeGen lambda for loops and support for ordered clause
typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
JumpDest)>
CodeGenLoopTy;
typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
const unsigned, const bool)>
CodeGenOrderedTy;
// Codegen lambda for loop bounds in worksharing loop constructs
typedef llvm::function_ref<std::pair<LValue, LValue>(
CodeGenFunction &, const OMPExecutableDirective &S)>
CodeGenLoopBoundsTy;
// Codegen lambda for loop bounds in dispatch-based loop implementation
typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
Address UB)>
CodeGenDispatchBoundsTy;
/// \brief CGBuilder insert helper. This function is called after an
/// instruction is created using Builder.
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
llvm::BasicBlock *BB,
llvm::BasicBlock::iterator InsertPt) const;
/// CurFuncDecl - Holds the Decl for the current outermost
/// non-closure context.
const Decl *CurFuncDecl;
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
const Decl *CurCodeDecl;
const CGFunctionInfo *CurFnInfo;
QualType FnRetTy;
llvm::Function *CurFn;
// Holds coroutine data if the current function is a coroutine. We use a
// wrapper to manage its lifetime, so that we don't have to define CGCoroData
// in this header.
struct CGCoroInfo {
std::unique_ptr<CGCoroData> Data;
CGCoroInfo();
~CGCoroInfo();
};
CGCoroInfo CurCoro;
bool isCoroutine() const {
return CurCoro.Data != nullptr;
}
/// CurGD - The GlobalDecl for the current function being compiled.
GlobalDecl CurGD;
/// PrologueCleanupDepth - The cleanup depth enclosing all the
/// cleanups associated with the parameters.
EHScopeStack::stable_iterator PrologueCleanupDepth;
/// ReturnBlock - Unified return block.
JumpDest ReturnBlock;
/// ReturnValue - The temporary alloca to hold the return
/// value. This is invalid iff the function has no return value.
Address ReturnValue;
/// Return true if a label was seen in the current scope.
bool hasLabelBeenSeenInCurrentScope() const {
if (CurLexicalScope)
return CurLexicalScope->hasLabels();
return !LabelMap.empty();
}
/// AllocaInsertPoint - This is an instruction in the entry block before which
/// we prefer to insert allocas.
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
/// \brief API for captured statement code generation.
class CGCapturedStmtInfo {
public:
explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
: Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
explicit CGCapturedStmtInfo(const CapturedStmt &S,
CapturedRegionKind K = CR_Default)
: Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
RecordDecl::field_iterator Field =
S.getCapturedRecordDecl()->field_begin();
for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
E = S.capture_end();
I != E; ++I, ++Field) {
if (I->capturesThis())
CXXThisFieldDecl = *Field;
else if (I->capturesVariable())
CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
else if (I->capturesVariableByCopy())
CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
}
}
virtual ~CGCapturedStmtInfo();
CapturedRegionKind getKind() const { return Kind; }
virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
// \brief Retrieve the value of the context parameter.
virtual llvm::Value *getContextValue() const { return ThisValue; }
/// \brief Lookup the captured field decl for a variable.
virtual const FieldDecl *lookup(const VarDecl *VD) const {
return CaptureFields.lookup(VD->getCanonicalDecl());
}
bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
static bool classof(const CGCapturedStmtInfo *) {
return true;
}
/// \brief Emit the captured statement body.
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
CGF.incrementProfileCounter(S);
CGF.EmitStmt(S);
}
/// \brief Get the name of the capture helper.
virtual StringRef getHelperName() const { return "__captured_stmt"; }
private:
/// \brief The kind of captured statement being generated.
CapturedRegionKind Kind;
/// \brief Keep the map between VarDecl and FieldDecl.
llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
/// \brief The base address of the captured record, passed in as the first
/// argument of the parallel region function.
llvm::Value *ThisValue;
/// \brief Captured 'this' type.
FieldDecl *CXXThisFieldDecl;
};
CGCapturedStmtInfo *CapturedStmtInfo;
/// \brief RAII for correct setting/restoring of CapturedStmtInfo.
class CGCapturedStmtRAII {
private:
CodeGenFunction &CGF;
CGCapturedStmtInfo *PrevCapturedStmtInfo;
public:
CGCapturedStmtRAII(CodeGenFunction &CGF,
CGCapturedStmtInfo *NewCapturedStmtInfo)
: CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
CGF.CapturedStmtInfo = NewCapturedStmtInfo;
}
~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
};
/// An abstract representation of regular/ObjC call/message targets.
class AbstractCallee {
/// The function declaration of the callee.
const Decl *CalleeDecl;
public:
AbstractCallee() : CalleeDecl(nullptr) {}
AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
bool hasFunctionDecl() const {
return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
}
const Decl *getDecl() const { return CalleeDecl; }
unsigned getNumParams() const {
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
return FD->getNumParams();
return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
}
const ParmVarDecl *getParamDecl(unsigned I) const {
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
return FD->getParamDecl(I);
return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
}
};
/// \brief Sanitizers enabled for this function.
SanitizerSet SanOpts;
/// \brief True if CodeGen currently emits code implementing sanitizer checks.
bool IsSanitizerScope;
/// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
class SanitizerScope {
CodeGenFunction *CGF;
public:
SanitizerScope(CodeGenFunction *CGF);
~SanitizerScope();
};
/// In C++, whether we are code generating a thunk. This controls whether we
/// should emit cleanups.
bool CurFuncIsThunk;
/// In ARC, whether we should autorelease the return value.
bool AutoreleaseResult;
/// Whether we processed a Microsoft-style asm block during CodeGen. These can
/// potentially set the return value.
bool SawAsmBlock;
const FunctionDecl *CurSEHParent = nullptr;
/// True if the current function is an outlined SEH helper. This can be a
/// finally block or filter expression.
bool IsOutlinedSEHHelper;
const CodeGen::CGBlockInfo *BlockInfo;
llvm::Value *BlockPointer;
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField;
/// \brief A mapping from NRVO variables to the flags used to indicate
/// when the NRVO has been applied to this variable.
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
EHScopeStack EHStack;
llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
llvm::Instruction *CurrentFuncletPad = nullptr;
class CallLifetimeEnd final : public EHScopeStack::Cleanup {
llvm::Value *Addr;
llvm::Value *Size;
public:
CallLifetimeEnd(Address addr, llvm::Value *size)
: Addr(addr.getPointer()), Size(size) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitLifetimeEnd(Size, Addr);
}
};
/// Header for data within LifetimeExtendedCleanupStack.
struct LifetimeExtendedCleanupHeader {
/// The size of the following cleanup object.
unsigned Size;
/// The kind of cleanup to push: a value from the CleanupKind enumeration.
CleanupKind Kind;
size_t getSize() const { return Size; }
CleanupKind getKind() const { return Kind; }
};
/// i32s containing the indexes of the cleanup destinations.
llvm::AllocaInst *NormalCleanupDest;
unsigned NextCleanupDestIndex;
/// FirstBlockInfo - The head of a singly-linked-list of block layouts.
CGBlockInfo *FirstBlockInfo;
/// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
llvm::BasicBlock *EHResumeBlock;
/// The exception slot. All landing pads write the current exception pointer
/// into this alloca.
llvm::Value *ExceptionSlot;
/// The selector slot. Under the MandatoryCleanup model, all landing pads
/// write the current selector value into this alloca.
llvm::AllocaInst *EHSelectorSlot;
/// A stack of exception code slots. Entering an __except block pushes a slot
/// on the stack and leaving pops one. The __exception_code() intrinsic loads
/// a value from the top of the stack.
SmallVector<Address, 1> SEHCodeSlotStack;
/// Value returned by __exception_info intrinsic.
llvm::Value *SEHInfo = nullptr;
/// Emits a landing pad for the current EH stack.
llvm::BasicBlock *EmitLandingPad();
llvm::BasicBlock *getInvokeDestImpl();
template <class T>
typename DominatingValue<T>::saved_type saveValueInCond(T value) {
return DominatingValue<T>::save(*this, value);
}
public:
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
/// rethrows.
SmallVector<llvm::Value*, 8> ObjCEHValueStack;
/// A class controlling the emission of a finally block.
class FinallyInfo {
/// Where the catchall's edge through the cleanup should go.
JumpDest RethrowDest;
/// A function to call to enter the catch.
llvm::Constant *BeginCatchFn;
/// An i1 variable indicating whether or not the @finally is
/// running for an exception.
llvm::AllocaInst *ForEHVar;
/// An i8* variable into which the exception pointer to rethrow
/// has been saved.
llvm::AllocaInst *SavedExnVar;
public:
void enter(CodeGenFunction &CGF, const Stmt *Finally,
llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
llvm::Constant *rethrowFn);
void exit(CodeGenFunction &CGF);
};
/// Returns true inside SEH __try blocks.
bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
/// Returns true while emitting a cleanuppad.
bool isCleanupPadScope() const {
return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
}
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class... As>
void pushFullExprCleanup(CleanupKind kind, As... A) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch())
return EHStack.pushCleanup<T>(kind, A...);
// Stash values in a tuple so we can guarantee the order of saves.
typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
SavedTuple Saved{saveValueInCond(A)...};
typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
initFullExprCleanup();
}
/// \brief Queue a cleanup to be pushed after finishing the current
/// full-expression.
template <class T, class... As>
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
assert(!isInConditionalBranch() && "can't defer conditional cleanup");
LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
size_t OldSize = LifetimeExtendedCleanupStack.size();
LifetimeExtendedCleanupStack.resize(
LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
static_assert(sizeof(Header) % alignof(T) == 0,
"Cleanup will be allocated on misaligned address");
char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
new (Buffer) LifetimeExtendedCleanupHeader(Header);
new (Buffer + sizeof(Header)) T(A...);
}
/// Set up the last cleaup that was pushed as a conditional
/// full-expression cleanup.
void initFullExprCleanup();
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object destructor of an object of the given type at the
/// given address. Does nothing if T is not a C++ class type with a
/// non-trivial destructor.
void PushDestructorCleanup(QualType T, Address Addr);
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object variant of the given destructor on the object at
/// the given address.
void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
/// process all branch fixups.
void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
/// DeactivateCleanupBlock - Deactivates the given cleanup block.
/// The block cannot be reactivated. Pops it if it's the top of the
/// stack.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// ActivateCleanupBlock - Activates an initially-inactive cleanup.
/// Cannot be used to resurrect a deactivated cleanup.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// \brief Enters a new scope for capturing cleanups, all of which
/// will be executed once the scope is exited.
class RunCleanupsScope {
EHScopeStack::stable_iterator CleanupStackDepth;
size_t LifetimeExtendedCleanupStackSize;
bool OldDidCallStackSave;
protected:
bool PerformCleanup;
private:
RunCleanupsScope(const RunCleanupsScope &) = delete;
void operator=(const RunCleanupsScope &) = delete;
protected:
CodeGenFunction& CGF;
public:
/// \brief Enter a new cleanup scope.
explicit RunCleanupsScope(CodeGenFunction &CGF)
: PerformCleanup(true), CGF(CGF)
{
CleanupStackDepth = CGF.EHStack.stable_begin();
LifetimeExtendedCleanupStackSize =
CGF.LifetimeExtendedCleanupStack.size();
OldDidCallStackSave = CGF.DidCallStackSave;
CGF.DidCallStackSave = false;
}
/// \brief Exit this cleanup scope, emitting any accumulated cleanups.
~RunCleanupsScope() {
if (PerformCleanup)
ForceCleanup();
}
/// \brief Determine whether this scope requires any cleanups.
bool requiresCleanups() const {
return CGF.EHStack.stable_begin() != CleanupStackDepth;
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
/// \param ValuesToReload - A list of values that need to be available at
/// the insertion point after cleanup emission. If cleanup emission created
/// a shared cleanup block, these value pointers will be rewritten.
/// Otherwise, they not will be modified.
void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
assert(PerformCleanup && "Already forced cleanup");
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
ValuesToReload);
PerformCleanup = false;
}
};
class LexicalScope : public RunCleanupsScope {
SourceRange Range;
SmallVector<const LabelDecl*, 4> Labels;
LexicalScope *ParentScope;
LexicalScope(const LexicalScope &) = delete;
void operator=(const LexicalScope &) = delete;
public:
/// \brief Enter a new cleanup scope.
explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
: RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
CGF.CurLexicalScope = this;
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
}
void addLabel(const LabelDecl *label) {
assert(PerformCleanup && "adding label to dead scope?");
Labels.push_back(label);
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~LexicalScope() {
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
// If we should perform a cleanup, force them now. Note that
// this ends the cleanup scope before rescoping any labels.
if (PerformCleanup) {
ApplyDebugLocation DL(CGF, Range.getEnd());
ForceCleanup();
}
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
CGF.CurLexicalScope = ParentScope;
RunCleanupsScope::ForceCleanup();
if (!Labels.empty())
rescopeLabels();
}
bool hasLabels() const {
return !Labels.empty();
}
void rescopeLabels();
};
typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
/// \brief The scope used to remap some variables as private in the OpenMP
/// loop body (or other captured region emitted without outlining), and to
/// restore old vars back on exit.
class OMPPrivateScope : public RunCleanupsScope {
DeclMapTy SavedLocals;
DeclMapTy SavedPrivates;
private:
OMPPrivateScope(const OMPPrivateScope &) = delete;
void operator=(const OMPPrivateScope &) = delete;
public:
/// \brief Enter a new OpenMP private scope.
explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
/// \brief Registers \a LocalVD variable as a private and apply \a
/// PrivateGen function for it to generate corresponding private variable.
/// \a PrivateGen returns an address of the generated private variable.
/// \return true if the variable is registered as private, false if it has
/// been privatized already.
bool
addPrivate(const VarDecl *LocalVD,
llvm::function_ref<Address()> PrivateGen) {
assert(PerformCleanup && "adding private to dead scope");
LocalVD = LocalVD->getCanonicalDecl();
// Only save it once.
if (SavedLocals.count(LocalVD)) return false;
// Copy the existing local entry to SavedLocals.
auto it = CGF.LocalDeclMap.find(LocalVD);
if (it != CGF.LocalDeclMap.end()) {
SavedLocals.insert({LocalVD, it->second});
} else {
SavedLocals.insert({LocalVD, Address::invalid()});
}
// Generate the private entry.
Address Addr = PrivateGen();
QualType VarTy = LocalVD->getType();
if (VarTy->isReferenceType()) {
Address Temp = CGF.CreateMemTemp(VarTy);
CGF.Builder.CreateStore(Addr.getPointer(), Temp);
Addr = Temp;
}
SavedPrivates.insert({LocalVD, Addr});
return true;
}
/// \brief Privatizes local variables previously registered as private.
/// Registration is separate from the actual privatization to allow
/// initializers use values of the original variables, not the private one.
/// This is important, for example, if the private variable is a class
/// variable initialized by a constructor that references other private
/// variables. But at initialization original variables must be used, not
/// private copies.
/// \return true if at least one variable was privatized, false otherwise.
bool Privatize() {
copyInto(SavedPrivates, CGF.LocalDeclMap);
SavedPrivates.clear();
return !SavedLocals.empty();
}
void ForceCleanup() {
RunCleanupsScope::ForceCleanup();
copyInto(SavedLocals, CGF.LocalDeclMap);
SavedLocals.clear();
}
/// \brief Exit scope - all the mapped variables are restored.
~OMPPrivateScope() {
if (PerformCleanup)
ForceCleanup();
}
/// Checks if the global variable is captured in current function.
bool isGlobalVarCaptured(const VarDecl *VD) const {
VD = VD->getCanonicalDecl();
return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
}
private:
/// Copy all the entries in the source map over the corresponding
/// entries in the destination, which must exist.
static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
for (auto &pair : src) {
if (!pair.second.isValid()) {
dest.erase(pair.first);
continue;
}
auto it = dest.find(pair.first);
if (it != dest.end()) {
it->second = pair.second;
} else {
dest.insert(pair);
}
}
}
};
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added.
void
PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
std::initializer_list<llvm::Value **> ValuesToReload = {});
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added, then adds all lifetime-extended cleanups from
/// the given position to the stack.
void
PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
size_t OldLifetimeExtendedStackSize,
std::initializer_list<llvm::Value **> ValuesToReload = {});
void ResolveBranchFixups(llvm::BasicBlock *Target);
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
return JumpDest(Target,
EHStack.getInnermostNormalCleanup(),
NextCleanupDestIndex++);
}
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
return getJumpDestInCurrentScope(createBasicBlock(Name));
}
/// EmitBranchThroughCleanup - Emit a branch from the current insert
/// block through the normal cleanup handling code (if any) and then
/// on to \arg Dest.
void EmitBranchThroughCleanup(JumpDest Dest);
/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
/// specified destination obviously has no cleanups to run. 'false' is always
/// a conservatively correct answer for this method.
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
/// popCatchScope - Pops the catch scope at the top of the EHScope
/// stack, emitting any required code (other than the catch handlers
/// themselves).
void popCatchScope();
llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
/// An object to manage conditionally-evaluated expressions.
class ConditionalEvaluation {
llvm::BasicBlock *StartBB;
public:
ConditionalEvaluation(CodeGenFunction &CGF)
: StartBB(CGF.Builder.GetInsertBlock()) {}
void begin(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != this);
if (!CGF.OutermostConditional)
CGF.OutermostConditional = this;
}
void end(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != nullptr);
if (CGF.OutermostConditional == this)
CGF.OutermostConditional = nullptr;
}
/// Returns a block which will be executed prior to each
/// evaluation of the conditional code.
llvm::BasicBlock *getStartingBlock() const {
return StartBB;
}
};
/// isInConditionalBranch - Return true if we're currently emitting
/// one branch or the other of a conditional expression.
bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
assert(isInConditionalBranch());
llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
store->setAlignment(addr.getAlignment().getQuantity());
}
/// An RAII object to record that we're evaluating a statement
/// expression.
class StmtExprEvaluation {
CodeGenFunction &CGF;
/// We have to save the outermost conditional: cleanups in a
/// statement expression aren't conditional just because the
/// StmtExpr is.
ConditionalEvaluation *SavedOutermostConditional;
public:
StmtExprEvaluation(CodeGenFunction &CGF)
: CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
CGF.OutermostConditional = nullptr;
}
~StmtExprEvaluation() {
CGF.OutermostConditional = SavedOutermostConditional;
CGF.EnsureInsertPoint();
}
};
/// An object which temporarily prevents a value from being
/// destroyed by aggressive peephole optimizations that assume that
/// all uses of a value have been realized in the IR.
class PeepholeProtection {
llvm::Instruction *Inst;
friend class CodeGenFunction;
public:
PeepholeProtection() : Inst(nullptr) {}
};
/// A non-RAII class containing all the information about a bound
/// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
/// this which makes individual mappings very simple; using this
/// class directly is useful when you have a variable number of
/// opaque values or don't want the RAII functionality for some
/// reason.
class OpaqueValueMappingData {
const OpaqueValueExpr *OpaqueValue;
bool BoundLValue;
CodeGenFunction::PeepholeProtection Protection;
OpaqueValueMappingData(const OpaqueValueExpr *ov,
bool boundLValue)
: OpaqueValue(ov), BoundLValue(boundLValue) {}
public:
OpaqueValueMappingData() : OpaqueValue(nullptr) {}
static bool shouldBindAsLValue(const Expr *expr) {
// gl-values should be bound as l-values for obvious reasons.
// Records should be bound as l-values because IR generation
// always keeps them in memory. Expressions of function type
// act exactly like l-values but are formally required to be
// r-values in C.
return expr->isGLValue() ||
expr->getType()->isFunctionType() ||
hasAggregateEvaluationKind(expr->getType());
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const Expr *e) {
if (shouldBindAsLValue(ov))
return bind(CGF, ov, CGF.EmitLValue(e));
return bind(CGF, ov, CGF.EmitAnyExpr(e));
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const LValue &lv) {
assert(shouldBindAsLValue(ov));
CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
return OpaqueValueMappingData(ov, true);
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const RValue &rv) {
assert(!shouldBindAsLValue(ov));
CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
OpaqueValueMappingData data(ov, false);
// Work around an extremely aggressive peephole optimization in
// EmitScalarConversion which assumes that all other uses of a
// value are extant.
data.Protection = CGF.protectFromPeepholes(rv);
return data;
}
bool isValid() const { return OpaqueValue != nullptr; }
void clear() { OpaqueValue = nullptr; }
void unbind(CodeGenFunction &CGF) {
assert(OpaqueValue && "no data to unbind!");
if (BoundLValue) {
CGF.OpaqueLValues.erase(OpaqueValue);
} else {
CGF.OpaqueRValues.erase(OpaqueValue);
CGF.unprotectFromPeepholes(Protection);
}
}
};
/// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
class OpaqueValueMapping {
CodeGenFunction &CGF;
OpaqueValueMappingData Data;
public:
static bool shouldBindAsLValue(const Expr *expr) {
return OpaqueValueMappingData::shouldBindAsLValue(expr);
}
/// Build the opaque value mapping for the given conditional
/// operator if it's the GNU ?: extension. This is a common
/// enough pattern that the convenience operator is really
/// helpful.
///
OpaqueValueMapping(CodeGenFunction &CGF,
const AbstractConditionalOperator *op) : CGF(CGF) {
if (isa<ConditionalOperator>(op))
// Leave Data empty.
return;
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
e->getCommon());
}
/// Build the opaque value mapping for an OpaqueValueExpr whose source
/// expression is set to the expression the OVE represents.
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
: CGF(CGF) {
if (OV) {
assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
"for OVE with no source expression");
Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
}
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
LValue lvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
RValue rvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
}
void pop() {
Data.unbind(CGF);
Data.clear();
}
~OpaqueValueMapping() {
if (Data.isValid()) Data.unbind(CGF);
}
};
private:
CGDebugInfo *DebugInfo;
bool DisableDebugInfo;
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
/// calling llvm.stacksave for multiple VLAs in the same scope.
bool DidCallStackSave;
/// IndirectBranch - The first time an indirect goto is seen we create a block
/// with an indirect branch. Every time we see the address of a label taken,
/// we add the label to the indirect goto. Every subsequent indirect goto is
/// codegen'd as a jump to the IndirectBranch's basic block.
llvm::IndirectBrInst *IndirectBranch;
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
/// decls.
DeclMapTy LocalDeclMap;
/// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
/// will contain a mapping from said ParmVarDecl to its implicit "object_size"
/// parameter.
llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
SizeArguments;
/// Track escaped local variables with auto storage. Used during SEH
/// outlining to produce a call to llvm.localescape.
llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
/// LabelMap - This keeps track of the LLVM basic block for each C label.
llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
// BreakContinueStack - This keeps track of where break and continue
// statements should jump to.
struct BreakContinue {
BreakContinue(JumpDest Break, JumpDest Continue)
: BreakBlock(Break), ContinueBlock(Continue) {}
JumpDest BreakBlock;
JumpDest ContinueBlock;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
/// Handles cancellation exit points in OpenMP-related constructs.
class OpenMPCancelExitStack {
/// Tracks cancellation exit point and join point for cancel-related exit
/// and normal exit.
struct CancelExit {
CancelExit() = default;
CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
JumpDest ContBlock)
: Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
OpenMPDirectiveKind Kind = OMPD_unknown;
/// true if the exit block has been emitted already by the special
/// emitExit() call, false if the default codegen is used.
bool HasBeenEmitted = false;
JumpDest ExitBlock;
JumpDest ContBlock;
};
SmallVector<CancelExit, 8> Stack;
public:
OpenMPCancelExitStack() : Stack(1) {}
~OpenMPCancelExitStack() = default;
/// Fetches the exit block for the current OpenMP construct.
JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
/// Emits exit block with special codegen procedure specific for the related
/// OpenMP construct + emits code for normal construct cleanup.
void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
assert(CGF.getOMPCancelDestination(Kind).isValid());
assert(CGF.HaveInsertPoint());
assert(!Stack.back().HasBeenEmitted);
auto IP = CGF.Builder.saveAndClearIP();
CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
CodeGen(CGF);
CGF.EmitBranch(Stack.back().ContBlock.getBlock());
CGF.Builder.restoreIP(IP);
Stack.back().HasBeenEmitted = true;
}
CodeGen(CGF);
}
/// Enter the cancel supporting \a Kind construct.
/// \param Kind OpenMP directive that supports cancel constructs.
/// \param HasCancel true, if the construct has inner cancel directive,
/// false otherwise.
void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
Stack.push_back({Kind,
HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
: JumpDest(),
HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
: JumpDest()});
}
/// Emits default exit point for the cancel construct (if the special one
/// has not be used) + join point for cancel/normal exits.
void exit(CodeGenFunction &CGF) {
if (getExitBlock().isValid()) {
assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
bool HaveIP = CGF.HaveInsertPoint();
if (!Stack.back().HasBeenEmitted) {
if (HaveIP)
CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
}
CGF.EmitBlock(Stack.back().ContBlock.getBlock());
if (!HaveIP) {
CGF.Builder.CreateUnreachable();
CGF.Builder.ClearInsertionPoint();
}
}
Stack.pop_back();
}
};
OpenMPCancelExitStack OMPCancelStack;
CodeGenPGO PGO;
/// Calculate branch weights appropriate for PGO data
llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
uint64_t LoopCount);
public:
/// Increment the profiler's counter for the given statement by \p StepV.
/// If \p StepV is null, the default increment is 1.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
if (CGM.getCodeGenOpts().hasProfileClangInstr())
PGO.emitCounterIncrement(Builder, S, StepV);
PGO.setCurrentStmt(S);
}
/// Get the profiler's count for the given statement.
uint64_t getProfileCount(const Stmt *S) {
Optional<uint64_t> Count = PGO.getStmtCount(S);
if (!Count.hasValue())
return 0;
return *Count;
}
/// Set the profiler's current count.
void setCurrentProfileCount(uint64_t Count) {
PGO.setCurrentRegionCount(Count);
}
/// Get the profiler's current count. This is generally the count for the most
/// recently incremented counter.
uint64_t getCurrentProfileCount() {
return PGO.getCurrentRegionCount();
}
private:
/// SwitchInsn - This is nearest current switch instruction. It is null if
/// current context is not in a switch.
llvm::SwitchInst *SwitchInsn;
/// The branch weights of SwitchInsn when doing instrumentation based PGO.
SmallVector<uint64_t, 16> *SwitchWeights;
/// CaseRangeBlock - This block holds if condition check for last case
/// statement range in current switch instruction.
llvm::BasicBlock *CaseRangeBlock;
/// OpaqueLValues - Keeps track of the current set of opaque value
/// expressions.
llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
// VLASizeMap - This keeps track of the associated size for each VLA type.
// We track this by the size expression rather than the type itself because
// in certain situations, like a const qualifier applied to an VLA typedef,
// multiple VLA types can share the same size expression.
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
// enter/leave scopes.
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
/// A block containing a single 'unreachable' instruction. Created
/// lazily by getUnreachableBlock().
llvm::BasicBlock *UnreachableBlock;
/// Counts of the number return expressions in the function.
unsigned NumReturnExprs;
/// Count the number of simple (constant) return expressions in the function.
unsigned NumSimpleReturnExprs;
/// The last regular (non-return) debug location (breakpoint) in the function.
SourceLocation LastStopPoint;
public:
/// A scope within which we are constructing the fields of an object which
/// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
/// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
class FieldConstructionScope {
public:
FieldConstructionScope(CodeGenFunction &CGF, Address This)
: CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
CGF.CXXDefaultInitExprThis = This;
}
~FieldConstructionScope() {
CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
}
private:
CodeGenFunction &CGF;
Address OldCXXDefaultInitExprThis;
};
/// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
/// is overridden to be the object under construction.
class CXXDefaultInitExprScope {
public:
CXXDefaultInitExprScope(CodeGenFunction &CGF)
: CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
OldCXXThisAlignment(CGF.CXXThisAlignment) {
CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
}
~CXXDefaultInitExprScope() {
CGF.CXXThisValue = OldCXXThisValue;
CGF.CXXThisAlignment = OldCXXThisAlignment;
}
public:
CodeGenFunction &CGF;
llvm::Value *OldCXXThisValue;
CharUnits OldCXXThisAlignment;
};
/// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
/// current loop index is overridden.
class ArrayInitLoopExprScope {
public:
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
: CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
CGF.ArrayInitIndex = Index;
}
~ArrayInitLoopExprScope() {
CGF.ArrayInitIndex = OldArrayInitIndex;
}
private:
CodeGenFunction &CGF;
llvm::Value *OldArrayInitIndex;
};
class InlinedInheritingConstructorScope {
public:
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
: CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
OldCurCodeDecl(CGF.CurCodeDecl),
OldCXXABIThisDecl(CGF.CXXABIThisDecl),
OldCXXABIThisValue(CGF.CXXABIThisValue),
OldCXXThisValue(CGF.CXXThisValue),
OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
OldCXXThisAlignment(CGF.CXXThisAlignment),
OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
OldCXXInheritedCtorInitExprArgs(
std::move(CGF.CXXInheritedCtorInitExprArgs)) {
CGF.CurGD = GD;
CGF.CurFuncDecl = CGF.CurCodeDecl =
cast<CXXConstructorDecl>(GD.getDecl());
CGF.CXXABIThisDecl = nullptr;
CGF.CXXABIThisValue = nullptr;
CGF.CXXThisValue = nullptr;
CGF.CXXABIThisAlignment = CharUnits();
CGF.CXXThisAlignment = CharUnits();
CGF.ReturnValue = Address::invalid();
CGF.FnRetTy = QualType();
CGF.CXXInheritedCtorInitExprArgs.clear();
}
~InlinedInheritingConstructorScope() {
CGF.CurGD = OldCurGD;
CGF.CurFuncDecl = OldCurFuncDecl;
CGF.CurCodeDecl = OldCurCodeDecl;
CGF.CXXABIThisDecl = OldCXXABIThisDecl;
CGF.CXXABIThisValue = OldCXXABIThisValue;
CGF.CXXThisValue = OldCXXThisValue;
CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
CGF.CXXThisAlignment = OldCXXThisAlignment;
CGF.ReturnValue = OldReturnValue;
CGF.FnRetTy = OldFnRetTy;
CGF.CXXInheritedCtorInitExprArgs =
std::move(OldCXXInheritedCtorInitExprArgs);
}
private:
CodeGenFunction &CGF;
GlobalDecl OldCurGD;
const Decl *OldCurFuncDecl;
const Decl *OldCurCodeDecl;
ImplicitParamDecl *OldCXXABIThisDecl;
llvm::Value *OldCXXABIThisValue;
llvm::Value *OldCXXThisValue;
CharUnits OldCXXABIThisAlignment;
CharUnits OldCXXThisAlignment;
Address OldReturnValue;
QualType OldFnRetTy;
CallArgList OldCXXInheritedCtorInitExprArgs;
};
private:
/// CXXThisDecl - When generating code for a C++ member function,
/// this will hold the implicit 'this' declaration.
ImplicitParamDecl *CXXABIThisDecl;
llvm::Value *CXXABIThisValue;
llvm::Value *CXXThisValue;
CharUnits CXXABIThisAlignment;
CharUnits CXXThisAlignment;
/// The value of 'this' to use when evaluating CXXDefaultInitExprs within
/// this expression.
Address CXXDefaultInitExprThis = Address::invalid();
/// The current array initialization index when evaluating an
/// ArrayInitIndexExpr within an ArrayInitLoopExpr.
llvm::Value *ArrayInitIndex = nullptr;
/// The values of function arguments to use when evaluating
/// CXXInheritedCtorInitExprs within this context.
CallArgList CXXInheritedCtorInitExprArgs;
/// CXXStructorImplicitParamDecl - When generating code for a constructor or
/// destructor, this will hold the implicit argument (e.g. VTT).
ImplicitParamDecl *CXXStructorImplicitParamDecl;
llvm::Value *CXXStructorImplicitParamValue;
/// OutermostConditional - Points to the outermost active
/// conditional control. This is used so that we know if a
/// temporary should be destroyed conditionally.
ConditionalEvaluation *OutermostConditional;
/// The current lexical scope.
LexicalScope *CurLexicalScope;
/// The current source location that should be used for exception
/// handling code.
SourceLocation CurEHLocation;
/// BlockByrefInfos - For each __block variable, contains
/// information about the layout of the variable.
llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
/// Used by -fsanitize=nullability-return to determine whether the return
/// value can be checked.
llvm::Value *RetValNullabilityPrecondition = nullptr;
/// Check if -fsanitize=nullability-return instrumentation is required for
/// this function.
bool requiresReturnValueNullabilityCheck() const {
return RetValNullabilityPrecondition;
}
/// Used to store precise source locations for return statements by the
/// runtime return value checks.
Address ReturnLocation = Address::invalid();
/// Check if the return value of this function requires sanitization.
bool requiresReturnValueCheck() const {
return requiresReturnValueNullabilityCheck() ||
(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
}
llvm::BasicBlock *TerminateLandingPad;
llvm::BasicBlock *TerminateHandler;
llvm::BasicBlock *TrapBB;
/// Terminate funclets keyed by parent funclet pad.
llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
/// True if we need emit the life-time markers.
const bool ShouldEmitLifetimeMarkers;
/// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
/// the function metadata.
void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
llvm::Function *Fn);
public:
CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
~CodeGenFunction();
CodeGenTypes &getTypes() const { return CGM.getTypes(); }
ASTContext &getContext() const { return CGM.getContext(); }
CGDebugInfo *getDebugInfo() {
if (DisableDebugInfo)
return nullptr;
return DebugInfo;
}
void disableDebugInfo() { DisableDebugInfo = true; }
void enableDebugInfo() { DisableDebugInfo = false; }
bool shouldUseFusedARCCalls() {
return CGM.getCodeGenOpts().OptimizationLevel == 0;
}
const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
/// Returns a pointer to the function's exception object and selector slot,
/// which is assigned in every landing pad.
Address getExceptionSlot();
Address getEHSelectorSlot();
/// Returns the contents of the function's exception object and selector
/// slots.
llvm::Value *getExceptionFromSlot();
llvm::Value *getSelectorFromSlot();
Address getNormalCleanupDestSlot();
llvm::BasicBlock *getUnreachableBlock() {
if (!UnreachableBlock) {
UnreachableBlock = createBasicBlock("unreachable");
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
}
return UnreachableBlock;
}
llvm::BasicBlock *getInvokeDest() {
if (!EHStack.requiresLandingPad()) return nullptr;
return getInvokeDestImpl();
}
bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
const TargetInfo &getTarget() const { return Target; }
llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
const TargetCodeGenInfo &getTargetHooks() const {
return CGM.getTargetCodeGenInfo();
}
//===--------------------------------------------------------------------===//
// Cleanups
//===--------------------------------------------------------------------===//
typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
Address arrayEndPointer,
QualType elementType,
CharUnits elementAlignment,
Destroyer *destroyer);
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
llvm::Value *arrayEnd,
QualType elementType,
CharUnits elementAlignment,
Destroyer *destroyer);
void pushDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type);
void pushEHDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type);
void pushDestroy(CleanupKind kind, Address addr, QualType type,
Destroyer *destroyer, bool useEHCleanupForArray);
void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
llvm::Value *CompletePtr,
QualType ElementType);
void pushStackRestore(CleanupKind kind, Address SPMem);
void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
llvm::Function *generateDestroyHelper(Address addr, QualType type,
Destroyer *destroyer,
bool useEHCleanupForArray,
const VarDecl *VD);
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
QualType elementType, CharUnits elementAlign,
Destroyer *destroyer,
bool checkZeroLength, bool useEHCleanup);
Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
/// Determines whether an EH cleanup is required to destroy a type
/// with the given destruction kind.
bool needsEHCleanup(QualType::DestructionKind kind) {
switch (kind) {
case QualType::DK_none:
return false;
case QualType::DK_cxx_destructor:
case QualType::DK_objc_weak_lifetime:
return getLangOpts().Exceptions;
case QualType::DK_objc_strong_lifetime:
return getLangOpts().Exceptions &&
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
}
llvm_unreachable("bad destruction kind");
}
CleanupKind getCleanupKind(QualType::DestructionKind kind) {
return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
}
//===--------------------------------------------------------------------===//
// Objective-C
//===--------------------------------------------------------------------===//
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
const ObjCMethodDecl *GetterMothodDecl,
llvm::Constant *AtomicHelperFn);
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD, bool ctor);
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
/// for the given property.
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
llvm::Constant *AtomicHelperFn);
//===--------------------------------------------------------------------===//
// Block Bits
//===--------------------------------------------------------------------===//
/// Emit block literal.
/// \return an LLVM value which is a pointer to a struct which contains
/// information about the block, including the block invoke function, the
/// captured variables, etc.
/// \param InvokeF will contain the block invoke function if it is not
/// nullptr.
llvm::Value *EmitBlockLiteral(const BlockExpr *,
llvm::Function **InvokeF = nullptr);
static void destroyBlockInfos(CGBlockInfo *info);
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
const CGBlockInfo &Info,
const DeclMapTy &ldm,
bool IsLambdaConversionToBlock,
bool BuildGlobalBlock);
llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
class AutoVarEmission;
void emitByrefStructureInit(const AutoVarEmission &emission);
void enterByrefCleanup(const AutoVarEmission &emission);
void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
llvm::Value *ptr);
Address LoadBlockStruct();
Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
/// BuildBlockByrefAddress - Computes the location of the
/// data in a variable which is declared as __block.
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
bool followForward = true);
Address emitBlockByrefAddress(Address baseAddr,
const BlockByrefInfo &info,
bool followForward,
const llvm::Twine &name);
const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
const CGFunctionInfo &FnInfo);
/// \brief Emit code for the start of a function.
/// \param Loc The location to be associated with the function.
/// \param StartLoc The location of the function body.
void StartFunction(GlobalDecl GD,
QualType RetTy,
llvm::Function *Fn,
const CGFunctionInfo &FnInfo,
const FunctionArgList &Args,
SourceLocation Loc = SourceLocation(),
SourceLocation StartLoc = SourceLocation());
static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
void EmitConstructorBody(FunctionArgList &Args);
void EmitDestructorBody(FunctionArgList &Args);
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
CallArgList &CallArgs);
void EmitLambdaBlockInvokeBody();
void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
void EmitAsanPrologueOrEpilogue(bool Prologue);
/// \brief Emit the unified return block, trying to avoid its emission when
/// possible.
/// \return The debug location of the user written return statement if the
/// return block is is avoided.
llvm::DebugLoc EmitReturnBlock();
/// FinishFunction - Complete IR generation of the current function. It is
/// legal to call this function even if there is no current insertion point.
void FinishFunction(SourceLocation EndLoc=SourceLocation());
void StartThunk(llvm::Function *Fn, GlobalDecl GD,
const CGFunctionInfo &FnInfo);
void EmitCallAndReturnForThunk(llvm::Constant *Callee,
const ThunkInfo *Thunk);
void FinishThunk();
/// Emit a musttail call for a thunk with a potentially adjusted this pointer.
void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
llvm::Value *Callee);
/// Generate a thunk for the given method.
void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
FunctionArgList &Args);
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
/// Struct with all informations about dynamic [sub]class needed to set vptr.
struct VPtr {
BaseSubobject Base;
const CXXRecordDecl *NearestVBase;
CharUnits OffsetFromNearestVBase;
const CXXRecordDecl *VTableClass;
};
/// Initialize the vtable pointer of the given subobject.
void InitializeVTablePointer(const VPtr &vptr);
typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
CharUnits OffsetFromNearestVBase,
bool BaseIsNonVirtualPrimaryBase,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
/// GetVTablePtr - Return the Value of the vtable pointer member pointed
/// to by This.
llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
const CXXRecordDecl *VTableClass);
enum CFITypeCheckKind {
CFITCK_VCall,
CFITCK_NVCall,
CFITCK_DerivedCast,
CFITCK_UnrelatedCast,
CFITCK_ICall,
};
/// \brief Derived is the presumed address of an object of type T after a
/// cast. If T is a polymorphic class type, emit a check that the virtual
/// table for Derived belongs to a class derived from T.
void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
bool MayBeNull, CFITypeCheckKind TCK,
SourceLocation Loc);
/// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
/// If vptr CFI is enabled, emit a check that VTable is valid.
void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
CFITypeCheckKind TCK, SourceLocation Loc);
/// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
/// RD using llvm.type.test.
void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
CFITypeCheckKind TCK, SourceLocation Loc);
/// If whole-program virtual table optimization is enabled, emit an assumption
/// that VTable is a member of RD's type identifier. Or, if vptr CFI is
/// enabled, emit a check that VTable is a member of RD's type identifier.
void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
llvm::Value *VTable, SourceLocation Loc);
/// Returns whether we should perform a type checked load when loading a
/// virtual function for virtual calls to members of RD. This is generally
/// true when both vcall CFI and whole-program-vtables are enabled.
bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
/// Emit a type checked load from the given vtable.
llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
uint64_t VTableByteOffset);
/// EnterDtorCleanups - Enter the cleanups necessary to complete the
/// given phase of destruction for a destructor. The end result
/// should call destructors on members and base classes in reverse
/// order of their construction.
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
/// ShouldInstrumentFunction - Return true if the current function should be
/// instrumented with __cyg_profile_func_* calls
bool ShouldInstrumentFunction();
/// ShouldXRayInstrument - Return true if the current function should be
/// instrumented with XRay nop sleds.
bool ShouldXRayInstrumentFunction() const;
/// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
/// XRay custom event handling calls.
bool AlwaysEmitXRayCustomEvents() const;
/// Encode an address into a form suitable for use in a function prologue.
llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
llvm::Constant *Addr);
/// Decode an address used in a function prologue, encoded by \c
/// EncodeAddrForUseInPrologue.
llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
llvm::Value *EncodedAddr);
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
/// arguments for the given function. This is also responsible for naming the
/// LLVM function arguments.
void EmitFunctionProlog(const CGFunctionInfo &FI,
llvm::Function *Fn,
const FunctionArgList &Args);
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
/// given temporary.
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
SourceLocation EndLoc);
/// Emit a test that checks if the return value \p RV is nonnull.
void EmitReturnValueCheck(llvm::Value *RV);
/// EmitStartEHSpec - Emit the start of the exception spec.
void EmitStartEHSpec(const Decl *D);
/// EmitEndEHSpec - Emit the end of the exception spec.
void EmitEndEHSpec(const Decl *D);
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
llvm::BasicBlock *getTerminateLandingPad();
/// getTerminateLandingPad - Return a cleanup funclet that just calls
/// terminate.
llvm::BasicBlock *getTerminateFunclet();
/// getTerminateHandler - Return a handler (not a landing pad, just
/// a catch handler) that just calls terminate. This is used when
/// a terminate scope encloses a try.
llvm::BasicBlock *getTerminateHandler();
llvm::Type *ConvertTypeForMem(QualType T);
llvm::Type *ConvertType(QualType T);
llvm::Type *ConvertType(const TypeDecl *T) {
return ConvertType(getContext().getTypeDeclType(T));
}
/// LoadObjCSelf - Load the value of self. This function is only valid while
/// generating code for an Objective-C method.
llvm::Value *LoadObjCSelf();
/// TypeOfSelfObject - Return type of object that this self represents.
QualType TypeOfSelfObject();
/// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
static TypeEvaluationKind getEvaluationKind(QualType T);
static bool hasScalarEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Scalar;
}
static bool hasAggregateEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Aggregate;
}
/// createBasicBlock - Create an LLVM basic block.
llvm::BasicBlock *createBasicBlock(const Twine &name = "",
llvm::Function *parent = nullptr,
llvm::BasicBlock *before = nullptr) {
#ifdef NDEBUG
return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
#else
return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
#endif
}
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
/// label maps to.
JumpDest getJumpDestForLabel(const LabelDecl *S);
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
/// another basic block, simplify it. This assumes that no other code could
/// potentially reference the basic block.
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
/// adding a fall-through branch from the current insert block if
/// necessary. It is legal to call this function even if there is no current
/// insertion point.
///
/// IsFinished - If true, indicates that the caller has finished emitting
/// branches to the given block and does not expect to emit code into it. This
/// means the block can be ignored if it is unreachable.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
/// EmitBlockAfterUses - Emit the given block somewhere hopefully
/// near its uses, and leave the insertion point in it.
void EmitBlockAfterUses(llvm::BasicBlock *BB);
/// EmitBranch - Emit a branch to the specified basic block from the current
/// insert block, taking care to avoid creation of branches from dummy
/// blocks. It is legal to call this function even if there is no current
/// insertion point.
///
/// This function clears the current insertion point. The caller should follow
/// calls to this function with calls to Emit*Block prior to generation new
/// code.
void EmitBranch(llvm::BasicBlock *Block);
/// HaveInsertPoint - True if an insertion point is defined. If not, this
/// indicates that the current code being emitted is unreachable.
bool HaveInsertPoint() const {
return Builder.GetInsertBlock() != nullptr;
}
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
/// emitted IR has a place to go. Note that by definition, if this function
/// creates a block then that block is unreachable; callers may do better to
/// detect when no insertion point is defined and simply skip IR generation.
void EnsureInsertPoint() {
if (!HaveInsertPoint())
EmitBlock(createBasicBlock());
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void ErrorUnsupported(const Stmt *S, const char *Type);
//===--------------------------------------------------------------------===//
// Helpers
//===--------------------------------------------------------------------===//
LValue MakeAddrLValue(Address Addr, QualType T,
AlignmentSource Source = AlignmentSource::Type) {
return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
CGM.getTBAAAccessInfo(T));
}
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
TBAAAccessInfo TBAAInfo) {
return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
}
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
AlignmentSource Source = AlignmentSource::Type) {
return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
}
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
BaseInfo, TBAAInfo);
}
LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
CharUnits getNaturalTypeAlignment(QualType T,
LValueBaseInfo *BaseInfo = nullptr,
TBAAAccessInfo *TBAAInfo = nullptr,
bool forPointeeType = false);
CharUnits getNaturalPointeeTypeAlignment(QualType T,
LValueBaseInfo *BaseInfo = nullptr,
TBAAAccessInfo *TBAAInfo = nullptr);
Address EmitLoadOfReference(LValue RefLVal,
LValueBaseInfo *PointeeBaseInfo = nullptr,
TBAAAccessInfo *PointeeTBAAInfo = nullptr);
LValue EmitLoadOfReferenceLValue(LValue RefLVal);
LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
AlignmentSource Source =
AlignmentSource::Type) {
LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
CGM.getTBAAAccessInfo(RefTy));
return EmitLoadOfReferenceLValue(RefLVal);
}
Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
LValueBaseInfo *BaseInfo = nullptr,
TBAAAccessInfo *TBAAInfo = nullptr);
LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
/// CreateTempAlloca - This creates an alloca and inserts it into the entry
/// block if \p ArraySize is nullptr, otherwise inserts it at the current
/// insertion point of the builder. The caller is responsible for setting an
/// appropriate alignment on
/// the alloca.
///
/// \p ArraySize is the number of array elements to be allocated if it
/// is not nullptr.
///
/// LangAS::Default is the address space of pointers to local variables and
/// temporaries, as exposed in the source language. In certain
/// configurations, this is not the same as the alloca address space, and a
/// cast is needed to lift the pointer from the alloca AS into
/// LangAS::Default. This can happen when the target uses a restricted
/// address space for the stack but the source language requires
/// LangAS::Default to be a generic address space. The latter condition is
/// common for most programming languages; OpenCL is an exception in that
/// LangAS::Default is the private address space, which naturally maps
/// to the stack.
///
/// Because the address of a temporary is often exposed to the program in
/// various ways, this function will perform the cast by default. The cast
/// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
/// more efficient if the caller knows that the address will not be exposed.
llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
llvm::Value *ArraySize = nullptr);
Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
const Twine &Name = "tmp",
llvm::Value *ArraySize = nullptr,
bool CastToDefaultAddrSpace = true);
/// CreateDefaultAlignedTempAlloca - This creates an alloca with the
/// default ABI alignment of the given LLVM type.
///
/// IMPORTANT NOTE: This is *not* generally the right alignment for
/// any given AST type that happens to have been lowered to the
/// given IR type. This should only ever be used for function-local,
/// IR-driven manipulations like saving and restoring a value. Do
/// not hand this address off to arbitrary IRGen routines, and especially
/// do not pass it as an argument to a function that might expect a
/// properly ABI-aligned value.
Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
const Twine &Name = "tmp");
/// InitTempAlloca - Provide an initial value for the given alloca which
/// will be observable at all locations in the function.
///
/// The address should be something that was returned from one of
/// the CreateTempAlloca or CreateMemTemp routines, and the
/// initializer must be valid in the entry block (i.e. it must
/// either be a constant or an argument value).
void InitTempAlloca(Address Alloca, llvm::Value *Value);
/// CreateIRTemp - Create a temporary IR object of the given type, with
/// appropriate alignment. This routine should only be used when an temporary
/// value needs to be stored into an alloca (for example, to avoid explicit
/// PHI construction), but the type is the IR type, not the type appropriate
/// for storing in memory.
///
/// That is, this is exactly equivalent to CreateMemTemp, but calling
/// ConvertType instead of ConvertTypeForMem.
Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
/// CreateMemTemp - Create a temporary memory object of the given type, with
/// appropriate alignment. Cast it to the default address space if
/// \p CastToDefaultAddrSpace is true.
Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
bool CastToDefaultAddrSpace = true);
Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
bool CastToDefaultAddrSpace = true);
/// CreateAggTemp - Create a temporary memory object for the given
/// aggregate type.
AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
return AggValueSlot::forAddr(CreateMemTemp(T, Name),
T.getQualifiers(),
AggValueSlot::IsNotDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased);
}
/// Emit a cast to void* in the appropriate address space.
llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *EvaluateExprAsBool(const Expr *E);
/// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
void EmitIgnoredExpr(const Expr *E);
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
///
/// \param ignoreResult True if the resulting value isn't used.
RValue EmitAnyExpr(const Expr *E,
AggValueSlot aggSlot = AggValueSlot::ignored(),
bool ignoreResult = false);
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
// or the value of the expression, depending on how va_list is defined.
Address EmitVAListRef(const Expr *E);
/// Emit a "reference" to a __builtin_ms_va_list; this is
/// always the value of the expression, because a __builtin_ms_va_list is a
/// pointer to a char.
Address EmitMSVAListRef(const Expr *E);
/// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue EmitAnyExprToTemp(const Expr *E);
/// EmitAnyExprToMem - Emits the code necessary to evaluate an
/// arbitrary expression into the given memory location.
void EmitAnyExprToMem(const Expr *E, Address Location,
Qualifiers Quals, bool IsInitializer);
void EmitAnyExprToExn(const Expr *E, Address Addr);
/// EmitExprAsInit - Emits the code necessary to initialize a
/// location in memory with the given initializer.
void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
bool capturedByInit);
/// hasVolatileMember - returns true if aggregate type has a volatile
/// member.
bool hasVolatileMember(QualType T) {
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
return RD->hasVolatileMember();
}
return false;
}
/// EmitAggregateCopy - Emit an aggregate assignment.
///
/// The difference to EmitAggregateCopy is that tail padding is not copied.
/// This is required for correctness when assigning non-POD structures in C++.
void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
QualType EltTy) {
bool IsVolatile = hasVolatileMember(EltTy);
EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
}
void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
QualType DestTy, QualType SrcTy) {
EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
/*IsAssignment=*/false);
}
/// EmitAggregateCopy - Emit an aggregate copy.
///
/// \param isVolatile - True iff either the source or the destination is
/// volatile.
/// \param isAssignment - If false, allow padding to be copied. This often
/// yields more efficient.
void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
QualType EltTy, bool isVolatile=false,
bool isAssignment = false);
/// GetAddrOfLocalVar - Return the address of a local variable.
Address GetAddrOfLocalVar(const VarDecl *VD) {
auto it = LocalDeclMap.find(VD);
assert(it != LocalDeclMap.end() &&
"Invalid argument to GetAddrOfLocalVar(), no decl!");
return it->second;
}
/// getOpaqueLValueMapping - Given an opaque value expression (which
/// must be mapped to an l-value), return its mapping.
const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
assert(OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
it = OpaqueLValues.find(e);
assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
return it->second;
}
/// getOpaqueRValueMapping - Given an opaque value expression (which
/// must be mapped to an r-value), return its mapping.
const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
it = OpaqueRValues.find(e);
assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
return it->second;
}
/// Get the index of the current ArrayInitLoopExpr, if any.
llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
llvm::BasicBlock *GetIndirectGotoBlock();
/// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
static bool IsWrappedCXXThis(const Expr *E);
/// EmitNullInitialization - Generate code to set a value of the given type to
/// null, If the type contains data member pointers, they will be initialized
/// to -1 in accordance with the Itanium C++ ABI.
void EmitNullInitialization(Address DestPtr, QualType Ty);
/// Emits a call to an LLVM variable-argument intrinsic, either
/// \c llvm.va_start or \c llvm.va_end.
/// \param ArgValue A reference to the \c va_list as emitted by either
/// \c EmitVAListRef or \c EmitMSVAListRef.
/// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
/// calls \c llvm.va_end.
llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
/// Generate code to get an argument from the passed in pointer
/// and update it accordingly.
/// \param VE The \c VAArgExpr for which to generate code.
/// \param VAListAddr Receives a reference to the \c va_list as emitted by
/// either \c EmitVAListRef or \c EmitMSVAListRef.
/// \returns A pointer to the argument.
// FIXME: We should be able to get rid of this method and use the va_arg
// instruction in LLVM instead once it works well enough.
Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
/// emitArrayLength - Compute the length of an array, even if it's a
/// VLA, and drill down to the base element type.
llvm::Value *emitArrayLength(const ArrayType *arrayType,
QualType &baseType,
Address &addr);
/// EmitVLASize - Capture all the sizes for the VLA expressions in
/// the given variably-modified type and store them in the VLASizeMap.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVariablyModifiedType(QualType Ty);
/// getVLASize - Returns an LLVM value that corresponds to the size,
/// in non-variably-sized elements, of a variable length array type,
/// plus that largest non-variably-sized element type. Assumes that
/// the type has already been emitted with EmitVariablyModifiedType.
std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
/// generating code for an C++ member function.
llvm::Value *LoadCXXThis() {
assert(CXXThisValue && "no 'this' value for this function");
return CXXThisValue;
}
Address LoadCXXThisAddress();
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
/// virtual bases.
// FIXME: Every place that calls LoadCXXVTT is something
// that needs to be abstracted properly.
llvm::Value *LoadCXXVTT() {
assert(CXXStructorImplicitParamValue && "no VTT value for this function");
return CXXStructorImplicitParamValue;
}
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
/// complete class to the given direct base.
Address
GetAddressOfDirectBaseInCompleteClass(Address Value,
const CXXRecordDecl *Derived,
const CXXRecordDecl *Base,
bool BaseIsVirtual);
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
/// GetAddressOfBaseClass - This function will add the necessary delta to the
/// load of 'this' and returns address of the base class.
Address GetAddressOfBaseClass(Address Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue, SourceLocation Loc);
Address GetAddressOfDerivedClass(Address Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue);
/// GetVTTParameter - Return the VTT parameter that should be passed to a
/// base constructor/destructor with virtual bases.
/// FIXME: VTTs are Itanium ABI-specific, so the definition should move
/// to ItaniumCXXABI.cpp together with all the references to VTT.
llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
bool Delegating);
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
const FunctionArgList &Args,
SourceLocation Loc);
// It's important not to confuse this and the previous function. Delegating
// constructors are the C++0x feature. The constructor delegate optimization
// is used to reduce duplication in the base and complete consturctors where
// they are substantially the same.
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
const FunctionArgList &Args);
/// Emit a call to an inheriting constructor (that is, one that invokes a
/// constructor inherited from a base class) by inlining its definition. This
/// is necessary if the ABI does not support forwarding the arguments to the
/// base class constructor (because they're variadic or similar).
void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
bool ForVirtualBase,
bool Delegating,
CallArgList &Args);
/// Emit a call to a constructor inherited from a base class, passing the
/// current constructor's arguments along unmodified (without even making
/// a copy).
void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
bool ForVirtualBase, Address This,
bool InheritedFromVBase,
const CXXInheritedCtorInitExpr *E);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, bool Delegating,
Address This, const CXXConstructExpr *E);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, bool Delegating,
Address This, CallArgList &Args);
/// Emit assumption load for all bases. Requires to be be called only on
/// most-derived class and not under construction of the object.
void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
/// Emit assumption that vptr load == global vtable.
void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
Address This, Address Src,
const CXXConstructExpr *E);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ArrayType *ArrayTy,
Address ArrayPtr,
const CXXConstructExpr *E,
bool ZeroInitialization = false);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
Address ArrayPtr,
const CXXConstructExpr *E,
bool ZeroInitialization = false);
static Destroyer destroyCXXObject;
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
bool ForVirtualBase, bool Delegating,
Address This);
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
llvm::Type *ElementTy, Address NewPtr,
llvm::Value *NumElements,
llvm::Value *AllocSizeWithoutCookie);
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
Address Ptr);
llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
QualType DeleteTy, llvm::Value *NumElements = nullptr,
CharUnits CookieSize = CharUnits());
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
const Expr *Arg, bool IsDelete);
llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
/// \brief Situations in which we might emit a check for the suitability of a
/// pointer or glvalue.
enum TypeCheckKind {
/// Checking the operand of a load. Must be suitably sized and aligned.
TCK_Load,
/// Checking the destination of a store. Must be suitably sized and aligned.
TCK_Store,
/// Checking the bound value in a reference binding. Must be suitably sized
/// and aligned, but is not required to refer to an object (until the
/// reference is used), per core issue 453.
TCK_ReferenceBinding,
/// Checking the object expression in a non-static data member access. Must
/// be an object within its lifetime.
TCK_MemberAccess,
/// Checking the 'this' pointer for a call to a non-static member function.
/// Must be an object within its lifetime.
TCK_MemberCall,
/// Checking the 'this' pointer for a constructor call.
TCK_ConstructorCall,
/// Checking the operand of a static_cast to a derived pointer type. Must be
/// null or an object within its lifetime.
TCK_DowncastPointer,
/// Checking the operand of a static_cast to a derived reference type. Must
/// be an object within its lifetime.
TCK_DowncastReference,
/// Checking the operand of a cast to a base object. Must be suitably sized
/// and aligned.
TCK_Upcast,
/// Checking the operand of a cast to a virtual base object. Must be an
/// object within its lifetime.
TCK_UpcastToVirtualBase,
/// Checking the value assigned to a _Nonnull pointer. Must not be null.
TCK_NonnullAssign,
/// Checking the operand of a dynamic_cast or a typeid expression. Must be
/// null or an object within its lifetime.
TCK_DynamicOperation
};
/// Determine whether the pointer type check \p TCK permits null pointers.
static bool isNullPointerAllowed(TypeCheckKind TCK);
/// Determine whether the pointer type check \p TCK requires a vptr check.
static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
/// \brief Whether any type-checking sanitizers are enabled. If \c false,
/// calls to EmitTypeCheck can be skipped.
bool sanitizePerformTypeCheck() const;
/// \brief Emit a check that \p V is the address of storage of the
/// appropriate size and alignment for an object of type \p Type.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
QualType Type, CharUnits Alignment = CharUnits::Zero(),
SanitizerSet SkippedChecks = SanitizerSet());
/// \brief Emit a check that \p Base points into an array object, which
/// we can access at index \p Index. \p Accessed should be \c false if we
/// this expression is used as an lvalue, for instance in "&Arr[Idx]".
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
QualType IndexType, bool Accessed);
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
llvm::Value *OffsetValue = nullptr) {
Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
OffsetValue);
}
/// Converts Location to a DebugLoc, if debug information is enabled.
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
//===--------------------------------------------------------------------===//
// Declaration Emission
//===--------------------------------------------------------------------===//
/// EmitDecl - Emit a declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitDecl(const Decl &D);
/// EmitVarDecl - Emit a local variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVarDecl(const VarDecl &D);
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
bool capturedByInit);
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
llvm::Value *Address);
/// \brief Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool isTrivialInitializer(const Expr *Init);
/// EmitAutoVarDecl - Emit an auto variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitAutoVarDecl(const VarDecl &D);
class AutoVarEmission {
friend class CodeGenFunction;
const VarDecl *Variable;
/// The address of the alloca. Invalid if the variable was emitted
/// as a global constant.
Address Addr;
llvm::Value *NRVOFlag;
/// True if the variable is a __block variable.
bool IsByRef;
/// True if the variable is of aggregate type and has a constant
/// initializer.
bool IsConstantAggregate;
/// Non-null if we should use lifetime annotations.
llvm::Value *SizeForLifetimeMarkers;
struct Invalid {};
AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
AutoVarEmission(const VarDecl &variable)
: Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
IsByRef(false), IsConstantAggregate(false),
SizeForLifetimeMarkers(nullptr) {}
bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
public:
static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
bool useLifetimeMarkers() const {
return SizeForLifetimeMarkers != nullptr;
}
llvm::Value *getSizeForLifetimeMarkers() const {
assert(useLifetimeMarkers());
return SizeForLifetimeMarkers;
}
/// Returns the raw, allocated address, which is not necessarily
/// the address of the object itself.
Address getAllocatedAddress() const {
return Addr;
}
/// Returns the address of the object within this declaration.
/// Note that this does not chase the forwarding pointer for
/// __block decls.
Address getObjectAddress(CodeGenFunction &CGF) const {
if (!IsByRef) return Addr;
return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
}
};
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
void EmitAutoVarInit(const AutoVarEmission &emission);
void EmitAutoVarCleanups(const AutoVarEmission &emission);
void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
QualType::DestructionKind dtorKind);
void EmitStaticVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage);
class ParamValue {
llvm::Value *Value;
unsigned Alignment;
ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
public:
static ParamValue forDirect(llvm::Value *value) {
return ParamValue(value, 0);
}
static ParamValue forIndirect(Address addr) {
assert(!addr.getAlignment().isZero());
return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
}
bool isIndirect() const { return Alignment != 0; }
llvm::Value *getAnyValue() const { return Value; }
llvm::Value *getDirectValue() const {
assert(!isIndirect());
return Value;
}
Address getIndirectAddress() const {
assert(isIndirect());
return Address(Value, CharUnits::fromQuantity(Alignment));
}
};
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
/// protectFromPeepholes - Protect a value that we're intending to
/// store to the side, but which will probably be used later, from
/// aggressive peepholing optimizations that might delete it.
///
/// Pass the result to unprotectFromPeepholes to declare that
/// protection is no longer required.
///
/// There's no particular reason why this shouldn't apply to
/// l-values, it's just that no existing peepholes work on pointers.
PeepholeProtection protectFromPeepholes(RValue rvalue);
void unprotectFromPeepholes(PeepholeProtection protection);
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
llvm::Value *OffsetValue = nullptr) {
Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
OffsetValue);
}
//===--------------------------------------------------------------------===//
// Statement Emission
//===--------------------------------------------------------------------===//
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
void EmitStopPoint(const Stmt *S);
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
/// this function even if there is no current insertion point.
///
/// This function may clear the current insertion point; callers should use
/// EnsureInsertPoint if they wish to subsequently generate code without first
/// calling EmitBlock, EmitBranch, or EmitStmt.
void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
/// necessarily require an insertion point or debug information; typically
/// because the statement amounts to a jump or a container of other
/// statements.
///
/// \return True if the statement was handled.
bool EmitSimpleStmt(const Stmt *S);
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
AggValueSlot AVS = AggValueSlot::ignored());
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
bool GetLast = false,
AggValueSlot AVS =
AggValueSlot::ignored());
/// EmitLabel - Emit the block for the given label. It is legal to call this
/// function even if there is no current insertion point.
void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
void EmitLabelStmt(const LabelStmt &S);
void EmitAttributedStmt(const AttributedStmt &S);
void EmitGotoStmt(const GotoStmt &S);
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
void EmitIfStmt(const IfStmt &S);
void EmitWhileStmt(const WhileStmt &S,
ArrayRef<const Attr *> Attrs = None);
void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
void EmitForStmt(const ForStmt &S,
ArrayRef<const Attr *> Attrs = None);
void EmitReturnStmt(const ReturnStmt &S);
void EmitDeclStmt(const DeclStmt &S);
void EmitBreakStmt(const BreakStmt &S);
void EmitContinueStmt(const ContinueStmt &S);
void EmitSwitchStmt(const SwitchStmt &S);
void EmitDefaultStmt(const DefaultStmt &S);
void EmitCaseStmt(const CaseStmt &S);
void EmitCaseStmtRange(const CaseStmt &S);
void EmitAsmStmt(const AsmStmt &S);
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
void EmitCoroutineBody(const CoroutineBodyStmt &S);
void EmitCoreturnStmt(const CoreturnStmt &S);
RValue EmitCoawaitExpr(const CoawaitExpr &E,
AggValueSlot aggSlot = AggValueSlot::ignored(),
bool ignoreResult = false);
LValue EmitCoawaitLValue(const CoawaitExpr *E);
RValue EmitCoyieldExpr(const CoyieldExpr &E,
AggValueSlot aggSlot = AggValueSlot::ignored(),
bool ignoreResult = false);
LValue EmitCoyieldLValue(const CoyieldExpr *E);
RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void EmitCXXTryStmt(const CXXTryStmt &S);
void EmitSEHTryStmt(const SEHTryStmt &S);
void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
void EnterSEHTryStmt(const SEHTryStmt &S);
void ExitSEHTryStmt(const SEHTryStmt &S);
void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
const Stmt *OutlinedStmt);
llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
const SEHExceptStmt &Except);
llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
const SEHFinallyStmt &Finally);
void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
llvm::Value *ParentFP,
llvm::Value *EntryEBP);
llvm::Value *EmitSEHExceptionCode();
llvm::Value *EmitSEHExceptionInfo();
llvm::Value *EmitSEHAbnormalTermination();
/// Emit simple code for OpenMP directives in Simd-only mode.
void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
/// Scan the outlined statement for captures from the parent function. For
/// each capture, mark the capture as escaped and emit a call to
/// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
bool IsFilter);
/// Recovers the address of a local in a parent function. ParentVar is the
/// address of the variable used in the immediate parent function. It can
/// either be an alloca or a call to llvm.localrecover if there are nested
/// outlined functions. ParentFP is the frame pointer of the outermost parent
/// frame.
Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
Address ParentVar,
llvm::Value *ParentFP);
void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
ArrayRef<const Attr *> Attrs = None);
/// Controls insertion of cancellation exit blocks in worksharing constructs.
class OMPCancelStackRAII {
CodeGenFunction &CGF;
public:
OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGF(CGF) {
CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
}
~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
};
/// Returns calculated size of the specified type.
llvm::Value *getTypeSize(QualType Ty);
LValue InitCapturedStruct(const CapturedStmt &S);
llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
Address GenerateCapturedStmtArgument(const CapturedStmt &S);
llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
void GenerateOpenMPCapturedVars(const CapturedStmt &S,
SmallVectorImpl<llvm::Value *> &CapturedVars);
void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
SourceLocation Loc);
/// \brief Perform element by element copying of arrays with type \a
/// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
/// generated by \a CopyGen.
///
/// \param DestAddr Address of the destination array.
/// \param SrcAddr Address of the source array.
/// \param OriginalType Type of destination and source arrays.
/// \param CopyGen Copying procedure that copies value of single array element
/// to another single array element.
void EmitOMPAggregateAssign(
Address DestAddr, Address SrcAddr, QualType OriginalType,
const llvm::function_ref<void(Address, Address)> &CopyGen);
/// \brief Emit proper copying of data from one variable to another.
///
/// \param OriginalType Original type of the copied variables.
/// \param DestAddr Destination address.
/// \param SrcAddr Source address.
/// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
/// type of the base array element).
/// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
/// the base array element).
/// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
/// DestVD.
void EmitOMPCopy(QualType OriginalType,
Address DestAddr, Address SrcAddr,
const VarDecl *DestVD, const VarDecl *SrcVD,
const Expr *Copy);
/// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
/// \a X = \a E \a BO \a E.
///
/// \param X Value to be updated.
/// \param E Update value.
/// \param BO Binary operation for update operation.
/// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
/// expression, false otherwise.
/// \param AO Atomic ordering of the generated atomic instructions.
/// \param CommonGen Code generator for complex expressions that cannot be
/// expressed through atomicrmw instruction.
/// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
/// generated, <false, RValue::get(nullptr)> otherwise.
std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
llvm::AtomicOrdering AO, SourceLocation Loc,
const llvm::function_ref<RValue(RValue)> &CommonGen);
bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
void EmitOMPPrivateClause(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
void EmitOMPUseDevicePtrClause(
const OMPClause &C, OMPPrivateScope &PrivateScope,
const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
/// \brief Emit code for copyin clause in \a D directive. The next code is
/// generated at the start of outlined functions for directives:
/// \code
/// threadprivate_var1 = master_threadprivate_var1;
/// operator=(threadprivate_var2, master_threadprivate_var2);
/// ...
/// __kmpc_barrier(&loc, global_tid);
/// \endcode
///
/// \param D OpenMP directive possibly with 'copyin' clause(s).
/// \returns true if at least one copyin variable is found, false otherwise.
bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
/// \brief Emit initial code for lastprivate variables. If some variable is
/// not also firstprivate, then the default initialization is used. Otherwise
/// initialization of this variable is performed by EmitOMPFirstprivateClause
/// method.
///
/// \param D Directive that may have 'lastprivate' directives.
/// \param PrivateScope Private scope for capturing lastprivate variables for
/// proper codegen in internal captured statement.
///
/// \returns true if there is at least one lastprivate variable, false
/// otherwise.
bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
/// \brief Emit final copying of lastprivate values to original variables at
/// the end of the worksharing or simd directive.
///
/// \param D Directive that has at least one 'lastprivate' directives.
/// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
/// it is the last iteration of the loop code in associated directive, or to
/// 'i1 false' otherwise. If this item is nullptr, no final check is required.
void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
bool NoFinals,
llvm::Value *IsLastIterCond = nullptr);
/// Emit initial code for linear clauses.
void EmitOMPLinearClause(const OMPLoopDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope);
/// Emit final code for linear clauses.
/// \param CondGen Optional conditional code for final part of codegen for
/// linear clause.
void EmitOMPLinearClauseFinal(
const OMPLoopDirective &D,
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
/// \brief Emit initial code for reduction variables. Creates reduction copies
/// and initializes them with the values according to OpenMP standard.
///
/// \param D Directive (possibly) with the 'reduction' clause.
/// \param PrivateScope Private scope for capturing reduction variables for
/// proper codegen in internal captured statement.
///
void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
/// \brief Emit final update of reduction values to original variables at
/// the end of the directive.
///
/// \param D Directive that has at least one 'reduction' directives.
/// \param ReductionKind The kind of reduction to perform.
void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
const OpenMPDirectiveKind ReductionKind);
/// \brief Emit initial code for linear variables. Creates private copies
/// and initializes them with the values according to OpenMP standard.
///
/// \param D Directive (possibly) with the 'linear' clause.
/// \return true if at least one linear variable is found that should be
/// initialized with the value of the original variable, false otherwise.
bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
llvm::Value * /*OutlinedFn*/,
const OMPTaskDataTy & /*Data*/)>
TaskGenTy;
void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
const RegionCodeGenTy &BodyGen,
const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
struct OMPTargetDataInfo {
Address BasePointersArray = Address::invalid();
Address PointersArray = Address::invalid();
Address SizesArray = Address::invalid();
unsigned NumberOfTargetItems = 0;
explicit OMPTargetDataInfo() = default;
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
Address SizesArray, unsigned NumberOfTargetItems)
: BasePointersArray(BasePointersArray), PointersArray(PointersArray),
SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
};
void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
const RegionCodeGenTy &BodyGen,
OMPTargetDataInfo &InputInfo