| //===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides a class for OpenMP runtime code generation specialized to NVPTX |
| // targets. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGOpenMPRuntimeNVPTX.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/StmtOpenMP.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| enum OpenMPRTLFunctionNVPTX { |
| /// \brief Call to void __kmpc_kernel_init(kmp_int32 thread_limit, |
| /// int16_t RequiresOMPRuntime); |
| OMPRTL_NVPTX__kmpc_kernel_init, |
| /// \brief Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized); |
| OMPRTL_NVPTX__kmpc_kernel_deinit, |
| /// \brief Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit, |
| /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing); |
| OMPRTL_NVPTX__kmpc_spmd_kernel_init, |
| /// \brief Call to void __kmpc_spmd_kernel_deinit(); |
| OMPRTL_NVPTX__kmpc_spmd_kernel_deinit, |
| /// \brief Call to void __kmpc_kernel_prepare_parallel(void |
| /// *outlined_function, void ***args, kmp_int32 nArgs, int16_t |
| /// IsOMPRuntimeInitialized); |
| OMPRTL_NVPTX__kmpc_kernel_prepare_parallel, |
| /// \brief Call to bool __kmpc_kernel_parallel(void **outlined_function, void |
| /// ***args, int16_t IsOMPRuntimeInitialized); |
| OMPRTL_NVPTX__kmpc_kernel_parallel, |
| /// \brief Call to void __kmpc_kernel_end_parallel(); |
| OMPRTL_NVPTX__kmpc_kernel_end_parallel, |
| /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 |
| /// global_tid); |
| OMPRTL_NVPTX__kmpc_serialized_parallel, |
| /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 |
| /// global_tid); |
| OMPRTL_NVPTX__kmpc_end_serialized_parallel, |
| /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element, |
| /// int16_t lane_offset, int16_t warp_size); |
| OMPRTL_NVPTX__kmpc_shuffle_int32, |
| /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element, |
| /// int16_t lane_offset, int16_t warp_size); |
| OMPRTL_NVPTX__kmpc_shuffle_int64, |
| /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32 |
| /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data, |
| /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t |
| /// lane_offset, int16_t shortCircuit), |
| /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num)); |
| OMPRTL_NVPTX__kmpc_parallel_reduce_nowait, |
| /// \brief Call to __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid, |
| /// int32_t num_vars, size_t reduce_size, void *reduce_data, |
| /// void (*kmp_ShuffleReductFctPtr)(void *rhs, int16_t lane_id, int16_t |
| /// lane_offset, int16_t shortCircuit), |
| /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), |
| /// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad, |
| /// int32_t index, int32_t width), |
| /// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, int32_t |
| /// index, int32_t width, int32_t reduce)) |
| OMPRTL_NVPTX__kmpc_teams_reduce_nowait, |
| /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid); |
| OMPRTL_NVPTX__kmpc_end_reduce_nowait |
| }; |
| |
| /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. |
| class NVPTXActionTy final : public PrePostActionTy { |
| llvm::Value *EnterCallee; |
| ArrayRef<llvm::Value *> EnterArgs; |
| llvm::Value *ExitCallee; |
| ArrayRef<llvm::Value *> ExitArgs; |
| bool Conditional; |
| llvm::BasicBlock *ContBlock = nullptr; |
| |
| public: |
| NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs, |
| llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs, |
| bool Conditional = false) |
| : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
| ExitArgs(ExitArgs), Conditional(Conditional) {} |
| void Enter(CodeGenFunction &CGF) override { |
| llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); |
| if (Conditional) { |
| llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); |
| auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); |
| ContBlock = CGF.createBasicBlock("omp_if.end"); |
| // Generate the branch (If-stmt) |
| CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); |
| CGF.EmitBlock(ThenBlock); |
| } |
| } |
| void Done(CodeGenFunction &CGF) { |
| // Emit the rest of blocks/branches |
| CGF.EmitBranch(ContBlock); |
| CGF.EmitBlock(ContBlock, true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| CGF.EmitRuntimeCall(ExitCallee, ExitArgs); |
| } |
| }; |
| |
| // A class to track the execution mode when codegening directives within |
| // a target region. The appropriate mode (generic/spmd) is set on entry |
| // to the target region and used by containing directives such as 'parallel' |
| // to emit optimized code. |
| class ExecutionModeRAII { |
| private: |
| CGOpenMPRuntimeNVPTX::ExecutionMode SavedMode; |
| CGOpenMPRuntimeNVPTX::ExecutionMode &Mode; |
| |
| public: |
| ExecutionModeRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &Mode, |
| CGOpenMPRuntimeNVPTX::ExecutionMode NewMode) |
| : Mode(Mode) { |
| SavedMode = Mode; |
| Mode = NewMode; |
| } |
| ~ExecutionModeRAII() { Mode = SavedMode; } |
| }; |
| |
| /// GPU Configuration: This information can be derived from cuda registers, |
| /// however, providing compile time constants helps generate more efficient |
| /// code. For all practical purposes this is fine because the configuration |
| /// is the same for all known NVPTX architectures. |
| enum MachineConfiguration : unsigned { |
| WarpSize = 32, |
| /// Number of bits required to represent a lane identifier, which is |
| /// computed as log_2(WarpSize). |
| LaneIDBits = 5, |
| LaneIDMask = WarpSize - 1, |
| |
| /// Global memory alignment for performance. |
| GlobalMemoryAlignment = 256, |
| }; |
| |
| enum NamedBarrier : unsigned { |
| /// Synchronize on this barrier #ID using a named barrier primitive. |
| /// Only the subset of active threads in a parallel region arrive at the |
| /// barrier. |
| NB_Parallel = 1, |
| }; |
| } // anonymous namespace |
| |
| /// Get the GPU warp size. |
| static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) { |
| return CGF.EmitRuntimeCall( |
| llvm::Intrinsic::getDeclaration( |
| &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize), |
| "nvptx_warp_size"); |
| } |
| |
| /// Get the id of the current thread on the GPU. |
| static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) { |
| return CGF.EmitRuntimeCall( |
| llvm::Intrinsic::getDeclaration( |
| &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x), |
| "nvptx_tid"); |
| } |
| |
| /// Get the id of the warp in the block. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id"); |
| } |
| |
| /// Get the id of the current lane in the Warp. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask), |
| "nvptx_lane_id"); |
| } |
| |
| /// Get the maximum number of threads in a block of the GPU. |
| static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) { |
| return CGF.EmitRuntimeCall( |
| llvm::Intrinsic::getDeclaration( |
| &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x), |
| "nvptx_num_threads"); |
| } |
| |
| /// Get barrier to synchronize all threads in a block. |
| static void getNVPTXCTABarrier(CodeGenFunction &CGF) { |
| CGF.EmitRuntimeCall(llvm::Intrinsic::getDeclaration( |
| &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0)); |
| } |
| |
| /// Get barrier #ID to synchronize selected (multiple of warp size) threads in |
| /// a CTA. |
| static void getNVPTXBarrier(CodeGenFunction &CGF, int ID, |
| llvm::Value *NumThreads) { |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads}; |
| CGF.EmitRuntimeCall(llvm::Intrinsic::getDeclaration( |
| &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier), |
| Args); |
| } |
| |
| /// Synchronize all GPU threads in a block. |
| static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); } |
| |
| /// Synchronize worker threads in a parallel region. |
| static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) { |
| return getNVPTXBarrier(CGF, NB_Parallel, NumThreads); |
| } |
| |
| /// Get the value of the thread_limit clause in the teams directive. |
| /// For the 'generic' execution mode, the runtime encodes thread_limit in |
| /// the launch parameters, always starting thread_limit+warpSize threads per |
| /// CTA. The threads in the last warp are reserved for master execution. |
| /// For the 'spmd' execution mode, all threads in a CTA are part of the team. |
| static llvm::Value *getThreadLimit(CodeGenFunction &CGF, |
| bool IsInSpmdExecutionMode = false) { |
| CGBuilderTy &Bld = CGF.Builder; |
| return IsInSpmdExecutionMode |
| ? getNVPTXNumThreads(CGF) |
| : Bld.CreateSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF), |
| "thread_limit"); |
| } |
| |
| /// Get the thread id of the OMP master thread. |
| /// The master thread id is the first thread (lane) of the last warp in the |
| /// GPU block. Warp size is assumed to be some power of 2. |
| /// Thread id is 0 indexed. |
| /// E.g: If NumThreads is 33, master id is 32. |
| /// If NumThreads is 64, master id is 32. |
| /// If NumThreads is 1024, master id is 992. |
| static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Value *NumThreads = getNVPTXNumThreads(CGF); |
| |
| // We assume that the warp size is a power of 2. |
| llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1)); |
| |
| return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)), |
| Bld.CreateNot(Mask), "master_tid"); |
| } |
| |
| CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState( |
| CodeGenModule &CGM) |
| : WorkerFn(nullptr), CGFI(nullptr) { |
| createWorkerFunction(CGM); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction( |
| CodeGenModule &CGM) { |
| // Create an worker function with no arguments. |
| CGFI = &CGM.getTypes().arrangeNullaryFunction(); |
| |
| WorkerFn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage, |
| /* placeholder */ "_worker", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI); |
| } |
| |
| bool CGOpenMPRuntimeNVPTX::isInSpmdExecutionMode() const { |
| return CurrentExecutionMode == CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd; |
| } |
| |
| static CGOpenMPRuntimeNVPTX::ExecutionMode |
| getExecutionModeForDirective(CodeGenModule &CGM, |
| const OMPExecutableDirective &D) { |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| switch (DirectiveKind) { |
| case OMPD_target: |
| case OMPD_target_teams: |
| return CGOpenMPRuntimeNVPTX::ExecutionMode::Generic; |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| return CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd; |
| default: |
| llvm_unreachable("Unsupported directive on NVPTX device."); |
| } |
| llvm_unreachable("Unsupported directive on NVPTX device."); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitGenericKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionModeRAII ModeRAII(CurrentExecutionMode, |
| CGOpenMPRuntimeNVPTX::ExecutionMode::Generic); |
| EntryFunctionState EST; |
| WorkerFunctionState WST(CGM); |
| Work.clear(); |
| WrapperFunctionsMap.clear(); |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeNVPTX &RT; |
| CGOpenMPRuntimeNVPTX::EntryFunctionState &EST; |
| CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT, |
| CGOpenMPRuntimeNVPTX::EntryFunctionState &EST, |
| CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST) |
| : RT(RT), EST(EST), WST(WST) {} |
| void Enter(CodeGenFunction &CGF) override { |
| RT.emitGenericEntryHeader(CGF, EST, WST); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| RT.emitGenericEntryFooter(CGF, EST); |
| } |
| } Action(*this, EST, WST); |
| CodeGen.setAction(Action); |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| |
| // Create the worker function |
| emitWorkerFunction(WST); |
| |
| // Now change the name of the worker function to correspond to this target |
| // region's entry function. |
| WST.WorkerFn->setName(OutlinedFn->getName() + "_worker"); |
| } |
| |
| // Setup NVPTX threads for master-worker OpenMP scheme. |
| void CGOpenMPRuntimeNVPTX::emitGenericEntryHeader(CodeGenFunction &CGF, |
| EntryFunctionState &EST, |
| WorkerFunctionState &WST) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); |
| llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); |
| llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| auto *IsWorker = |
| Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF)); |
| Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); |
| |
| CGF.EmitBlock(WorkerBB); |
| emitCall(CGF, WST.WorkerFn); |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(MasterCheckBB); |
| auto *IsMaster = |
| Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF)); |
| Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); |
| |
| CGF.EmitBlock(MasterBB); |
| // First action in sequential region: |
| // Initialize the state of the OpenMP runtime library on the GPU. |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {getThreadLimit(CGF), |
| Bld.getInt16(/*RequiresOMPRuntime=*/1)}; |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitGenericEntryFooter(CodeGenFunction &CGF, |
| EntryFunctionState &EST) { |
| if (!EST.ExitBB) |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); |
| CGF.EmitBranch(TerminateBB); |
| |
| CGF.EmitBlock(TerminateBB); |
| // Signal termination condition. |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)}; |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args); |
| // Barrier to terminate worker threads. |
| syncCTAThreads(CGF); |
| // Master thread jumps to exit point. |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(EST.ExitBB); |
| EST.ExitBB = nullptr; |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitSpmdKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionModeRAII ModeRAII(CurrentExecutionMode, |
| CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd); |
| EntryFunctionState EST; |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeNVPTX &RT; |
| CGOpenMPRuntimeNVPTX::EntryFunctionState &EST; |
| const OMPExecutableDirective &D; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT, |
| CGOpenMPRuntimeNVPTX::EntryFunctionState &EST, |
| const OMPExecutableDirective &D) |
| : RT(RT), EST(EST), D(D) {} |
| void Enter(CodeGenFunction &CGF) override { |
| RT.emitSpmdEntryHeader(CGF, EST, D); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| RT.emitSpmdEntryFooter(CGF, EST); |
| } |
| } Action(*this, EST, D); |
| CodeGen.setAction(Action); |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitSpmdEntryHeader( |
| CodeGenFunction &CGF, EntryFunctionState &EST, |
| const OMPExecutableDirective &D) { |
| auto &Bld = CGF.Builder; |
| |
| // Setup BBs in entry function. |
| llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| // Initialize the OMP state in the runtime; called by all active threads. |
| // TODO: Set RequiresOMPRuntime and RequiresDataSharing parameters |
| // based on code analysis of the target region. |
| llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSpmdExecutionMode=*/true), |
| /*RequiresOMPRuntime=*/Bld.getInt16(1), |
| /*RequiresDataSharing=*/Bld.getInt16(1)}; |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args); |
| CGF.EmitBranch(ExecuteBB); |
| |
| CGF.EmitBlock(ExecuteBB); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitSpmdEntryFooter(CodeGenFunction &CGF, |
| EntryFunctionState &EST) { |
| if (!EST.ExitBB) |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); |
| CGF.EmitBranch(OMPDeInitBB); |
| |
| CGF.EmitBlock(OMPDeInitBB); |
| // DeInitialize the OMP state in the runtime; called by all active threads. |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_deinit), None); |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(EST.ExitBB); |
| EST.ExitBB = nullptr; |
| } |
| |
| // Create a unique global variable to indicate the execution mode of this target |
| // region. The execution mode is either 'generic', or 'spmd' depending on the |
| // target directive. This variable is picked up by the offload library to setup |
| // the device appropriately before kernel launch. If the execution mode is |
| // 'generic', the runtime reserves one warp for the master, otherwise, all |
| // warps participate in parallel work. |
| static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, |
| CGOpenMPRuntimeNVPTX::ExecutionMode Mode) { |
| (void)new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::WeakAnyLinkage, |
| llvm::ConstantInt::get(CGM.Int8Ty, Mode), Name + Twine("_exec_mode")); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) { |
| ASTContext &Ctx = CGM.getContext(); |
| |
| CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
| CGF.disableDebugInfo(); |
| CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {}); |
| emitWorkerLoop(CGF, WST); |
| CGF.FinishFunction(); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF, |
| WorkerFunctionState &WST) { |
| // |
| // The workers enter this loop and wait for parallel work from the master. |
| // When the master encounters a parallel region it sets up the work + variable |
| // arguments, and wakes up the workers. The workers first check to see if |
| // they are required for the parallel region, i.e., within the # of requested |
| // parallel threads. The activated workers load the variable arguments and |
| // execute the parallel work. |
| // |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); |
| llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); |
| llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); |
| llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); |
| llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); |
| |
| CGF.EmitBranch(AwaitBB); |
| |
| // Workers wait for work from master. |
| CGF.EmitBlock(AwaitBB); |
| // Wait for parallel work |
| syncCTAThreads(CGF); |
| |
| Address WorkFn = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); |
| Address ExecStatus = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); |
| CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); |
| CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); |
| |
| // Set up shared arguments |
| Address SharedArgs = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrPtrTy, "shared_args"); |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {WorkFn.getPointer(), SharedArgs.getPointer(), |
| /*RequiresOMPRuntime=*/Bld.getInt16(1)}; |
| llvm::Value *Ret = CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args); |
| Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); |
| |
| // On termination condition (workid == 0), exit loop. |
| llvm::Value *ShouldTerminate = |
| Bld.CreateIsNull(Bld.CreateLoad(WorkFn), "should_terminate"); |
| Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); |
| |
| // Activate requested workers. |
| CGF.EmitBlock(SelectWorkersBB); |
| llvm::Value *IsActive = |
| Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); |
| Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); |
| |
| // Signal start of parallel region. |
| CGF.EmitBlock(ExecuteBB); |
| |
| // Current context |
| ASTContext &Ctx = CGF.getContext(); |
| |
| // Process work items: outlined parallel functions. |
| for (auto *W : Work) { |
| // Try to match this outlined function. |
| auto *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); |
| |
| llvm::Value *WorkFnMatch = |
| Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); |
| |
| llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); |
| llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); |
| Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); |
| |
| // Execute this outlined function. |
| CGF.EmitBlock(ExecuteFNBB); |
| |
| // Insert call to work function via shared wrapper. The shared |
| // wrapper takes exactly three arguments: |
| // - the parallelism level; |
| // - the master thread ID; |
| // - the list of references to shared arguments. |
| // |
| // TODO: Assert that the function is a wrapper function.s |
| Address Capture = CGF.EmitLoadOfPointer(SharedArgs, |
| Ctx.getPointerType( |
| Ctx.getPointerType(Ctx.VoidPtrTy)).castAs<PointerType>()); |
| emitCall(CGF, W, {Bld.getInt16(/*ParallelLevel=*/0), |
| getMasterThreadID(CGF), Capture.getPointer()}); |
| |
| // Go to end of parallel region. |
| CGF.EmitBranch(TerminateBB); |
| |
| CGF.EmitBlock(CheckNextBB); |
| } |
| |
| // Signal end of parallel region. |
| CGF.EmitBlock(TerminateBB); |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel), |
| llvm::None); |
| CGF.EmitBranch(BarrierBB); |
| |
| // All active and inactive workers wait at a barrier after parallel region. |
| CGF.EmitBlock(BarrierBB); |
| // Barrier after parallel region. |
| syncCTAThreads(CGF); |
| CGF.EmitBranch(AwaitBB); |
| |
| // Exit target region. |
| CGF.EmitBlock(ExitBB); |
| } |
| |
| /// \brief Returns specified OpenMP runtime function for the current OpenMP |
| /// implementation. Specialized for the NVPTX device. |
| /// \param Function OpenMP runtime function. |
| /// \return Specified function. |
| llvm::Constant * |
| CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) { |
| llvm::Constant *RTLFn = nullptr; |
| switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) { |
| case OMPRTL_NVPTX__kmpc_kernel_init: { |
| // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t |
| // RequiresOMPRuntime); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_kernel_deinit: { |
| // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized); |
| llvm::Type *TypeParams[] = {CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_spmd_kernel_init: { |
| // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit, |
| // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit: { |
| // Build void __kmpc_spmd_kernel_deinit(); |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: { |
| /// Build void __kmpc_kernel_prepare_parallel( |
| /// void *outlined_function, void ***args, kmp_int32 nArgs, int16_t |
| /// IsOMPRuntimeInitialized); |
| llvm::Type *TypeParams[] = {CGM.Int8PtrTy, |
| CGM.Int8PtrPtrTy->getPointerTo(0), CGM.Int32Ty, |
| CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_kernel_parallel: { |
| /// Build bool __kmpc_kernel_parallel(void **outlined_function, void |
| /// ***args, int16_t IsOMPRuntimeInitialized); |
| llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy, |
| CGM.Int8PtrPtrTy->getPointerTo(0), CGM.Int16Ty}; |
| llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_kernel_end_parallel: { |
| /// Build void __kmpc_kernel_end_parallel(); |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_serialized_parallel: { |
| // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_end_serialized_parallel: { |
| // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_shuffle_int32: { |
| // Build int32_t __kmpc_shuffle_int32(int32_t element, |
| // int16_t lane_offset, int16_t warp_size); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_shuffle_int64: { |
| // Build int64_t __kmpc_shuffle_int64(int64_t element, |
| // int16_t lane_offset, int16_t warp_size); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: { |
| // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid, |
| // kmp_int32 num_vars, size_t reduce_size, void* reduce_data, |
| // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t |
| // lane_offset, int16_t Algorithm Version), |
| // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num)); |
| llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty, |
| CGM.Int16Ty, CGM.Int16Ty}; |
| auto *ShuffleReduceFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty}; |
| auto *InterWarpCopyFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty, |
| CGM.Int32Ty, |
| CGM.SizeTy, |
| CGM.VoidPtrTy, |
| ShuffleReduceFnTy->getPointerTo(), |
| InterWarpCopyFnTy->getPointerTo()}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction( |
| FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_teams_reduce_nowait: { |
| // Build int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid, |
| // int32_t num_vars, size_t reduce_size, void *reduce_data, |
| // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t |
| // lane_offset, int16_t shortCircuit), |
| // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), |
| // void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad, |
| // int32_t index, int32_t width), |
| // void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, |
| // int32_t index, int32_t width, int32_t reduce)) |
| llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty, |
| CGM.Int16Ty, CGM.Int16Ty}; |
| auto *ShuffleReduceFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty}; |
| auto *InterWarpCopyFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *CopyToScratchpadTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, |
| CGM.Int32Ty, CGM.Int32Ty}; |
| auto *CopyToScratchpadFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, CopyToScratchpadTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *LoadReduceTypeParams[] = { |
| CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}; |
| auto *LoadReduceFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, LoadReduceTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty, |
| CGM.Int32Ty, |
| CGM.SizeTy, |
| CGM.VoidPtrTy, |
| ShuffleReduceFnTy->getPointerTo(), |
| InterWarpCopyFnTy->getPointerTo(), |
| CopyToScratchpadFnTy->getPointerTo(), |
| LoadReduceFnTy->getPointerTo()}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction( |
| FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait"); |
| break; |
| } |
| case OMPRTL_NVPTX__kmpc_end_reduce_nowait: { |
| // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {CGM.Int32Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction( |
| FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait"); |
| break; |
| } |
| } |
| return RTLFn; |
| } |
| |
| void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID, |
| llvm::Constant *Addr, |
| uint64_t Size, int32_t) { |
| auto *F = dyn_cast<llvm::Function>(Addr); |
| // TODO: Add support for global variables on the device after declare target |
| // support. |
| if (!F) |
| return; |
| llvm::Module *M = F->getParent(); |
| llvm::LLVMContext &Ctx = M->getContext(); |
| |
| // Get "nvvm.annotations" metadata node |
| llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| llvm::Metadata *MDVals[] = { |
| llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"), |
| llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; |
| // Append metadata to nvvm.annotations |
| MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| if (!IsOffloadEntry) // Nothing to do. |
| return; |
| |
| assert(!ParentName.empty() && "Invalid target region parent name!"); |
| |
| CGOpenMPRuntimeNVPTX::ExecutionMode Mode = |
| getExecutionModeForDirective(CGM, D); |
| switch (Mode) { |
| case CGOpenMPRuntimeNVPTX::ExecutionMode::Generic: |
| emitGenericKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| break; |
| case CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd: |
| emitSpmdKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| break; |
| case CGOpenMPRuntimeNVPTX::ExecutionMode::Unknown: |
| llvm_unreachable( |
| "Unknown programming model for OpenMP directive on NVPTX target."); |
| } |
| |
| setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); |
| } |
| |
| CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM) |
| : CGOpenMPRuntime(CGM), CurrentExecutionMode(ExecutionMode::Unknown) { |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| llvm_unreachable("OpenMP NVPTX can only handle device code."); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF, |
| OpenMPProcBindClauseKind ProcBind, |
| SourceLocation Loc) { |
| // Do nothing in case of Spmd mode and L0 parallel. |
| // TODO: If in Spmd mode and L1 parallel emit the clause. |
| if (isInSpmdExecutionMode()) |
| return; |
| |
| CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF, |
| llvm::Value *NumThreads, |
| SourceLocation Loc) { |
| // Do nothing in case of Spmd mode and L0 parallel. |
| // TODO: If in Spmd mode and L1 parallel emit the clause. |
| if (isInSpmdExecutionMode()) |
| return; |
| |
| CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF, |
| const Expr *NumTeams, |
| const Expr *ThreadLimit, |
| SourceLocation Loc) {} |
| |
| llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| |
| auto *OutlinedFun = cast<llvm::Function>( |
| CGOpenMPRuntime::emitParallelOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen)); |
| if (!isInSpmdExecutionMode()) { |
| llvm::Function *WrapperFun = |
| createDataSharingWrapper(OutlinedFun, D); |
| WrapperFunctionsMap[OutlinedFun] = WrapperFun; |
| } |
| |
| return OutlinedFun; |
| } |
| |
| llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| |
| llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen); |
| llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal); |
| OutlinedFun->removeFnAttr(llvm::Attribute::NoInline); |
| OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone); |
| OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline); |
| |
| return OutlinedFun; |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| SourceLocation Loc, |
| llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| Address ZeroAddr = |
| CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4), |
| /*Name*/ ".zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| if (isInSpmdExecutionMode()) |
| emitSpmdParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); |
| else |
| emitGenericParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitGenericParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| llvm::Function *Fn = cast<llvm::Function>(OutlinedFn); |
| llvm::Function *WFn = WrapperFunctionsMap[Fn]; |
| assert(WFn && "Wrapper function does not exist!"); |
| |
| // Force inline this outlined function at its call site. |
| Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
| |
| auto &&L0ParallelGen = [this, WFn, &CapturedVars](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); |
| |
| if (!CapturedVars.empty()) { |
| // There's somehting to share, add the attribute |
| CGF.CurFn->addFnAttr("has-nvptx-shared-depot"); |
| // Prepare for parallel region. Indicate the outlined function. |
| Address SharedArgs = |
| CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, |
| "shared_args"); |
| llvm::Value *SharedArgsPtr = SharedArgs.getPointer(); |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {ID, SharedArgsPtr, |
| Bld.getInt32(CapturedVars.size()), |
| /*RequiresOMPRuntime=*/Bld.getInt16(1)}; |
| |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel), |
| Args); |
| |
| unsigned Idx = 0; |
| ASTContext &Ctx = CGF.getContext(); |
| for (llvm::Value *V : CapturedVars) { |
| Address Dst = Bld.CreateConstInBoundsGEP( |
| CGF.EmitLoadOfPointer(SharedArgs, |
| Ctx.getPointerType( |
| Ctx.getPointerType(Ctx.VoidPtrTy)).castAs<PointerType>()), |
| Idx, CGF.getPointerSize()); |
| llvm::Value *PtrV = Bld.CreateBitCast(V, CGF.VoidPtrTy); |
| CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, |
| Ctx.getPointerType(Ctx.VoidPtrTy)); |
| Idx++; |
| } |
| } else { |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = { |
| ID, llvm::ConstantPointerNull::get(CGF.VoidPtrPtrTy->getPointerTo(0)), |
| /*nArgs=*/Bld.getInt32(0), /*RequiresOMPRuntime=*/Bld.getInt16(1)}; |
| CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel), |
| Args); |
| } |
| |
| // Activate workers. This barrier is used by the master to signal |
| // work for the workers. |
| syncCTAThreads(CGF); |
| |
| // OpenMP [2.5, Parallel Construct, p.49] |
| // There is an implied barrier at the end of a parallel region. After the |
| // end of a parallel region, only the master thread of the team resumes |
| // execution of the enclosing task region. |
| // |
| // The master waits at this barrier until all workers are done. |
| syncCTAThreads(CGF); |
| |
| // Remember for post-processing in worker loop. |
| Work.emplace_back(WFn); |
| }; |
| |
| auto *RTLoc = emitUpdateLocation(CGF, Loc); |
| auto *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *Args[] = {RTLoc, ThreadID}; |
| |
| auto &&SeqGen = [this, Fn, &CapturedVars, &Args, Loc](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| auto &&CodeGen = [this, Fn, &CapturedVars, Loc](CodeGenFunction &CGF, |
| PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back( |
| llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); |
| OutlinedFnArgs.push_back( |
| llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs); |
| }; |
| |
| RegionCodeGenTy RCG(CodeGen); |
| NVPTXActionTy Action( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel), |
| Args, |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel), |
| Args); |
| RCG.setAction(Action); |
| RCG(CGF); |
| }; |
| |
| if (IfCond) |
| emitOMPIfClause(CGF, IfCond, L0ParallelGen, SeqGen); |
| else { |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| RegionCodeGenTy ThenRCG(L0ParallelGen); |
| ThenRCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| // Just call the outlined function to execute the parallel region. |
| // OutlinedFn(>id, &zero, CapturedStruct); |
| // |
| // TODO: Do something with IfCond when support for the 'if' clause |
| // is added on Spmd target directives. |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back( |
| llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); |
| OutlinedFnArgs.push_back( |
| llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| } |
| |
| /// This function creates calls to one of two shuffle functions to copy |
| /// variables between lanes in a warp. |
| static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, |
| QualType ElemTy, |
| llvm::Value *Elem, |
| llvm::Value *Offset) { |
| auto &CGM = CGF.CGM; |
| auto &C = CGM.getContext(); |
| auto &Bld = CGF.Builder; |
| CGOpenMPRuntimeNVPTX &RT = |
| *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime())); |
| |
| unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity(); |
| assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction."); |
| |
| OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4 |
| ? OMPRTL_NVPTX__kmpc_shuffle_int32 |
| : OMPRTL_NVPTX__kmpc_shuffle_int64; |
| |
| // Cast all types to 32- or 64-bit values before calling shuffle routines. |
| auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty; |
| auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy); |
| auto *WarpSize = CGF.EmitScalarConversion( |
| getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true), |
| C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation()); |
| |
| auto *ShuffledVal = |
| CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn), |
| {ElemCast, Offset, WarpSize}); |
| |
| return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy)); |
| } |
| |
| namespace { |
| enum CopyAction : unsigned { |
| // RemoteLaneToThread: Copy over a Reduce list from a remote lane in |
| // the warp using shuffle instructions. |
| RemoteLaneToThread, |
| // ThreadCopy: Make a copy of a Reduce list on the thread's stack. |
| ThreadCopy, |
| // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. |
| ThreadToScratchpad, |
| // ScratchpadToThread: Copy from a scratchpad array in global memory |
| // containing team-reduced data to a thread's stack. |
| ScratchpadToThread, |
| }; |
| } // namespace |
| |
| struct CopyOptionsTy { |
| llvm::Value *RemoteLaneOffset; |
| llvm::Value *ScratchpadIndex; |
| llvm::Value *ScratchpadWidth; |
| }; |
| |
| /// Emit instructions to copy a Reduce list, which contains partially |
| /// aggregated values, in the specified direction. |
| static void emitReductionListCopy( |
| CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, |
| ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, |
| CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { |
| |
| auto &CGM = CGF.CGM; |
| auto &C = CGM.getContext(); |
| auto &Bld = CGF.Builder; |
| |
| auto *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; |
| auto *ScratchpadIndex = CopyOptions.ScratchpadIndex; |
| auto *ScratchpadWidth = CopyOptions.ScratchpadWidth; |
| |
| // Iterates, element-by-element, through the source Reduce list and |
| // make a copy. |
| unsigned Idx = 0; |
| unsigned Size = Privates.size(); |
| for (auto &Private : Privates) { |
| Address SrcElementAddr = Address::invalid(); |
| Address DestElementAddr = Address::invalid(); |
| Address DestElementPtrAddr = Address::invalid(); |
| // Should we shuffle in an element from a remote lane? |
| bool ShuffleInElement = false; |
| // Set to true to update the pointer in the dest Reduce list to a |
| // newly created element. |
| bool UpdateDestListPtr = false; |
| // Increment the src or dest pointer to the scratchpad, for each |
| // new element. |
| bool IncrScratchpadSrc = false; |
| bool IncrScratchpadDest = false; |
| |
| switch (Action) { |
| case RemoteLaneToThread: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = |
| Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); |
| llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( |
| SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| SrcElementAddr = |
| Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = |
| Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| ShuffleInElement = true; |
| UpdateDestListPtr = true; |
| break; |
| } |
| case ThreadCopy: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = |
| Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); |
| llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( |
| SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| SrcElementAddr = |
| Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| |
| // Step 1.2: Get the address for dest element. The destination |
| // element has already been created on the thread's stack. |
| DestElementPtrAddr = |
| Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); |
| llvm::Value *DestElementPtr = |
| CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()); |
| Address DestElemAddr = |
| Address(DestElementPtr, C.getTypeAlignInChars(Private->getType())); |
| DestElementAddr = Bld.CreateElementBitCast( |
| DestElemAddr, CGF.ConvertTypeForMem(Private->getType())); |
| break; |
| } |
| case ThreadToScratchpad: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = |
| Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); |
| llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( |
| SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| SrcElementAddr = |
| Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| |
| // Step 1.2: Get the address for dest element: |
| // address = base + index * ElementSizeInChars. |
| unsigned ElementSizeInChars = |
| C.getTypeSizeInChars(Private->getType()).getQuantity(); |
| auto *CurrentOffset = |
| Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars), |
| ScratchpadIndex); |
| auto *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateAdd(DestBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| Address ScratchpadPtr = |
| Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| DestElementAddr = Bld.CreateElementBitCast( |
| ScratchpadPtr, CGF.ConvertTypeForMem(Private->getType())); |
| IncrScratchpadDest = true; |
| break; |
| } |
| case ScratchpadToThread: { |
| // Step 1.1: Get the address for the src element in the scratchpad. |
| // address = base + index * ElementSizeInChars. |
| unsigned ElementSizeInChars = |
| C.getTypeSizeInChars(Private->getType()).getQuantity(); |
| auto *CurrentOffset = |
| Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars), |
| ScratchpadIndex); |
| auto *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateAdd(SrcBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| IncrScratchpadSrc = true; |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = |
| Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| UpdateDestListPtr = true; |
| break; |
| } |
| } |
| |
| // Regardless of src and dest of copy, we emit the load of src |
| // element as this is required in all directions |
| SrcElementAddr = Bld.CreateElementBitCast( |
| SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); |
| llvm::Value *Elem = |
| CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false, |
| Private->getType(), SourceLocation()); |
| |
| // Now that all active lanes have read the element in the |
| // Reduce list, shuffle over the value from the remote lane. |
| if (ShuffleInElement) { |
| Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem, |
| RemoteLaneOffset); |
| } |
| |
| // Store the source element value to the dest element address. |
| CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false, |
| Private->getType()); |
| |
| // Step 3.1: Modify reference in dest Reduce list as needed. |
| // Modifying the reference in Reduce list to point to the newly |
| // created element. The element is live in the current function |
| // scope and that of functions it invokes (i.e., reduce_function). |
| // RemoteReduceData[i] = (void*)&RemoteElem |
| if (UpdateDestListPtr) { |
| CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( |
| DestElementAddr.getPointer(), CGF.VoidPtrTy), |
| DestElementPtrAddr, /*Volatile=*/false, |
| C.VoidPtrTy); |
| } |
| |
| // Step 4.1: Increment SrcBase/DestBase so that it points to the starting |
| // address of the next element in scratchpad memory, unless we're currently |
| // processing the last one. Memory alignment is also taken care of here. |
| if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { |
| llvm::Value *ScratchpadBasePtr = |
| IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); |
| unsigned ElementSizeInChars = |
| C.getTypeSizeInChars(Private->getType()).getQuantity(); |
| ScratchpadBasePtr = Bld.CreateAdd( |
| ScratchpadBasePtr, |
| Bld.CreateMul(ScratchpadWidth, llvm::ConstantInt::get( |
| CGM.SizeTy, ElementSizeInChars))); |
| |
| // Take care of global memory alignment for performance |
| ScratchpadBasePtr = Bld.CreateSub(ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateSDiv( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| ScratchpadBasePtr = Bld.CreateAdd(ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateMul( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| |
| if (IncrScratchpadDest) |
| DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| else /* IncrScratchpadSrc = true */ |
| SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| } |
| |
| Idx++; |
| } |
| } |
| |
| /// This function emits a helper that loads data from the scratchpad array |
| /// and (optionally) reduces it with the input operand. |
| /// |
| /// load_and_reduce(local, scratchpad, index, width, should_reduce) |
| /// reduce_data remote; |
| /// for elem in remote: |
| /// remote.elem = Scratchpad[elem_id][index] |
| /// if (should_reduce) |
| /// local = local @ remote |
| /// else |
| /// local = remote |
| static llvm::Value * |
| emitReduceScratchpadFunction(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, llvm::Value *ReduceFn) { |
| auto &C = CGM.getContext(); |
| auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true); |
| |
| // Destination of the copy. |
| ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Base address of the scratchpad array, with each element storing a |
| // Reduce list per team. |
| ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // A source index into the scratchpad array. |
| ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other); |
| // Row width of an element in the scratchpad array, typically |
| // the number of teams. |
| ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other); |
| // If should_reduce == 1, then it's load AND reduce, |
| // If should_reduce == 0 (or otherwise), then it only loads (+ copy). |
| // The latter case is used for initialization. |
| ImplicitParamDecl ShouldReduceArg(C, Int32Ty, ImplicitParamDecl::Other); |
| |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&ScratchPadArg); |
| Args.push_back(&IndexArg); |
| Args.push_back(&WidthArg); |
| Args.push_back(&ShouldReduceArg); |
| |
| auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_load_and_reduce", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); |
| CodeGenFunction CGF(CGM); |
| // We don't need debug information in this function as nothing here refers to |
| // user code. |
| CGF.disableDebugInfo(); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); |
| |
| auto &Bld = CGF.Builder; |
| |
| // Get local Reduce list pointer. |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address ReduceListAddr( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg); |
| llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar( |
| AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| |
| Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg); |
| llvm::Value *IndexVal = |
| Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, |
| Int32Ty, SourceLocation()), |
| CGM.SizeTy, /*isSigned=*/true); |
| |
| Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg); |
| llvm::Value *WidthVal = |
| Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false, |
| Int32Ty, SourceLocation()), |
| CGM.SizeTy, /*isSigned=*/true); |
| |
| Address AddrShouldReduceArg = CGF.GetAddrOfLocalVar(&ShouldReduceArg); |
| llvm::Value *ShouldReduceVal = CGF.EmitLoadOfScalar( |
| AddrShouldReduceArg, /*Volatile=*/false, Int32Ty, SourceLocation()); |
| |
| // The absolute ptr address to the base addr of the next element to copy. |
| llvm::Value *CumulativeElemBasePtr = |
| Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy); |
| Address SrcDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign()); |
| |
| // Create a Remote Reduce list to store the elements read from the |
| // scratchpad array. |
| Address RemoteReduceList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_red_list"); |
| |
| // Assemble remote Reduce list from scratchpad array. |
| emitReductionListCopy(ScratchpadToThread, CGF, ReductionArrayTy, Privates, |
| SrcDataAddr, RemoteReduceList, |
| {/*RemoteLaneOffset=*/nullptr, |
| /*ScratchpadIndex=*/IndexVal, |
| /*ScratchpadWidth=*/WidthVal}); |
| |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| auto CondReduce = Bld.CreateICmpEQ(ShouldReduceVal, Bld.getInt32(1)); |
| Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); |
| |
| CGF.EmitBlock(ThenBB); |
| // We should reduce with the local Reduce list. |
| // reduce_function(LocalReduceList, RemoteReduceList) |
| llvm::Value *LocalDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| ReduceListAddr.getPointer(), CGF.VoidPtrTy); |
| llvm::Value *RemoteDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| RemoteReduceList.getPointer(), CGF.VoidPtrTy); |
| CGF.EmitCallOrInvoke(ReduceFn, {LocalDataPtr, RemoteDataPtr}); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| // No reduction; just copy: |
| // Local Reduce list = Remote Reduce list. |
| emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, |
| RemoteReduceList, ReduceListAddr); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that stores reduced data from the team |
| /// master to a scratchpad array in global memory. |
| /// |
| /// for elem in Reduce List: |
| /// scratchpad[elem_id][index] = elem |
| /// |
| static llvm::Value *emitCopyToScratchpad(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy) { |
| |
| auto &C = CGM.getContext(); |
| auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true); |
| |
| // Source of the copy. |
| ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Base address of the scratchpad array, with each element storing a |
| // Reduce list per team. |
| ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // A destination index into the scratchpad array, typically the team |
| // identifier. |
| ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other); |
| // Row width of an element in the scratchpad array, typically |
| // the number of teams. |
| ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other); |
| |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&ScratchPadArg); |
| Args.push_back(&IndexArg); |
| Args.push_back(&WidthArg); |
| |
| auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_copy_to_scratchpad", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); |
| CodeGenFunction CGF(CGM); |
| // We don't need debug information in this function as nothing here refers to |
| // user code. |
| CGF.disableDebugInfo(); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); |
| |
| auto &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address SrcDataAddr( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg); |
| llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar( |
| AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| |
| Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg); |
| llvm::Value *IndexVal = |
| Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, |
| Int32Ty, SourceLocation()), |
| CGF.SizeTy, /*isSigned=*/true); |
| |
| Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg); |
| llvm::Value *WidthVal = |
| Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false, |
| Int32Ty, SourceLocation()), |
| CGF.SizeTy, /*isSigned=*/true); |
| |
| // The absolute ptr address to the base addr of the next element to copy. |
| llvm::Value *CumulativeElemBasePtr = |
| Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy); |
| Address DestDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign()); |
| |
| emitReductionListCopy(ThreadToScratchpad, CGF, ReductionArrayTy, Privates, |
| SrcDataAddr, DestDataAddr, |
| {/*RemoteLaneOffset=*/nullptr, |
| /*ScratchpadIndex=*/IndexVal, |
| /*ScratchpadWidth=*/WidthVal}); |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that gathers Reduce lists from the first |
| /// lane of every active warp to lanes in the first warp. |
| /// |
| /// void inter_warp_copy_func(void* reduce_data, num_warps) |
| /// shared smem[warp_size]; |
| /// For all data entries D in reduce_data: |
| /// If (I am the first lane in each warp) |
| /// Copy my local D to smem[warp_id] |
| /// sync |
| /// if (I am the first warp) |
| /// Copy smem[thread_id] to my local D |
| /// sync |
| static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy) { |
| auto &C = CGM.getContext(); |
| auto &M = CGM.getModule(); |
| |
| // ReduceList: thread local Reduce list. |
| // At the stage of the computation when this function is called, partially |
| // aggregated values reside in the first lane of every active warp. |
| ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // NumWarps: number of warps active in the parallel region. This could |
| // be smaller than 32 (max warps in a CTA) for partial block reduction. |
| ImplicitParamDecl NumWarpsArg(C, |
| C.getIntTypeForBitwidth(32, /* Signed */ true), |
| ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&NumWarpsArg); |
| |
| auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_inter_warp_copy_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); |
| CodeGenFunction CGF(CGM); |
| // We don't need debug information in this function as nothing here refers to |
| // user code. |
| CGF.disableDebugInfo(); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); |
| |
| auto &Bld = CGF.Builder; |
| |
| // This array is used as a medium to transfer, one reduce element at a time, |
| // the data from the first lane of every warp to lanes in the first warp |
| // in order to perform the final step of a reduction in a parallel region |
| // (reduction across warps). The array is placed in NVPTX __shared__ memory |
| // for reduced latency, as well as to have a distinct copy for concurrently |
| // executing target regions. The array is declared with common linkage so |
| // as to be shared across compilation units. |
| const char *TransferMediumName = |
| "__openmp_nvptx_data_transfer_temporary_storage"; |
| llvm::GlobalVariable *TransferMedium = |
| M.getGlobalVariable(TransferMediumName); |
| if (!TransferMedium) { |
| auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize); |
| unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); |
| TransferMedium = new llvm::GlobalVariable( |
| M, Ty, |
| /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage, |
| llvm::Constant::getNullValue(Ty), TransferMediumName, |
| /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, |
| SharedAddressSpace); |
| } |
| |
| // Get the CUDA thread id of the current OpenMP thread on the GPU. |
| auto *ThreadID = getNVPTXThreadID(CGF); |
| // nvptx_lane_id = nvptx_id % warpsize |
| auto *LaneID = getNVPTXLaneID(CGF); |
| // nvptx_warp_id = nvptx_id / warpsize |
| auto *WarpID = getNVPTXWarpID(CGF); |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| unsigned Idx = 0; |
| for (auto &Private : Privates) { |
| // |
| // Warp master copies reduce element to transfer medium in __shared__ |
| // memory. |
| // |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| // if (lane_id == 0) |
| auto IsWarpMaster = |
| Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master"); |
| Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); |
| CGF.EmitBlock(ThenBB); |
| |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = |
| Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = (type[i]*)(elemptrptr) |
| Address ElemPtr = |
| Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| ElemPtr = Bld.CreateElementBitCast( |
| ElemPtr, CGF.ConvertTypeForMem(Private->getType())); |
| // elem = *elemptr |
| llvm::Value *Elem = CGF.EmitLoadOfScalar( |
| ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); |
| |
| // Get pointer to location in transfer medium. |
| // MediumPtr = &medium[warp_id] |
| llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); |
| Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType())); |
| // Casting to actual data type. |
| // MediumPtr = (type[i]*)MediumPtrAddr; |
| MediumPtr = Bld.CreateElementBitCast( |
| MediumPtr, CGF.ConvertTypeForMem(Private->getType())); |
| |
| //*MediumPtr = elem |
| Bld.CreateStore(Elem, MediumPtr); |
| |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); |
| llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( |
| AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation()); |
| |
| auto *NumActiveThreads = Bld.CreateNSWMul( |
| NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads"); |
| // named_barrier_sync(ParallelBarrierID, num_active_threads) |
| syncParallelThreads(CGF, NumActiveThreads); |
| |
| // |
| // Warp 0 copies reduce element from transfer medium. |
| // |
| llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| // Up to 32 threads in warp 0 are active. |
| auto IsActiveThread = |
| Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); |
| Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); |
| |
| CGF.EmitBlock(W0ThenBB); |
| |
| // SrcMediumPtr = &medium[tid] |
| llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); |
| Address SrcMediumPtr(SrcMediumPtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| // SrcMediumVal = *SrcMediumPtr; |
| SrcMediumPtr = Bld.CreateElementBitCast( |
| SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType())); |
| llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar( |
| SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); |
| |
| // TargetElemPtr = (type[i]*)(SrcDataAddr[i]) |
| Address TargetElemPtrPtr = |
| Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); |
| llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( |
| TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| Address TargetElemPtr = |
| Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType())); |
| TargetElemPtr = Bld.CreateElementBitCast( |
| TargetElemPtr, CGF.ConvertTypeForMem(Private->getType())); |
| |
| // *TargetElemPtr = SrcMediumVal; |
| CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, |
| Private->getType()); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0ElseBB); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0MergeBB); |
| |
| // While warp 0 copies values from transfer medium, all other warps must |
| // wait. |
| syncParallelThreads(CGF, NumActiveThreads); |
| Idx++; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// Emit a helper that reduces data across two OpenMP threads (lanes) |
| /// in the same warp. It uses shuffle instructions to copy over data from |
| /// a remote lane's stack. The reduction algorithm performed is specified |
| /// by the fourth parameter. |
| /// |
| /// Algorithm Versions. |
| /// Full Warp Reduce (argument value 0): |
| /// This algorithm assumes that all 32 lanes are active and gathers |
| /// data from these 32 lanes, producing a single resultant value. |
| /// Contiguous Partial Warp Reduce (argument value 1): |
| /// This algorithm assumes that only a *contiguous* subset of lanes |
| /// are active. This happens for the last warp in a parallel region |
| /// when the user specified num_threads is not an integer multiple of |
| /// 32. This contiguous subset always starts with the zeroth lane. |
| /// Partial Warp Reduce (argument value 2): |
| /// This algorithm gathers data from any number of lanes at any position. |
| /// All reduced values are stored in the lowest possible lane. The set |
| /// of problems every algorithm addresses is a super set of those |
| /// addressable by algorithms with a lower version number. Overhead |
| /// increases as algorithm version increases. |
| /// |
| /// Terminology |
| /// Reduce element: |
| /// Reduce element refers to the individual data field with primitive |
| /// data types to be combined and reduced across threads. |
| /// Reduce list: |
| /// Reduce list refers to a collection of local, thread-private |
| /// reduce elements. |
| /// Remote Reduce list: |
| /// Remote Reduce list refers to a collection of remote (relative to |
| /// the current thread) reduce elements. |
| /// |
| /// We distinguish between three states of threads that are important to |
| /// the implementation of this function. |
| /// Alive threads: |
| /// Threads in a warp executing the SIMT instruction, as distinguished from |
| /// threads that are inactive due to divergent control flow. |
| /// Active threads: |
| /// The minimal set of threads that has to be alive upon entry to this |
| /// function. The computation is correct iff active threads are alive. |
| /// Some threads are alive but they are not active because they do not |
| /// contribute to the computation in any useful manner. Turning them off |
| /// may introduce control flow overheads without any tangible benefits. |
| /// Effective threads: |
| /// In order to comply with the argument requirements of the shuffle |
| /// function, we must keep all lanes holding data alive. But at most |
| /// half of them perform value aggregation; we refer to this half of |
| /// threads as effective. The other half is simply handing off their |
| /// data. |
| /// |
| /// Procedure |
| /// Value shuffle: |
| /// In this step active threads transfer data from higher lane positions |
| /// in the warp to lower lane positions, creating Remote Reduce list. |
| /// Value aggregation: |
| /// In this step, effective threads combine their thread local Reduce list |
| /// with Remote Reduce list and store the result in the thread local |
| /// Reduce list. |
| /// Value copy: |
| /// In this step, we deal with the assumption made by algorithm 2 |
| /// (i.e. contiguity assumption). When we have an odd number of lanes |
| /// active, say 2k+1, only k threads will be effective and therefore k |
| /// new values will be produced. However, the Reduce list owned by the |
| /// (2k+1)th thread is ignored in the value aggregation. Therefore |
| /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so |
| /// that the contiguity assumption still holds. |
| static llvm::Value * |
| emitShuffleAndReduceFunction(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, llvm::Value *ReduceFn) { |
| auto &C = CGM.getContext(); |
| |
| // Thread local Reduce list used to host the values of data to be reduced. |
| ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Current lane id; could be logical. |
| ImplicitParamDecl LaneIDArg(C, C.ShortTy, ImplicitParamDecl::Other); |
| // Offset of the remote source lane relative to the current lane. |
| ImplicitParamDecl RemoteLaneOffsetArg(C, C.ShortTy, |
| ImplicitParamDecl::Other); |
| // Algorithm version. This is expected to be known at compile time. |
| ImplicitParamDecl AlgoVerArg(C, C.ShortTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&LaneIDArg); |
| Args.push_back(&RemoteLaneOffsetArg); |
| Args.push_back(&AlgoVerArg); |
| |
| auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); |
| CodeGenFunction CGF(CGM); |
| // We don't need debug information in this function as nothing here refers to |
| // user code. |
| CGF.disableDebugInfo(); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); |
| |
| auto &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); |
| llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( |
| AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); |
| llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( |
| AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); |
| llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( |
| AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| // Create a local thread-private variable to host the Reduce list |
| // from a remote lane. |
| Address RemoteReduceList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); |
| |
| // This loop iterates through the list of reduce elements and copies, |
| // element by element, from a remote lane in the warp to RemoteReduceList, |
| // hosted on the thread's stack. |
| emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, |
| LocalReduceList, RemoteReduceList, |
| {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, |
| /*ScratchpadIndex=*/nullptr, |
| /*ScratchpadWidth=*/nullptr}); |
| |
| // The actions to be performed on the Remote Reduce list is dependent |
| // on the algorithm version. |
| // |
| // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && |
| // LaneId % 2 == 0 && Offset > 0): |
| // do the reduction value aggregation |
| // |
| // The thread local variable Reduce list is mutated in place to host the |
| // reduced data, which is the aggregated value produced from local and |
| // remote lanes. |
| // |
| // Note that AlgoVer is expected to be a constant integer known at compile |
| // time. |
| // When AlgoVer==0, the first conjunction evaluates to true, making |
| // the entire predicate true during compile time. |
| // When AlgoVer==1, the second conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| // When AlgoVer==2, the third conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0)); |
| |
| auto Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| auto CondAlgo1 = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| auto Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); |
| auto CondAlgo2 = Bld.CreateAnd( |
| Algo2, |
| Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)), |
| Bld.getInt16(0))); |
| CondAlgo2 = Bld.CreateAnd( |
| CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); |
| |
| auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); |
| CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); |
| |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); |
| |
| CGF.EmitBlock(ThenBB); |
| // reduce_function(LocalReduceList, RemoteReduceList) |
| llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| LocalReduceList.getPointer(), CGF.VoidPtrTy); |
| llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| RemoteReduceList.getPointer(), CGF.VoidPtrTy); |
| CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local |
| // Reduce list. |
| Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| auto CondCopy = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); |
| |
| CGF.EmitBlock(CpyThenBB); |
| emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, |
| RemoteReduceList, LocalReduceList); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyElseBB); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyMergeBB); |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// |
| /// Design of OpenMP reductions on the GPU |
| /// |
| /// Consider a typical OpenMP program with one or more reduction |
| /// clauses: |
| /// |
| /// float foo; |
| /// double bar; |
| /// #pragma omp target teams distribute parallel for \ |
| /// reduction(+:foo) reduction(*:bar) |
| /// for (int i = 0; i < N; i++) { |
| /// foo += A[i]; bar *= B[i]; |
| /// } |
| /// |
| /// where 'foo' and 'bar' are reduced across all OpenMP threads in |
| /// all teams. In our OpenMP implementation on the NVPTX device an |
| /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads |
| /// within a team are mapped to CUDA threads within a threadblock. |
| /// Our goal is to efficiently aggregate values across all OpenMP |
| /// threads such that: |
| /// |
| /// - the compiler and runtime are logically concise, and |
| /// - the reduction is performed efficiently in a hierarchical |
| /// manner as follows: within OpenMP threads in the same warp, |
| /// across warps in a threadblock, and finally across teams on |
| /// the NVPTX device. |
| /// |
| /// Introduction to Decoupling |
| /// |
| /// We would like to decouple the compiler and the runtime so that the |
| /// latter is ignorant of the reduction variables (number, data types) |
| /// and the reduction operators. This allows a simpler interface |
| /// and implementation while still attaining good performance. |
| /// |
| /// Pseudocode for the aforementioned OpenMP program generated by the |
| /// compiler is as follows: |
| /// |
| /// 1. Create private copies of reduction variables on each OpenMP |
| /// thread: 'foo_private', 'bar_private' |
| /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned |
| /// to it and writes the result in 'foo_private' and 'bar_private' |
| /// respectively. |
| /// 3. Call the OpenMP runtime on the GPU to reduce within a team |
| /// and store the result on the team master: |
| /// |
| /// __kmpc_nvptx_parallel_reduce_nowait(..., |
| /// reduceData, shuffleReduceFn, interWarpCpyFn) |
| /// |
| /// where: |
| /// struct ReduceData { |
| /// double *foo; |
| /// double *bar; |
| /// } reduceData |
| /// reduceData.foo = &foo_private |
| /// reduceData.bar = &bar_private |
| /// |
| /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two |
| /// auxiliary functions generated by the compiler that operate on |
| /// variables of type 'ReduceData'. They aid the runtime perform |
| /// algorithmic steps in a data agnostic manner. |
| /// |
| /// 'shuffleReduceFn' is a pointer to a function that reduces data |
| /// of type 'ReduceData' across two OpenMP threads (lanes) in the |
| /// same warp. It takes the following arguments as input: |
| /// |
| /// a. variable of type 'ReduceData' on the calling lane, |
| /// b. its lane_id, |
| /// c. an offset relative to the current lane_id to generate a |
| /// remote_lane_id. The remote lane contains the second |
| /// variable of type 'ReduceData' that is to be reduced. |
| /// d. an algorithm version parameter determining which reduction |
| /// algorithm to use. |
| /// |
| /// 'shuffleReduceFn' retrieves data from the remote lane using |
| /// efficient GPU shuffle intrinsics and reduces, using the |
| /// algorithm specified by the 4th parameter, the two operands |
| /// element-wise. The result is written to the first operand. |
| /// |
| /// Different reduction algorithms are implemented in different |
| /// runtime functions, all calling 'shuffleReduceFn' to perform |
| /// the essential reduction step. Therefore, based on the 4th |
| /// parameter, this function behaves slightly differently to |
| /// cooperate with the runtime to ensure correctness under |
| /// different circumstances. |
| /// |
| /// 'InterWarpCpyFn' is a pointer to a function that transfers |
| /// reduced variables across warps. It tunnels, through CUDA |
| /// shared memory, the thread-private data of type 'ReduceData' |
| /// from lane 0 of each warp to a lane in the first warp. |
| /// 4. Call the OpenMP runtime on the GPU to reduce across teams. |
| /// The last team writes the global reduced value to memory. |
| /// |
| /// ret = __kmpc_nvptx_teams_reduce_nowait(..., |
| /// reduceData, shuffleReduceFn, interWarpCpyFn, |
| /// scratchpadCopyFn, loadAndReduceFn) |
| /// |
| /// 'scratchpadCopyFn' is a helper that stores reduced |
| /// data from the team master to a scratchpad array in |
| /// global memory. |
| /// |
| /// 'loadAndReduceFn' is a helper that loads data from |
| /// the scratchpad array and reduces it with the input |
| /// operand. |
| /// |
| /// These compiler generated functions hide address |
| /// calculation and alignment information from the runtime. |
| /// 5. if ret == 1: |
| /// The team master of the last team stores the reduced |
| /// result to the globals in memory. |
| /// foo += reduceData.foo; bar *= reduceData.bar |
| /// |
| /// |
| /// Warp Reduction Algorithms |
| /// |
| /// On the warp level, we have three algorithms implemented in the |
| /// OpenMP runtime depending on the number of active lanes: |
| /// |
| /// Full Warp Reduction |
| /// |
| /// The reduce algorithm within a warp where all lanes are active |
| /// is implemented in the runtime as follows: |
| /// |
| /// full_warp_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
| /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) |
| /// ShuffleReduceFn(reduce_data, 0, offset, 0); |
| /// } |
| /// |
| /// The algorithm completes in log(2, WARPSIZE) steps. |
| /// |
| /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is |
| /// not used therefore we save instructions by not retrieving lane_id |
| /// from the corresponding special registers. The 4th parameter, which |
| /// represents the version of the algorithm being used, is set to 0 to |
| /// signify full warp reduction. |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// #reduce_elem refers to an element in the local lane's data structure |
| /// #remote_elem is retrieved from a remote lane |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem; |
| /// |
| /// Contiguous Partial Warp Reduction |
| /// |
| /// This reduce algorithm is used within a warp where only the first |
| /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the |
| /// number of OpenMP threads in a parallel region is not a multiple of |
| /// WARPSIZE. The algorithm is implemented in the runtime as follows: |
| /// |
| /// void |
| /// contiguous_partial_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn, |
| /// int size, int lane_id) { |
| /// int curr_size; |
| /// int offset; |
| /// curr_size = size; |
| /// mask = curr_size/2; |
| /// while (offset>0) { |
| /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); |
| /// curr_size = (curr_size+1)/2; |
| /// offset = curr_size/2; |
| /// } |
| /// } |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// if (lane_id < offset) |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
| /// else |
| /// reduce_elem = remote_elem |
| /// |
| /// This algorithm assumes that the data to be reduced are located in a |
| /// contiguous subset of lanes starting from the first. When there is |
| /// an odd number of active lanes, the data in the last lane is not |
| /// aggregated with any other lane's dat but is instead copied over. |
| /// |
| /// Dispersed Partial Warp Reduction |
| /// |
| /// This algorithm is used within a warp when any discontiguous subset of |
| /// lanes are active. It is used to implement the reduction operation |
| /// across lanes in an OpenMP simd region or in a nested parallel region. |
| /// |
| /// void |
| /// dispersed_partial_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
| /// int size, remote_id; |
| /// int logical_lane_id = number_of_active_lanes_before_me() * 2; |
| /// do { |
| /// remote_id = next_active_lane_id_right_after_me(); |
| /// # the above function returns 0 of no active lane |
| /// # is present right after the current lane. |
| /// size = number_of_active_lanes_in_this_warp(); |
| /// logical_lane_id /= 2; |
| /// ShuffleReduceFn(reduce_data, logical_lane_id, |
| /// remote_id-1-threadIdx.x, 2); |
| /// } while (logical_lane_id % 2 == 0 && size > 1); |
| /// } |
| /// |
| /// There is no assumption made about the initial state of the reduction. |
| /// Any number of lanes (>=1) could be active at any position. The reduction |
| /// result is returned in the first active lane. |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// if (lane_id % 2 == 0 && offset > 0) |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
| /// else |
| /// reduce_elem = remote_elem |
| /// |
| /// |
| /// Intra-Team Reduction |
| /// |
| /// This function, as implemented in the runtime call |
| /// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP |
| /// threads in a team. It first reduces within a warp using the |
| /// aforementioned algorithms. We then proceed to gather all such |
| /// reduced values at the first warp. |
| /// |
| /// The runtime makes use of the function 'InterWarpCpyFn', which copies |
| /// data from each of the "warp master" (zeroth lane of each warp, where |
| /// warp-reduced data is held) to the zeroth warp. This step reduces (in |
| /// a mathematical sense) the problem of reduction across warp masters in |
| /// a block to the problem of warp reduction. |
| /// |
| /// |
| /// Inter-Team Reduction |
| /// |
| /// Once a team has reduced its data to a single value, it is stored in |
| /// a global scratchpad array. Since each team has a distinct slot, this |
| /// can be done without locking. |
| /// |
| /// The last team to write to the scratchpad array proceeds to reduce the |
| /// scratchpad array. One or more workers in the last team use the helper |
| /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., |
| /// the k'th worker reduces every k'th element. |
| /// |
| /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait' to |
| /// reduce across workers and compute a globally reduced value. |
| /// |
| void CGOpenMPRuntimeNVPTX::emitReduction( |
| CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
| ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); |
| bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); |
| // FIXME: Add support for simd reduction. |
| assert((TeamsReduction || ParallelReduction) && |
| "Invalid reduction selection in emitReduction."); |
| |
| auto &C = CGM.getContext(); |
| |
| // 1. Build a list of reduction variables. |
| // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
| auto Size = RHSExprs.size(); |
| for (auto *E : Privates) { |
| if (E->getType()->isVariablyModifiedType()) |
| // Reserve place for array size. |
| ++Size; |
| } |
| llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); |
| QualType ReductionArrayTy = |
| C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| Address ReductionList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); |
| auto IPriv = Privates.begin(); |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, |
| CGF.getPointerSize()); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), |
| Elem); |
| if ((*IPriv)->getType()->isVariablyModifiedType()) { |
| // Store array size. |
| ++Idx; |
| Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, |
| CGF.getPointerSize()); |
| llvm::Value *Size = CGF.Builder.CreateIntCast( |
| CGF.getVLASize( |
| CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) |
| .first, |
| CGF.SizeTy, /*isSigned=*/false); |
| CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), |
| Elem); |
| } |
| } |
| |
| // 2. Emit reduce_func(). |
| auto *ReductionFn = emitReductionFunction( |
| CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, |
| LHSExprs, RHSExprs, ReductionOps); |
| |
| // 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), |
| // RedList, shuffle_reduce_func, interwarp_copy_func); |
| auto *ThreadId = getThreadID(CGF, Loc); |
| auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); |
| auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| ReductionList.getPointer(), CGF.VoidPtrTy); |
| |
| auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction( |
| CGM, Privates, ReductionArrayTy, ReductionFn); |
| auto *InterWarpCopyFn = |
| emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy); |
| |
| llvm::Value *Res = nullptr; |
| if (ParallelReduction) { |
| llvm::Value *Args[] = {ThreadId, |
| CGF.Builder.getInt32(RHSExprs.size()), |
| ReductionArrayTySize, |
| RL, |
| ShuffleAndReduceFn, |
| InterWarpCopyFn}; |
| |
| Res = CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait), |
| Args); |
| } |
| |
| if (TeamsReduction) { |
| auto *ScratchPadCopyFn = |
| emitCopyToScratchpad(CGM, Privates, ReductionArrayTy); |
| auto *LoadAndReduceFn = emitReduceScratchpadFunction( |
| CGM, Privates, ReductionArrayTy, ReductionFn); |
| |
| llvm::Value *Args[] = {ThreadId, |
| CGF.Builder.getInt32(RHSExprs.size()), |
| ReductionArrayTySize, |
| RL, |
| ShuffleAndReduceFn, |
| InterWarpCopyFn, |
| ScratchPadCopyFn, |
| LoadAndReduceFn}; |
| Res = CGF.EmitRuntimeCall( |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_teams_reduce_nowait), |
| Args); |
| } |
| |
| // 5. Build switch(res) |
| auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); |
| auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1); |
| |
| // 6. Build case 1: where we have reduced values in the master |
| // thread in each team. |
| // __kmpc_end_reduce{_nowait}(<gtid>); |
| // break; |
| auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); |
| SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); |
| CGF.EmitBlock(Case1BB); |
| |
| // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); |
| llvm::Value *EndArgs[] = {ThreadId}; |
| auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps, |
| this](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| auto IPriv = Privates.begin(); |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| for (auto *E : ReductionOps) { |
| emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), |
| cast<DeclRefExpr>(*IRHS)); |
| ++IPriv; |
| ++ILHS; |
| ++IRHS; |
| } |
| }; |
| RegionCodeGenTy RCG(CodeGen); |
| NVPTXActionTy Action( |
| nullptr, llvm::None, |
| createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait), |
| EndArgs); |
| RCG.setAction(Action); |
| RCG(CGF); |
| CGF.EmitBranch(DefaultBB); |
| CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); |
| } |
| |
| const VarDecl * |
| CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD, |
| const VarDecl *NativeParam) const { |
| if (!NativeParam->getType()->isReferenceType()) |
| return NativeParam; |
| QualType ArgType = NativeParam->getType(); |
| QualifierCollector QC; |
| const Type *NonQualTy = QC.strip(ArgType); |
| QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); |
| if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { |
| if (Attr->getCaptureKind() == OMPC_map) { |
| PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, |
| LangAS::opencl_global); |
| } |
| } |
| ArgType = CGM.getContext().getPointerType(PointeeTy); |
| QC.addRestrict(); |
| enum { NVPTX_local_addr = 5 }; |
| QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); |
| ArgType = QC.apply(CGM.getContext(), ArgType); |
| if (isa<ImplicitParamDecl>(NativeParam)) { |
| return ImplicitParamDecl::Create( |
| CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), |
| NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); |
| } |
| return ParmVarDecl::Create( |
| CGM.getContext(), |
| const_cast<DeclContext *>(NativeParam->getDeclContext()), |
| NativeParam->getLocStart(), NativeParam->getLocation(), |
| NativeParam->getIdentifier(), ArgType, |
| /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); |
| } |
| |
| Address |
| CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF, |
| const VarDecl *NativeParam, |
| const VarDecl *TargetParam) const { |
| assert(NativeParam != TargetParam && |
| NativeParam->getType()->isReferenceType() && |
| "Native arg must not be the same as target arg."); |
| Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); |
| QualType NativeParamType = NativeParam->getType(); |
| QualifierCollector QC; |
| const Type *NonQualTy = QC.strip(NativeParamType); |
| QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); |
| unsigned NativePointeeAddrSpace = |
| CGF.getContext().getTargetAddressSpace(NativePointeeTy); |
| QualType TargetTy = TargetParam->getType(); |
| llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( |
| LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); |
| // First cast to generic. |
| TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( |
| /*AddrSpace=*/0)); |
| // Cast from generic to native address space. |
| TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( |
| NativePointeeAddrSpace)); |
| Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); |
| CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, |
| NativeParamType); |
| return NativeParamAddr; |
| } |
| |
| void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> Args) const { |
| SmallVector<llvm::Value *, 4> TargetArgs; |
| TargetArgs.reserve(Args.size()); |
| auto *FnType = |
| cast<llvm::FunctionType>(OutlinedFn->getType()->getPointerElementType()); |
| for (unsigned I = 0, E = Args.size(); I < E; ++I) { |
| if (FnType->isVarArg() && FnType->getNumParams() <= I) { |
| TargetArgs.append(std::next(Args.begin(), I), Args.end()); |
| break; |
| } |
| llvm::Type *TargetType = FnType->getParamType(I); |
| llvm::Value *NativeArg = Args[I]; |
| if (!TargetType->isPointerTy()) { |
| TargetArgs.emplace_back(NativeArg); |
| continue; |
| } |
| llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| NativeArg, NativeArg->getType()->getPointerElementType()->getPointerTo( |
| /*AddrSpace=*/0)); |
| TargetArgs.emplace_back( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); |
| } |
| CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); |
| } |
| |
| /// Emit function which wraps the outline parallel region |
| /// and controls the arguments which are passed to this function. |
| /// The wrapper ensures that the outlined function is called |
| /// with the correct arguments when data is shared. |
| llvm::Function *CGOpenMPRuntimeNVPTX::createDataSharingWrapper( |
| llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { |
| ASTContext &Ctx = CGM.getContext(); |
| const auto &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); |
| |
| // Create a function that takes as argument the source thread. |
| FunctionArgList WrapperArgs; |
| QualType Int16QTy = |
| Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); |
| QualType Int32QTy = |
| Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); |
| QualType Int32PtrQTy = Ctx.getPointerType(Int32QTy); |
| QualType VoidPtrPtrQTy = Ctx.getPointerType(Ctx.VoidPtrTy); |
| ImplicitParamDecl ParallelLevelArg(Ctx, Int16QTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl WrapperArg(Ctx, Int32QTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl SharedArgsList(Ctx, VoidPtrPtrQTy, |
| ImplicitParamDecl::Other); |
| WrapperArgs.emplace_back(&ParallelLevelArg); |
| WrapperArgs.emplace_back(&WrapperArg); |
| WrapperArgs.emplace_back(&SharedArgsList); |
| |
| auto &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); |
| |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| OutlinedParallelFn->getName() + "_wrapper", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); |
| Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
| |
| CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
| CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs); |
| |
| const auto *RD = CS.getCapturedRecordDecl(); |
| auto CurField = RD->field_begin(); |
| |
| // Get the array of arguments. |
| SmallVector<llvm::Value *, 8> Args; |
| |
| // TODO: suppport SIMD and pass actual values |
| Args.emplace_back(llvm::ConstantPointerNull::get( |
| CGM.Int32Ty->getPointerTo())); |
| Args.emplace_back(llvm::ConstantPointerNull::get( |
| CGM.Int32Ty->getPointerTo())); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| auto CI = CS.capture_begin(); |
| |
| // Load the start of the array |
| auto SharedArgs = |
| CGF.EmitLoadOfPointer(CGF.GetAddrOfLocalVar(&SharedArgsList), |
| VoidPtrPtrQTy->castAs<PointerType>()); |
| |
| // For each captured variable |
| for (unsigned I = 0; I < CS.capture_size(); ++I, ++CI, ++CurField) { |
| // Name of captured variable |
| StringRef Name; |
| if (CI->capturesThis()) |
| Name = "this"; |
| else |
| Name = CI->getCapturedVar()->getName(); |
| |
| // We retrieve the CLANG type of the argument. We use it to create |
| // an alloca which will give us the LLVM type. |
| QualType ElemTy = CurField->getType(); |
| // If this is a capture by copy the element type has to be the pointer to |
| // the data. |
| if (CI->capturesVariableByCopy()) |
| ElemTy = Ctx.getPointerType(ElemTy); |
| |
| // Get shared address of the captured variable. |
| Address ArgAddress = Bld.CreateConstInBoundsGEP( |
| SharedArgs, I, CGF.getPointerSize()); |
| Address TypedArgAddress = Bld.CreateBitCast( |
| ArgAddress, CGF.ConvertTypeForMem(Ctx.getPointerType(ElemTy))); |
| llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedArgAddress, |
| /*Volatile=*/false, Int32PtrQTy, SourceLocation()); |
| Args.emplace_back(Arg); |
| } |
| |
| emitCall(CGF, OutlinedParallelFn, Args); |
| CGF.FinishFunction(); |
| return Fn; |
| } |