| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cstring> |
| using namespace clang; |
| |
| const Expr *Expr::getBestDynamicClassTypeExpr() const { |
| const Expr *E = this; |
| while (true) { |
| E = E->ignoreParenBaseCasts(); |
| |
| // Follow the RHS of a comma operator. |
| if (auto *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Comma) { |
| E = BO->getRHS(); |
| continue; |
| } |
| } |
| |
| // Step into initializer for materialized temporaries. |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = MTE->GetTemporaryExpr(); |
| continue; |
| } |
| |
| break; |
| } |
| |
| return E; |
| } |
| |
| const CXXRecordDecl *Expr::getBestDynamicClassType() const { |
| const Expr *E = getBestDynamicClassTypeExpr(); |
| QualType DerivedType = E->getType(); |
| if (const PointerType *PTy = DerivedType->getAs<PointerType>()) |
| DerivedType = PTy->getPointeeType(); |
| |
| if (DerivedType->isDependentType()) |
| return nullptr; |
| |
| const RecordType *Ty = DerivedType->castAs<RecordType>(); |
| Decl *D = Ty->getDecl(); |
| return cast<CXXRecordDecl>(D); |
| } |
| |
| const Expr *Expr::skipRValueSubobjectAdjustments( |
| SmallVectorImpl<const Expr *> &CommaLHSs, |
| SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { |
| const Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| |
| if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { |
| if ((CE->getCastKind() == CK_DerivedToBase || |
| CE->getCastKind() == CK_UncheckedDerivedToBase) && |
| E->getType()->isRecordType()) { |
| E = CE->getSubExpr(); |
| CXXRecordDecl *Derived |
| = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); |
| Adjustments.push_back(SubobjectAdjustment(CE, Derived)); |
| continue; |
| } |
| |
| if (CE->getCastKind() == CK_NoOp) { |
| E = CE->getSubExpr(); |
| continue; |
| } |
| } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| if (!ME->isArrow()) { |
| assert(ME->getBase()->getType()->isRecordType()); |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| if (!Field->isBitField() && !Field->getType()->isReferenceType()) { |
| E = ME->getBase(); |
| Adjustments.push_back(SubobjectAdjustment(Field)); |
| continue; |
| } |
| } |
| } |
| } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->isPtrMemOp()) { |
| assert(BO->getRHS()->isRValue()); |
| E = BO->getLHS(); |
| const MemberPointerType *MPT = |
| BO->getRHS()->getType()->getAs<MemberPointerType>(); |
| Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); |
| continue; |
| } else if (BO->getOpcode() == BO_Comma) { |
| CommaLHSs.push_back(BO->getLHS()); |
| E = BO->getRHS(); |
| continue; |
| } |
| } |
| |
| // Nothing changed. |
| break; |
| } |
| return E; |
| } |
| |
| /// isKnownToHaveBooleanValue - Return true if this is an integer expression |
| /// that is known to return 0 or 1. This happens for _Bool/bool expressions |
| /// but also int expressions which are produced by things like comparisons in |
| /// C. |
| bool Expr::isKnownToHaveBooleanValue() const { |
| const Expr *E = IgnoreParens(); |
| |
| // If this value has _Bool type, it is obvious 0/1. |
| if (E->getType()->isBooleanType()) return true; |
| // If this is a non-scalar-integer type, we don't care enough to try. |
| if (!E->getType()->isIntegralOrEnumerationType()) return false; |
| |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
| switch (UO->getOpcode()) { |
| case UO_Plus: |
| return UO->getSubExpr()->isKnownToHaveBooleanValue(); |
| case UO_LNot: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Only look through implicit casts. If the user writes |
| // '(int) (a && b)' treat it as an arbitrary int. |
| if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) |
| return CE->getSubExpr()->isKnownToHaveBooleanValue(); |
| |
| if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| switch (BO->getOpcode()) { |
| default: return false; |
| case BO_LT: // Relational operators. |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: // Equality operators. |
| case BO_NE: |
| case BO_LAnd: // AND operator. |
| case BO_LOr: // Logical OR operator. |
| return true; |
| |
| case BO_And: // Bitwise AND operator. |
| case BO_Xor: // Bitwise XOR operator. |
| case BO_Or: // Bitwise OR operator. |
| // Handle things like (x==2)|(y==12). |
| return BO->getLHS()->isKnownToHaveBooleanValue() && |
| BO->getRHS()->isKnownToHaveBooleanValue(); |
| |
| case BO_Comma: |
| case BO_Assign: |
| return BO->getRHS()->isKnownToHaveBooleanValue(); |
| } |
| } |
| |
| if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) |
| return CO->getTrueExpr()->isKnownToHaveBooleanValue() && |
| CO->getFalseExpr()->isKnownToHaveBooleanValue(); |
| |
| return false; |
| } |
| |
| // Amusing macro metaprogramming hack: check whether a class provides |
| // a more specific implementation of getExprLoc(). |
| // |
| // See also Stmt.cpp:{getLocStart(),getLocEnd()}. |
| namespace { |
| /// This implementation is used when a class provides a custom |
| /// implementation of getExprLoc. |
| template <class E, class T> |
| SourceLocation getExprLocImpl(const Expr *expr, |
| SourceLocation (T::*v)() const) { |
| return static_cast<const E*>(expr)->getExprLoc(); |
| } |
| |
| /// This implementation is used when a class doesn't provide |
| /// a custom implementation of getExprLoc. Overload resolution |
| /// should pick it over the implementation above because it's |
| /// more specialized according to function template partial ordering. |
| template <class E> |
| SourceLocation getExprLocImpl(const Expr *expr, |
| SourceLocation (Expr::*v)() const) { |
| return static_cast<const E*>(expr)->getLocStart(); |
| } |
| } |
| |
| SourceLocation Expr::getExprLoc() const { |
| switch (getStmtClass()) { |
| case Stmt::NoStmtClass: llvm_unreachable("statement without class"); |
| #define ABSTRACT_STMT(type) |
| #define STMT(type, base) \ |
| case Stmt::type##Class: break; |
| #define EXPR(type, base) \ |
| case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); |
| #include "clang/AST/StmtNodes.inc" |
| } |
| llvm_unreachable("unknown expression kind"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Expressions. |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief Compute the type-, value-, and instantiation-dependence of a |
| /// declaration reference |
| /// based on the declaration being referenced. |
| static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, |
| QualType T, bool &TypeDependent, |
| bool &ValueDependent, |
| bool &InstantiationDependent) { |
| TypeDependent = false; |
| ValueDependent = false; |
| InstantiationDependent = false; |
| |
| // (TD) C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // |
| // and |
| // |
| // (VD) C++ [temp.dep.constexpr]p2: |
| // An identifier is value-dependent if it is: |
| |
| // (TD) - an identifier that was declared with dependent type |
| // (VD) - a name declared with a dependent type, |
| if (T->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } else if (T->isInstantiationDependentType()) { |
| InstantiationDependent = true; |
| } |
| |
| // (TD) - a conversion-function-id that specifies a dependent type |
| if (D->getDeclName().getNameKind() |
| == DeclarationName::CXXConversionFunctionName) { |
| QualType T = D->getDeclName().getCXXNameType(); |
| if (T->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } |
| |
| if (T->isInstantiationDependentType()) |
| InstantiationDependent = true; |
| } |
| |
| // (VD) - the name of a non-type template parameter, |
| if (isa<NonTypeTemplateParmDecl>(D)) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } |
| |
| // (VD) - a constant with integral or enumeration type and is |
| // initialized with an expression that is value-dependent. |
| // (VD) - a constant with literal type and is initialized with an |
| // expression that is value-dependent [C++11]. |
| // (VD) - FIXME: Missing from the standard: |
| // - an entity with reference type and is initialized with an |
| // expression that is value-dependent [C++11] |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| if ((Ctx.getLangOpts().CPlusPlus11 ? |
| Var->getType()->isLiteralType(Ctx) : |
| Var->getType()->isIntegralOrEnumerationType()) && |
| (Var->getType().isConstQualified() || |
| Var->getType()->isReferenceType())) { |
| if (const Expr *Init = Var->getAnyInitializer()) |
| if (Init->isValueDependent()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| } |
| } |
| |
| // (VD) - FIXME: Missing from the standard: |
| // - a member function or a static data member of the current |
| // instantiation |
| if (Var->isStaticDataMember() && |
| Var->getDeclContext()->isDependentContext()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); |
| if (TInfo->getType()->isIncompleteArrayType()) |
| TypeDependent = true; |
| } |
| |
| return; |
| } |
| |
| // (VD) - FIXME: Missing from the standard: |
| // - a member function or a static data member of the current |
| // instantiation |
| if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| } |
| } |
| |
| void DeclRefExpr::computeDependence(const ASTContext &Ctx) { |
| bool TypeDependent = false; |
| bool ValueDependent = false; |
| bool InstantiationDependent = false; |
| computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, |
| ValueDependent, InstantiationDependent); |
| |
| ExprBits.TypeDependent |= TypeDependent; |
| ExprBits.ValueDependent |= ValueDependent; |
| ExprBits.InstantiationDependent |= InstantiationDependent; |
| |
| // Is the declaration a parameter pack? |
| if (getDecl()->isParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| |
| DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| ValueDecl *D, bool RefersToEnclosingVariableOrCapture, |
| const DeclarationNameInfo &NameInfo, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs, |
| QualType T, ExprValueKind VK) |
| : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), |
| D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { |
| DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; |
| if (QualifierLoc) { |
| new (getTrailingObjects<NestedNameSpecifierLoc>()) |
| NestedNameSpecifierLoc(QualifierLoc); |
| auto *NNS = QualifierLoc.getNestedNameSpecifier(); |
| if (NNS->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (NNS->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; |
| if (FoundD) |
| *getTrailingObjects<NamedDecl *>() = FoundD; |
| DeclRefExprBits.HasTemplateKWAndArgsInfo |
| = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; |
| DeclRefExprBits.RefersToEnclosingVariableOrCapture = |
| RefersToEnclosingVariableOrCapture; |
| if (TemplateArgs) { |
| bool Dependent = false; |
| bool InstantiationDependent = false; |
| bool ContainsUnexpandedParameterPack = false; |
| getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), |
| Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); |
| assert(!Dependent && "built a DeclRefExpr with dependent template args"); |
| ExprBits.InstantiationDependent |= InstantiationDependent; |
| ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; |
| } else if (TemplateKWLoc.isValid()) { |
| getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| TemplateKWLoc); |
| } |
| DeclRefExprBits.HadMultipleCandidates = 0; |
| |
| computeDependence(Ctx); |
| } |
| |
| DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| ValueDecl *D, |
| bool RefersToEnclosingVariableOrCapture, |
| SourceLocation NameLoc, |
| QualType T, |
| ExprValueKind VK, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return Create(Context, QualifierLoc, TemplateKWLoc, D, |
| RefersToEnclosingVariableOrCapture, |
| DeclarationNameInfo(D->getDeclName(), NameLoc), |
| T, VK, FoundD, TemplateArgs); |
| } |
| |
| DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| ValueDecl *D, |
| bool RefersToEnclosingVariableOrCapture, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, |
| ExprValueKind VK, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Filter out cases where the found Decl is the same as the value refenenced. |
| if (D == FoundD) |
| FoundD = nullptr; |
| |
| bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); |
| std::size_t Size = |
| totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
| ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| QualifierLoc ? 1 : 0, FoundD ? 1 : 0, |
| HasTemplateKWAndArgsInfo ? 1 : 0, |
| TemplateArgs ? TemplateArgs->size() : 0); |
| |
| void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); |
| return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, |
| RefersToEnclosingVariableOrCapture, |
| NameInfo, FoundD, TemplateArgs, T, VK); |
| } |
| |
| DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, |
| bool HasQualifier, |
| bool HasFoundDecl, |
| bool HasTemplateKWAndArgsInfo, |
| unsigned NumTemplateArgs) { |
| assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); |
| std::size_t Size = |
| totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
| ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, |
| NumTemplateArgs); |
| void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); |
| return new (Mem) DeclRefExpr(EmptyShell()); |
| } |
| |
| SourceLocation DeclRefExpr::getLocStart() const { |
| if (hasQualifier()) |
| return getQualifierLoc().getBeginLoc(); |
| return getNameInfo().getLocStart(); |
| } |
| SourceLocation DeclRefExpr::getLocEnd() const { |
| if (hasExplicitTemplateArgs()) |
| return getRAngleLoc(); |
| return getNameInfo().getLocEnd(); |
| } |
| |
| PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, |
| StringLiteral *SL) |
| : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, |
| FNTy->isDependentType(), FNTy->isDependentType(), |
| FNTy->isInstantiationDependentType(), |
| /*ContainsUnexpandedParameterPack=*/false), |
| Loc(L), Type(IT), FnName(SL) {} |
| |
| StringLiteral *PredefinedExpr::getFunctionName() { |
| return cast_or_null<StringLiteral>(FnName); |
| } |
| |
| StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { |
| switch (IT) { |
| case Func: |
| return "__func__"; |
| case Function: |
| return "__FUNCTION__"; |
| case FuncDName: |
| return "__FUNCDNAME__"; |
| case LFunction: |
| return "L__FUNCTION__"; |
| case PrettyFunction: |
| return "__PRETTY_FUNCTION__"; |
| case FuncSig: |
| return "__FUNCSIG__"; |
| case PrettyFunctionNoVirtual: |
| break; |
| } |
| llvm_unreachable("Unknown ident type for PredefinedExpr"); |
| } |
| |
| // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
| // expr" policy instead. |
| std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { |
| ASTContext &Context = CurrentDecl->getASTContext(); |
| |
| if (IT == PredefinedExpr::FuncDName) { |
| if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { |
| std::unique_ptr<MangleContext> MC; |
| MC.reset(Context.createMangleContext()); |
| |
| if (MC->shouldMangleDeclName(ND)) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) |
| MC->mangleCXXCtor(CD, Ctor_Base, Out); |
| else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) |
| MC->mangleCXXDtor(DD, Dtor_Base, Out); |
| else |
| MC->mangleName(ND, Out); |
| |
| if (!Buffer.empty() && Buffer.front() == '\01') |
| return Buffer.substr(1); |
| return Buffer.str(); |
| } else |
| return ND->getIdentifier()->getName(); |
| } |
| return ""; |
| } |
| if (isa<BlockDecl>(CurrentDecl)) { |
| // For blocks we only emit something if it is enclosed in a function |
| // For top-level block we'd like to include the name of variable, but we |
| // don't have it at this point. |
| auto DC = CurrentDecl->getDeclContext(); |
| if (DC->isFileContext()) |
| return ""; |
| |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) |
| // For nested blocks, propagate up to the parent. |
| Out << ComputeName(IT, DCBlock); |
| else if (auto *DCDecl = dyn_cast<Decl>(DC)) |
| Out << ComputeName(IT, DCDecl) << "_block_invoke"; |
| return Out.str(); |
| } |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { |
| if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) |
| return FD->getNameAsString(); |
| |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) |
| Out << "virtual "; |
| if (MD->isStatic()) |
| Out << "static "; |
| } |
| |
| PrintingPolicy Policy(Context.getLangOpts()); |
| std::string Proto; |
| llvm::raw_string_ostream POut(Proto); |
| |
| const FunctionDecl *Decl = FD; |
| if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) |
| Decl = Pattern; |
| const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); |
| const FunctionProtoType *FT = nullptr; |
| if (FD->hasWrittenPrototype()) |
| FT = dyn_cast<FunctionProtoType>(AFT); |
| |
| if (IT == FuncSig) { |
| switch (AFT->getCallConv()) { |
| case CC_C: POut << "__cdecl "; break; |
| case CC_X86StdCall: POut << "__stdcall "; break; |
| case CC_X86FastCall: POut << "__fastcall "; break; |
| case CC_X86ThisCall: POut << "__thiscall "; break; |
| case CC_X86VectorCall: POut << "__vectorcall "; break; |
| case CC_X86RegCall: POut << "__regcall "; break; |
| // Only bother printing the conventions that MSVC knows about. |
| default: break; |
| } |
| } |
| |
| FD->printQualifiedName(POut, Policy); |
| |
| POut << "("; |
| if (FT) { |
| for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { |
| if (i) POut << ", "; |
| POut << Decl->getParamDecl(i)->getType().stream(Policy); |
| } |
| |
| if (FT->isVariadic()) { |
| if (FD->getNumParams()) POut << ", "; |
| POut << "..."; |
| } else if ((IT == FuncSig || !Context.getLangOpts().CPlusPlus) && |
| !Decl->getNumParams()) { |
| POut << "void"; |
| } |
| } |
| POut << ")"; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| assert(FT && "We must have a written prototype in this case."); |
| if (FT->isConst()) |
| POut << " const"; |
| if (FT->isVolatile()) |
| POut << " volatile"; |
| RefQualifierKind Ref = MD->getRefQualifier(); |
| if (Ref == RQ_LValue) |
| POut << " &"; |
| else if (Ref == RQ_RValue) |
| POut << " &&"; |
| } |
| |
| typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; |
| SpecsTy Specs; |
| const DeclContext *Ctx = FD->getDeclContext(); |
| while (Ctx && isa<NamedDecl>(Ctx)) { |
| const ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); |
| if (Spec && !Spec->isExplicitSpecialization()) |
| Specs.push_back(Spec); |
| Ctx = Ctx->getParent(); |
| } |
| |
| std::string TemplateParams; |
| llvm::raw_string_ostream TOut(TemplateParams); |
| for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); |
| I != E; ++I) { |
| const TemplateParameterList *Params |
| = (*I)->getSpecializedTemplate()->getTemplateParameters(); |
| const TemplateArgumentList &Args = (*I)->getTemplateArgs(); |
| assert(Params->size() == Args.size()); |
| for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { |
| StringRef Param = Params->getParam(i)->getName(); |
| if (Param.empty()) continue; |
| TOut << Param << " = "; |
| Args.get(i).print(Policy, TOut); |
| TOut << ", "; |
| } |
| } |
| |
| FunctionTemplateSpecializationInfo *FSI |
| = FD->getTemplateSpecializationInfo(); |
| if (FSI && !FSI->isExplicitSpecialization()) { |
| const TemplateParameterList* Params |
| = FSI->getTemplate()->getTemplateParameters(); |
| const TemplateArgumentList* Args = FSI->TemplateArguments; |
| assert(Params->size() == Args->size()); |
| for (unsigned i = 0, e = Params->size(); i != e; ++i) { |
| StringRef Param = Params->getParam(i)->getName(); |
| if (Param.empty()) continue; |
| TOut << Param << " = "; |
| Args->get(i).print(Policy, TOut); |
| TOut << ", "; |
| } |
| } |
| |
| TOut.flush(); |
| if (!TemplateParams.empty()) { |
| // remove the trailing comma and space |
| TemplateParams.resize(TemplateParams.size() - 2); |
| POut << " [" << TemplateParams << "]"; |
| } |
| |
| POut.flush(); |
| |
| // Print "auto" for all deduced return types. This includes C++1y return |
| // type deduction and lambdas. For trailing return types resolve the |
| // decltype expression. Otherwise print the real type when this is |
| // not a constructor or destructor. |
| if (isa<CXXMethodDecl>(FD) && |
| cast<CXXMethodDecl>(FD)->getParent()->isLambda()) |
| Proto = "auto " + Proto; |
| else if (FT && FT->getReturnType()->getAs<DecltypeType>()) |
| FT->getReturnType() |
| ->getAs<DecltypeType>() |
| ->getUnderlyingType() |
| .getAsStringInternal(Proto, Policy); |
| else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) |
| AFT->getReturnType().getAsStringInternal(Proto, Policy); |
| |
| Out << Proto; |
| |
| return Name.str().str(); |
| } |
| if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { |
| for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) |
| // Skip to its enclosing function or method, but not its enclosing |
| // CapturedDecl. |
| if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { |
| const Decl *D = Decl::castFromDeclContext(DC); |
| return ComputeName(IT, D); |
| } |
| llvm_unreachable("CapturedDecl not inside a function or method"); |
| } |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| Out << (MD->isInstanceMethod() ? '-' : '+'); |
| Out << '['; |
| |
| // For incorrect code, there might not be an ObjCInterfaceDecl. Do |
| // a null check to avoid a crash. |
| if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) |
| Out << *ID; |
| |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) |
| Out << '(' << *CID << ')'; |
| |
| Out << ' '; |
| MD->getSelector().print(Out); |
| Out << ']'; |
| |
| return Name.str().str(); |
| } |
| if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { |
| // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| return "top level"; |
| } |
| return ""; |
| } |
| |
| void APNumericStorage::setIntValue(const ASTContext &C, |
| const llvm::APInt &Val) { |
| if (hasAllocation()) |
| C.Deallocate(pVal); |
| |
| BitWidth = Val.getBitWidth(); |
| unsigned NumWords = Val.getNumWords(); |
| const uint64_t* Words = Val.getRawData(); |
| if (NumWords > 1) { |
| pVal = new (C) uint64_t[NumWords]; |
| std::copy(Words, Words + NumWords, pVal); |
| } else if (NumWords == 1) |
| VAL = Words[0]; |
| else |
| VAL = 0; |
| } |
| |
| IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, |
| QualType type, SourceLocation l) |
| : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, |
| false, false), |
| Loc(l) { |
| assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); |
| assert(V.getBitWidth() == C.getIntWidth(type) && |
| "Integer type is not the correct size for constant."); |
| setValue(C, V); |
| } |
| |
| IntegerLiteral * |
| IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, |
| QualType type, SourceLocation l) { |
| return new (C) IntegerLiteral(C, V, type, l); |
| } |
| |
| IntegerLiteral * |
| IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
| return new (C) IntegerLiteral(Empty); |
| } |
| |
| FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, |
| bool isexact, QualType Type, SourceLocation L) |
| : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, |
| false, false), Loc(L) { |
| setSemantics(V.getSemantics()); |
| FloatingLiteralBits.IsExact = isexact; |
| setValue(C, V); |
| } |
| |
| FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) |
| : Expr(FloatingLiteralClass, Empty) { |
| setRawSemantics(IEEEhalf); |
| FloatingLiteralBits.IsExact = false; |
| } |
| |
| FloatingLiteral * |
| FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, |
| bool isexact, QualType Type, SourceLocation L) { |
| return new (C) FloatingLiteral(C, V, isexact, Type, L); |
| } |
| |
| FloatingLiteral * |
| FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
| return new (C) FloatingLiteral(C, Empty); |
| } |
| |
| const llvm::fltSemantics &FloatingLiteral::getSemantics() const { |
| switch(FloatingLiteralBits.Semantics) { |
| case IEEEhalf: |
| return llvm::APFloat::IEEEhalf(); |
| case IEEEsingle: |
| return llvm::APFloat::IEEEsingle(); |
| case IEEEdouble: |
| return llvm::APFloat::IEEEdouble(); |
| case x87DoubleExtended: |
| return llvm::APFloat::x87DoubleExtended(); |
| case IEEEquad: |
| return llvm::APFloat::IEEEquad(); |
| case PPCDoubleDouble: |
| return llvm::APFloat::PPCDoubleDouble(); |
| } |
| llvm_unreachable("Unrecognised floating semantics"); |
| } |
| |
| void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { |
| if (&Sem == &llvm::APFloat::IEEEhalf()) |
| FloatingLiteralBits.Semantics = IEEEhalf; |
| else if (&Sem == &llvm::APFloat::IEEEsingle()) |
| FloatingLiteralBits.Semantics = IEEEsingle; |
| else if (&Sem == &llvm::APFloat::IEEEdouble()) |
| FloatingLiteralBits.Semantics = IEEEdouble; |
| else if (&Sem == &llvm::APFloat::x87DoubleExtended()) |
| FloatingLiteralBits.Semantics = x87DoubleExtended; |
| else if (&Sem == &llvm::APFloat::IEEEquad()) |
| FloatingLiteralBits.Semantics = IEEEquad; |
| else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) |
| FloatingLiteralBits.Semantics = PPCDoubleDouble; |
| else |
| llvm_unreachable("Unknown floating semantics"); |
| } |
| |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| /// double. Note that this may cause loss of precision, but is useful for |
| /// debugging dumps, etc. |
| double FloatingLiteral::getValueAsApproximateDouble() const { |
| llvm::APFloat V = getValue(); |
| bool ignored; |
| V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, |
| &ignored); |
| return V.convertToDouble(); |
| } |
| |
| int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { |
| int CharByteWidth = 0; |
| switch(k) { |
| case Ascii: |
| case UTF8: |
| CharByteWidth = target.getCharWidth(); |
| break; |
| case Wide: |
| CharByteWidth = target.getWCharWidth(); |
| break; |
| case UTF16: |
| CharByteWidth = target.getChar16Width(); |
| break; |
| case UTF32: |
| CharByteWidth = target.getChar32Width(); |
| break; |
| } |
| assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); |
| CharByteWidth /= 8; |
| assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) |
| && "character byte widths supported are 1, 2, and 4 only"); |
| return CharByteWidth; |
| } |
| |
| StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, |
| StringKind Kind, bool Pascal, QualType Ty, |
| const SourceLocation *Loc, |
| unsigned NumStrs) { |
| assert(C.getAsConstantArrayType(Ty) && |
| "StringLiteral must be of constant array type!"); |
| |
| // Allocate enough space for the StringLiteral plus an array of locations for |
| // any concatenated string tokens. |
| void *Mem = |
| C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1), |
| alignof(StringLiteral)); |
| StringLiteral *SL = new (Mem) StringLiteral(Ty); |
| |
| // OPTIMIZE: could allocate this appended to the StringLiteral. |
| SL->setString(C,Str,Kind,Pascal); |
| |
| SL->TokLocs[0] = Loc[0]; |
| SL->NumConcatenated = NumStrs; |
| |
| if (NumStrs != 1) |
| memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); |
| return SL; |
| } |
| |
| StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, |
| unsigned NumStrs) { |
| void *Mem = |
| C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1), |
| alignof(StringLiteral)); |
| StringLiteral *SL = new (Mem) StringLiteral(QualType()); |
| SL->CharByteWidth = 0; |
| SL->Length = 0; |
| SL->NumConcatenated = NumStrs; |
| return SL; |
| } |
| |
| void StringLiteral::outputString(raw_ostream &OS) const { |
| switch (getKind()) { |
| case Ascii: break; // no prefix. |
| case Wide: OS << 'L'; break; |
| case UTF8: OS << "u8"; break; |
| case UTF16: OS << 'u'; break; |
| case UTF32: OS << 'U'; break; |
| } |
| OS << '"'; |
| static const char Hex[] = "0123456789ABCDEF"; |
| |
| unsigned LastSlashX = getLength(); |
| for (unsigned I = 0, N = getLength(); I != N; ++I) { |
| switch (uint32_t Char = getCodeUnit(I)) { |
| default: |
| // FIXME: Convert UTF-8 back to codepoints before rendering. |
| |
| // Convert UTF-16 surrogate pairs back to codepoints before rendering. |
| // Leave invalid surrogates alone; we'll use \x for those. |
| if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && |
| Char <= 0xdbff) { |
| uint32_t Trail = getCodeUnit(I + 1); |
| if (Trail >= 0xdc00 && Trail <= 0xdfff) { |
| Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); |
| ++I; |
| } |
| } |
| |
| if (Char > 0xff) { |
| // If this is a wide string, output characters over 0xff using \x |
| // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a |
| // codepoint: use \x escapes for invalid codepoints. |
| if (getKind() == Wide || |
| (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { |
| // FIXME: Is this the best way to print wchar_t? |
| OS << "\\x"; |
| int Shift = 28; |
| while ((Char >> Shift) == 0) |
| Shift -= 4; |
| for (/**/; Shift >= 0; Shift -= 4) |
| OS << Hex[(Char >> Shift) & 15]; |
| LastSlashX = I; |
| break; |
| } |
| |
| if (Char > 0xffff) |
| OS << "\\U00" |
| << Hex[(Char >> 20) & 15] |
| << Hex[(Char >> 16) & 15]; |
| else |
| OS << "\\u"; |
| OS << Hex[(Char >> 12) & 15] |
| << Hex[(Char >> 8) & 15] |
| << Hex[(Char >> 4) & 15] |
| << Hex[(Char >> 0) & 15]; |
| break; |
| } |
| |
| // If we used \x... for the previous character, and this character is a |
| // hexadecimal digit, prevent it being slurped as part of the \x. |
| if (LastSlashX + 1 == I) { |
| switch (Char) { |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': |
| case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': |
| OS << "\"\""; |
| } |
| } |
| |
| assert(Char <= 0xff && |
| "Characters above 0xff should already have been handled."); |
| |
| if (isPrintable(Char)) |
| OS << (char)Char; |
| else // Output anything hard as an octal escape. |
| OS << '\\' |
| << (char)('0' + ((Char >> 6) & 7)) |
| << (char)('0' + ((Char >> 3) & 7)) |
| << (char)('0' + ((Char >> 0) & 7)); |
| break; |
| // Handle some common non-printable cases to make dumps prettier. |
| case '\\': OS << "\\\\"; break; |
| case '"': OS << "\\\""; break; |
| case '\a': OS << "\\a"; break; |
| case '\b': OS << "\\b"; break; |
| case '\f': OS << "\\f"; break; |
| case '\n': OS << "\\n"; break; |
| case '\r': OS << "\\r"; break; |
| case '\t': OS << "\\t"; break; |
| case '\v': OS << "\\v"; break; |
| } |
| } |
| OS << '"'; |
| } |
| |
| void StringLiteral::setString(const ASTContext &C, StringRef Str, |
| StringKind Kind, bool IsPascal) { |
| //FIXME: we assume that the string data comes from a target that uses the same |
| // code unit size and endianness for the type of string. |
| this->Kind = Kind; |
| this->IsPascal = IsPascal; |
| |
| CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); |
| assert((Str.size()%CharByteWidth == 0) |
| && "size of data must be multiple of CharByteWidth"); |
| Length = Str.size()/CharByteWidth; |
| |
| switch(CharByteWidth) { |
| case 1: { |
| char *AStrData = new (C) char[Length]; |
| std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); |
| StrData.asChar = AStrData; |
| break; |
| } |
| case 2: { |
| uint16_t *AStrData = new (C) uint16_t[Length]; |
| std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); |
| StrData.asUInt16 = AStrData; |
| break; |
| } |
| case 4: { |
| uint32_t *AStrData = new (C) uint32_t[Length]; |
| std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); |
| StrData.asUInt32 = AStrData; |
| break; |
| } |
| default: |
| llvm_unreachable("unsupported CharByteWidth"); |
| } |
| } |
| |
| /// getLocationOfByte - Return a source location that points to the specified |
| /// byte of this string literal. |
| /// |
| /// Strings are amazingly complex. They can be formed from multiple tokens and |
| /// can have escape sequences in them in addition to the usual trigraph and |
| /// escaped newline business. This routine handles this complexity. |
| /// |
| /// The *StartToken sets the first token to be searched in this function and |
| /// the *StartTokenByteOffset is the byte offset of the first token. Before |
| /// returning, it updates the *StartToken to the TokNo of the token being found |
| /// and sets *StartTokenByteOffset to the byte offset of the token in the |
| /// string. |
| /// Using these two parameters can reduce the time complexity from O(n^2) to |
| /// O(n) if one wants to get the location of byte for all the tokens in a |
| /// string. |
| /// |
| SourceLocation |
| StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, |
| const LangOptions &Features, |
| const TargetInfo &Target, unsigned *StartToken, |
| unsigned *StartTokenByteOffset) const { |
| assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && |
| "Only narrow string literals are currently supported"); |
| |
| // Loop over all of the tokens in this string until we find the one that |
| // contains the byte we're looking for. |
| unsigned TokNo = 0; |
| unsigned StringOffset = 0; |
| if (StartToken) |
| TokNo = *StartToken; |
| if (StartTokenByteOffset) { |
| StringOffset = *StartTokenByteOffset; |
| ByteNo -= StringOffset; |
| } |
| while (1) { |
| assert(TokNo < getNumConcatenated() && "Invalid byte number!"); |
| SourceLocation StrTokLoc = getStrTokenLoc(TokNo); |
| |
| // Get the spelling of the string so that we can get the data that makes up |
| // the string literal, not the identifier for the macro it is potentially |
| // expanded through. |
| SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); |
| |
| // Re-lex the token to get its length and original spelling. |
| std::pair<FileID, unsigned> LocInfo = |
| SM.getDecomposedLoc(StrTokSpellingLoc); |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) { |
| if (StartTokenByteOffset != nullptr) |
| *StartTokenByteOffset = StringOffset; |
| if (StartToken != nullptr) |
| *StartToken = TokNo; |
| return StrTokSpellingLoc; |
| } |
| |
| const char *StrData = Buffer.data()+LocInfo.second; |
| |
| // Create a lexer starting at the beginning of this token. |
| Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, |
| Buffer.begin(), StrData, Buffer.end()); |
| Token TheTok; |
| TheLexer.LexFromRawLexer(TheTok); |
| |
| // Use the StringLiteralParser to compute the length of the string in bytes. |
| StringLiteralParser SLP(TheTok, SM, Features, Target); |
| unsigned TokNumBytes = SLP.GetStringLength(); |
| |
| // If the byte is in this token, return the location of the byte. |
| if (ByteNo < TokNumBytes || |
| (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { |
| unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); |
| |
| // Now that we know the offset of the token in the spelling, use the |
| // preprocessor to get the offset in the original source. |
| if (StartTokenByteOffset != nullptr) |
| *StartTokenByteOffset = StringOffset; |
| if (StartToken != nullptr) |
| *StartToken = TokNo; |
| return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); |
| } |
| |
| // Move to the next string token. |
| StringOffset += TokNumBytes; |
| ++TokNo; |
| ByteNo -= TokNumBytes; |
| } |
| } |
| |
| |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "sizeof" or "[pre]++". |
| StringRef UnaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; |
| #include "clang/AST/OperationKinds.def" |
| } |
| llvm_unreachable("Unknown unary operator"); |
| } |
| |
| UnaryOperatorKind |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
| switch (OO) { |
| default: llvm_unreachable("No unary operator for overloaded function"); |
| case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; |
| case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; |
| case OO_Amp: return UO_AddrOf; |
| case OO_Star: return UO_Deref; |
| case OO_Plus: return UO_Plus; |
| case OO_Minus: return UO_Minus; |
| case OO_Tilde: return UO_Not; |
| case OO_Exclaim: return UO_LNot; |
| case OO_Coawait: return UO_Coawait; |
| } |
| } |
| |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
| switch (Opc) { |
| case UO_PostInc: case UO_PreInc: return OO_PlusPlus; |
| case UO_PostDec: case UO_PreDec: return OO_MinusMinus; |
| case UO_AddrOf: return OO_Amp; |
| case UO_Deref: return OO_Star; |
| case UO_Plus: return OO_Plus; |
| case UO_Minus: return OO_Minus; |
| case UO_Not: return OO_Tilde; |
| case UO_LNot: return OO_Exclaim; |
| case UO_Coawait: return OO_Coawait; |
| default: return OO_None; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Postfix Operators. |
| //===----------------------------------------------------------------------===// |
| |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, |
| ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t, |
| ExprValueKind VK, SourceLocation rparenloc) |
| : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(), |
| fn->isValueDependent(), fn->isInstantiationDependent(), |
| fn->containsUnexpandedParameterPack()), |
| NumArgs(args.size()) { |
| |
| unsigned NumPreArgs = preargs.size(); |
| SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != NumPreArgs; ++i) { |
| updateDependenciesFromArg(preargs[i]); |
| SubExprs[i+PREARGS_START] = preargs[i]; |
| } |
| for (unsigned i = 0; i != args.size(); ++i) { |
| updateDependenciesFromArg(args[i]); |
| SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; |
| } |
| |
| CallExprBits.NumPreArgs = NumPreArgs; |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, |
| ArrayRef<Expr *> args, QualType t, ExprValueKind VK, |
| SourceLocation rparenloc) |
| : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {} |
| |
| CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, |
| QualType t, ExprValueKind VK, SourceLocation rparenloc) |
| : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) { |
| } |
| |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) |
| : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} |
| |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, |
| EmptyShell Empty) |
| : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { |
| // FIXME: Why do we allocate this? |
| SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs](); |
| CallExprBits.NumPreArgs = NumPreArgs; |
| } |
| |
| void CallExpr::updateDependenciesFromArg(Expr *Arg) { |
| if (Arg->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (Arg->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (Arg->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (Arg->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| |
| FunctionDecl *CallExpr::getDirectCallee() { |
| return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); |
| } |
| |
| Decl *CallExpr::getCalleeDecl() { |
| return getCallee()->getReferencedDeclOfCallee(); |
| } |
| |
| Decl *Expr::getReferencedDeclOfCallee() { |
| Expr *CEE = IgnoreParenImpCasts(); |
| |
| while (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { |
| CEE = NTTP->getReplacement()->IgnoreParenCasts(); |
| } |
| |
| // If we're calling a dereference, look at the pointer instead. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { |
| if (BO->isPtrMemOp()) |
| CEE = BO->getRHS()->IgnoreParenCasts(); |
| } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { |
| if (UO->getOpcode() == UO_Deref) |
| CEE = UO->getSubExpr()->IgnoreParenCasts(); |
| } |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) |
| return DRE->getDecl(); |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) |
| return ME->getMemberDecl(); |
| |
| return nullptr; |
| } |
| |
| /// setNumArgs - This changes the number of arguments present in this call. |
| /// Any orphaned expressions are deleted by this, and any new operands are set |
| /// to null. |
| void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { |
| // No change, just return. |
| if (NumArgs == getNumArgs()) return; |
| |
| // If shrinking # arguments, just delete the extras and forgot them. |
| if (NumArgs < getNumArgs()) { |
| this->NumArgs = NumArgs; |
| return; |
| } |
| |
| // Otherwise, we are growing the # arguments. New an bigger argument array. |
| unsigned NumPreArgs = getNumPreArgs(); |
| Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; |
| // Copy over args. |
| for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) |
| NewSubExprs[i] = SubExprs[i]; |
| // Null out new args. |
| for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; |
| i != NumArgs+PREARGS_START+NumPreArgs; ++i) |
| NewSubExprs[i] = nullptr; |
| |
| if (SubExprs) C.Deallocate(SubExprs); |
| SubExprs = NewSubExprs; |
| this->NumArgs = NumArgs; |
| } |
| |
| /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If |
| /// not, return 0. |
| unsigned CallExpr::getBuiltinCallee() const { |
| // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| // function. As a result, we try and obtain the DeclRefExpr from the |
| // ImplicitCastExpr. |
| const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| return 0; |
| |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| if (!DRE) |
| return 0; |
| |
| const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| if (!FDecl) |
| return 0; |
| |
| if (!FDecl->getIdentifier()) |
| return 0; |
| |
| return FDecl->getBuiltinID(); |
| } |
| |
| bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { |
| if (unsigned BI = getBuiltinCallee()) |
| return Ctx.BuiltinInfo.isUnevaluated(BI); |
| return false; |
| } |
| |
| QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { |
| const Expr *Callee = getCallee(); |
| QualType CalleeType = Callee->getType(); |
| if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { |
| CalleeType = FnTypePtr->getPointeeType(); |
| } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { |
| CalleeType = BPT->getPointeeType(); |
| } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { |
| if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) |
| return Ctx.VoidTy; |
| |
| // This should never be overloaded and so should never return null. |
| CalleeType = Expr::findBoundMemberType(Callee); |
| } |
| |
| const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
| return FnType->getReturnType(); |
| } |
| |
| SourceLocation CallExpr::getLocStart() const { |
| if (isa<CXXOperatorCallExpr>(this)) |
| return cast<CXXOperatorCallExpr>(this)->getLocStart(); |
| |
| SourceLocation begin = getCallee()->getLocStart(); |
| if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) |
| begin = getArg(0)->getLocStart(); |
| return begin; |
| } |
| SourceLocation CallExpr::getLocEnd() const { |
| if (isa<CXXOperatorCallExpr>(this)) |
| return cast<CXXOperatorCallExpr>(this)->getLocEnd(); |
| |
| SourceLocation end = getRParenLoc(); |
| if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) |
| end = getArg(getNumArgs() - 1)->getLocEnd(); |
| return end; |
| } |
| |
| OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, |
| SourceLocation OperatorLoc, |
| TypeSourceInfo *tsi, |
| ArrayRef<OffsetOfNode> comps, |
| ArrayRef<Expr*> exprs, |
| SourceLocation RParenLoc) { |
| void *Mem = C.Allocate( |
| totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); |
| |
| return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, |
| RParenLoc); |
| } |
| |
| OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, |
| unsigned numComps, unsigned numExprs) { |
| void *Mem = |
| C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); |
| return new (Mem) OffsetOfExpr(numComps, numExprs); |
| } |
| |
| OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, |
| SourceLocation OperatorLoc, TypeSourceInfo *tsi, |
| ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, |
| SourceLocation RParenLoc) |
| : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, |
| /*TypeDependent=*/false, |
| /*ValueDependent=*/tsi->getType()->isDependentType(), |
| tsi->getType()->isInstantiationDependentType(), |
| tsi->getType()->containsUnexpandedParameterPack()), |
| OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), |
| NumComps(comps.size()), NumExprs(exprs.size()) |
| { |
| for (unsigned i = 0; i != comps.size(); ++i) { |
| setComponent(i, comps[i]); |
| } |
| |
| for (unsigned i = 0; i != exprs.size(); ++i) { |
| if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (exprs[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| setIndexExpr(i, exprs[i]); |
| } |
| } |
| |
| IdentifierInfo *OffsetOfNode::getFieldName() const { |
| assert(getKind() == Field || getKind() == Identifier); |
| if (getKind() == Field) |
| return getField()->getIdentifier(); |
| |
| return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); |
| } |
| |
| UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( |
| UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, |
| SourceLocation op, SourceLocation rp) |
| : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, |
| false, // Never type-dependent (C++ [temp.dep.expr]p3). |
| // Value-dependent if the argument is type-dependent. |
| E->isTypeDependent(), E->isInstantiationDependent(), |
| E->containsUnexpandedParameterPack()), |
| OpLoc(op), RParenLoc(rp) { |
| UnaryExprOrTypeTraitExprBits.Kind = ExprKind; |
| UnaryExprOrTypeTraitExprBits.IsType = false; |
| Argument.Ex = E; |
| |
| // Check to see if we are in the situation where alignof(decl) should be |
| // dependent because decl's alignment is dependent. |
| if (ExprKind == UETT_AlignOf) { |
| if (!isValueDependent() || !isInstantiationDependent()) { |
| E = E->IgnoreParens(); |
| |
| const ValueDecl *D = nullptr; |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| D = DRE->getDecl(); |
| else if (const auto *ME = dyn_cast<MemberExpr>(E)) |
| D = ME->getMemberDecl(); |
| |
| if (D) { |
| for (const auto *I : D->specific_attrs<AlignedAttr>()) { |
| if (I->isAlignmentDependent()) { |
| setValueDependent(true); |
| setInstantiationDependent(true); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| MemberExpr *MemberExpr::Create( |
| const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, |
| NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, |
| ValueDecl *memberdecl, DeclAccessPair founddecl, |
| DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, |
| QualType ty, ExprValueKind vk, ExprObjectKind ok) { |
| |
| bool hasQualOrFound = (QualifierLoc || |
| founddecl.getDecl() != memberdecl || |
| founddecl.getAccess() != memberdecl->getAccess()); |
| |
| bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid(); |
| std::size_t Size = |
| totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, |
| TemplateArgumentLoc>(hasQualOrFound ? 1 : 0, |
| HasTemplateKWAndArgsInfo ? 1 : 0, |
| targs ? targs->size() : 0); |
| |
| void *Mem = C.Allocate(Size, alignof(MemberExpr)); |
| MemberExpr *E = new (Mem) |
| MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); |
| |
| if (hasQualOrFound) { |
| // FIXME: Wrong. We should be looking at the member declaration we found. |
| if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { |
| E->setValueDependent(true); |
| E->setTypeDependent(true); |
| E->setInstantiationDependent(true); |
| } |
| else if (QualifierLoc && |
| QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) |
| E->setInstantiationDependent(true); |
| |
| E->HasQualifierOrFoundDecl = true; |
| |
| MemberExprNameQualifier *NQ = |
| E->getTrailingObjects<MemberExprNameQualifier>(); |
| NQ->QualifierLoc = QualifierLoc; |
| NQ->FoundDecl = founddecl; |
| } |
| |
| E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); |
| |
| if (targs) { |
| bool Dependent = false; |
| bool InstantiationDependent = false; |
| bool ContainsUnexpandedParameterPack = false; |
| E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(), |
| Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); |
| if (InstantiationDependent) |
| E->setInstantiationDependent(true); |
| } else if (TemplateKWLoc.isValid()) { |
| E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| TemplateKWLoc); |
| } |
| |
| return E; |
| } |
| |
| SourceLocation MemberExpr::getLocStart() const { |
| if (isImplicitAccess()) { |
| if (hasQualifier()) |
| return getQualifierLoc().getBeginLoc(); |
| return MemberLoc; |
| } |
| |
| // FIXME: We don't want this to happen. Rather, we should be able to |
| // detect all kinds of implicit accesses more cleanly. |
| SourceLocation BaseStartLoc = getBase()->getLocStart(); |
| if (BaseStartLoc.isValid()) |
| return BaseStartLoc; |
| return MemberLoc; |
| } |
| SourceLocation MemberExpr::getLocEnd() const { |
| SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); |
| if (hasExplicitTemplateArgs()) |
| EndLoc = getRAngleLoc(); |
| else if (EndLoc.isInvalid()) |
| EndLoc = getBase()->getLocEnd(); |
| return EndLoc; |
| } |
| |
| bool CastExpr::CastConsistency() const { |
| switch (getCastKind()) { |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_BaseToDerived: |
| case CK_BaseToDerivedMemberPointer: |
| assert(!path_empty() && "Cast kind should have a base path!"); |
| break; |
| |
| case CK_CPointerToObjCPointerCast: |
| assert(getType()->isObjCObjectPointerType()); |
| assert(getSubExpr()->getType()->isPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_BlockPointerToObjCPointerCast: |
| assert(getType()->isObjCObjectPointerType()); |
| assert(getSubExpr()->getType()->isBlockPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_ReinterpretMemberPointer: |
| assert(getType()->isMemberPointerType()); |
| assert(getSubExpr()->getType()->isMemberPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_BitCast: |
| // Arbitrary casts to C pointer types count as bitcasts. |
| // Otherwise, we should only have block and ObjC pointer casts |
| // here if they stay within the type kind. |
| if (!getType()->isPointerType()) { |
| assert(getType()->isObjCObjectPointerType() == |
| getSubExpr()->getType()->isObjCObjectPointerType()); |
| assert(getType()->isBlockPointerType() == |
| getSubExpr()->getType()->isBlockPointerType()); |
| } |
| goto CheckNoBasePath; |
| |
| case CK_AnyPointerToBlockPointerCast: |
| assert(getType()->isBlockPointerType()); |
| assert(getSubExpr()->getType()->isAnyPointerType() && |
| !getSubExpr()->getType()->isBlockPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_CopyAndAutoreleaseBlockObject: |
| assert(getType()->isBlockPointerType()); |
| assert(getSubExpr()->getType()->isBlockPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_FunctionToPointerDecay: |
| assert(getType()->isPointerType()); |
| assert(getSubExpr()->getType()->isFunctionType()); |
| goto CheckNoBasePath; |
| |
| case CK_AddressSpaceConversion: |
| assert(getType()->isPointerType() || getType()->isBlockPointerType()); |
| assert(getSubExpr()->getType()->isPointerType() || |
| getSubExpr()->getType()->isBlockPointerType()); |
| assert(getType()->getPointeeType().getAddressSpace() != |
| getSubExpr()->getType()->getPointeeType().getAddressSpace()); |
| LLVM_FALLTHROUGH; |
| // These should not have an inheritance path. |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_NullToMemberPointer: |
| case CK_NullToPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_ZeroToOCLEvent: |
| case CK_ZeroToOCLQueue: |
| case CK_IntToOCLSampler: |
| assert(!getType()->isBooleanType() && "unheralded conversion to bool"); |
| goto CheckNoBasePath; |
| |
| case CK_Dependent: |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_FloatingToBoolean: |
| case CK_MemberPointerToBoolean: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: |
| case CK_LValueBitCast: // -> bool& |
| case CK_UserDefinedConversion: // operator bool() |
| case CK_BuiltinFnToFnPtr: |
| CheckNoBasePath: |
| assert(path_empty() && "Cast kind should not have a base path!"); |
| break; |
| } |
| return true; |
| } |
| |
| const char *CastExpr::getCastKindName() const { |
| switch (getCastKind()) { |
| #define CAST_OPERATION(Name) case CK_##Name: return #Name; |
| #include "clang/AST/OperationKinds.def" |
| } |
| llvm_unreachable("Unhandled cast kind!"); |
| } |
| |
| namespace { |
| Expr *skipImplicitTemporary(Expr *expr) { |
| // Skip through reference binding to temporary. |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(expr)) |
| expr = Materialize->GetTemporaryExpr(); |
| |
| // Skip any temporary bindings; they're implicit. |
| if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(expr)) |
| expr = Binder->getSubExpr(); |
| |
| return expr; |
| } |
| } |
| |
| Expr *CastExpr::getSubExprAsWritten() { |
| Expr *SubExpr = nullptr; |
| CastExpr *E = this; |
| do { |
| SubExpr = skipImplicitTemporary(E->getSubExpr()); |
| |
| // Conversions by constructor and conversion functions have a |
| // subexpression describing the call; strip it off. |
| if (E->getCastKind() == CK_ConstructorConversion) |
| SubExpr = |
| skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); |
| else if (E->getCastKind() == CK_UserDefinedConversion) { |
| assert((isa<CXXMemberCallExpr>(SubExpr) || |
| isa<BlockExpr>(SubExpr)) && |
| "Unexpected SubExpr for CK_UserDefinedConversion."); |
| if (isa<CXXMemberCallExpr>(SubExpr)) |
| SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); |
| } |
| |
| // If the subexpression we're left with is an implicit cast, look |
| // through that, too. |
| } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); |
| |
| return SubExpr; |
| } |
| |
| CXXBaseSpecifier **CastExpr::path_buffer() { |
| switch (getStmtClass()) { |
| #define ABSTRACT_STMT(x) |
| #define CASTEXPR(Type, Base) \ |
| case Stmt::Type##Class: \ |
| return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); |
| #define STMT(Type, Base) |
| #include "clang/AST/StmtNodes.inc" |
| default: |
| llvm_unreachable("non-cast expressions not possible here"); |
| } |
| } |
| |
| const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, |
| QualType opType) { |
| auto RD = unionType->castAs<RecordType>()->getDecl(); |
| return getTargetFieldForToUnionCast(RD, opType); |
| } |
| |
| const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, |
| QualType OpType) { |
| auto &Ctx = RD->getASTContext(); |
| RecordDecl::field_iterator Field, FieldEnd; |
| for (Field = RD->field_begin(), FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && |
| !Field->isUnnamedBitfield()) { |
| return *Field; |
| } |
| } |
| return nullptr; |
| } |
| |
| ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, |
| CastKind Kind, Expr *Operand, |
| const CXXCastPath *BasePath, |
| ExprValueKind VK) { |
| unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); |
| ImplicitCastExpr *E = |
| new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); |
| if (PathSize) |
| std::uninitialized_copy_n(BasePath->data(), BasePath->size(), |
| E->getTrailingObjects<CXXBaseSpecifier *>()); |
| return E; |
| } |
| |
| ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, |
| unsigned PathSize) { |
| void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); |
| return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); |
| } |
| |
| |
| CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, |
| ExprValueKind VK, CastKind K, Expr *Op, |
| const CXXCastPath *BasePath, |
| TypeSourceInfo *WrittenTy, |
| SourceLocation L, SourceLocation R) { |
| unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); |
| CStyleCastExpr *E = |
| new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); |
| if (PathSize) |
| std::uninitialized_copy_n(BasePath->data(), BasePath->size(), |
| E->getTrailingObjects<CXXBaseSpecifier *>()); |
| return E; |
| } |
| |
| CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, |
| unsigned PathSize) { |
| void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); |
| return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "<<=". |
| StringRef BinaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; |
| #include "clang/AST/OperationKinds.def" |
| } |
| llvm_unreachable("Invalid OpCode!"); |
| } |
| |
| BinaryOperatorKind |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
| switch (OO) { |
| default: llvm_unreachable("Not an overloadable binary operator"); |
| case OO_Plus: return BO_Add; |
| case OO_Minus: return BO_Sub; |
| case OO_Star: return BO_Mul; |
| case OO_Slash: return BO_Div; |
| case OO_Percent: return BO_Rem; |
| case OO_Caret: return BO_Xor; |
| case OO_Amp: return BO_And; |
| case OO_Pipe: return BO_Or; |
| case OO_Equal: return BO_Assign; |
| case OO_Spaceship: return BO_Cmp; |
| case OO_Less: return BO_LT; |
| case OO_Greater: return BO_GT; |
| case OO_PlusEqual: return BO_AddAssign; |
| case OO_MinusEqual: return BO_SubAssign; |
| case OO_StarEqual: return BO_MulAssign; |
| case OO_SlashEqual: return BO_DivAssign; |
| case OO_PercentEqual: return BO_RemAssign; |
| case OO_CaretEqual: return BO_XorAssign; |
| case OO_AmpEqual: return BO_AndAssign; |
| case OO_PipeEqual: return BO_OrAssign; |
| case OO_LessLess: return BO_Shl; |
| case OO_GreaterGreater: return BO_Shr; |
| case OO_LessLessEqual: return BO_ShlAssign; |
| case OO_GreaterGreaterEqual: return BO_ShrAssign; |
| case OO_EqualEqual: return BO_EQ; |
| case OO_ExclaimEqual: return BO_NE; |
| case OO_LessEqual: return BO_LE; |
| case OO_GreaterEqual: return BO_GE; |
| case OO_AmpAmp: return BO_LAnd; |
| case OO_PipePipe: return BO_LOr; |
| case OO_Comma: return BO_Comma; |
| case OO_ArrowStar: return BO_PtrMemI; |
| } |
| } |
| |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
| static const OverloadedOperatorKind OverOps[] = { |
| /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
| OO_Star, OO_Slash, OO_Percent, |
| OO_Plus, OO_Minus, |
| OO_LessLess, OO_GreaterGreater, |
| OO_Spaceship, |
| OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| OO_EqualEqual, OO_ExclaimEqual, |
| OO_Amp, |
| OO_Caret, |
| OO_Pipe, |
| OO_AmpAmp, |
| OO_PipePipe, |
| OO_Equal, OO_StarEqual, |
| OO_SlashEqual, OO_PercentEqual, |
| OO_PlusEqual, OO_MinusEqual, |
| OO_LessLessEqual, OO_GreaterGreaterEqual, |
| OO_AmpEqual, OO_CaretEqual, |
| OO_PipeEqual, |
| OO_Comma |
| }; |
| return OverOps[Opc]; |
| } |
| |
| bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, |
| Opcode Opc, |
| Expr *LHS, Expr *RHS) { |
| if (Opc != BO_Add) |
| return false; |
| |
| // Check that we have one pointer and one integer operand. |
| Expr *PExp; |
| if (LHS->getType()->isPointerType()) { |
| if (!RHS->getType()->isIntegerType()) |
| return false; |
| PExp = LHS; |
| } else if (RHS->getType()->isPointerType()) { |
| if (!LHS->getType()->isIntegerType()) |
| return false; |
| PExp = RHS; |
| } else { |
| return false; |
| } |
| |
| // Check that the pointer is a nullptr. |
| if (!PExp->IgnoreParenCasts() |
| ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) |
| return false; |
| |
| // Check that the pointee type is char-sized. |
| const PointerType *PTy = PExp->getType()->getAs<PointerType>(); |
| if (!PTy || !PTy->getPointeeType()->isCharType()) |
| return false; |
| |
| return true; |
| } |
| InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, |
| ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) |
| : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, |
| false, false), |
| InitExprs(C, initExprs.size()), |
| LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) |
| { |
| sawArrayRangeDesignator(false); |
| for (unsigned I = 0; I != initExprs.size(); ++I) { |
| if (initExprs[I]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (initExprs[I]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (initExprs[I]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (initExprs[I]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| |
| InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); |
| } |
| |
| void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { |
| if (NumInits > InitExprs.size()) |
| InitExprs.reserve(C, NumInits); |
| } |
| |
| void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { |
| InitExprs.resize(C, NumInits, nullptr); |
| } |
| |
| Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { |
| if (Init >= InitExprs.size()) { |
| InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); |
| setInit(Init, expr); |
| return nullptr; |
| } |
| |
| Expr *Result = cast_or_null<Expr>(InitExprs[Init]); |
| setInit(Init, expr); |
| return Result; |
| } |
| |
| void InitListExpr::setArrayFiller(Expr *filler) { |
| assert(!hasArrayFiller() && "Filler already set!"); |
| ArrayFillerOrUnionFieldInit = filler; |
| // Fill out any "holes" in the array due to designated initializers. |
| Expr **inits = getInits(); |
| for (unsigned i = 0, e = getNumInits(); i != e; ++i) |
| if (inits[i] == nullptr) |
| inits[i] = filler; |
| } |
| |
| bool InitListExpr::isStringLiteralInit() const { |
| if (getNumInits() != 1) |
| return false; |
| const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); |
| if (!AT || !AT->getElementType()->isIntegerType()) |
| return false; |
| // It is possible for getInit() to return null. |
| const Expr *Init = getInit(0); |
| if (!Init) |
| return false; |
| Init = Init->IgnoreParens(); |
| return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); |
| } |
| |
| bool InitListExpr::isTransparent() const { |
| assert(isSemanticForm() && "syntactic form never semantically transparent"); |
| |
| // A glvalue InitListExpr is always just sugar. |
| if (isGLValue()) { |
| assert(getNumInits() == 1 && "multiple inits in glvalue init list"); |
| return true; |
| } |
| |
| // Otherwise, we're sugar if and only if we have exactly one initializer that |
| // is of the same type. |
| if (getNumInits() != 1 || !getInit(0)) |
| return false; |
| |
| // Don't confuse aggregate initialization of a struct X { X &x; }; with a |
| // transparent struct copy. |
| if (!getInit(0)->isRValue() && getType()->isRecordType()) |
| return false; |
| |
| return getType().getCanonicalType() == |
| getInit(0)->getType().getCanonicalType(); |
| } |
| |
| bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { |
| assert(isSyntacticForm() && "only test syntactic form as zero initializer"); |
| |
| if (LangOpts.CPlusPlus || getNumInits() != 1) { |
| return false; |
| } |
| |
| const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)); |
| return Lit && Lit->getValue() == 0; |
| } |
| |
| SourceLocation InitListExpr::getLocStart() const { |
| if (InitListExpr *SyntacticForm = getSyntacticForm()) |
| return SyntacticForm->getLocStart(); |
| SourceLocation Beg = LBraceLoc; |
| if (Beg.isInvalid()) { |
| // Find the first non-null initializer. |
| for (InitExprsTy::const_iterator I = InitExprs.begin(), |
| E = InitExprs.end(); |
| I != E; ++I) { |
| if (Stmt *S = *I) { |
| Beg = S->getLocStart(); |
| break; |
| } |
| } |
| } |
| return Beg; |
| } |
| |
| SourceLocation InitListExpr::getLocEnd() const { |
| if (InitListExpr *SyntacticForm = getSyntacticForm()) |
| return SyntacticForm->getLocEnd(); |
| SourceLocation End = RBraceLoc; |
| if (End.isInvalid()) { |
| // Find the first non-null initializer from the end. |
| for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), |
| E = InitExprs.rend(); |
| I != E; ++I) { |
| if (Stmt *S = *I) { |
| End = S->getLocEnd(); |
| break; |
| } |
| } |
| } |
| return End; |
| } |
| |
| /// getFunctionType - Return the underlying function type for this block. |
| /// |
| const FunctionProtoType *BlockExpr::getFunctionType() const { |
| // The block pointer is never sugared, but the function type might be. |
| return cast<BlockPointerType>(getType()) |
| ->getPointeeType()->castAs<FunctionProtoType>(); |
| } |
| |
| SourceLocation BlockExpr::getCaretLocation() const { |
| return TheBlock->getCaretLocation(); |
| } |
| const Stmt *BlockExpr::getBody() const { |
| return TheBlock->getBody(); |
| } |
| Stmt *BlockExpr::getBody() { |
| return TheBlock->getBody(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Expression Routines |
| //===----------------------------------------------------------------------===// |
| |
| /// isUnusedResultAWarning - Return true if this immediate expression should |
| /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| /// with location to warn on and the source range[s] to report with the |
| /// warning. |
| bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, |
| SourceRange &R1, SourceRange &R2, |
| ASTContext &Ctx) const { |
| // Don't warn if the expr is type dependent. The type could end up |
| // instantiating to void. |
| if (isTypeDependent()) |
| return false; |
| |
| switch (getStmtClass()) { |
| default: |
| if (getType()->isVoidType()) |
| return false; |
| WarnE = this; |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| case GenericSelectionExprClass: |
| return cast<GenericSelectionExpr>(this)->getResultExpr()-> |
| isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| case ChooseExprClass: |
| return cast<ChooseExpr>(this)->getChosenSubExpr()-> |
| isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| case UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(this); |
| |
| switch (UO->getOpcode()) { |
| case UO_Plus: |
| case UO_Minus: |
| case UO_AddrOf: |
| case UO_Not: |
| case UO_LNot: |
| case UO_Deref: |
| break; |
| case UO_Coawait: |
| // This is just the 'operator co_await' call inside the guts of a |
| // dependent co_await call. |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: // ++/-- |
| return false; // Not a warning. |
| case UO_Real: |
| case UO_Imag: |
| // accessing a piece of a volatile complex is a side-effect. |
| if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) |
| .isVolatileQualified()) |
| return false; |
| break; |
| case UO_Extension: |
| return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| } |
| WarnE = this; |
| Loc = UO->getOperatorLoc(); |
| R1 = UO->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(this); |
| switch (BO->getOpcode()) { |
| default: |
| break; |
| // Consider the RHS of comma for side effects. LHS was checked by |
| // Sema::CheckCommaOperands. |
| case BO_Comma: |
| // ((foo = <blah>), 0) is an idiom for hiding the result (and |
| // lvalue-ness) of an assignment written in a macro. |
| if (IntegerLiteral *IE = |
| dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) |
| if (IE->getValue() == 0) |
| return false; |
| return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| // Consider '||', '&&' to have side effects if the LHS or RHS does. |
| case BO_LAnd: |
| case BO_LOr: |
| if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || |
| !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) |
| return false; |
| break; |
| } |
| if (BO->isAssignmentOp()) |
| return false; |
| WarnE = this; |
| Loc = BO->getOperatorLoc(); |
| R1 = BO->getLHS()->getSourceRange(); |
| R2 = BO->getRHS()->getSourceRange(); |
| return true; |
| } |
| case CompoundAssignOperatorClass: |
| case VAArgExprClass: |
| case AtomicExprClass: |
| return false; |
| |
| case ConditionalOperatorClass: { |
| // If only one of the LHS or RHS is a warning, the operator might |
| // be being used for control flow. Only warn if both the LHS and |
| // RHS are warnings. |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) |
| return false; |
| if (!Exp->getLHS()) |
| return true; |
| return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| } |
| |
| case MemberExprClass: |
| WarnE = this; |
| Loc = cast<MemberExpr>(this)->getMemberLoc(); |
| R1 = SourceRange(Loc, Loc); |
| R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); |
| return true; |
| |
| case ArraySubscriptExprClass: |
| WarnE = this; |
| Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); |
| R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); |
| R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); |
| return true; |
| |
| case CXXOperatorCallExprClass: { |
| // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator |
| // overloads as there is no reasonable way to define these such that they |
| // have non-trivial, desirable side-effects. See the -Wunused-comparison |
| // warning: operators == and != are commonly typo'ed, and so warning on them |
| // provides additional value as well. If this list is updated, |
| // DiagnoseUnusedComparison should be as well. |
| const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); |
| switch (Op->getOperator()) { |
| default: |
| break; |
| case OO_EqualEqual: |
| case OO_ExclaimEqual: |
| case OO_Less: |
| case OO_Greater: |
| case OO_GreaterEqual: |
| case OO_LessEqual: |
| if (Op->getCallReturnType(Ctx)->isReferenceType() || |
| Op->getCallReturnType(Ctx)->isVoidType()) |
| break; |
| WarnE = this; |
| Loc = Op->getOperatorLoc(); |
| R1 = Op->getSourceRange(); |
| return true; |
| } |
| |
| // Fallthrough for generic call handling. |
| LLVM_FALLTHROUGH; |
| } |
| case CallExprClass: |
| case CXXMemberCallExprClass: |
| case UserDefinedLiteralClass: { |
| // If this is a direct call, get the callee. |
| const CallExpr *CE = cast<CallExpr>(this); |
| if (const Decl *FD = CE->getCalleeDecl()) { |
| const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); |
| bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr() |
| : FD->hasAttr<WarnUnusedResultAttr>(); |
| |
| // If the callee has attribute pure, const, or warn_unused_result, warn |
| // about it. void foo() { strlen("bar"); } should warn. |
| // |
| // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
| // updated to match for QoI. |
| if (HasWarnUnusedResultAttr || |
| FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { |
| WarnE = this; |
| Loc = CE->getCallee()->getLocStart(); |
| R1 = CE->getCallee()->getSourceRange(); |
| |
| if (unsigned NumArgs = CE->getNumArgs()) |
| R2 = SourceRange(CE->getArg(0)->getLocStart(), |
| CE->getArg(NumArgs-1)->getLocEnd()); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // If we don't know precisely what we're looking at, let's not warn. |
| case UnresolvedLookupExprClass: |
| case CXXUnresolvedConstructExprClass: |
| return false; |
| |
| case CXXTemporaryObjectExprClass: |
| case CXXConstructExprClass: { |
| if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { |
| if (Type->hasAttr<WarnUnusedAttr>()) { |
| WarnE = this; |
| Loc = getLocStart(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| case ObjCMessageExprClass: { |
| const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); |
| if (Ctx.getLangOpts().ObjCAutoRefCount && |
| ME->isInstanceMessage() && |
| !ME->getType()->isVoidType() && |
| ME->getMethodFamily() == OMF_init) { |
| WarnE = this; |
| Loc = getExprLoc(); |
| R1 = ME->getSourceRange(); |
| return true; |
| } |
| |
| if (const ObjCMethodDecl *MD = ME->getMethodDecl()) |
| if (MD->hasAttr<WarnUnusedResultAttr>()) { |
| WarnE = this; |
| Loc = getExprLoc(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| case ObjCPropertyRefExprClass: |
| WarnE = this; |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| |
| case PseudoObjectExprClass: { |
| const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); |
| |
| // Only complain about things that have the form of a getter. |
| if (isa<UnaryOperator>(PO->getSyntacticForm()) || |
| isa<BinaryOperator>(PO->getSyntacticForm())) |
| return false; |
| |
| WarnE = this; |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| |
| case StmtExprClass: { |
| // Statement exprs don't logically have side effects themselves, but are |
| // sometimes used in macros in ways that give them a type that is unused. |
| // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| // however, if the result of the stmt expr is dead, we don't want to emit a |
| // warning. |
| const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); |
| if (!CS->body_empty()) { |
| if (const Expr *E = dyn_cast<Expr>(CS->body_back())) |
| return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) |
| if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) |
| return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| } |
| |
| if (getType()->isVoidType()) |
| return false; |
| WarnE = this; |
| Loc = cast<StmtExpr>(this)->getLParenLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| case CXXFunctionalCastExprClass: |
| case CStyleCastExprClass: { |
| // Ignore an explicit cast to void unless the operand is a non-trivial |
| // volatile lvalue. |
| const CastExpr *CE = cast<CastExpr>(this); |
| if (CE->getCastKind() == CK_ToVoid) { |
| if (CE->getSubExpr()->isGLValue() && |
| CE->getSubExpr()->getType().isVolatileQualified()) { |
| const DeclRefExpr *DRE = |
| dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); |
| if (!(DRE && isa<VarDecl>(DRE->getDecl()) && |
| cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) && |
| !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) { |
| return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, |
| R1, R2, Ctx); |
| } |
| } |
| return false; |
| } |
| |
| // If this is a cast to a constructor conversion, check the operand. |
| // Otherwise, the result of the cast is unused. |
| if (CE->getCastKind() == CK_ConstructorConversion) |
| return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| |
| WarnE = this; |
| if (const CXXFunctionalCastExpr *CXXCE = |
| dyn_cast<CXXFunctionalCastExpr>(this)) { |
| Loc = CXXCE->getLocStart(); |
| R1 = CXXCE->getSubExpr()->getSourceRange(); |
| } else { |
| const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); |
| Loc = CStyleCE->getLParenLoc(); |
| R1 = CStyleCE->getSubExpr()->getSourceRange(); |
| } |
| return true; |
| } |
| case ImplicitCastExprClass: { |
| const CastExpr *ICE = cast<ImplicitCastExpr>(this); |
| |
| // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. |
| if (ICE->getCastKind() == CK_LValueToRValue && |
| ICE->getSubExpr()->getType().isVolatileQualified()) |
| return false; |
| |
| return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| } |
| case CXXDefaultArgExprClass: |
| return (cast<CXXDefaultArgExpr>(this) |
| ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
| case CXXDefaultInitExprClass: |
| return (cast<CXXDefaultInitExpr>(this) |
| ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
| |
| case CXXNewExprClass: |
| // FIXME: In theory, there might be new expressions that don't have side |
| // effects (e.g. a placement new with an uninitialized POD). |
| case CXXDeleteExprClass: |
| return false; |
| case MaterializeTemporaryExprClass: |
| return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() |
| ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| case CXXBindTemporaryExprClass: |
| return cast<CXXBindTemporaryExpr>(this)->getSubExpr() |
| ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| case ExprWithCleanupsClass: |
| return cast<ExprWithCleanups>(this)->getSubExpr() |
| ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| } |
| } |
| |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
| /// returns true, if it is; false otherwise. |
| bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
| const Expr *E = IgnoreParens(); |
| switch (E->getStmtClass()) { |
| default: |
| return false; |
| case ObjCIvarRefExprClass: |
| return true; |
| case Expr::UnaryOperatorClass: |
| return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case MaterializeTemporaryExprClass: |
| return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() |
| ->isOBJCGCCandidate(Ctx); |
| case CStyleCastExprClass: |
| return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(E)->getDecl(); |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage()) |
| return true; |
| QualType T = VD->getType(); |
| // dereferencing to a pointer is always a gc'able candidate, |
| // unless it is __weak. |
| return T->isPointerType() && |
| (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); |
| } |
| return false; |
| } |
| case MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(E); |
| return M->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| case ArraySubscriptExprClass: |
| return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| } |
| |
| bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { |
| if (isTypeDependent()) |
| return false; |
| return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; |
| } |
| |
| QualType Expr::findBoundMemberType(const Expr *expr) { |
| assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); |
| |
| // Bound member expressions are always one of these possibilities: |
| // x->m x.m x->*y x.*y |
| // (possibly parenthesized) |
| |
| expr = expr->IgnoreParens(); |
| if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { |
| assert(isa<CXXMethodDecl>(mem->getMemberDecl())); |
| return mem->getMemberDecl()->getType(); |
| } |
| |
| if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { |
| QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() |
| ->getPointeeType(); |
| assert(type->isFunctionType()); |
| return type; |
| } |
| |
| assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); |
| return QualType(); |
| } |
| |
| Expr* Expr::IgnoreParens() { |
| Expr* E = this; |
| while (true) { |
| if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } |
| if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } |
| if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { |
| if (!P->isConditionDependent()) { |
| E = P->getChosenSubExpr(); |
| continue; |
| } |
| } |
| return E; |
| } |
| } |
| |
| /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr |
| /// or CastExprs or ImplicitCastExprs, returning their operand. |
| Expr *Expr::IgnoreParenCasts() { |
| Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| return E; |
| } |
| } |
| |
| Expr *Expr::IgnoreCasts() { |
| Expr *E = this; |
| while (true) { |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| return E; |
| } |
| } |
| |
| /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue |
| /// casts. This is intended purely as a temporary workaround for code |
| /// that hasn't yet been rewritten to do the right thing about those |
| /// casts, and may disappear along with the last internal use. |
| Expr *Expr::IgnoreParenLValueCasts() { |
| Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| if (P->getCastKind() == CK_LValueToRValue) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } else if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } else if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| break; |
| } |
| return E; |
| } |
| |
| Expr *Expr::ignoreParenBaseCasts() { |
| Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| if (CastExpr *CE = dyn_cast<CastExpr>(E)) { |
| if (CE->getCastKind() == CK_DerivedToBase || |
| CE->getCastKind() == CK_UncheckedDerivedToBase || |
| CE->getCastKind() == CK_NoOp) { |
| E = CE->getSubExpr(); |
| continue; |
| } |
| } |
| |
| return E; |
| } |
| } |
| |
| Expr *Expr::IgnoreParenImpCasts() { |
| Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| return E; |
| } |
| } |
| |
| Expr *Expr::IgnoreConversionOperator() { |
| if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { |
| if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) |
| return MCE->getImplicitObjectArgument(); |
| } |
| return this; |
| } |
| |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the |
| /// value (including ptr->int casts of the same size). Strip off any |
| /// ParenExpr or CastExprs, returning their operand. |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { |
| Expr *E = this; |
| while (true) { |
| E = E->IgnoreParens(); |
| |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
| // ptr<->int casts of the same width. We also ignore all identity casts. |
| Expr *SE = P->getSubExpr(); |
| |
| if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { |
| E = SE; |
| continue; |
| } |
| |
| if ((E->getType()->isPointerType() || |
| E->getType()->isIntegralType(Ctx)) && |
| (SE->getType()->isPointerType() || |
| SE->getType()->isIntegralType(Ctx)) && |
| Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { |
| E = SE; |
| continue; |
| } |
| } |
| |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| |
| return E; |
| } |
| } |
| |
| bool Expr::isDefaultArgument() const { |
| const Expr *E = this; |
| if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = M->GetTemporaryExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExprAsWritten(); |
| |
| return isa<CXXDefaultArgExpr>(E); |
| } |
| |
| /// \brief Skip over any no-op casts and any temporary-binding |
| /// expressions. |
| static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { |
| if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = M->GetTemporaryExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_NoOp) |
| E = ICE->getSubExpr(); |
| else |
| break; |
| } |
| |
| while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = BE->getSubExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_NoOp) |
| E = |