| //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for Objective C declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| |
| using namespace clang; |
| |
| /// Check whether the given method, which must be in the 'init' |
| /// family, is a valid member of that family. |
| /// |
| /// \param receiverTypeIfCall - if null, check this as if declaring it; |
| /// if non-null, check this as if making a call to it with the given |
| /// receiver type |
| /// |
| /// \return true to indicate that there was an error and appropriate |
| /// actions were taken |
| bool Sema::checkInitMethod(ObjCMethodDecl *method, |
| QualType receiverTypeIfCall) { |
| if (method->isInvalidDecl()) return true; |
| |
| // This castAs is safe: methods that don't return an object |
| // pointer won't be inferred as inits and will reject an explicit |
| // objc_method_family(init). |
| |
| // We ignore protocols here. Should we? What about Class? |
| |
| const ObjCObjectType *result = |
| method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); |
| |
| if (result->isObjCId()) { |
| return false; |
| } else if (result->isObjCClass()) { |
| // fall through: always an error |
| } else { |
| ObjCInterfaceDecl *resultClass = result->getInterface(); |
| assert(resultClass && "unexpected object type!"); |
| |
| // It's okay for the result type to still be a forward declaration |
| // if we're checking an interface declaration. |
| if (!resultClass->hasDefinition()) { |
| if (receiverTypeIfCall.isNull() && |
| !isa<ObjCImplementationDecl>(method->getDeclContext())) |
| return false; |
| |
| // Otherwise, we try to compare class types. |
| } else { |
| // If this method was declared in a protocol, we can't check |
| // anything unless we have a receiver type that's an interface. |
| const ObjCInterfaceDecl *receiverClass = nullptr; |
| if (isa<ObjCProtocolDecl>(method->getDeclContext())) { |
| if (receiverTypeIfCall.isNull()) |
| return false; |
| |
| receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
| ->getInterfaceDecl(); |
| |
| // This can be null for calls to e.g. id<Foo>. |
| if (!receiverClass) return false; |
| } else { |
| receiverClass = method->getClassInterface(); |
| assert(receiverClass && "method not associated with a class!"); |
| } |
| |
| // If either class is a subclass of the other, it's fine. |
| if (receiverClass->isSuperClassOf(resultClass) || |
| resultClass->isSuperClassOf(receiverClass)) |
| return false; |
| } |
| } |
| |
| SourceLocation loc = method->getLocation(); |
| |
| // If we're in a system header, and this is not a call, just make |
| // the method unusable. |
| if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { |
| method->addAttr(UnavailableAttr::CreateImplicit(Context, "", |
| UnavailableAttr::IR_ARCInitReturnsUnrelated, loc)); |
| return true; |
| } |
| |
| // Otherwise, it's an error. |
| Diag(loc, diag::err_arc_init_method_unrelated_result_type); |
| method->setInvalidDecl(); |
| return true; |
| } |
| |
| /// Issue a warning if the parameter of the overridden method is non-escaping |
| /// but the parameter of the overriding method is not. |
| static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
| Sema &S) { |
| if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { |
| S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape); |
| S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Produce additional diagnostics if a category conforms to a protocol that |
| /// defines a method taking a non-escaping parameter. |
| static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
| const ObjCCategoryDecl *CD, |
| const ObjCProtocolDecl *PD, Sema &S) { |
| if (!diagnoseNoescape(NewD, OldD, S)) |
| S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot) |
| << CD->IsClassExtension() << PD |
| << cast<ObjCMethodDecl>(NewD->getDeclContext()); |
| } |
| |
| void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
| const ObjCMethodDecl *Overridden) { |
| if (Overridden->hasRelatedResultType() && |
| !NewMethod->hasRelatedResultType()) { |
| // This can only happen when the method follows a naming convention that |
| // implies a related result type, and the original (overridden) method has |
| // a suitable return type, but the new (overriding) method does not have |
| // a suitable return type. |
| QualType ResultType = NewMethod->getReturnType(); |
| SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); |
| |
| // Figure out which class this method is part of, if any. |
| ObjCInterfaceDecl *CurrentClass |
| = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); |
| if (!CurrentClass) { |
| DeclContext *DC = NewMethod->getDeclContext(); |
| if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) |
| CurrentClass = Cat->getClassInterface(); |
| else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) |
| CurrentClass = Impl->getClassInterface(); |
| else if (ObjCCategoryImplDecl *CatImpl |
| = dyn_cast<ObjCCategoryImplDecl>(DC)) |
| CurrentClass = CatImpl->getClassInterface(); |
| } |
| |
| if (CurrentClass) { |
| Diag(NewMethod->getLocation(), |
| diag::warn_related_result_type_compatibility_class) |
| << Context.getObjCInterfaceType(CurrentClass) |
| << ResultType |
| << ResultTypeRange; |
| } else { |
| Diag(NewMethod->getLocation(), |
| diag::warn_related_result_type_compatibility_protocol) |
| << ResultType |
| << ResultTypeRange; |
| } |
| |
| if (ObjCMethodFamily Family = Overridden->getMethodFamily()) |
| Diag(Overridden->getLocation(), |
| diag::note_related_result_type_family) |
| << /*overridden method*/ 0 |
| << Family; |
| else |
| Diag(Overridden->getLocation(), |
| diag::note_related_result_type_overridden); |
| } |
| |
| if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != |
| Overridden->hasAttr<NSReturnsRetainedAttr>())) { |
| Diag(NewMethod->getLocation(), |
| getLangOpts().ObjCAutoRefCount |
| ? diag::err_nsreturns_retained_attribute_mismatch |
| : diag::warn_nsreturns_retained_attribute_mismatch) |
| << 1; |
| Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; |
| } |
| if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != |
| Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { |
| Diag(NewMethod->getLocation(), |
| getLangOpts().ObjCAutoRefCount |
| ? diag::err_nsreturns_retained_attribute_mismatch |
| : diag::warn_nsreturns_retained_attribute_mismatch) |
| << 0; |
| Diag(Overridden->getLocation(), diag::note_previous_decl) << "method"; |
| } |
| |
| ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), |
| oe = Overridden->param_end(); |
| for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), |
| ne = NewMethod->param_end(); |
| ni != ne && oi != oe; ++ni, ++oi) { |
| const ParmVarDecl *oldDecl = (*oi); |
| ParmVarDecl *newDecl = (*ni); |
| if (newDecl->hasAttr<NSConsumedAttr>() != |
| oldDecl->hasAttr<NSConsumedAttr>()) { |
| Diag(newDecl->getLocation(), |
| getLangOpts().ObjCAutoRefCount |
| ? diag::err_nsconsumed_attribute_mismatch |
| : diag::warn_nsconsumed_attribute_mismatch); |
| Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter"; |
| } |
| |
| diagnoseNoescape(newDecl, oldDecl, *this); |
| } |
| } |
| |
| /// Check a method declaration for compatibility with the Objective-C |
| /// ARC conventions. |
| bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { |
| ObjCMethodFamily family = method->getMethodFamily(); |
| switch (family) { |
| case OMF_None: |
| case OMF_finalize: |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_retainCount: |
| case OMF_self: |
| case OMF_initialize: |
| case OMF_performSelector: |
| return false; |
| |
| case OMF_dealloc: |
| if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { |
| SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); |
| if (ResultTypeRange.isInvalid()) |
| Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
| << method->getReturnType() |
| << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); |
| else |
| Diag(method->getLocation(), diag::err_dealloc_bad_result_type) |
| << method->getReturnType() |
| << FixItHint::CreateReplacement(ResultTypeRange, "void"); |
| return true; |
| } |
| return false; |
| |
| case OMF_init: |
| // If the method doesn't obey the init rules, don't bother annotating it. |
| if (checkInitMethod(method, QualType())) |
| return true; |
| |
| method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); |
| |
| // Don't add a second copy of this attribute, but otherwise don't |
| // let it be suppressed. |
| if (method->hasAttr<NSReturnsRetainedAttr>()) |
| return false; |
| break; |
| |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_mutableCopy: |
| case OMF_new: |
| if (method->hasAttr<NSReturnsRetainedAttr>() || |
| method->hasAttr<NSReturnsNotRetainedAttr>() || |
| method->hasAttr<NSReturnsAutoreleasedAttr>()) |
| return false; |
| break; |
| } |
| |
| method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); |
| return false; |
| } |
| |
| static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, |
| SourceLocation ImplLoc) { |
| if (!ND) |
| return; |
| bool IsCategory = false; |
| StringRef RealizedPlatform; |
| AvailabilityResult Availability = ND->getAvailability( |
| /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), |
| &RealizedPlatform); |
| if (Availability != AR_Deprecated) { |
| if (isa<ObjCMethodDecl>(ND)) { |
| if (Availability != AR_Unavailable) |
| return; |
| if (RealizedPlatform.empty()) |
| RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); |
| // Warn about implementing unavailable methods, unless the unavailable |
| // is for an app extension. |
| if (RealizedPlatform.endswith("_app_extension")) |
| return; |
| S.Diag(ImplLoc, diag::warn_unavailable_def); |
| S.Diag(ND->getLocation(), diag::note_method_declared_at) |
| << ND->getDeclName(); |
| return; |
| } |
| if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) { |
| if (!CD->getClassInterface()->isDeprecated()) |
| return; |
| ND = CD->getClassInterface(); |
| IsCategory = true; |
| } else |
| return; |
| } |
| S.Diag(ImplLoc, diag::warn_deprecated_def) |
| << (isa<ObjCMethodDecl>(ND) |
| ? /*Method*/ 0 |
| : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2 |
| : /*Class*/ 1); |
| if (isa<ObjCMethodDecl>(ND)) |
| S.Diag(ND->getLocation(), diag::note_method_declared_at) |
| << ND->getDeclName(); |
| else |
| S.Diag(ND->getLocation(), diag::note_previous_decl) |
| << (isa<ObjCCategoryDecl>(ND) ? "category" : "class"); |
| } |
| |
| /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global |
| /// pool. |
| void Sema::AddAnyMethodToGlobalPool(Decl *D) { |
| ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); |
| |
| // If we don't have a valid method decl, simply return. |
| if (!MDecl) |
| return; |
| if (MDecl->isInstanceMethod()) |
| AddInstanceMethodToGlobalPool(MDecl, true); |
| else |
| AddFactoryMethodToGlobalPool(MDecl, true); |
| } |
| |
| /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer |
| /// has explicit ownership attribute; false otherwise. |
| static bool |
| HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { |
| QualType T = Param->getType(); |
| |
| if (const PointerType *PT = T->getAs<PointerType>()) { |
| T = PT->getPointeeType(); |
| } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
| T = RT->getPointeeType(); |
| } else { |
| return true; |
| } |
| |
| // If we have a lifetime qualifier, but it's local, we must have |
| // inferred it. So, it is implicit. |
| return !T.getLocalQualifiers().hasObjCLifetime(); |
| } |
| |
| /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
| /// and user declared, in the method definition's AST. |
| void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
| ImplicitlyRetainedSelfLocs.clear(); |
| assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); |
| ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); |
| |
| PushExpressionEvaluationContext(ExprEvalContexts.back().Context); |
| |
| // If we don't have a valid method decl, simply return. |
| if (!MDecl) |
| return; |
| |
| QualType ResultType = MDecl->getReturnType(); |
| if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
| !MDecl->isInvalidDecl() && |
| RequireCompleteType(MDecl->getLocation(), ResultType, |
| diag::err_func_def_incomplete_result)) |
| MDecl->setInvalidDecl(); |
| |
| // Allow all of Sema to see that we are entering a method definition. |
| PushDeclContext(FnBodyScope, MDecl); |
| PushFunctionScope(); |
| |
| // Create Decl objects for each parameter, entrring them in the scope for |
| // binding to their use. |
| |
| // Insert the invisible arguments, self and _cmd! |
| MDecl->createImplicitParams(Context, MDecl->getClassInterface()); |
| |
| PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); |
| PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); |
| |
| // The ObjC parser requires parameter names so there's no need to check. |
| CheckParmsForFunctionDef(MDecl->parameters(), |
| /*CheckParameterNames=*/false); |
| |
| // Introduce all of the other parameters into this scope. |
| for (auto *Param : MDecl->parameters()) { |
| if (!Param->isInvalidDecl() && |
| getLangOpts().ObjCAutoRefCount && |
| !HasExplicitOwnershipAttr(*this, Param)) |
| Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << |
| Param->getType(); |
| |
| if (Param->getIdentifier()) |
| PushOnScopeChains(Param, FnBodyScope); |
| } |
| |
| // In ARC, disallow definition of retain/release/autorelease/retainCount |
| if (getLangOpts().ObjCAutoRefCount) { |
| switch (MDecl->getMethodFamily()) { |
| case OMF_retain: |
| case OMF_retainCount: |
| case OMF_release: |
| case OMF_autorelease: |
| Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) |
| << 0 << MDecl->getSelector(); |
| break; |
| |
| case OMF_None: |
| case OMF_dealloc: |
| case OMF_finalize: |
| case OMF_alloc: |
| case OMF_init: |
| case OMF_mutableCopy: |
| case OMF_copy: |
| case OMF_new: |
| case OMF_self: |
| case OMF_initialize: |
| case OMF_performSelector: |
| break; |
| } |
| } |
| |
| // Warn on deprecated methods under -Wdeprecated-implementations, |
| // and prepare for warning on missing super calls. |
| if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { |
| ObjCMethodDecl *IMD = |
| IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); |
| |
| if (IMD) { |
| ObjCImplDecl *ImplDeclOfMethodDef = |
| dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); |
| ObjCContainerDecl *ContDeclOfMethodDecl = |
| dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); |
| ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; |
| if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) |
| ImplDeclOfMethodDecl = OID->getImplementation(); |
| else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { |
| if (CD->IsClassExtension()) { |
| if (ObjCInterfaceDecl *OID = CD->getClassInterface()) |
| ImplDeclOfMethodDecl = OID->getImplementation(); |
| } else |
| ImplDeclOfMethodDecl = CD->getImplementation(); |
| } |
| // No need to issue deprecated warning if deprecated mehod in class/category |
| // is being implemented in its own implementation (no overriding is involved). |
| if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) |
| DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation()); |
| } |
| |
| if (MDecl->getMethodFamily() == OMF_init) { |
| if (MDecl->isDesignatedInitializerForTheInterface()) { |
| getCurFunction()->ObjCIsDesignatedInit = true; |
| getCurFunction()->ObjCWarnForNoDesignatedInitChain = |
| IC->getSuperClass() != nullptr; |
| } else if (IC->hasDesignatedInitializers()) { |
| getCurFunction()->ObjCIsSecondaryInit = true; |
| getCurFunction()->ObjCWarnForNoInitDelegation = true; |
| } |
| } |
| |
| // If this is "dealloc" or "finalize", set some bit here. |
| // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. |
| // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. |
| // Only do this if the current class actually has a superclass. |
| if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { |
| ObjCMethodFamily Family = MDecl->getMethodFamily(); |
| if (Family == OMF_dealloc) { |
| if (!(getLangOpts().ObjCAutoRefCount || |
| getLangOpts().getGC() == LangOptions::GCOnly)) |
| getCurFunction()->ObjCShouldCallSuper = true; |
| |
| } else if (Family == OMF_finalize) { |
| if (Context.getLangOpts().getGC() != LangOptions::NonGC) |
| getCurFunction()->ObjCShouldCallSuper = true; |
| |
| } else { |
| const ObjCMethodDecl *SuperMethod = |
| SuperClass->lookupMethod(MDecl->getSelector(), |
| MDecl->isInstanceMethod()); |
| getCurFunction()->ObjCShouldCallSuper = |
| (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); |
| } |
| } |
| } |
| } |
| |
| namespace { |
| |
| // Callback to only accept typo corrections that are Objective-C classes. |
| // If an ObjCInterfaceDecl* is given to the constructor, then the validation |
| // function will reject corrections to that class. |
| class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { |
| public: |
| ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} |
| explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) |
| : CurrentIDecl(IDecl) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| return ID && !declaresSameEntity(ID, CurrentIDecl); |
| } |
| |
| std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| return std::make_unique<ObjCInterfaceValidatorCCC>(*this); |
| } |
| |
| private: |
| ObjCInterfaceDecl *CurrentIDecl; |
| }; |
| |
| } // end anonymous namespace |
| |
| static void diagnoseUseOfProtocols(Sema &TheSema, |
| ObjCContainerDecl *CD, |
| ObjCProtocolDecl *const *ProtoRefs, |
| unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs) { |
| assert(ProtoRefs); |
| // Diagnose availability in the context of the ObjC container. |
| Sema::ContextRAII SavedContext(TheSema, CD); |
| for (unsigned i = 0; i < NumProtoRefs; ++i) { |
| (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i], |
| /*UnknownObjCClass=*/nullptr, |
| /*ObjCPropertyAccess=*/false, |
| /*AvoidPartialAvailabilityChecks=*/true); |
| } |
| } |
| |
| void Sema:: |
| ActOnSuperClassOfClassInterface(Scope *S, |
| SourceLocation AtInterfaceLoc, |
| ObjCInterfaceDecl *IDecl, |
| IdentifierInfo *ClassName, |
| SourceLocation ClassLoc, |
| IdentifierInfo *SuperName, |
| SourceLocation SuperLoc, |
| ArrayRef<ParsedType> SuperTypeArgs, |
| SourceRange SuperTypeArgsRange) { |
| // Check if a different kind of symbol declared in this scope. |
| NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, |
| LookupOrdinaryName); |
| |
| if (!PrevDecl) { |
| // Try to correct for a typo in the superclass name without correcting |
| // to the class we're defining. |
| ObjCInterfaceValidatorCCC CCC(IDecl); |
| if (TypoCorrection Corrected = CorrectTypo( |
| DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, |
| TUScope, nullptr, CCC, CTK_ErrorRecovery)) { |
| diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) |
| << SuperName << ClassName); |
| PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| } |
| } |
| |
| if (declaresSameEntity(PrevDecl, IDecl)) { |
| Diag(SuperLoc, diag::err_recursive_superclass) |
| << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| IDecl->setEndOfDefinitionLoc(ClassLoc); |
| } else { |
| ObjCInterfaceDecl *SuperClassDecl = |
| dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| QualType SuperClassType; |
| |
| // Diagnose classes that inherit from deprecated classes. |
| if (SuperClassDecl) { |
| (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); |
| SuperClassType = Context.getObjCInterfaceType(SuperClassDecl); |
| } |
| |
| if (PrevDecl && !SuperClassDecl) { |
| // The previous declaration was not a class decl. Check if we have a |
| // typedef. If we do, get the underlying class type. |
| if (const TypedefNameDecl *TDecl = |
| dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { |
| QualType T = TDecl->getUnderlyingType(); |
| if (T->isObjCObjectType()) { |
| if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
| SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); |
| SuperClassType = Context.getTypeDeclType(TDecl); |
| |
| // This handles the following case: |
| // @interface NewI @end |
| // typedef NewI DeprI __attribute__((deprecated("blah"))) |
| // @interface SI : DeprI /* warn here */ @end |
| (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); |
| } |
| } |
| } |
| |
| // This handles the following case: |
| // |
| // typedef int SuperClass; |
| // @interface MyClass : SuperClass {} @end |
| // |
| if (!SuperClassDecl) { |
| Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { |
| if (!SuperClassDecl) |
| Diag(SuperLoc, diag::err_undef_superclass) |
| << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
| else if (RequireCompleteType(SuperLoc, |
| SuperClassType, |
| diag::err_forward_superclass, |
| SuperClassDecl->getDeclName(), |
| ClassName, |
| SourceRange(AtInterfaceLoc, ClassLoc))) { |
| SuperClassDecl = nullptr; |
| SuperClassType = QualType(); |
| } |
| } |
| |
| if (SuperClassType.isNull()) { |
| assert(!SuperClassDecl && "Failed to set SuperClassType?"); |
| return; |
| } |
| |
| // Handle type arguments on the superclass. |
| TypeSourceInfo *SuperClassTInfo = nullptr; |
| if (!SuperTypeArgs.empty()) { |
| TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( |
| S, |
| SuperLoc, |
| CreateParsedType(SuperClassType, |
| nullptr), |
| SuperTypeArgsRange.getBegin(), |
| SuperTypeArgs, |
| SuperTypeArgsRange.getEnd(), |
| SourceLocation(), |
| { }, |
| { }, |
| SourceLocation()); |
| if (!fullSuperClassType.isUsable()) |
| return; |
| |
| SuperClassType = GetTypeFromParser(fullSuperClassType.get(), |
| &SuperClassTInfo); |
| } |
| |
| if (!SuperClassTInfo) { |
| SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, |
| SuperLoc); |
| } |
| |
| IDecl->setSuperClass(SuperClassTInfo); |
| IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); |
| } |
| } |
| |
| DeclResult Sema::actOnObjCTypeParam(Scope *S, |
| ObjCTypeParamVariance variance, |
| SourceLocation varianceLoc, |
| unsigned index, |
| IdentifierInfo *paramName, |
| SourceLocation paramLoc, |
| SourceLocation colonLoc, |
| ParsedType parsedTypeBound) { |
| // If there was an explicitly-provided type bound, check it. |
| TypeSourceInfo *typeBoundInfo = nullptr; |
| if (parsedTypeBound) { |
| // The type bound can be any Objective-C pointer type. |
| QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo); |
| if (typeBound->isObjCObjectPointerType()) { |
| // okay |
| } else if (typeBound->isObjCObjectType()) { |
| // The user forgot the * on an Objective-C pointer type, e.g., |
| // "T : NSView". |
| SourceLocation starLoc = getLocForEndOfToken( |
| typeBoundInfo->getTypeLoc().getEndLoc()); |
| Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
| diag::err_objc_type_param_bound_missing_pointer) |
| << typeBound << paramName |
| << FixItHint::CreateInsertion(starLoc, " *"); |
| |
| // Create a new type location builder so we can update the type |
| // location information we have. |
| TypeLocBuilder builder; |
| builder.pushFullCopy(typeBoundInfo->getTypeLoc()); |
| |
| // Create the Objective-C pointer type. |
| typeBound = Context.getObjCObjectPointerType(typeBound); |
| ObjCObjectPointerTypeLoc newT |
| = builder.push<ObjCObjectPointerTypeLoc>(typeBound); |
| newT.setStarLoc(starLoc); |
| |
| // Form the new type source information. |
| typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound); |
| } else { |
| // Not a valid type bound. |
| Diag(typeBoundInfo->getTypeLoc().getBeginLoc(), |
| diag::err_objc_type_param_bound_nonobject) |
| << typeBound << paramName; |
| |
| // Forget the bound; we'll default to id later. |
| typeBoundInfo = nullptr; |
| } |
| |
| // Type bounds cannot have qualifiers (even indirectly) or explicit |
| // nullability. |
| if (typeBoundInfo) { |
| QualType typeBound = typeBoundInfo->getType(); |
| TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); |
| if (qual || typeBound.hasQualifiers()) { |
| bool diagnosed = false; |
| SourceRange rangeToRemove; |
| if (qual) { |
| if (auto attr = qual.getAs<AttributedTypeLoc>()) { |
| rangeToRemove = attr.getLocalSourceRange(); |
| if (attr.getTypePtr()->getImmediateNullability()) { |
| Diag(attr.getBeginLoc(), |
| diag::err_objc_type_param_bound_explicit_nullability) |
| << paramName << typeBound |
| << FixItHint::CreateRemoval(rangeToRemove); |
| diagnosed = true; |
| } |
| } |
| } |
| |
| if (!diagnosed) { |
| Diag(qual ? qual.getBeginLoc() |
| : typeBoundInfo->getTypeLoc().getBeginLoc(), |
| diag::err_objc_type_param_bound_qualified) |
| << paramName << typeBound |
| << typeBound.getQualifiers().getAsString() |
| << FixItHint::CreateRemoval(rangeToRemove); |
| } |
| |
| // If the type bound has qualifiers other than CVR, we need to strip |
| // them or we'll probably assert later when trying to apply new |
| // qualifiers. |
| Qualifiers quals = typeBound.getQualifiers(); |
| quals.removeCVRQualifiers(); |
| if (!quals.empty()) { |
| typeBoundInfo = |
| Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType()); |
| } |
| } |
| } |
| } |
| |
| // If there was no explicit type bound (or we removed it due to an error), |
| // use 'id' instead. |
| if (!typeBoundInfo) { |
| colonLoc = SourceLocation(); |
| typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType()); |
| } |
| |
| // Create the type parameter. |
| return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc, |
| index, paramLoc, paramName, colonLoc, |
| typeBoundInfo); |
| } |
| |
| ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S, |
| SourceLocation lAngleLoc, |
| ArrayRef<Decl *> typeParamsIn, |
| SourceLocation rAngleLoc) { |
| // We know that the array only contains Objective-C type parameters. |
| ArrayRef<ObjCTypeParamDecl *> |
| typeParams( |
| reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), |
| typeParamsIn.size()); |
| |
| // Diagnose redeclarations of type parameters. |
| // We do this now because Objective-C type parameters aren't pushed into |
| // scope until later (after the instance variable block), but we want the |
| // diagnostics to occur right after we parse the type parameter list. |
| llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; |
| for (auto typeParam : typeParams) { |
| auto known = knownParams.find(typeParam->getIdentifier()); |
| if (known != knownParams.end()) { |
| Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl) |
| << typeParam->getIdentifier() |
| << SourceRange(known->second->getLocation()); |
| |
| typeParam->setInvalidDecl(); |
| } else { |
| knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam)); |
| |
| // Push the type parameter into scope. |
| PushOnScopeChains(typeParam, S, /*AddToContext=*/false); |
| } |
| } |
| |
| // Create the parameter list. |
| return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc); |
| } |
| |
| void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) { |
| for (auto typeParam : *typeParamList) { |
| if (!typeParam->isInvalidDecl()) { |
| S->RemoveDecl(typeParam); |
| IdResolver.RemoveDecl(typeParam); |
| } |
| } |
| } |
| |
| namespace { |
| /// The context in which an Objective-C type parameter list occurs, for use |
| /// in diagnostics. |
| enum class TypeParamListContext { |
| ForwardDeclaration, |
| Definition, |
| Category, |
| Extension |
| }; |
| } // end anonymous namespace |
| |
| /// Check consistency between two Objective-C type parameter lists, e.g., |
| /// between a category/extension and an \@interface or between an \@class and an |
| /// \@interface. |
| static bool checkTypeParamListConsistency(Sema &S, |
| ObjCTypeParamList *prevTypeParams, |
| ObjCTypeParamList *newTypeParams, |
| TypeParamListContext newContext) { |
| // If the sizes don't match, complain about that. |
| if (prevTypeParams->size() != newTypeParams->size()) { |
| SourceLocation diagLoc; |
| if (newTypeParams->size() > prevTypeParams->size()) { |
| diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); |
| } else { |
| diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc()); |
| } |
| |
| S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch) |
| << static_cast<unsigned>(newContext) |
| << (newTypeParams->size() > prevTypeParams->size()) |
| << prevTypeParams->size() |
| << newTypeParams->size(); |
| |
| return true; |
| } |
| |
| // Match up the type parameters. |
| for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { |
| ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; |
| ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; |
| |
| // Check for consistency of the variance. |
| if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { |
| if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && |
| newContext != TypeParamListContext::Definition) { |
| // When the new type parameter is invariant and is not part |
| // of the definition, just propagate the variance. |
| newTypeParam->setVariance(prevTypeParam->getVariance()); |
| } else if (prevTypeParam->getVariance() |
| == ObjCTypeParamVariance::Invariant && |
| !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) && |
| cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) |
| ->getDefinition() == prevTypeParam->getDeclContext())) { |
| // When the old parameter is invariant and was not part of the |
| // definition, just ignore the difference because it doesn't |
| // matter. |
| } else { |
| { |
| // Diagnose the conflict and update the second declaration. |
| SourceLocation diagLoc = newTypeParam->getVarianceLoc(); |
| if (diagLoc.isInvalid()) |
| diagLoc = newTypeParam->getBeginLoc(); |
| |
| auto diag = S.Diag(diagLoc, |
| diag::err_objc_type_param_variance_conflict) |
| << static_cast<unsigned>(newTypeParam->getVariance()) |
| << newTypeParam->getDeclName() |
| << static_cast<unsigned>(prevTypeParam->getVariance()) |
| << prevTypeParam->getDeclName(); |
| switch (prevTypeParam->getVariance()) { |
| case ObjCTypeParamVariance::Invariant: |
| diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc()); |
| break; |
| |
| case ObjCTypeParamVariance::Covariant: |
| case ObjCTypeParamVariance::Contravariant: { |
| StringRef newVarianceStr |
| = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant |
| ? "__covariant" |
| : "__contravariant"; |
| if (newTypeParam->getVariance() |
| == ObjCTypeParamVariance::Invariant) { |
| diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(), |
| (newVarianceStr + " ").str()); |
| } else { |
| diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(), |
| newVarianceStr); |
| } |
| } |
| } |
| } |
| |
| S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
| << prevTypeParam->getDeclName(); |
| |
| // Override the variance. |
| newTypeParam->setVariance(prevTypeParam->getVariance()); |
| } |
| } |
| |
| // If the bound types match, there's nothing to do. |
| if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(), |
| newTypeParam->getUnderlyingType())) |
| continue; |
| |
| // If the new type parameter's bound was explicit, complain about it being |
| // different from the original. |
| if (newTypeParam->hasExplicitBound()) { |
| SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() |
| ->getTypeLoc().getSourceRange(); |
| S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict) |
| << newTypeParam->getUnderlyingType() |
| << newTypeParam->getDeclName() |
| << prevTypeParam->hasExplicitBound() |
| << prevTypeParam->getUnderlyingType() |
| << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) |
| << prevTypeParam->getDeclName() |
| << FixItHint::CreateReplacement( |
| newBoundRange, |
| prevTypeParam->getUnderlyingType().getAsString( |
| S.Context.getPrintingPolicy())); |
| |
| S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
| << prevTypeParam->getDeclName(); |
| |
| // Override the new type parameter's bound type with the previous type, |
| // so that it's consistent. |
| newTypeParam->setTypeSourceInfo( |
| S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType())); |
| continue; |
| } |
| |
| // The new type parameter got the implicit bound of 'id'. That's okay for |
| // categories and extensions (overwrite it later), but not for forward |
| // declarations and @interfaces, because those must be standalone. |
| if (newContext == TypeParamListContext::ForwardDeclaration || |
| newContext == TypeParamListContext::Definition) { |
| // Diagnose this problem for forward declarations and definitions. |
| SourceLocation insertionLoc |
| = S.getLocForEndOfToken(newTypeParam->getLocation()); |
| std::string newCode |
| = " : " + prevTypeParam->getUnderlyingType().getAsString( |
| S.Context.getPrintingPolicy()); |
| S.Diag(newTypeParam->getLocation(), |
| diag::err_objc_type_param_bound_missing) |
| << prevTypeParam->getUnderlyingType() |
| << newTypeParam->getDeclName() |
| << (newContext == TypeParamListContext::ForwardDeclaration) |
| << FixItHint::CreateInsertion(insertionLoc, newCode); |
| |
| S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here) |
| << prevTypeParam->getDeclName(); |
| } |
| |
| // Update the new type parameter's bound to match the previous one. |
| newTypeParam->setTypeSourceInfo( |
| S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType())); |
| } |
| |
| return false; |
| } |
| |
| Decl *Sema::ActOnStartClassInterface( |
| Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
| SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
| IdentifierInfo *SuperName, SourceLocation SuperLoc, |
| ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, |
| Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| const ParsedAttributesView &AttrList) { |
| assert(ClassName && "Missing class identifier"); |
| |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl = |
| LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } |
| |
| // Create a declaration to describe this @interface. |
| ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| |
| if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
| // A previous decl with a different name is because of |
| // @compatibility_alias, for example: |
| // \code |
| // @class NewImage; |
| // @compatibility_alias OldImage NewImage; |
| // \endcode |
| // A lookup for 'OldImage' will return the 'NewImage' decl. |
| // |
| // In such a case use the real declaration name, instead of the alias one, |
| // otherwise we will break IdentifierResolver and redecls-chain invariants. |
| // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
| // has been aliased. |
| ClassName = PrevIDecl->getIdentifier(); |
| } |
| |
| // If there was a forward declaration with type parameters, check |
| // for consistency. |
| if (PrevIDecl) { |
| if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { |
| if (typeParamList) { |
| // Both have type parameter lists; check for consistency. |
| if (checkTypeParamListConsistency(*this, prevTypeParamList, |
| typeParamList, |
| TypeParamListContext::Definition)) { |
| typeParamList = nullptr; |
| } |
| } else { |
| Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first) |
| << ClassName; |
| Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl) |
| << ClassName; |
| |
| // Clone the type parameter list. |
| SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; |
| for (auto typeParam : *prevTypeParamList) { |
| clonedTypeParams.push_back( |
| ObjCTypeParamDecl::Create( |
| Context, |
| CurContext, |
| typeParam->getVariance(), |
| SourceLocation(), |
| typeParam->getIndex(), |
| SourceLocation(), |
| typeParam->getIdentifier(), |
| SourceLocation(), |
| Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType()))); |
| } |
| |
| typeParamList = ObjCTypeParamList::create(Context, |
| SourceLocation(), |
| clonedTypeParams, |
| SourceLocation()); |
| } |
| } |
| } |
| |
| ObjCInterfaceDecl *IDecl |
| = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, |
| typeParamList, PrevIDecl, ClassLoc); |
| if (PrevIDecl) { |
| // Class already seen. Was it a definition? |
| if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
| Diag(AtInterfaceLoc, diag::err_duplicate_class_def) |
| << PrevIDecl->getDeclName(); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| |
| ProcessDeclAttributeList(TUScope, IDecl, AttrList); |
| AddPragmaAttributes(TUScope, IDecl); |
| PushOnScopeChains(IDecl, TUScope); |
| |
| // Start the definition of this class. If we're in a redefinition case, there |
| // may already be a definition, so we'll end up adding to it. |
| if (!IDecl->hasDefinition()) |
| IDecl->startDefinition(); |
| |
| if (SuperName) { |
| // Diagnose availability in the context of the @interface. |
| ContextRAII SavedContext(*this, IDecl); |
| |
| ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, |
| ClassName, ClassLoc, |
| SuperName, SuperLoc, SuperTypeArgs, |
| SuperTypeArgsRange); |
| } else { // we have a root class. |
| IDecl->setEndOfDefinitionLoc(ClassLoc); |
| } |
| |
| // Check then save referenced protocols. |
| if (NumProtoRefs) { |
| diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
| NumProtoRefs, ProtoLocs); |
| IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| IDecl->setEndOfDefinitionLoc(EndProtoLoc); |
| } |
| |
| CheckObjCDeclScope(IDecl); |
| return ActOnObjCContainerStartDefinition(IDecl); |
| } |
| |
| /// ActOnTypedefedProtocols - this action finds protocol list as part of the |
| /// typedef'ed use for a qualified super class and adds them to the list |
| /// of the protocols. |
| void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, |
| SmallVectorImpl<SourceLocation> &ProtocolLocs, |
| IdentifierInfo *SuperName, |
| SourceLocation SuperLoc) { |
| if (!SuperName) |
| return; |
| NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, |
| LookupOrdinaryName); |
| if (!IDecl) |
| return; |
| |
| if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { |
| QualType T = TDecl->getUnderlyingType(); |
| if (T->isObjCObjectType()) |
| if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { |
| ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); |
| // FIXME: Consider whether this should be an invalid loc since the loc |
| // is not actually pointing to a protocol name reference but to the |
| // typedef reference. Note that the base class name loc is also pointing |
| // at the typedef. |
| ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc); |
| } |
| } |
| } |
| |
| /// ActOnCompatibilityAlias - this action is called after complete parsing of |
| /// a \@compatibility_alias declaration. It sets up the alias relationships. |
| Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, |
| IdentifierInfo *AliasName, |
| SourceLocation AliasLocation, |
| IdentifierInfo *ClassName, |
| SourceLocation ClassLocation) { |
| // Look for previous declaration of alias name |
| NamedDecl *ADecl = |
| LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| if (ADecl) { |
| Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; |
| Diag(ADecl->getLocation(), diag::note_previous_declaration); |
| return nullptr; |
| } |
| // Check for class declaration |
| NamedDecl *CDeclU = |
| LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| if (const TypedefNameDecl *TDecl = |
| dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { |
| QualType T = TDecl->getUnderlyingType(); |
| if (T->isObjCObjectType()) { |
| if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
| ClassName = IDecl->getIdentifier(); |
| CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, |
| LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| } |
| } |
| } |
| ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); |
| if (!CDecl) { |
| Diag(ClassLocation, diag::warn_undef_interface) << ClassName; |
| if (CDeclU) |
| Diag(CDeclU->getLocation(), diag::note_previous_declaration); |
| return nullptr; |
| } |
| |
| // Everything checked out, instantiate a new alias declaration AST. |
| ObjCCompatibleAliasDecl *AliasDecl = |
| ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); |
| |
| if (!CheckObjCDeclScope(AliasDecl)) |
| PushOnScopeChains(AliasDecl, TUScope); |
| |
| return AliasDecl; |
| } |
| |
| bool Sema::CheckForwardProtocolDeclarationForCircularDependency( |
| IdentifierInfo *PName, |
| SourceLocation &Ploc, SourceLocation PrevLoc, |
| const ObjCList<ObjCProtocolDecl> &PList) { |
| |
| bool res = false; |
| for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
| E = PList.end(); I != E; ++I) { |
| if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), |
| Ploc)) { |
| if (PDecl->getIdentifier() == PName) { |
| Diag(Ploc, diag::err_protocol_has_circular_dependency); |
| Diag(PrevLoc, diag::note_previous_definition); |
| res = true; |
| } |
| |
| if (!PDecl->hasDefinition()) |
| continue; |
| |
| if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
| PDecl->getLocation(), PDecl->getReferencedProtocols())) |
| res = true; |
| } |
| } |
| return res; |
| } |
| |
| Decl *Sema::ActOnStartProtocolInterface( |
| SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, |
| SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| const ParsedAttributesView &AttrList) { |
| bool err = false; |
| // FIXME: Deal with AttrList. |
| assert(ProtocolName && "Missing protocol identifier"); |
| ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, |
| forRedeclarationInCurContext()); |
| ObjCProtocolDecl *PDecl = nullptr; |
| if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { |
| // If we already have a definition, complain. |
| Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| |
| // Create a new protocol that is completely distinct from previous |
| // declarations, and do not make this protocol available for name lookup. |
| // That way, we'll end up completely ignoring the duplicate. |
| // FIXME: Can we turn this into an error? |
| PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, |
| ProtocolLoc, AtProtoInterfaceLoc, |
| /*PrevDecl=*/nullptr); |
| |
| // If we are using modules, add the decl to the context in order to |
| // serialize something meaningful. |
| if (getLangOpts().Modules) |
| PushOnScopeChains(PDecl, TUScope); |
| PDecl->startDefinition(); |
| } else { |
| if (PrevDecl) { |
| // Check for circular dependencies among protocol declarations. This can |
| // only happen if this protocol was forward-declared. |
| ObjCList<ObjCProtocolDecl> PList; |
| PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); |
| err = CheckForwardProtocolDeclarationForCircularDependency( |
| ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); |
| } |
| |
| // Create the new declaration. |
| PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, |
| ProtocolLoc, AtProtoInterfaceLoc, |
| /*PrevDecl=*/PrevDecl); |
| |
| PushOnScopeChains(PDecl, TUScope); |
| PDecl->startDefinition(); |
| } |
| |
| ProcessDeclAttributeList(TUScope, PDecl, AttrList); |
| AddPragmaAttributes(TUScope, PDecl); |
| |
| // Merge attributes from previous declarations. |
| if (PrevDecl) |
| mergeDeclAttributes(PDecl, PrevDecl); |
| |
| if (!err && NumProtoRefs ) { |
| /// Check then save referenced protocols. |
| diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
| NumProtoRefs, ProtoLocs); |
| PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| } |
| |
| CheckObjCDeclScope(PDecl); |
| return ActOnObjCContainerStartDefinition(PDecl); |
| } |
| |
| static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, |
| ObjCProtocolDecl *&UndefinedProtocol) { |
| if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) { |
| UndefinedProtocol = PDecl; |
| return true; |
| } |
| |
| for (auto *PI : PDecl->protocols()) |
| if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { |
| UndefinedProtocol = PI; |
| return true; |
| } |
| return false; |
| } |
| |
| /// FindProtocolDeclaration - This routine looks up protocols and |
| /// issues an error if they are not declared. It returns list of |
| /// protocol declarations in its 'Protocols' argument. |
| void |
| Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, |
| ArrayRef<IdentifierLocPair> ProtocolId, |
| SmallVectorImpl<Decl *> &Protocols) { |
| for (const IdentifierLocPair &Pair : ProtocolId) { |
| ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second); |
| if (!PDecl) { |
| DeclFilterCCC<ObjCProtocolDecl> CCC{}; |
| TypoCorrection Corrected = CorrectTypo( |
| DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName, |
| TUScope, nullptr, CCC, CTK_ErrorRecovery); |
| if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) |
| diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) |
| << Pair.first); |
| } |
| |
| if (!PDecl) { |
| Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first; |
| continue; |
| } |
| // If this is a forward protocol declaration, get its definition. |
| if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
| PDecl = PDecl->getDefinition(); |
| |
| // For an objc container, delay protocol reference checking until after we |
| // can set the objc decl as the availability context, otherwise check now. |
| if (!ForObjCContainer) { |
| (void)DiagnoseUseOfDecl(PDecl, Pair.second); |
| } |
| |
| // If this is a forward declaration and we are supposed to warn in this |
| // case, do it. |
| // FIXME: Recover nicely in the hidden case. |
| ObjCProtocolDecl *UndefinedProtocol; |
| |
| if (WarnOnDeclarations && |
| NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { |
| Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first; |
| Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) |
| << UndefinedProtocol; |
| } |
| Protocols.push_back(PDecl); |
| } |
| } |
| |
| namespace { |
| // Callback to only accept typo corrections that are either |
| // Objective-C protocols or valid Objective-C type arguments. |
| class ObjCTypeArgOrProtocolValidatorCCC final |
| : public CorrectionCandidateCallback { |
| ASTContext &Context; |
| Sema::LookupNameKind LookupKind; |
| public: |
| ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, |
| Sema::LookupNameKind lookupKind) |
| : Context(context), LookupKind(lookupKind) { } |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| // If we're allowed to find protocols and we have a protocol, accept it. |
| if (LookupKind != Sema::LookupOrdinaryName) { |
| if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) |
| return true; |
| } |
| |
| // If we're allowed to find type names and we have one, accept it. |
| if (LookupKind != Sema::LookupObjCProtocolName) { |
| // If we have a type declaration, we might accept this result. |
| if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { |
| // If we found a tag declaration outside of C++, skip it. This |
| // can happy because we look for any name when there is no |
| // bias to protocol or type names. |
| if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus) |
| return false; |
| |
| // Make sure the type is something we would accept as a type |
| // argument. |
| auto type = Context.getTypeDeclType(typeDecl); |
| if (type->isObjCObjectPointerType() || |
| type->isBlockPointerType() || |
| type->isDependentType() || |
| type->isObjCObjectType()) |
| return true; |
| |
| return false; |
| } |
| |
| // If we have an Objective-C class type, accept it; there will |
| // be another fix to add the '*'. |
| if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) |
| return true; |
| |
| return false; |
| } |
| |
| return false; |
| } |
| |
| std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this); |
| } |
| }; |
| } // end anonymous namespace |
| |
| void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, |
| SourceLocation ProtocolLoc, |
| IdentifierInfo *TypeArgId, |
| SourceLocation TypeArgLoc, |
| bool SelectProtocolFirst) { |
| Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols) |
| << SelectProtocolFirst << TypeArgId << ProtocolId |
| << SourceRange(ProtocolLoc); |
| } |
| |
| void Sema::actOnObjCTypeArgsOrProtocolQualifiers( |
| Scope *S, |
| ParsedType baseType, |
| SourceLocation lAngleLoc, |
| ArrayRef<IdentifierInfo *> identifiers, |
| ArrayRef<SourceLocation> identifierLocs, |
| SourceLocation rAngleLoc, |
| SourceLocation &typeArgsLAngleLoc, |
| SmallVectorImpl<ParsedType> &typeArgs, |
| SourceLocation &typeArgsRAngleLoc, |
| SourceLocation &protocolLAngleLoc, |
| SmallVectorImpl<Decl *> &protocols, |
| SourceLocation &protocolRAngleLoc, |
| bool warnOnIncompleteProtocols) { |
| // Local function that updates the declaration specifiers with |
| // protocol information. |
| unsigned numProtocolsResolved = 0; |
| auto resolvedAsProtocols = [&] { |
| assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols"); |
| |
| // Determine whether the base type is a parameterized class, in |
| // which case we want to warn about typos such as |
| // "NSArray<NSObject>" (that should be NSArray<NSObject *>). |
| ObjCInterfaceDecl *baseClass = nullptr; |
| QualType base = GetTypeFromParser(baseType, nullptr); |
| bool allAreTypeNames = false; |
| SourceLocation firstClassNameLoc; |
| if (!base.isNull()) { |
| if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { |
| baseClass = objcObjectType->getInterface(); |
| if (baseClass) { |
| if (auto typeParams = baseClass->getTypeParamList()) { |
| if (typeParams->size() == numProtocolsResolved) { |
| // Note that we should be looking for type names, too. |
| allAreTypeNames = true; |
| } |
| } |
| } |
| } |
| } |
| |
| for (unsigned i = 0, n = protocols.size(); i != n; ++i) { |
| ObjCProtocolDecl *&proto |
| = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); |
| // For an objc container, delay protocol reference checking until after we |
| // can set the objc decl as the availability context, otherwise check now. |
| if (!warnOnIncompleteProtocols) { |
| (void)DiagnoseUseOfDecl(proto, identifierLocs[i]); |
| } |
| |
| // If this is a forward protocol declaration, get its definition. |
| if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) |
| proto = proto->getDefinition(); |
| |
| // If this is a forward declaration and we are supposed to warn in this |
| // case, do it. |
| // FIXME: Recover nicely in the hidden case. |
| ObjCProtocolDecl *forwardDecl = nullptr; |
| if (warnOnIncompleteProtocols && |
| NestedProtocolHasNoDefinition(proto, forwardDecl)) { |
| Diag(identifierLocs[i], diag::warn_undef_protocolref) |
| << proto->getDeclName(); |
| Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined) |
| << forwardDecl; |
| } |
| |
| // If everything this far has been a type name (and we care |
| // about such things), check whether this name refers to a type |
| // as well. |
| if (allAreTypeNames) { |
| if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], |
| LookupOrdinaryName)) { |
| if (isa<ObjCInterfaceDecl>(decl)) { |
| if (firstClassNameLoc.isInvalid()) |
| firstClassNameLoc = identifierLocs[i]; |
| } else if (!isa<TypeDecl>(decl)) { |
| // Not a type. |
| allAreTypeNames = false; |
| } |
| } else { |
| allAreTypeNames = false; |
| } |
| } |
| } |
| |
| // All of the protocols listed also have type names, and at least |
| // one is an Objective-C class name. Check whether all of the |
| // protocol conformances are declared by the base class itself, in |
| // which case we warn. |
| if (allAreTypeNames && firstClassNameLoc.isValid()) { |
| llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; |
| Context.CollectInheritedProtocols(baseClass, knownProtocols); |
| bool allProtocolsDeclared = true; |
| for (auto proto : protocols) { |
| if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) { |
| allProtocolsDeclared = false; |
| break; |
| } |
| } |
| |
| if (allProtocolsDeclared) { |
| Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type) |
| << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) |
| << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc), |
| " *"); |
| } |
| } |
| |
| protocolLAngleLoc = lAngleLoc; |
| protocolRAngleLoc = rAngleLoc; |
| assert(protocols.size() == identifierLocs.size()); |
| }; |
| |
| // Attempt to resolve all of the identifiers as protocols. |
| for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]); |
| protocols.push_back(proto); |
| if (proto) |
| ++numProtocolsResolved; |
| } |
| |
| // If all of the names were protocols, these were protocol qualifiers. |
| if (numProtocolsResolved == identifiers.size()) |
| return resolvedAsProtocols(); |
| |
| // Attempt to resolve all of the identifiers as type names or |
| // Objective-C class names. The latter is technically ill-formed, |
| // but is probably something like \c NSArray<NSView *> missing the |
| // \c*. |
| typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; |
| SmallVector<TypeOrClassDecl, 4> typeDecls; |
| unsigned numTypeDeclsResolved = 0; |
| for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i], |
| LookupOrdinaryName); |
| if (!decl) { |
| typeDecls.push_back(TypeOrClassDecl()); |
| continue; |
| } |
| |
| if (auto typeDecl = dyn_cast<TypeDecl>(decl)) { |
| typeDecls.push_back(typeDecl); |
| ++numTypeDeclsResolved; |
| continue; |
| } |
| |
| if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) { |
| typeDecls.push_back(objcClass); |
| ++numTypeDeclsResolved; |
| continue; |
| } |
| |
| typeDecls.push_back(TypeOrClassDecl()); |
| } |
| |
| AttributeFactory attrFactory; |
| |
| // Local function that forms a reference to the given type or |
| // Objective-C class declaration. |
| auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) |
| -> TypeResult { |
| // Form declaration specifiers. They simply refer to the type. |
| DeclSpec DS(attrFactory); |
| const char* prevSpec; // unused |
| unsigned diagID; // unused |
| QualType type; |
| if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) |
| type = Context.getTypeDeclType(actualTypeDecl); |
| else |
| type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>()); |
| TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc); |
| ParsedType parsedType = CreateParsedType(type, parsedTSInfo); |
| DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID, |
| parsedType, Context.getPrintingPolicy()); |
| // Use the identifier location for the type source range. |
| DS.SetRangeStart(loc); |
| DS.SetRangeEnd(loc); |
| |
| // Form the declarator. |
| Declarator D(DS, DeclaratorContext::TypeNameContext); |
| |
| // If we have a typedef of an Objective-C class type that is missing a '*', |
| // add the '*'. |
| if (type->getAs<ObjCInterfaceType>()) { |
| SourceLocation starLoc = getLocForEndOfToken(loc); |
| D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc, |
| SourceLocation(), |
| SourceLocation(), |
| SourceLocation(), |
| SourceLocation(), |
| SourceLocation()), |
| starLoc); |
| |
| // Diagnose the missing '*'. |
| Diag(loc, diag::err_objc_type_arg_missing_star) |
| << type |
| << FixItHint::CreateInsertion(starLoc, " *"); |
| } |
| |
| // Convert this to a type. |
| return ActOnTypeName(S, D); |
| }; |
| |
| // Local function that updates the declaration specifiers with |
| // type argument information. |
| auto resolvedAsTypeDecls = [&] { |
| // We did not resolve these as protocols. |
| protocols.clear(); |
| |
| assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"); |
| // Map type declarations to type arguments. |
| for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| // Map type reference to a type. |
| TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); |
| if (!type.isUsable()) { |
| typeArgs.clear(); |
| return; |
| } |
| |
| typeArgs.push_back(type.get()); |
| } |
| |
| typeArgsLAngleLoc = lAngleLoc; |
| typeArgsRAngleLoc = rAngleLoc; |
| }; |
| |
| // If all of the identifiers can be resolved as type names or |
| // Objective-C class names, we have type arguments. |
| if (numTypeDeclsResolved == identifiers.size()) |
| return resolvedAsTypeDecls(); |
| |
| // Error recovery: some names weren't found, or we have a mix of |
| // type and protocol names. Go resolve all of the unresolved names |
| // and complain if we can't find a consistent answer. |
| LookupNameKind lookupKind = LookupAnyName; |
| for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
| // If we already have a protocol or type. Check whether it is the |
| // right thing. |
| if (protocols[i] || typeDecls[i]) { |
| // If we haven't figured out whether we want types or protocols |
| // yet, try to figure it out from this name. |
| if (lookupKind == LookupAnyName) { |
| // If this name refers to both a protocol and a type (e.g., \c |
| // NSObject), don't conclude anything yet. |
| if (protocols[i] && typeDecls[i]) |
| continue; |
| |
| // Otherwise, let this name decide whether we'll be correcting |
| // toward types or protocols. |
| lookupKind = protocols[i] ? LookupObjCProtocolName |
| : LookupOrdinaryName; |
| continue; |
| } |
| |
| // If we want protocols and we have a protocol, there's nothing |
| // more to do. |
| if (lookupKind == LookupObjCProtocolName && protocols[i]) |
| continue; |
| |
| // If we want types and we have a type declaration, there's |
| // nothing more to do. |
| if (lookupKind == LookupOrdinaryName && typeDecls[i]) |
| continue; |
| |
| // We have a conflict: some names refer to protocols and others |
| // refer to types. |
| DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0], |
| identifiers[i], identifierLocs[i], |
| protocols[i] != nullptr); |
| |
| protocols.clear(); |
| typeArgs.clear(); |
| return; |
| } |
| |
| // Perform typo correction on the name. |
| ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); |
| TypoCorrection corrected = |
| CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]), |
| lookupKind, S, nullptr, CCC, CTK_ErrorRecovery); |
| if (corrected) { |
| // Did we find a protocol? |
| if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { |
| diagnoseTypo(corrected, |
| PDiag(diag::err_undeclared_protocol_suggest) |
| << identifiers[i]); |
| lookupKind = LookupObjCProtocolName; |
| protocols[i] = proto; |
| ++numProtocolsResolved; |
| continue; |
| } |
| |
| // Did we find a type? |
| if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { |
| diagnoseTypo(corrected, |
| PDiag(diag::err_unknown_typename_suggest) |
| << identifiers[i]); |
| lookupKind = LookupOrdinaryName; |
| typeDecls[i] = typeDecl; |
| ++numTypeDeclsResolved; |
| continue; |
| } |
| |
| // Did we find an Objective-C class? |
| if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
| diagnoseTypo(corrected, |
| PDiag(diag::err_unknown_type_or_class_name_suggest) |
| << identifiers[i] << true); |
| lookupKind = LookupOrdinaryName; |
| typeDecls[i] = objcClass; |
| ++numTypeDeclsResolved; |
| continue; |
| } |
| } |
| |
| // We couldn't find anything. |
| Diag(identifierLocs[i], |
| (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing |
| : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol |
| : diag::err_unknown_typename)) |
| << identifiers[i]; |
| protocols.clear(); |
| typeArgs.clear(); |
| return; |
| } |
| |
| // If all of the names were (corrected to) protocols, these were |
| // protocol qualifiers. |
| if (numProtocolsResolved == identifiers.size()) |
| return resolvedAsProtocols(); |
| |
| // Otherwise, all of the names were (corrected to) types. |
| assert(numTypeDeclsResolved == identifiers.size() && "Not all types?"); |
| return resolvedAsTypeDecls(); |
| } |
| |
| /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
| /// a class method in its extension. |
| /// |
| void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
| ObjCInterfaceDecl *ID) { |
| if (!ID) |
| return; // Possibly due to previous error |
| |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
| for (auto *MD : ID->methods()) |
| MethodMap[MD->getSelector()] = MD; |
| |
| if (MethodMap.empty()) |
| return; |
| for (const auto *Method : CAT->methods()) { |
| const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
| if (PrevMethod && |
| (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && |
| !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| } |
| |
| /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; |
| Sema::DeclGroupPtrTy |
| Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, |
| ArrayRef<IdentifierLocPair> IdentList, |
| const ParsedAttributesView &attrList) { |
| SmallVector<Decl *, 8> DeclsInGroup; |
| for (const IdentifierLocPair &IdentPair : IdentList) { |
| IdentifierInfo *Ident = IdentPair.first; |
| ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second, |
| forRedeclarationInCurContext()); |
| ObjCProtocolDecl *PDecl |
| = ObjCProtocolDecl::Create(Context, CurContext, Ident, |
| IdentPair.second, AtProtocolLoc, |
| PrevDecl); |
| |
| PushOnScopeChains(PDecl, TUScope); |
| CheckObjCDeclScope(PDecl); |
| |
| ProcessDeclAttributeList(TUScope, PDecl, attrList); |
| AddPragmaAttributes(TUScope, PDecl); |
| |
| if (PrevDecl) |
| mergeDeclAttributes(PDecl, PrevDecl); |
| |
| DeclsInGroup.push_back(PDecl); |
| } |
| |
| return BuildDeclaratorGroup(DeclsInGroup); |
| } |
| |
| Decl *Sema::ActOnStartCategoryInterface( |
| SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
| SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
| IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
| Decl *const *ProtoRefs, unsigned NumProtoRefs, |
| const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
| const ParsedAttributesView &AttrList) { |
| ObjCCategoryDecl *CDecl; |
| ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); |
| |
| /// Check that class of this category is already completely declared. |
| |
| if (!IDecl |
| || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
| diag::err_category_forward_interface, |
| CategoryName == nullptr)) { |
| // Create an invalid ObjCCategoryDecl to serve as context for |
| // the enclosing method declarations. We mark the decl invalid |
| // to make it clear that this isn't a valid AST. |
| CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, |
| ClassLoc, CategoryLoc, CategoryName, |
| IDecl, typeParamList); |
| CDecl->setInvalidDecl(); |
| CurContext->addDecl(CDecl); |
| |
| if (!IDecl) |
| Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
| return ActOnObjCContainerStartDefinition(CDecl); |
| } |
| |
| if (!CategoryName && IDecl->getImplementation()) { |
| Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; |
| Diag(IDecl->getImplementation()->getLocation(), |
| diag::note_implementation_declared); |
| } |
| |
| if (CategoryName) { |
| /// Check for duplicate interface declaration for this category |
| if (ObjCCategoryDecl *Previous |
| = IDecl->FindCategoryDeclaration(CategoryName)) { |
| // Class extensions can be declared multiple times, categories cannot. |
| Diag(CategoryLoc, diag::warn_dup_category_def) |
| << ClassName << CategoryName; |
| Diag(Previous->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| // If we have a type parameter list, check it. |
| if (typeParamList) { |
| if (auto prevTypeParamList = IDecl->getTypeParamList()) { |
| if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList, |
| CategoryName |
| ? TypeParamListContext::Category |
| : TypeParamListContext::Extension)) |
| typeParamList = nullptr; |
| } else { |
| Diag(typeParamList->getLAngleLoc(), |
| diag::err_objc_parameterized_category_nonclass) |
| << (CategoryName != nullptr) |
| << ClassName |
| << typeParamList->getSourceRange(); |
| |
| typeParamList = nullptr; |
| } |
| } |
| |
| CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, |
| ClassLoc, CategoryLoc, CategoryName, IDecl, |
| typeParamList); |
| // FIXME: PushOnScopeChains? |
| CurContext->addDecl(CDecl); |
| |
| // Process the attributes before looking at protocols to ensure that the |
| // availability attribute is attached to the category to provide availability |
| // checking for protocol uses. |
| ProcessDeclAttributeList(TUScope, CDecl, AttrList); |
| AddPragmaAttributes(TUScope, CDecl); |
| |
| if (NumProtoRefs) { |
| diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs, |
| NumProtoRefs, ProtoLocs); |
| CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, |
| ProtoLocs, Context); |
| // Protocols in the class extension belong to the class. |
| if (CDecl->IsClassExtension()) |
| IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, |
| NumProtoRefs, Context); |
| } |
| |
| CheckObjCDeclScope(CDecl); |
| return ActOnObjCContainerStartDefinition(CDecl); |
| } |
| |
| /// ActOnStartCategoryImplementation - Perform semantic checks on the |
| /// category implementation declaration and build an ObjCCategoryImplDecl |
| /// object. |
| Decl *Sema::ActOnStartCategoryImplementation( |
| SourceLocation AtCatImplLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *CatName, SourceLocation CatLoc, |
| const ParsedAttributesView &Attrs) { |
| ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); |
| ObjCCategoryDecl *CatIDecl = nullptr; |
| if (IDecl && IDecl->hasDefinition()) { |
| CatIDecl = IDecl->FindCategoryDeclaration(CatName); |
| if (!CatIDecl) { |
| // Category @implementation with no corresponding @interface. |
| // Create and install one. |
| CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, |
| ClassLoc, CatLoc, |
| CatName, IDecl, |
| /*typeParamList=*/nullptr); |
| CatIDecl->setImplicit(); |
| } |
| } |
| |
| ObjCCategoryImplDecl *CDecl = |
| ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, |
| ClassLoc, AtCatImplLoc, CatLoc); |
| /// Check that class of this category is already completely declared. |
| if (!IDecl) { |
| Diag(ClassLoc, diag::err_undef_interface) << ClassName; |
| CDecl->setInvalidDecl(); |
| } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
| diag::err_undef_interface)) { |
| CDecl->setInvalidDecl(); |
| } |
| |
| ProcessDeclAttributeList(TUScope, CDecl, Attrs); |
| AddPragmaAttributes(TUScope, CDecl); |
| |
| // FIXME: PushOnScopeChains? |
| CurContext->addDecl(CDecl); |
| |
| // If the interface has the objc_runtime_visible attribute, we |
| // cannot implement a category for it. |
| if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { |
| Diag(ClassLoc, diag::err_objc_runtime_visible_category) |
| << IDecl->getDeclName(); |
| } |
| |
| /// Check that CatName, category name, is not used in another implementation. |
| if (CatIDecl) { |
| if (CatIDecl->getImplementation()) { |
| Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName |
| << CatName; |
| Diag(CatIDecl->getImplementation()->getLocation(), |
| diag::note_previous_definition); |
| CDecl->setInvalidDecl(); |
| } else { |
| CatIDecl->setImplementation(CDecl); |
| // Warn on implementating category of deprecated class under |
| // -Wdeprecated-implementations flag. |
| DiagnoseObjCImplementedDeprecations(*this, CatIDecl, |
| CDecl->getLocation()); |
| } |
| } |
| |
| CheckObjCDeclScope(CDecl); |
| return ActOnObjCContainerStartDefinition(CDecl); |
| } |
| |
| Decl *Sema::ActOnStartClassImplementation( |
| SourceLocation AtClassImplLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *SuperClassname, |
| SourceLocation SuperClassLoc, |
| const ParsedAttributesView &Attrs) { |
| ObjCInterfaceDecl *IDecl = nullptr; |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl |
| = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { |
| // FIXME: This will produce an error if the definition of the interface has |
| // been imported from a module but is not visible. |
| RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), |
| diag::warn_undef_interface); |
| } else { |
| // We did not find anything with the name ClassName; try to correct for |
| // typos in the class name. |
| ObjCInterfaceValidatorCCC CCC{}; |
| TypoCorrection Corrected = |
| CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc), |
| LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError); |
| if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
| // Suggest the (potentially) correct interface name. Don't provide a |
| // code-modification hint or use the typo name for recovery, because |
| // this is just a warning. The program may actually be correct. |
| diagnoseTypo(Corrected, |
| PDiag(diag::warn_undef_interface_suggest) << ClassName, |
| /*ErrorRecovery*/false); |
| } else { |
| Diag(ClassLoc, diag::warn_undef_interface) << ClassName; |
| } |
| } |
| |
| // Check that super class name is valid class name |
| ObjCInterfaceDecl *SDecl = nullptr; |
| if (SuperClassname) { |
| // Check if a different kind of symbol declared in this scope. |
| PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, |
| LookupOrdinaryName); |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| Diag(SuperClassLoc, diag::err_redefinition_different_kind) |
| << SuperClassname; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else { |
| SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| if (SDecl && !SDecl->hasDefinition()) |
| SDecl = nullptr; |
| if (!SDecl) |
| Diag(SuperClassLoc, diag::err_undef_superclass) |
| << SuperClassname << ClassName; |
| else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { |
| // This implementation and its interface do not have the same |
| // super class. |
| Diag(SuperClassLoc, diag::err_conflicting_super_class) |
| << SDecl->getDeclName(); |
| Diag(SDecl->getLocation(), diag::note_previous_definition); |
| } |
| } |
| } |
| |
| if (!IDecl) { |
| // Legacy case of @implementation with no corresponding @interface. |
| // Build, chain & install the interface decl into the identifier. |
| |
| // FIXME: Do we support attributes on the @implementation? If so we should |
| // copy them over. |
| IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, |
| ClassName, /*typeParamList=*/nullptr, |
| /*PrevDecl=*/nullptr, ClassLoc, |
| true); |
| AddPragmaAttributes(TUScope, IDecl); |
| IDecl->startDefinition(); |
| if (SDecl) { |
| IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( |
| Context.getObjCInterfaceType(SDecl), |
| SuperClassLoc)); |
| IDecl->setEndOfDefinitionLoc(SuperClassLoc); |
| } else { |
| IDecl->setEndOfDefinitionLoc(ClassLoc); |
| } |
| |
| PushOnScopeChains(IDecl, TUScope); |
| } else { |
| // Mark the interface as being completed, even if it was just as |
| // @class ....; |
| // declaration; the user cannot reopen it. |
| if (!IDecl->hasDefinition()) |
| IDecl->startDefinition(); |
| } |
| |
| ObjCImplementationDecl* IMPDecl = |
| ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, |
| ClassLoc, AtClassImplLoc, SuperClassLoc); |
| |
| ProcessDeclAttributeList(TUScope, IMPDecl, Attrs); |
| AddPragmaAttributes(TUScope, IMPDecl); |
| |
| if (CheckObjCDeclScope(IMPDecl)) |
| return ActOnObjCContainerStartDefinition(IMPDecl); |
| |
| // Check that there is no duplicate implementation of this class. |
| if (IDecl->getImplementation()) { |
| // FIXME: Don't leak everything! |
| Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; |
| Diag(IDecl->getImplementation()->getLocation(), |
| diag::note_previous_definition); |
| IMPDecl->setInvalidDecl(); |
| } else { // add it to the list. |
| IDecl->setImplementation(IMPDecl); |
| PushOnScopeChains(IMPDecl, TUScope); |
| // Warn on implementating deprecated class under |
| // -Wdeprecated-implementations flag. |
| DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation()); |
| } |
| |
| // If the superclass has the objc_runtime_visible attribute, we |
| // cannot implement a subclass of it. |
| if (IDecl->getSuperClass() && |
| IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { |
| Diag(ClassLoc, diag::err_objc_runtime_visible_subclass) |
| << IDecl->getDeclName() |
| << IDecl->getSuperClass()->getDeclName(); |
| } |
| |
| return ActOnObjCContainerStartDefinition(IMPDecl); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { |
| SmallVector<Decl *, 64> DeclsInGroup; |
| DeclsInGroup.reserve(Decls.size() + 1); |
| |
| for (unsigned i = 0, e = Decls.size(); i != e; ++i) { |
| Decl *Dcl = Decls[i]; |
| if (!Dcl) |
| continue; |
| if (Dcl->getDeclContext()->isFileContext()) |
| Dcl->setTopLevelDeclInObjCContainer(); |
| DeclsInGroup.push_back(Dcl); |
| } |
| |
| DeclsInGroup.push_back(ObjCImpDecl); |
| |
| return BuildDeclaratorGroup(DeclsInGroup); |
| } |
| |
| void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
| ObjCIvarDecl **ivars, unsigned numIvars, |
| SourceLocation RBrace) { |
| assert(ImpDecl && "missing implementation decl"); |
| ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
| if (!IDecl) |
| return; |
| /// Check case of non-existing \@interface decl. |
| /// (legacy objective-c \@implementation decl without an \@interface decl). |
| /// Add implementations's ivar to the synthesize class's ivar list. |
| if (IDecl->isImplicitInterfaceDecl()) { |
| IDecl->setEndOfDefinitionLoc(RBrace); |
| // Add ivar's to class's DeclContext. |
| for (unsigned i = 0, e = numIvars; i != e; ++i) { |
| ivars[i]->setLexicalDeclContext(ImpDecl); |
| IDecl->makeDeclVisibleInContext(ivars[i]); |
| ImpDecl->addDecl(ivars[i]); |
| } |
| |
| return; |
| } |
| // If implementation has empty ivar list, just return. |
| if (numIvars == 0) |
| return; |
| |
| assert(ivars && "missing @implementation ivars"); |
| if (LangOpts.ObjCRuntime.isNonFragile()) { |
| if (ImpDecl->getSuperClass()) |
| Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); |
| for (unsigned i = 0; i < numIvars; i++) { |
| ObjCIvarDecl* ImplIvar = ivars[i]; |
| if (const ObjCIvarDecl *ClsIvar = |
| IDecl->getIvarDecl(ImplIvar->getIdentifier())) { |
| Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| // Check class extensions (unnamed categories) for duplicate ivars. |
| for (const auto *CDecl : IDecl->visible_extensions()) { |
| if (const ObjCIvarDecl *ClsExtIvar = |
| CDecl->getIvarDecl(ImplIvar->getIdentifier())) { |
| Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); |
| Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| } |
| // Instance ivar to Implementation's DeclContext. |
| ImplIvar->setLexicalDeclContext(ImpDecl); |
| IDecl->makeDeclVisibleInContext(ImplIvar); |
| ImpDecl->addDecl(ImplIvar); |
| } |
| return; |
| } |
| // Check interface's Ivar list against those in the implementation. |
| // names and types must match. |
| // |
| unsigned j = 0; |
| ObjCInterfaceDecl::ivar_iterator |
| IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
| for (; numIvars > 0 && IVI != IVE; ++IVI) { |
| ObjCIvarDecl* ImplIvar = ivars[j++]; |
| ObjCIvarDecl* ClsIvar = *IVI; |
| assert (ImplIvar && "missing implementation ivar"); |
| assert (ClsIvar && "missing class ivar"); |
| |
| // First, make sure the types match. |
| if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) |
| << ImplIvar->getIdentifier() |
| << ImplIvar->getType() << ClsIvar->getType(); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && |
| ImplIvar->getBitWidthValue(Context) != |
| ClsIvar->getBitWidthValue(Context)) { |
| Diag(ImplIvar->getBitWidth()->getBeginLoc(), |
| diag::err_conflicting_ivar_bitwidth) |
| << ImplIvar->getIdentifier(); |
| Diag(ClsIvar->getBitWidth()->getBeginLoc(), |
| diag::note_previous_definition); |
| } |
| // Make sure the names are identical. |
| if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) |
| << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| } |
| --numIvars; |
| } |
| |
| if (numIvars > 0) |
| Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); |
| else if (IVI != IVE) |
| Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); |
| } |
| |
| static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, |
| ObjCMethodDecl *method, |
| bool &IncompleteImpl, |
| unsigned DiagID, |
| NamedDecl *NeededFor = nullptr) { |
| // No point warning no definition of method which is 'unavailable'. |
| if (method->getAvailability() == AR_Unavailable) |
| return; |
| |
| // FIXME: For now ignore 'IncompleteImpl'. |
| // Previously we grouped all unimplemented methods under a single |
| // warning, but some users strongly voiced that they would prefer |
| // separate warnings. We will give that approach a try, as that |
| // matches what we do with protocols. |
| { |
| const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); |
| B << method; |
| if (NeededFor) |
| B << NeededFor; |
| } |
| |
| // Issue a note to the original declaration. |
| SourceLocation MethodLoc = method->getBeginLoc(); |
| if (MethodLoc.isValid()) |
| S.Diag(MethodLoc, diag::note_method_declared_at) << method; |
| } |
| |
| /// Determines if type B can be substituted for type A. Returns true if we can |
| /// guarantee that anything that the user will do to an object of type A can |
| /// also be done to an object of type B. This is trivially true if the two |
| /// types are the same, or if B is a subclass of A. It becomes more complex |
| /// in cases where protocols are involved. |
| /// |
| /// Object types in Objective-C describe the minimum requirements for an |
| /// object, rather than providing a complete description of a type. For |
| /// example, if A is a subclass of B, then B* may refer to an instance of A. |
| /// The principle of substitutability means that we may use an instance of A |
| /// anywhere that we may use an instance of B - it will implement all of the |
| /// ivars of B and all of the methods of B. |
| /// |
| /// This substitutability is important when type checking methods, because |
| /// the implementation may have stricter type definitions than the interface. |
| /// The interface specifies minimum requirements, but the implementation may |
| /// have more accurate ones. For example, a method may privately accept |
| /// instances of B, but only publish that it accepts instances of A. Any |
| /// object passed to it will be type checked against B, and so will implicitly |
| /// by a valid A*. Similarly, a method may return a subclass of the class that |
| /// it is declared as returning. |
| /// |
| /// This is most important when considering subclassing. A method in a |
| /// subclass must accept any object as an argument that its superclass's |
| /// implementation accepts. It may, however, accept a more general type |
| /// without breaking substitutability (i.e. you can still use the subclass |
| /// anywhere that you can use the superclass, but not vice versa). The |
| /// converse requirement applies to return types: the return type for a |
| /// subclass method must be a valid object of the kind that the superclass |
| /// advertises, but it may be specified more accurately. This avoids the need |
| /// for explicit down-casting by callers. |
| /// |
| /// Note: This is a stricter requirement than for assignment. |
| static bool isObjCTypeSubstitutable(ASTContext &Context, |
| const ObjCObjectPointerType *A, |
| const ObjCObjectPointerType *B, |
| bool rejectId) { |
| // Reject a protocol-unqualified id. |
| if (rejectId && B->isObjCIdType()) return false; |
| |
| // If B is a qualified id, then A must also be a qualified id and it must |
| // implement all of the protocols in B. It may not be a qualified class. |
| // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
| // stricter definition so it is not substitutable for id<A>. |
| if (B->isObjCQualifiedIdType()) { |
| return A->isObjCQualifiedIdType() && |
| Context.ObjCQualifiedIdTypesAreCompatible(A, B, false); |
| } |
| |
| /* |
| // id is a special type that bypasses type checking completely. We want a |
| // warning when it is used in one place but not another. |
| if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
| |
| |
| // If B is a qualified id, then A must also be a qualified id (which it isn't |
| // if we've got this far) |
| if (B->isObjCQualifiedIdType()) return false; |
| */ |
| |
| // Now we know that A and B are (potentially-qualified) class types. The |
| // normal rules for assignment apply. |
| return Context.canAssignObjCInterfaces(A, B); |
| } |
| |
| static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
| return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
| } |
| |
| /// Determine whether two set of Objective-C declaration qualifiers conflict. |
| static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, |
| Decl::ObjCDeclQualifier y) { |
| return (x & ~Decl::OBJC_TQ_CSNullability) != |
| (y & ~Decl::OBJC_TQ_CSNullability); |
| } |
| |
| static bool CheckMethodOverrideReturn(Sema &S, |
| ObjCMethodDecl *MethodImpl, |
| ObjCMethodDecl *MethodDecl, |
| bool IsProtocolMethodDecl, |
| bool IsOverridingMode, |
| bool Warn) { |
| if (IsProtocolMethodDecl && |
| objcModifiersConflict(MethodDecl->getObjCDeclQualifier(), |
| MethodImpl->getObjCDeclQualifier())) { |
| if (Warn) { |
| S.Diag(MethodImpl->getLocation(), |
| (IsOverridingMode |
| ? diag::warn_conflicting_overriding_ret_type_modifiers |
| : diag::warn_conflicting_ret_type_modifiers)) |
| << MethodImpl->getDeclName() |
| << MethodImpl->getReturnTypeSourceRange(); |
| S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) |
| << MethodDecl->getReturnTypeSourceRange(); |
| } |
| else |
| return false; |
| } |
| if (Warn && IsOverridingMode && |
| !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
| !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(), |
| MethodDecl->getReturnType(), |
| false)) { |
| auto nullabilityMethodImpl = |
| *MethodImpl->getReturnType()->getNullability(S.Context); |
| auto nullabilityMethodDecl = |
| *MethodDecl->getReturnType()->getNullability(S.Context); |
| S.Diag(MethodImpl->getLocation(), |
| diag::warn_conflicting_nullability_attr_overriding_ret_types) |
| << DiagNullabilityKind( |
| nullabilityMethodImpl, |
| ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)) |
| << DiagNullabilityKind( |
| nullabilityMethodDecl, |
| ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)); |
| S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
| } |
| |
| if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), |
| MethodDecl->getReturnType())) |
| return true; |
| if (!Warn) |
| return false; |
| |
| unsigned DiagID = |
| IsOverridingMode ? diag::warn_conflicting_overriding_ret_types |
| : diag::warn_conflicting_ret_types; |
| |
| // Mismatches between ObjC pointers go into a different warning |
| // category, and sometimes they're even completely whitelisted. |
| if (const ObjCObjectPointerType *ImplPtrTy = |
| MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *IfacePtrTy = |
| MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
| // Allow non-matching return types as long as they don't violate |
| // the principle of substitutability. Specifically, we permit |
| // return types that are subclasses of the declared return type, |
| // or that are more-qualified versions of the declared type. |
| if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) |
| return false; |
| |
| DiagID = |
| IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types |
| : diag::warn_non_covariant_ret_types; |
| } |
| } |
| |
| S.Diag(MethodImpl->getLocation(), DiagID) |
| << MethodImpl->getDeclName() << MethodDecl->getReturnType() |
| << MethodImpl->getReturnType() |
| << MethodImpl->getReturnTypeSourceRange(); |
| S.Diag(MethodDecl->getLocation(), IsOverridingMode |
| ? diag::note_previous_declaration |
| : diag::note_previous_definition) |
| << MethodDecl->getReturnTypeSourceRange(); |
| return false; |
| } |
| |
| static bool CheckMethodOverrideParam(Sema &S, |
| ObjCMethodDecl *MethodImpl, |
| ObjCMethodDecl *MethodDecl, |
| ParmVarDecl *ImplVar, |
| ParmVarDecl *IfaceVar, |
| bool IsProtocolMethodDecl, |
| bool IsOverridingMode, |
| bool Warn) { |
| if (IsProtocolMethodDecl && |
| objcModifiersConflict(ImplVar->getObjCDeclQualifier(), |
| IfaceVar->getObjCDeclQualifier())) { |
| if (Warn) { |
| if (IsOverridingMode) |
| S.Diag(ImplVar->getLocation(), |
| diag::warn_conflicting_overriding_param_modifiers) |
| << getTypeRange(ImplVar->getTypeSourceInfo()) |
| << MethodImpl->getDeclName(); |
| else S.Diag(ImplVar->getLocation(), |
| diag::warn_conflicting_param_modifiers) |
| << getTypeRange(ImplVar->getTypeSourceInfo()) |
| << MethodImpl->getDeclName(); |
| S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) |
| << getTypeRange(IfaceVar->getTypeSourceInfo()); |
| } |
| else |
| return false; |
| } |
| |
| QualType ImplTy = ImplVar->getType(); |
| QualType IfaceTy = IfaceVar->getType(); |
| if (Warn && IsOverridingMode && |
| !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) && |
| !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) { |
| S.Diag(ImplVar->getLocation(), |
| diag::warn_conflicting_nullability_attr_overriding_param_types) |
| << DiagNullabilityKind( |
| *ImplTy->getNullability(S.Context), |
| ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)) |
| << DiagNullabilityKind( |
| *IfaceTy->getNullability(S.Context), |
| ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)); |
| S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration); |
| } |
| if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) |
| return true; |
| |
| if (!Warn) |
| return false; |
| unsigned DiagID = |
| IsOverridingMode ? diag::warn_conflicting_overriding_param_types |
| : diag::warn_conflicting_param_types; |
| |
| // Mismatches between ObjC pointers go into a different warning |
| // category, and sometimes they're even completely whitelisted. |
| if (const ObjCObjectPointerType *ImplPtrTy = |
| ImplTy->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *IfacePtrTy = |
| IfaceTy->getAs<ObjCObjectPointerType>()) { |
| // Allow non-matching argument types as long as they don't |
| // violate the principle of substitutability. Specifically, the |
| // implementation must accept any objects that the superclass |
| // accepts, however it may also accept others. |
| if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) |
| return false; |
| |
| DiagID = |
| IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types |
| : diag::warn_non_contravariant_param_types; |
| } |
| } |
| |
| S.Diag(ImplVar->getLocation(), DiagID) |
| << getTypeRange(ImplVar->getTypeSourceInfo()) |
| << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
| S.Diag(IfaceVar->getLocation(), |
| (IsOverridingMode ? diag::note_previous_declaration |
| : diag::note_previous_definition)) |
| << getTypeRange(IfaceVar->getTypeSourceInfo()); |
| return false; |
| } |
| |
| /// In ARC, check whether the conventional meanings of the two methods |
| /// match. If they don't, it's a hard error. |
| static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
| ObjCMethodDecl *decl) { |
| ObjCMethodFamily implFamily = impl->getMethodFamily(); |
| ObjCMethodFamily declFamily = decl->getMethodFamily(); |
| if (implFamily == declFamily) return false; |
| |
| // Since conventions are sorted by selector, the only possibility is |
| // that the types differ enough to cause one selector or the other |
| // to fall out of the family. |
| assert(implFamily == OMF_None || declFamily == OMF_None); |
| |
| // No further diagnostics required on invalid declarations. |
| if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
| |
| const ObjCMethodDecl *unmatched = impl; |
| ObjCMethodFamily family = declFamily; |
| unsigned errorID = diag::err_arc_lost_method_convention; |
| unsigned noteID = diag::note_arc_lost_method_convention; |
| if (declFamily == OMF_None) { |
| unmatched = decl; |
| family = implFamily; |
| errorID = diag::err_arc_gained_method_convention; |
| noteID = diag::note_arc_gained_method_convention; |
| } |
| |
| // Indexes into a %select clause in the diagnostic. |
| enum FamilySelector { |
| F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
| }; |
| FamilySelector familySelector = FamilySelector(); |
| |
| switch (family) { |
| case OMF_None: llvm_unreachable("logic error, no method convention"); |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_dealloc: |
| case OMF_finalize: |
| case OMF_retainCount: |
| case OMF_self: |
| case OMF_initialize: |
| case OMF_performSelector: |
| // Mismatches for these methods don't change ownership |
| // conventions, so we don't care. |
| return false; |
| |
| case OMF_init: familySelector = F_init; break; |
| case OMF_alloc: familySelector = F_alloc; break; |
| case OMF_copy: familySelector = F_copy; break; |
| case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
| case OMF_new: familySelector = F_new; break; |
| } |
| |
| enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
| ReasonSelector reasonSelector; |
| |
| // The only reason these methods don't fall within their families is |
| // due to unusual result types. |
| if (unmatched->getReturnType()->isObjCObjectPointerType()) { |
| reasonSelector = R_UnrelatedReturn; |
| } else { |
| reasonSelector = R_NonObjectReturn; |
| } |
| |
| S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); |
| S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); |
| |
| return true; |
| } |
| |
| void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
| ObjCMethodDecl *MethodDecl, |
| bool IsProtocolMethodDecl) { |
| if (getLangOpts().ObjCAutoRefCount && |
| checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) |
| return; |
| |
| CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, |
| IsProtocolMethodDecl, false, |
| true); |
| |
| for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
| IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
| EF = MethodDecl->param_end(); |
| IM != EM && IF != EF; ++IM, ++IF) { |
| CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, |
| IsProtocolMethodDecl, false, true); |
| } |
| |
| if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
| Diag(ImpMethodDecl->getLocation(), |
| diag::warn_conflicting_variadic); |
| Diag(MethodDecl->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, |
| ObjCMethodDecl *Overridden, |
| bool IsProtocolMethodDecl) { |
| |
| CheckMethodOverrideReturn(*this, Method, Overridden, |
| IsProtocolMethodDecl, true, |
| true); |
| |
| for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), |
| IF = Overridden->param_begin(), EM = Method->param_end(), |
| EF = Overridden->param_end(); |
| IM != EM && IF != EF; ++IM, ++IF) { |
| CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, |
| IsProtocolMethodDecl, true, true); |
| } |
| |
| if (Method->isVariadic() != Overridden->isVariadic()) { |
| Diag(Method->getLocation(), |
| diag::warn_conflicting_overriding_variadic); |
| Diag(Overridden->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| /// WarnExactTypedMethods - This routine issues a warning if method |
| /// implementation declaration matches exactly that of its declaration. |
| void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
| ObjCMethodDecl *MethodDecl, |
| bool IsProtocolMethodDecl) { |
| // don't issue warning when protocol method is optional because primary |
| // class is not required to implement it and it is safe for protocol |
| // to implement it. |
| if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) |
| return; |
| // don't issue warning when primary class's method is |
| // depecated/unavailable. |
| if (MethodDecl->hasAttr<UnavailableAttr>() || |
| MethodDecl->hasAttr<DeprecatedAttr>()) |
| return; |
| |
| bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, |
| IsProtocolMethodDecl, false, false); |
| if (match) |
| for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
| IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
| EF = MethodDecl->param_end(); |
| IM != EM && IF != EF; ++IM, ++IF) { |
| match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, |
| *IM, *IF, |
| IsProtocolMethodDecl, false, false); |
| if (!match) |
| break; |
| } |
| if (match) |
| match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); |
| if (match) |
| match = !(MethodDecl->isClassMethod() && |
| MethodDecl->getSelector() == GetNullarySelector("load", Context)); |
| |
| if (match) { |
| Diag(ImpMethodDecl->getLocation(), |
| diag::warn_category_method_impl_match); |
| Diag(MethodDecl->getLocation(), diag::note_method_declared_at) |
| << MethodDecl->getDeclName(); |
| } |
| } |
| |
| /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
| /// improve the efficiency of selector lookups and type checking by associating |
| /// with each protocol / interface / category the flattened instance tables. If |
| /// we used an immutable set to keep the table then it wouldn't add significant |
| /// memory cost and it would be handy for lookups. |
| |
| typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; |
| typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; |
| |
| static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, |
| ProtocolNameSet &PNS) { |
| if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) |
| PNS.insert(PDecl->getIdentifier()); |
| for (const auto *PI : PDecl->protocols()) |
| findProtocolsWithExplicitImpls(PI, PNS); |
| } |
| |
| /// Recursively populates a set with all conformed protocols in a class |
| /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' |
| /// attribute. |
| static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, |
| ProtocolNameSet &PNS) { |
| if (!Super) |
| return; |
| |
| for (const auto *I : Super->all_referenced_protocols()) |
| findProtocolsWithExplicitImpls(I, PNS); |
| |
| findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); |
| } |
| |
| /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
| /// Declared in protocol, and those referenced by it. |
| static void CheckProtocolMethodDefs(Sema &S, |
| SourceLocation ImpLoc, |
| ObjCProtocolDecl *PDecl, |
| bool& IncompleteImpl, |
| const Sema::SelectorSet &InsMap, |
| const Sema::SelectorSet &ClsMap, |
| ObjCContainerDecl *CDecl, |
| LazyProtocolNameSet &ProtocolsExplictImpl) { |
| ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); |
| ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() |
| : dyn_cast<ObjCInterfaceDecl>(CDecl); |
| assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); |
| |
| ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
| ObjCInterfaceDecl *NSIDecl = nullptr; |
| |
| // If this protocol is marked 'objc_protocol_requires_explicit_implementation' |
| // then we should check if any class in the super class hierarchy also |
| // conforms to this protocol, either directly or via protocol inheritance. |
| // If so, we can skip checking this protocol completely because we |
| // know that a parent class already satisfies this protocol. |
| // |
| // Note: we could generalize this logic for all protocols, and merely |
| // add the limit on looking at the super class chain for just |
| // specially marked protocols. This may be a good optimization. This |
| // change is restricted to 'objc_protocol_requires_explicit_implementation' |
| // protocols for now for controlled evaluation. |
| if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { |
| if (!ProtocolsExplictImpl) { |
| ProtocolsExplictImpl.reset(new ProtocolNameSet); |
| findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); |
| } |
| if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != |
| ProtocolsExplictImpl->end()) |
| return; |
| |
| // If no super class conforms to the protocol, we should not search |
| // for methods in the super class to implicitly satisfy the protocol. |
| Super = nullptr; |
| } |
| |
| if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { |
| // check to see if class implements forwardInvocation method and objects |
| // of this class are derived from 'NSProxy' so that to forward requests |
| // from one object to another. |
| // Under such conditions, which means that every method possible is |
| // implemented in the class, we should not issue "Method definition not |
| // found" warnings. |
| // FIXME: Use a general GetUnarySelector method for this. |
| IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); |
| Selector fISelector = S.Context.Selectors.getSelector(1, &II); |
| if (InsMap.count(fISelector)) |
| // Is IDecl derived from 'NSProxy'? If so, no instance methods |
| // need be implemented in the implementation. |
| NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); |
| } |
| |
| // If this is a forward protocol declaration, get its definition. |
| if (!PDecl->isThisDeclarationADefinition() && |
| PDecl->getDefinition()) |
| PDecl = PDecl->getDefinition(); |
| |
| // If a method lookup fails locally we still need to look and see if |
| // the method was implemented by a base class or an inherited |
| // protocol. This lookup is slow, but occurs rarely in correct code |
| // and otherwise would terminate in a warning. |
| |
| // check unimplemented instance methods. |
| if (!NSIDecl) |
| for (auto *method : PDecl->instance_methods()) { |
| if (method->getImplementationControl() != ObjCMethodDecl::Optional && |
| !method->isPropertyAccessor() && |
| !InsMap.count(method->getSelector()) && |
| (!Super || !Super->lookupMethod(method->getSelector(), |
| true /* instance */, |
| false /* shallowCategory */, |
| true /* followsSuper */, |
| nullptr /* category */))) { |
| // If a method is not implemented in the category implementation but |
| // has been declared in its primary class, superclass, |
| // or in one of their protocols, no need to issue the warning. |
| // This is because method will be implemented in the primary class |
| // or one of its super class implementation. |
| |
| // Ugly, but necessary. Method declared in protocol might have |
| // have been synthesized due to a property declared in the class which |
| // uses the protocol. |
| if (ObjCMethodDecl *MethodInClass = |
| IDecl->lookupMethod(method->getSelector(), |
| true /* instance */, |
| true /* shallowCategoryLookup */, |
| false /* followSuper */)) |
| if (C || MethodInClass->isPropertyAccessor()) |
| continue; |
| unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| if (!S.Diags.isIgnored(DIAG, ImpLoc)) { |
| WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, |
| PDecl); |
| } |
| } |
| } |
| // check unimplemented class methods |
| for (auto *method : PDecl->class_methods()) { |
| if (method->getImplementationControl() != ObjCMethodDecl::Optional && |
| !ClsMap.count(method->getSelector()) && |
| (!Super || !Super->lookupMethod(method->getSelector(), |
| false /* class method */, |
| false /* shallowCategoryLookup */, |
| true /* followSuper */, |
| nullptr /* category */))) { |
| // See above comment for instance method lookups. |
| if (C && IDecl->lookupMethod(method->getSelector(), |
| false /* class */, |
| true /* shallowCategoryLookup */, |
| false /* followSuper */)) |
| continue; |
| |
| unsigned DIAG = diag::warn_unimplemented_protocol_method; |
| if (!S.Diags.isIgnored(DIAG, ImpLoc)) { |
| WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); |
| } |
| } |
| } |
| // Check on this protocols's referenced protocols, recursively. |
| for (auto *PI : PDecl->protocols()) |
| CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, |
| CDecl, ProtocolsExplictImpl); |
| } |
| |
| /// MatchAllMethodDeclarations - Check methods declared in interface |
| /// or protocol against those declared in their implementations. |
| /// |
| void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, |
| const SelectorSet &ClsMap, |
| SelectorSet &InsMapSeen, |
| SelectorSet &ClsMapSeen, |
| ObjCImplDecl* IMPDecl, |
| ObjCContainerDecl* CDecl, |
| bool &IncompleteImpl, |
| bool ImmediateClass, |
| bool WarnCategoryMethodImpl) { |
| // Check and see if instance methods in class interface have been |
| // implemented in the implementation class. If so, their types match. |
| for (auto *I : CDecl->instance_methods()) { |
| if (!InsMapSeen.insert(I->getSelector()).second) |
| continue; |
| if (!I->isPropertyAccessor() && |
| !InsMap.count(I->getSelector())) { |
| if (ImmediateClass) |
| WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, |
| diag::warn_undef_method_impl); |
| continue; |
| } else { |
| ObjCMethodDecl *ImpMethodDecl = |
| IMPDecl->getInstanceMethod(I->getSelector()); |
| assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && |
| "Expected to find the method through lookup as well"); |
| // ImpMethodDecl may be null as in a @dynamic property. |
| if (ImpMethodDecl) { |
| if (!WarnCategoryMethodImpl) |
| WarnConflictingTypedMethods(ImpMethodDecl, I, |
| isa<ObjCProtocolDecl>(CDecl)); |
| else if (!I->isPropertyAccessor()) |
| WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); |
| } |
| } |
| } |
| |
| // Check and see if class methods in class interface have been |
| // implemented in the implementation class. If so, their types match. |
| for (auto *I : CDecl->class_methods()) { |
| if (!ClsMapSeen.insert(I->getSelector()).second) |
| continue; |
| if (!I->isPropertyAccessor() && |
| !ClsMap.count(I->getSelector())) { |
| if (ImmediateClass) |
| WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, |
| diag::warn_undef_method_impl); |
| } else { |
| ObjCMethodDecl *ImpMethodDecl = |
| IMPDecl->getClassMethod(I->getSelector()); |
| assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && |
| "Expected to find the method through lookup as well"); |
| // ImpMethodDecl may be null as in a @dynamic property. |
| if (ImpMethodDecl) { |
| if (!WarnCategoryMethodImpl) |
| WarnConflictingTypedMethods(ImpMethodDecl, I, |
| isa<ObjCProtocolDecl>(CDecl)); |
| else if (!I->isPropertyAccessor()) |
| WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); |
| } |
| } |
| } |
| |
| if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { |
| // Also, check for methods declared in protocols inherited by |
| // this protocol. |
| for (auto *PI : PD->protocols()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, PI, IncompleteImpl, false, |
| WarnCategoryMethodImpl); |
| } |
| |
| if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { |
| // when checking that methods in implementation match their declaration, |
| // i.e. when WarnCategoryMethodImpl is false, check declarations in class |
| // extension; as well as those in categories. |
| if (!WarnCategoryMethodImpl) { |
| for (auto *Cat : I->visible_categories()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, Cat, IncompleteImpl, |
| ImmediateClass && Cat->IsClassExtension(), |
| WarnCategoryMethodImpl); |
| } else { |
| // Also methods in class extensions need be looked at next. |
| for (auto *Ext : I->visible_extensions()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, Ext, IncompleteImpl, false, |
| WarnCategoryMethodImpl); |
| } |
| |
| // Check for any implementation of a methods declared in protocol. |
| for (auto *PI : I->all_referenced_protocols()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, PI, IncompleteImpl, false, |
| WarnCategoryMethodImpl); |
| |
| // FIXME. For now, we are not checking for exact match of methods |
| // in category implementation and its primary class's super class. |
| if (!WarnCategoryMethodImpl && I->getSuperClass()) |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, |
| I->getSuperClass(), IncompleteImpl, false); |
| } |
| } |
| |
| /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in |
| /// category matches with those implemented in its primary class and |
| /// warns each time an exact match is found. |
| void Sema::CheckCategoryVsClassMethodMatches( |
| ObjCCategoryImplDecl *CatIMPDecl) { |
| // Get category's primary class. |
| ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); |
| if (!CatDecl) |
| return; |
| ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); |
| if (!IDecl) |
| return; |
| ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); |
| SelectorSet InsMap, ClsMap; |
| |
| for (const auto *I : CatIMPDecl->instance_methods()) { |
| Selector Sel = I->getSelector(); |
| // When checking for methods implemented in the category, skip over |
| // those declared in category class's super class. This is because |
| // the super class must implement the method. |
| if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) |
| continue; |
| InsMap.insert(Sel); |
| } |
| |
| for (const auto *I : CatIMPDecl->class_methods()) { |
| Selector Sel = I->getSelector(); |
| if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) |
| continue; |
| ClsMap.insert(Sel); |
| } |
| if (InsMap.empty() && ClsMap.empty()) |
| return; |
| |
| SelectorSet InsMapSeen, ClsMapSeen; |
| bool IncompleteImpl = false; |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| CatIMPDecl, IDecl, |
| IncompleteImpl, false, |
| true /*WarnCategoryMethodImpl*/); |
| } |
| |
| void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, |
| ObjCContainerDecl* CDecl, |
| bool IncompleteImpl) { |
| SelectorSet InsMap; |
| // Check and see if instance methods in class interface have been |
| // implemented in the implementation class. |
| for (const auto *I : IMPDecl->instance_methods()) |
| InsMap.insert(I->getSelector()); |
| |
| // Add the selectors for getters/setters of @dynamic properties. |
| for (const auto *PImpl : IMPDecl->property_impls()) { |
| // We only care about @dynamic implementations. |
| if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) |
| continue; |
| |
| const auto *P = PImpl->getPropertyDecl(); |
| if (!P) continue; |
| |
| InsMap.insert(P->getGetterName()); |
| if (!P->getSetterName().isNull()) |
| InsMap.insert(P->getSetterName()); |
| } |
| |
| // Check and see if properties declared in the interface have either 1) |
| // an implementation or 2) there is a @synthesize/@dynamic implementation |
| // of the property in the @implementation. |
| if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { |
| bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && |
| LangOpts.ObjCRuntime.isNonFragile() && |
| !IDecl->isObjCRequiresPropertyDefs(); |
| DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); |
| } |
| |
| // Diagnose null-resettable synthesized setters. |
| diagnoseNullResettableSynthesizedSetters(IMPDecl); |
| |
| SelectorSet ClsMap; |
| for (const auto *I : IMPDecl->class_methods()) |
| ClsMap.insert(I->getSelector()); |
| |
| // Check for type conflict of methods declared in a class/protocol and |
| // its implementation; if any. |
| SelectorSet InsMapSeen, ClsMapSeen; |
| MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
| IMPDecl, CDecl, |
| IncompleteImpl, true); |
| |
| // check all methods implemented in category against those declared |
| // in its primary class. |
| if (ObjCCategoryImplDecl *CatDecl = |
| dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) |
| CheckCategoryVsClassMethodMatches(CatDecl); |
| |
| // Check the protocol list for unimplemented methods in the @implementation |
| // class. |
| // Check and see if class methods in class interface have been |
| // implemented in the implementation class. |
| |
| LazyProtocolNameSet ExplicitImplProtocols; |
| |
| if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { |
| for (auto *PI : I->all_referenced_protocols()) |
| CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, |
| InsMap, ClsMap, I, ExplicitImplProtocols); |
| } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
| // For extended class, unimplemented methods in its protocols will |
| // be reported in the primary class. |
| if (!C->IsClassExtension()) { |
| for (auto *P : C->protocols()) |
| CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, |
| IncompleteImpl, InsMap, ClsMap, CDecl, |
| ExplicitImplProtocols); |
| DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, |
| /*SynthesizeProperties=*/false); |
| } |
| } else |
| llvm_unreachable("invalid ObjCContainerDecl type."); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, |
| IdentifierInfo **IdentList, |
| SourceLocation *IdentLocs, |
| ArrayRef<ObjCTypeParamList *> TypeParamLists, |
| unsigned NumElts) { |
| SmallVector<Decl *, 8> DeclsInGroup; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // Check for another declaration kind with the same name. |
| NamedDecl *PrevDecl |
| = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], |
| LookupOrdinaryName, forRedeclarationInCurContext()); |
| if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { |
| // GCC apparently allows the following idiom: |
| // |
| // typedef NSObject < XCElementTogglerP > XCElementToggler; |
| // @class XCElementToggler; |
| // |
| // Here we have chosen to ignore the forward class declaration |
| // with a warning. Since this is the implied behavior. |
| TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); |
| if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
| Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| } else { |
| // a forward class declaration matching a typedef name of a class refers |
| // to the underlying class. Just ignore the forward class with a warning |
| // as this will force the intended behavior which is to lookup the |
| // typedef name. |
| if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { |
| Diag(AtClassLoc, diag::warn_forward_class_redefinition) |
| << IdentList[i]; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| } |
| } |
| |
| // Create a declaration to describe this forward declaration. |
| ObjCInterfaceDecl *PrevIDecl |
| = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); |
| |
| IdentifierInfo *ClassName = IdentList[i]; |
| if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
| // A previous decl with a different name is because of |
| // @compatibility_alias, for example: |
| // \code |
| // @class NewImage; |
| // @compatibility_alias OldImage NewImage; |
| // \endcode |
| // A lookup for 'OldImage' will return the 'NewImage' decl. |
| // |
| // In such a case use the real declaration name, instead of the alias one, |
| // otherwise we will break IdentifierResolver and redecls-chain invariants. |
| // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
| // has been aliased. |
| ClassName = PrevIDecl->getIdentifier(); |
| } |
| |
| // If this forward declaration has type parameters, compare them with the |
| // type parameters of the previous declaration. |
| ObjCTypeParamList *TypeParams = TypeParamLists[i]; |
| if (PrevIDecl && TypeParams) { |
| if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { |
| // Check for consistency with the previous declaration. |
| if (checkTypeParamListConsistency( |
| *this, PrevTypeParams, TypeParams, |
| TypeParamListContext::ForwardDeclaration)) { |
| TypeParams = nullptr; |
| } |
| } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
| // The @interface does not have type parameters. Complain. |
| Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class) |
| << ClassName |
| << TypeParams->getSourceRange(); |
| Diag(Def->getLocation(), diag::note_defined_here) |
| << ClassName; |
| |
| TypeParams = nullptr; |
| } |
| } |
| |
| ObjCInterfaceDecl *IDecl |
| = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, |
| ClassName, TypeParams, PrevIDecl, |
| IdentLocs[i]); |
| IDecl->setAtEndRange(IdentLocs[i]); |
| |
| PushOnScopeChains(IDecl, TUScope); |
| CheckObjCDeclScope(IDecl); |
| DeclsInGroup.push_back(IDecl); |
| } |
| |
| return BuildDeclaratorGroup(DeclsInGroup); |
| } |
| |
| static bool tryMatchRecordTypes(ASTContext &Context, |
| Sema::MethodMatchStrategy strategy, |
| const Type *left, const Type *right); |
| |
| static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, |
| QualType leftQT, QualType rightQT) { |
| const Type *left = |
| Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); |
| const Type *right = |
| Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); |
| |
| if (left == right) return true; |
| |
| // If we're doing a strict match, the types have to match exactly. |
| if (strategy == Sema::MMS_strict) return false; |
| |
| if (left->isIncompleteType() || right->isIncompleteType()) return false; |
| |
| // Otherwise, use this absurdly complicated algorithm to try to |
| // validate the basic, low-level compatibility of the two types. |
| |
| // As a minimum, require the sizes and alignments to match. |
| TypeInfo LeftTI = Context.getTypeInfo(left); |
| TypeInfo RightTI = Context.getTypeInfo(right); |
| if (LeftTI.Width != RightTI.Width) |
| return false; |
| |
| if (LeftTI.Align != RightTI.Align) |
| return false; |
| |
| // Consider all the kinds of non-dependent canonical types: |
| // - functions and arrays aren't possible as return and parameter types |
| |
| // - vector types of equal size can be arbitrarily mixed |
| if (isa<VectorType>(left)) return isa<VectorType>(right); |
| if (isa<VectorType>(right)) return false; |
| |
| // - references should only match references of identical type |
| // - structs, unions, and Objective-C objects must match more-or-less |
| // exactly |
| // - everything else should be a scalar |
| if (!left->isScalarType() || !right->isScalarType()) |
| return tryMatchRecordTypes(Context, strategy, left, right); |
| |
| // Make scalars agree in kind, except count bools as chars, and group |
| // all non-member pointers together. |
| Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
| Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
| if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
| if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
| if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) |
| leftSK = Type::STK_ObjCObjectPointer; |
| if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) |
| rightSK = Type::STK_ObjCObjectPointer; |
| |
| // Note that data member pointers and function member pointers don't |
| // intermix because of the size differences. |
| |
| return (leftSK == rightSK); |
| } |
| |
| static bool tryMatchRecordTypes(ASTContext &Context, |
| Sema::MethodMatchStrategy strategy, |
| const Type *lt, const Type *rt) { |
| assert(lt && rt && lt != rt); |
| |
| if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; |
| RecordDecl *left = cast<RecordType>(lt)->getDecl(); |
| RecordDecl *right = cast<RecordType>(rt)->getDecl(); |
| |
| // Require union-hood to match. |
| if (left->isUnion() != right->isUnion()) return false; |
| |
| // Require an exact match if either is non-POD. |
| if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || |
| (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) |
| return false; |
| |
| // Require size and alignment to match. |
| TypeInfo LeftTI = Context.getTypeInfo(lt); |
| TypeInfo RightTI = Context.getTypeInfo(rt); |
| if (LeftTI.Width != RightTI.Width) |
| return false; |
| |
| if (LeftTI.Align != RightTI.Align) |
| return false; |
| |
| // Require fields to match. |
| RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
| RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
| for (; li != le && ri != re; ++li, ++ri) { |
| if (!matchTypes(Context, strategy, li->getType(), ri->getType())) |
| return false; |
| } |
| return (li == le && ri == re); |
| } |
| |
| /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
| /// returns true, or false, accordingly. |
| /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
| bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
| const ObjCMethodDecl *right, |
| MethodMatchStrategy strategy) { |
| if (!matchTypes(Context, strategy, left->getReturnType(), |
| right->getReturnType())) |
| return false; |
| |
| // If either is hidden, it is not considered to match. |
| if (left->isHidden() || right->isHidden()) |
| return false; |
| |
| if (getLangOpts().ObjCAutoRefCount && |
| (left->hasAttr<NSReturnsRetainedAttr>() |
| != right->hasAttr<NSReturnsRetainedAttr>() || |
| left->hasAttr<NSConsumesSelfAttr>() |
| != right->hasAttr<NSConsumesSelfAttr>())) |
| return false; |
| |
| ObjCMethodDecl::param_const_iterator |
| li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), |
| re = right->param_end(); |
| |
| for (; li != le && ri != re; ++li, ++ri) { |
| assert(ri != right->param_end() && "Param mismatch"); |
| const ParmVarDecl *lparm = *li, *rparm = *ri; |
| |
| if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) |
| return false; |
| |
| if (getLangOpts().ObjCAutoRefCount && |
| lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, |
| ObjCMethodDecl *MethodInList) { |
| auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
| auto *MethodInListProtocol = |
| dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext()); |
| // If this method belongs to a protocol but the method in list does not, or |
| // vice versa, we say the context is not the same. |
| if ((MethodProtocol && !MethodInListProtocol) || |
| (!MethodProtocol && MethodInListProtocol)) |
| return false; |
| |
| if (MethodProtocol && MethodInListProtocol) |
| return true; |
| |
| ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); |
| ObjCInterfaceDecl *MethodInListInterface = |
| MethodInList->getClassInterface(); |
| return MethodInterface == MethodInListInterface; |
| } |
| |
| void Sema::addMethodToGlobalList(ObjCMethodList *List, |
| ObjCMethodDecl *Method) { |
| // Record at the head of the list whether there were 0, 1, or >= 2 methods |
| // inside categories. |
| if (ObjCCategoryDecl *CD = |
| dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) |
| if (!CD->IsClassExtension() && List->getBits() < 2) |
| List->setBits(List->getBits() + 1); |
| |
| // If the list is empty, make it a singleton list. |
| if (List->getMethod() == nullptr) { |
| List->setMethod(Method); |
| List->setNext(nullptr); |
| return; |
| } |
| |
| // We've seen a method with this name, see if we have already seen this type |
| // signature. |
| ObjCMethodList *Previous = List; |
| ObjCMethodList *ListWithSameDeclaration = nullptr; |
| for (; List; Previous = List, List = List->getNext()) { |
| // If we are building a module, keep all of the methods. |
| if (getLangOpts().isCompilingModule()) |
| continue; |
| |
| bool SameDeclaration = MatchTwoMethodDeclarations(Method, |
| List->getMethod()); |
| // Looking for method with a type bound requires the correct context exists. |
| // We need to insert a method into the list if the context is different. |
| // If the method's declaration matches the list |
| // a> the method belongs to a different context: we need to insert it, in |
| // order to emit the availability message, we need to prioritize over |
| // availability among the methods with the same declaration. |
| // b> the method belongs to the same context: there is no need to insert a |
| // new entry. |
| // If the method's declaration does not match the list, we insert it to the |
| // end. |
| if (!SameDeclaration || |
| !isMethodContextSameForKindofLookup(Method, List->getMethod())) { |
| // Even if two method types do not match, we would like to say |
| // there is more than one declaration so unavailability/deprecated |
| // warning is not too noisy. |
| if (!Method->isDefined()) |
| List->setHasMoreThanOneDecl(true); |
| |
| // For methods with the same declaration, the one that is deprecated |
| // should be put in the front for better diagnostics. |
| if (Method->isDeprecated() && SameDeclaration && |
| !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) |
| ListWithSameDeclaration = List; |
| |
| if (Method->isUnavailable() && SameDeclaration && |
| !ListWithSameDeclaration && |
| List->getMethod()->getAvailability() < AR_Deprecated) |
| ListWithSameDeclaration = List; |
| continue; |
| } |
| |
| ObjCMethodDecl *PrevObjCMethod = List->getMethod(); |
| |
| // Propagate the 'defined' bit. |
| if (Method->isDefined()) |
| PrevObjCMethod->setDefined(true); |
| else { |
| // Objective-C doesn't allow an @interface for a class after its |
| // @implementation. So if Method is not defined and there already is |
| // an entry for this type signature, Method has to be for a different |
| // class than PrevObjCMethod. |
| List->setHasMoreThanOneDecl(true); |
| } |
| |
| // If a method is deprecated, push it in the global pool. |
| // This is used for better diagnostics. |
| if (Method->isDeprecated()) { |
| if (!PrevObjCMethod->isDeprecated()) |
| List->setMethod(Method); |
| } |
| // If the new method is unavailable, push it into global pool |
| // unless previous one is deprecated. |
| if (Method->isUnavailable()) { |
| if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
| List->setMethod(Method); |
| } |
| |
| return; |
| } |
| |
| // We have a new signature for an existing method - add it. |
| // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
| ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); |
| |
| // We insert it right before ListWithSameDeclaration. |
| if (ListWithSameDeclaration) { |
| auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); |
| // FIXME: should we clear the other bits in ListWithSameDeclaration? |
| ListWithSameDeclaration->setMethod(Method); |
| ListWithSameDeclaration->setNext(List); |
| return; |
| } |
| |
| Previous->setNext(new (Mem) ObjCMethodList(Method)); |
| } |
| |
| /// Read the contents of the method pool for a given selector from |
| /// external storage. |
| void Sema::ReadMethodPool(Selector Sel) { |
| assert(ExternalSource && "We need an external AST source"); |
| ExternalSource->ReadMethodPool(Sel); |
| } |
| |
| void Sema::updateOutOfDateSelector(Selector Sel) { |
| if (!ExternalSource) |
| return; |
| ExternalSource->updateOutOfDateSelector(Sel); |
| } |
| |
| void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
| bool instance) { |
| // Ignore methods of invalid containers. |
| if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) |
| return; |
| |
| if (ExternalSource) |
| ReadMethodPool(Method->getSelector()); |
| |
| GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); |
| if (Pos == MethodPool.end()) |
| Pos = MethodPool.insert(std::make_pair(Method->getSelector(), |
| GlobalMethods())).first; |
| |
| Method->setDefined(impl); |
| |
| ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; |
| addMethodToGlobalList(&Entry, Method); |
| } |
| |
| /// Determines if this is an "acceptable" loose mismatch in the global |
| /// method pool. This exists mostly as a hack to get around certain |
| /// global mismatches which we can't afford to make warnings / errors. |
| /// Really, what we want is a way to take a method out of the global |
| /// method pool. |
| static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
| ObjCMethodDecl *other) { |
| if (!chosen->isInstanceMethod()) |
| return false; |
| |
| Selector sel = chosen->getSelector(); |
| if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") |
| return false; |
| |
| // Don't complain about mismatches for -length if the method we |
| // chose has an integral result type. |
| return (chosen->getReturnType()->isIntegerType()); |
| } |
| |
| /// Return true if the given method is wthin the type bound. |
| static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, |
| const ObjCObjectType *TypeBound) { |
| if (!TypeBound) |
| return true; |
| |
| if (TypeBound->isObjCId()) |
| // FIXME: should we handle the case of bounding to id<A, B> differently? |
| return true; |
| |
| auto *BoundInterface = TypeBound->getInterface(); |
| assert(BoundInterface && "unexpected object type!"); |
| |
| // Check if the Method belongs to a protocol. We should allow any method |
| // defined in any protocol, because any subclass could adopt the protocol. |
| auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext()); |
| if (MethodProtocol) { |
| return true; |
| } |
| |
| // If the Method belongs to a class, check if it belongs to the class |
| // hierarchy of the class bound. |
| if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { |
| // We allow methods declared within classes that are part of the hierarchy |
| // of the class bound (superclass of, subclass of, or the same as the class |
| // bound). |
| return MethodInterface == BoundInterface || |
| MethodInterface->isSuperClassOf(BoundInterface) || |
| BoundInterface->isSuperClassOf(MethodInterface); |
| } |
| llvm_unreachable("unknown method context"); |
| } |
| |
| /// We first select the type of the method: Instance or Factory, then collect |
| /// all methods with that type. |
| bool Sema::CollectMultipleMethodsInGlobalPool( |
| Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, |
| bool InstanceFirst, bool CheckTheOther, |
| const ObjCObjectType *TypeBound) { |
| if (ExternalSource) |
| ReadMethodPool(Sel); |
| |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| if (Pos == MethodPool.end()) |
| return false; |
| |
| // Gather the non-hidden methods. |
| ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : |
| Pos->second.second; |
| for (ObjCMethodList *M = &MethList; M; M = M->getNext()) |
| if (M->getMethod() && !M->getMethod()->isHidden()) { |
| if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) |
| Methods.push_back(M->getMethod()); |
| } |
| |
| // Return if we find any method with the desired kind. |
| if (!Methods.empty()) |
| return Methods.size() > 1; |
| |
| if (!CheckTheOther) |
| return false; |
| |
| // Gather the other kind. |
| ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : |
| Pos->second.first; |
| for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) |
| if (M->getMethod() && !M->getMethod()->isHidden()) { |
| if (FilterMethodsByTypeBound(M->getMethod(), TypeBound)) |
| Methods.push_back(M->getMethod()); |
| } |
| |
| return Methods.size() > 1; |
| } |
| |
| bool Sema::AreMultipleMethodsInGlobalPool( |
| Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, |
| bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
| // Diagnose finding more than one method in global pool. |
| SmallVector<ObjCMethodDecl *, 4> FilteredMethods; |
| FilteredMethods.push_back(BestMethod); |
| |
| for (auto *M : Methods) |
| if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) |
| FilteredMethods.push_back(M); |
| |
| if (FilteredMethods.size() > 1) |
| DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R, |
| receiverIdOrClass); |
| |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| // Test for no method in the pool which should not trigger any warning by |
| // caller. |
| if (Pos == MethodPool.end()) |
| return true; |
| ObjCMethodList &MethList = |
| BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; |
| return MethList.hasMoreThanOneDecl(); |
| } |
| |
| ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
| bool receiverIdOrClass, |
| bool instance) { |
| if (ExternalSource) |
| ReadMethodPool(Sel); |
| |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| if (Pos == MethodPool.end()) |
| return nullptr; |
| |
| // Gather the non-hidden methods. |
| ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
| SmallVector<ObjCMethodDecl *, 4> Methods; |
| for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { |
| if (M->getMethod() && !M->getMethod()->isHidden()) |
| return M->getMethod(); |
| } |
| return nullptr; |
| } |
| |
| void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, |
| Selector Sel, SourceRange R, |
| bool receiverIdOrClass) { |
| // We found multiple methods, so we may have to complain. |
| bool issueDiagnostic = false, issueError = false; |
| |
| // We support a warning which complains about *any* difference in |
| // method signature. |
| bool strictSelectorMatch = |
| receiverIdOrClass && |
| !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); |
| if (strictSelectorMatch) { |
| for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { |
| issueDiagnostic = true; |
| break; |
| } |
| } |
| } |
| |
| // If we didn't see any strict differences, we won't see any loose |
| // differences. In ARC, however, we also need to check for loose |
| // mismatches, because most of them are errors. |
| if (!strictSelectorMatch || |
| (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) |
| for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| // This checks if the methods differ in type mismatch. |
| if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && |
| !isAcceptableMethodMismatch(Methods[0], Methods[I])) { |
| issueDiagnostic = true; |
| if (getLangOpts().ObjCAutoRefCount) |
| issueError = true; |
| break; |
| } |
| } |
| |
| if (issueDiagnostic) { |
| if (issueError) |
| Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; |
| else if (strictSelectorMatch) |
| Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; |
| else |
| Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; |
| |
| Diag(Methods[0]->getBeginLoc(), |
| issueError ? diag::note_possibility : diag::note_using) |
| << Methods[0]->getSourceRange(); |
| for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
| Diag(Methods[I]->getBeginLoc(), diag::note_also_found) |
| << Methods[I]->getSourceRange(); |
| } |
| } |
| } |
| |
| ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { |
| GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
| if (Pos == MethodPool.end()) |
| return nullptr; |
| |
| GlobalMethods &Methods = Pos->second; |
| for (const ObjCMethodList *Method = &Methods.first; Method; |
| Method = Method->getNext()) |
| if (Method->getMethod() && |
| (Method->getMethod()->isDefined() || |
| Method->getMethod()->isPropertyAccessor())) |
| return Method->getMethod(); |
| |
| for (const ObjCMethodList *Method = &Methods.second; Method; |
| Method = Method->getNext()) |
| if (Method->getMethod() && |
| (Method->getMethod()->isDefined() || |
| Method->getMethod()->isPropertyAccessor())) |
| return Method->getMethod(); |
| return nullptr; |
| } |
| |
| static void |
| HelperSelectorsForTypoCorrection( |
| SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, |
| StringRef Typo, const ObjCMethodDecl * Method) { |
| const unsigned MaxEditDistance = 1; |
| unsigned BestEditDistance = MaxEditDistance + 1; |
| std::string MethodName = Method->getSelector().getAsString(); |
| |
| unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); |
| if (MinPossibleEditDistance > 0 && |
| Typo.size() / MinPossibleEditDistance < 1) |
| return; |
| unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); |
| if (EditDistance > MaxEditDistance) |
| return; |
| if (EditDistance == BestEditDistance) |
| BestMethod.push_back(Method); |
| else if (EditDistance < BestEditDistance) { |
| BestMethod.clear(); |
| BestMethod.push_back(Method); |
| } |
| } |
| |
| static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, |
| QualType ObjectType) { |
| if (ObjectType.isNull()) |
| return true; |
| if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) |
| return true; |
| return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != |
| nullptr; |
| } |
| |
| const ObjCMethodDecl * |
| Sema::SelectorsForTypoCorrection(Selector Sel, |
| QualType ObjectType) { |
| unsigned NumArgs = Sel.getNumArgs(); |
| SmallVector<const ObjCMethodDecl *, 8> Methods; |
| bool ObjectIsId = true, ObjectIsClass = true; |
| if (ObjectType.isNull()) |
| ObjectIsId = ObjectIsClass = false; |
| else if (!ObjectType->isObjCObjectPointerType()) |
| return nullptr; |
| else if (const ObjCObjectPointerType *ObjCPtr = |
| ObjectType->getAsObjCInterfacePointerType()) { |
| ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); |
| ObjectIsId = ObjectIsClass = false; |
| } |
| else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) |
| ObjectIsClass = false; |
| else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) |
| ObjectIsId = false; |
| else |
| return nullptr; |
| |
| for (GlobalMethodPool::iterator b = MethodPool.begin(), |
| e = MethodPool.end(); b != e; b++) { |
| // instance methods |
| for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) |
| if (M->getMethod() && |
| (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
| (M->getMethod()->getSelector() != Sel)) { |
| if (ObjectIsId) |
| Methods.push_back(M->getMethod()); |
| else if (!ObjectIsClass && |
| HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), |
| ObjectType)) |
| Methods.push_back(M->getMethod()); |
| } |
| // class methods |
| for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) |
| if (M->getMethod() && |
| (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
| (M->getMethod()->getSelector() != Sel)) { |
| if (ObjectIsClass) |
| Methods.push_back(M->getMethod()); |
| else if (!ObjectIsId && |
| HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), |
| ObjectType)) |
| Methods.push_back(M->getMethod()); |
| } |
| } |
| |
| SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; |
| for (unsigned i = 0, e = Methods.size(); i < e; i++) { |
| HelperSelectorsForTypoCorrection(SelectedMethods, |
| Sel.getAsString(), Methods[i]); |
| } |
| return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; |
| } |
| |
| /// DiagnoseDuplicateIvars - |
| /// Check for duplicate ivars in the entire class at the start of |
| /// \@implementation. This becomes necesssary because class extension can |
| /// add ivars to a class in random order which will not be known until |
| /// class's \@implementation is seen. |
| void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
| ObjCInterfaceDecl *SID) { |
| for (auto *Ivar : ID->ivars()) { |
| if (Ivar->isInvalidDecl()) |
| continue; |
| if (IdentifierInfo *II = Ivar->getIdentifier()) { |
| ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); |
| if (prevIvar) { |
| Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; |
| Diag(prevIvar->getLocation(), diag::note_previous_declaration); |
| Ivar->setInvalidDecl(); |
| } |
| } |
| } |
| } |
| |
| /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. |
| static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { |
| if (S.getLangOpts().ObjCWeak) return; |
| |
| for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); |
| ivar; ivar = ivar->getNextIvar()) { |
| if (ivar->isInvalidDecl()) continue; |
| if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| if (S.getLangOpts().ObjCWeakRuntime) { |
| S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled); |
| } else { |
| S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime); |
| } |
| } |
| } |
| } |
| |
| /// Diagnose attempts to use flexible array member with retainable object type. |
| static void DiagnoseRetainableFlexibleArrayMember(Sema &S, |
| ObjCInterfaceDecl *ID) { |
| if (!S.getLangOpts().ObjCAutoRefCount) |
| return; |
| |
| for (auto ivar = ID->all_declared_ivar_begin(); ivar; |
| ivar = ivar->getNextIvar()) { |
| if (ivar->isInvalidDecl()) |
| continue; |
| QualType IvarTy = ivar->getType(); |
| if (IvarTy->isIncompleteArrayType() && |
| (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && |
| IvarTy->isObjCLifetimeType()) { |
| S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable); |
| ivar->setInvalidDecl(); |
| } |
| } |
| } |
| |
| Sema::ObjCContainerKind Sema::getObjCContainerKind() const { |
| switch (CurContext->getDeclKind()) { |
| case Decl::ObjCInterface: |
| return Sema::OCK_Interface; |
| case Decl::ObjCProtocol: |
| return Sema::OCK_Protocol; |
| case Decl::ObjCCategory: |
| if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) |
| return Sema::OCK_ClassExtension; |
| return Sema::OCK_Category; |
| case Decl::ObjCImplementation: |
| return Sema::OCK_Implementation; |
| case Decl::ObjCCategoryImpl: |
| return Sema::OCK_CategoryImplementation; |
| |
| default: |
| return Sema::OCK_None; |
| } |
| } |
| |
| static bool IsVariableSizedType(QualType T) { |
| if (T->isIncompleteArrayType()) |
| return true; |
| const auto *RecordTy = T->getAs<RecordType>(); |
| return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); |
| } |
| |
| static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { |
| ObjCInterfaceDecl *IntfDecl = nullptr; |
| ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( |
| ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator()); |
| if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) { |
| Ivars = IntfDecl->ivars(); |
| } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) { |
| IntfDecl = ImplDecl->getClassInterface(); |
| Ivars = ImplDecl->ivars(); |
| } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) { |
| if (CategoryDecl->IsClassExtension()) { |
| IntfDecl = CategoryDecl->getClassInterface(); |
| Ivars = CategoryDecl->ivars(); |
| } |
| } |
| |
| // Check if variable sized ivar is in interface and visible to subclasses. |
| if (!isa<ObjCInterfaceDecl>(OCD)) { |
| for (auto ivar : Ivars) { |
| if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) { |
| S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility) |
| << ivar->getDeclName() << ivar->getType(); |
| } |
| } |
| } |
| |
| // Subsequent checks require interface decl. |
| if (!IntfDecl) |
| return; |
| |
| // Check if variable sized ivar is followed by another ivar. |
| for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; |
| ivar = ivar->getNextIvar()) { |
| if (ivar->isInvalidDecl() || !ivar->getNextIvar()) |
| continue; |
| QualType IvarTy = ivar->getType(); |
| bool IsInvalidIvar = false; |
| if (IvarTy->isIncompleteArrayType()) { |
| S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end) |
| << ivar->getDeclName() << IvarTy |
| << TTK_Class; // Use "class" for Obj-C. |
| IsInvalidIvar = true; |
| } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { |
| if (RecordTy->getDecl()->hasFlexibleArrayMember()) { |
| S.Diag(ivar->getLocation(), |
| diag::err_objc_variable_sized_type_not_at_end) |
| << ivar->getDeclName() << IvarTy; |
| IsInvalidIvar = true; |
| } |
| } |
| if (IsInvalidIvar) { |
| S.Diag(ivar->getNextIvar()->getLocation(), |
| diag::note_next_ivar_declaration) |
| << ivar->getNextIvar()->getSynthesize(); |
| ivar->setInvalidDecl(); |
| } |
| } |
| |
| // Check if ObjC container adds ivars after variable sized ivar in superclass. |
| // Perform the check only if OCD is the first container to declare ivars to |
| // avoid multiple warnings for the same ivar. |
| ObjCIvarDecl *FirstIvar = |
| (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); |
| if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { |
| const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); |
| while (SuperClass && SuperClass->ivar_empty()) |
| SuperClass = SuperClass->getSuperClass(); |
| if (SuperClass) { |
| auto IvarIter = SuperClass->ivar_begin(); |
| std::advance(IvarIter, SuperClass->ivar_size() - 1); |
| const ObjCIvarDecl *LastIvar = *IvarIter; |
| if (IsVariableSizedType(LastIvar->getType())) { |
| S.Diag(FirstIvar->getLocation(), |
| diag::warn_superclass_variable_sized_type_not_at_end) |
| << FirstIvar->getDeclName() << LastIvar->getDeclName() |
| << LastIvar->getType() << SuperClass->getDeclName(); |
| S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at) |
| << LastIvar->getDeclName(); |
| } |
| } |
| } |
| } |
| |
| // Note: For class/category implementations, allMethods is always null. |
| Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, |
| ArrayRef<DeclGroupPtrTy> allTUVars) { |
| if (getObjCContainerKind() == Sema::OCK_None) |
| return nullptr; |
| |
| assert(AtEnd.isValid() && "Invalid location for '@end'"); |
| |
| auto *OCD = cast<ObjCContainerDecl>(CurContext); |
| Decl *ClassDecl = OCD; |
| |
| bool isInterfaceDeclKind = |
| isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) |
| || isa<ObjCProtocolDecl>(ClassDecl); |
| bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); |
| |
| // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
| llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
| |
| for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { |
| ObjCMethodDecl *Method = |
| cast_or_null<ObjCMethodDecl>(allMethods[i]); |
| |
| if (!Method) continue; // Already issued a diagnostic. |
| if (Method->isInstanceMethod()) { |
| /// Check for instance method of the same name with incompatible types |
| const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
| bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) |
| : false; |
| if ((isInterfaceDeclKind && PrevMethod && !match) |
| || (checkIdenticalMethods && match)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| Method->setInvalidDecl(); |
| } else { |
| if (PrevMethod) { |
| Method->setAsRedeclaration(PrevMethod); |
| if (!Context.getSourceManager().isInSystemHeader( |
| Method->getLocation())) |
| Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| } |
| InsMap[Method->getSelector()] = Method; |
| /// The following allows us to typecheck messages to "id". |
| AddInstanceMethodToGlobalPool(Method); |
| } |
| } else { |
| /// Check for class method of the same name with incompatible types |
| const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
| bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) |
| : false; |
| if ((isInterfaceDeclKind && PrevMethod && !match) |
| || (checkIdenticalMethods && match)) { |
| Diag(Method->getLocation(), diag::err_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| Method->setInvalidDecl(); |
| } else { |
| if (PrevMethod) { |
| Method->setAsRedeclaration(PrevMethod); |
| if (!Context.getSourceManager().isInSystemHeader( |
| Method->getLocation())) |
| Diag(Method->getLocation(), diag::warn_duplicate_method_decl) |
| << Method->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| } |
| ClsMap[Method->getSelector()] = Method; |
| AddFactoryMethodToGlobalPool(Method); |
| } |
| } |
| } |
| if (isa<ObjCInterfaceDecl>(ClassDecl)) { |
| // Nothing to do here. |
| } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { |
| // Categories are used to extend the class by declaring new methods. |
| // By the same token, they are also used to add new properties. No |
| // need to compare the added property to those in the class. |
| |
| if (C->IsClassExtension()) { |
| ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
| DiagnoseClassExtensionDupMethods(C, CCPrimary); |
| } |
| } |
| if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { |
| if (CDecl->getIdentifier()) |
| // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
| // user-defined setter/getter. It also synthesizes setter/getter methods |
| // and adds them to the DeclContext and global method pools. |
| for (auto *I : CDecl->properties()) |
| ProcessPropertyDecl(I); |
| CDecl->setAtEndRange(AtEnd); |
| } |
| if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { |
| IC->setAtEndRange(AtEnd); |
| if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
| // Any property declared in a class extension might have user |
| // declared setter or getter in current class extension or one |
| // of the other class extensions. Mark them as synthesized as |
| // property will be synthesized when property with same name is |
| // seen in the @implementation. |
| for (const auto *Ext : IDecl->visible_extensions()) { |
| for (const auto *Property : Ext->instance_properties()) { |
| // Skip over properties declared @dynamic |
| if (const ObjCPropertyImplDecl *PIDecl |
| = IC->FindPropertyImplDecl(Property->getIdentifier(), |
| Property->getQueryKind())) |
| if (PIDecl->getPropertyImplementation() |
| == ObjCPropertyImplDecl::Dynamic) |
| continue; |
| |
| for (const auto *Ext : IDecl->visible_extensions()) { |
| if (ObjCMethodDecl *GetterMethod |
| = Ext->getInstanceMethod(Property->getGetterName())) |
| GetterMethod->setPropertyAccessor(true); |
| if (!Property->isReadOnly()) |
| if (ObjCMethodDecl *SetterMethod |
| = Ext->getInstanceMethod(Property->getSetterName())) |
| SetterMethod->setPropertyAccessor(true); |
| } |
| } |
| } |
| ImplMethodsVsClassMethods(S, IC, IDecl); |
| AtomicPropertySetterGetterRules(IC, IDecl); |
| DiagnoseOwningPropertyGetterSynthesis(IC); |
| DiagnoseUnusedBackingIvarInAccessor(S, IC); |
| if (IDecl->hasDesignatedInitializers()) |
| DiagnoseMissingDesignatedInitOverrides(IC, IDecl); |
| DiagnoseWeakIvars(*this, IC); |
| DiagnoseRetainableFlexibleArrayMember(*this, IDecl); |
| |
| bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); |
| if (IDecl->getSuperClass() == nullptr) { |
| // This class has no superclass, so check that it has been marked with |
| // __attribute((objc_root_class)). |
| if (!HasRootClassAttr) { |
| SourceLocation DeclLoc(IDecl->getLocation()); |
| SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); |
| Diag(DeclLoc, diag::warn_objc_root_class_missing) |
| << IDecl->getIdentifier(); |
| // See if NSObject is in the current scope, and if it is, suggest |
| // adding " : NSObject " to the class declaration. |
| NamedDecl *IF = LookupSingleName(TUScope, |
| NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), |
| DeclLoc, LookupOrdinaryName); |
| ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); |
| if (NSObjectDecl && NSObjectDecl->getDefinition()) { |
| Diag(SuperClassLoc, diag::note_objc_needs_superclass) |
| << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); |
| } else { |
| Diag(SuperClassLoc, diag::note_objc_needs_superclass); |
| } |
| } |
| } else if (HasRootClassAttr) { |
| // Complain that only root classes may have this attribute. |
| Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); |
| } |
| |
| if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { |
| // An interface can subclass another interface with a |
| // objc_subclassing_restricted attribute when it has that attribute as |
| // well (because of interfaces imported from Swift). Therefore we have |
| // to check if we can subclass in the implementation as well. |
| if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
| Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
| Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch); |
| Diag(Super->getLocation(), diag::note_class_declared); |
| } |
| } |
| |
| if (IDecl->hasAttr<ObjCClassStubAttr>()) |
| Diag(IC->getLocation(), diag::err_implementation_of_class_stub); |
| |
| if (LangOpts.ObjCRuntime.isNonFragile()) { |
| while (IDecl->getSuperClass()) { |
| DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); |
| IDecl = IDecl->getSuperClass(); |
| } |
| } |
| } |
| SetIvarInitializers(IC); |
| } else if (ObjCCategoryImplDecl* CatImplClass = |
| dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { |
| CatImplClass->setAtEndRange(AtEnd); |
| |
| // Find category interface decl and then check that all methods declared |
| // in this interface are implemented in the category @implementation. |
| if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
| if (ObjCCategoryDecl *Cat |
| = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { |
| ImplMethodsVsClassMethods(S, CatImplClass, Cat); |
| } |
| } |
| } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { |
| if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { |
| if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
| Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
| Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch); |
| Diag(Super->getLocation(), diag::note_class_declared); |
| } |
| } |
| |
| if (IntfDecl->hasAttr<ObjCClassStubAttr>() && |
| !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) |
| Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch); |
| } |
| DiagnoseVariableSizedIvars(*this, OCD); |
| if (isInterfaceDeclKind) { |
| // Reject invalid vardecls. |
| for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
| DeclGroupRef DG = allTUVars[i].get(); |
| for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
| if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { |
| if (!VDecl->hasExternalStorage()) |
| Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); |
| } |
| } |
| } |
| ActOnObjCContainerFinishDefinition(); |
| |
| for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
| DeclGroupRef DG = allTUVars[i].get(); |
| for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
| (*I)->setTopLevelDeclInObjCContainer(); |
| Consumer.HandleTopLevelDeclInObjCContainer(DG); |
| } |
| |
| ActOnDocumentableDecl(ClassDecl); |
| return ClassDecl; |
| } |
| |
| /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
| /// objective-c's type qualifier from the parser version of the same info. |
| static Decl::ObjCDeclQualifier |
| CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
| return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
| } |
| |
| /// Check whether the declared result type of the given Objective-C |
| /// method declaration is compatible with the method's class. |
| /// |
| static Sema::ResultTypeCompatibilityKind |
| CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
| ObjCInterfaceDecl *CurrentClass) { |
| QualType ResultType = Method->getReturnType(); |
| |
| // If an Objective-C method inherits its related result type, then its |
| // declared result type must be compatible with its own class type. The |
| // declared result type is compatible if: |
| if (const ObjCObjectPointerType *ResultObjectType |
| = ResultType->getAs<ObjCObjectPointerType>()) { |
| // - it is id or qualified id, or |
| if (ResultObjectType->isObjCIdType() || |
| ResultObjectType->isObjCQualifiedIdType()) |
| return Sema::RTC_Compatible; |
| |
| if (CurrentClass) { |
| if (ObjCInterfaceDecl *ResultClass |
| = ResultObjectType->getInterfaceDecl()) { |
| // - it is the same as the method's class type, or |
| if (declaresSameEntity(CurrentClass, ResultClass)) |
| return Sema::RTC_Compatible; |
| |
| // - it is a superclass of the method's class type |
| if (ResultClass->isSuperClassOf(CurrentClass)) |
| return Sema::RTC_Compatible; |
| } |
| } else { |
| // Any Objective-C pointer type might be acceptable for a protocol |
| // method; we just don't know. |
| return Sema::RTC_Unknown; |
| } |
| } |
| |
| return Sema::RTC_Incompatible; |
| } |
| |
| namespace { |
| /// A helper class for searching for methods which a particular method |
| /// overrides. |
| class OverrideSearch { |
| public: |
| const ObjCMethodDecl *Method; |
| llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; |
| bool Recursive; |
| |
| public: |
| OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { |
| Selector selector = method->getSelector(); |
| |
| // Bypass this search if we've never seen an instance/class method |
| // with this selector before. |
| Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); |
| if (it == S.MethodPool.end()) { |
| if (!S.getExternalSource()) return; |
| S.ReadMethodPool(selector); |
| |
| it = S.MethodPool.find(selector); |
| if (it == S.MethodPool.end()) |
| return; |
| } |
| const ObjCMethodList &list = |
| method->isInstanceMethod() ? it->second.first : it->second.second; |
| if (!list.getMethod()) return; |
| |
| const ObjCContainerDecl *container |
| = cast<ObjCContainerDecl>(method->getDeclContext()); |
| |
| // Prevent the search from reaching this container again. This is |
| // important with categories, which override methods from the |
| // interface and each other. |
| if (const ObjCCategoryDecl *Category = |
| dyn_cast<ObjCCategoryDecl>(container)) { |
| searchFromContainer(container); |
| if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) |
| searchFromContainer(Interface); |
| } else { |
| searchFromContainer(container); |
| } |
| } |
| |
| typedef decltype(Overridden)::iterator iterator; |
| iterator begin() const { return Overridden.begin(); } |
| iterator end() const { return Overridden.end(); } |
| |
| private: |
| void searchFromContainer(const ObjCContainerDecl *container) { |
| if (container->isInvalidDecl()) return; |
| |
| switch (container->getDeclKind()) { |
| #define OBJCCONTAINER(type, base) \ |
| case Decl::type: \ |
| searchFrom(cast<type##Decl>(container)); \ |
| break; |
| #define ABSTRACT_DECL(expansion) |
| #define DECL(type, base) \ |
| case Decl::type: |
| #include "clang/AST/DeclNodes.inc" |
| llvm_unreachable("not an ObjC container!"); |
| } |
| } |
| |
| void searchFrom(const ObjCProtocolDecl *protocol) { |
| if (!protocol->hasDefinition()) |
| return; |
| |
| // A method in a protocol declaration overrides declarations from |
| // referenced ("parent") protocols. |
| search(protocol->getReferencedProtocols()); |
| } |
| |
| void searchFrom(const ObjCCategoryDecl *category) { |
| // A method in a category declaration overrides declarations from |
| // the main class and from protocols the category references. |
| // The main class is handled in the constructor. |
| search(category->getReferencedProtocols()); |
| } |
| |
| void searchFrom(const ObjCCategoryImplDecl *impl) { |
| // A method in a category definition that has a category |
| // declaration overrides declarations from the category |
| // declaration. |
| if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { |
| search(category); |
| if (ObjCInterfaceDecl *Interface = category->getClassInterface()) |
| search(Interface); |
| |
| // Otherwise it overrides declarations from the class. |
| } else if (const auto *Interface = impl->getClassInterface()) { |
| search(Interface); |
| } |
| } |
| |
| void searchFrom(const ObjCInterfaceDecl *iface) { |
| // A method in a class declaration overrides declarations from |
| if (!iface->hasDefinition()) |
| return; |
| |
| // - categories, |
| for (auto *Cat : iface->known_categories()) |
| search(Cat); |
| |
| // - the super class, and |
| if (ObjCInterfaceDecl *super = iface->getSuperClass()) |
| search(super); |
| |
| // - any referenced protocols. |
| search(iface->getReferencedProtocols()); |
| } |
| |
| void searchFrom(const ObjCImplementationDecl *impl) { |
| // A method in a class implementation overrides declarations from |
| // the class interface. |
| if (const auto *Interface = impl->getClassInterface()) |
| search(Interface); |
| } |
| |
| void search(const ObjCProtocolList &protocols) { |
| for (const auto *Proto : protocols) |
| search(Proto); |
| } |
| |
| void search(const ObjCContainerDecl *container) { |
| // Check for a method in this container which matches this selector. |
| ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), |
| Method->isInstanceMethod(), |
| /*AllowHidden=*/true); |
| |
| // If we find one, record it and bail out. |
| if (meth) { |
| Overridden.insert(meth); |
| return; |
| } |
| |
| // Otherwise, search for methods that a hypothetical method here |
| // would have overridden. |
| |
| // Note that we're now in a recursive case. |
| Recursive = true; |
| |
| searchFromContainer(container); |
| } |
| }; |
| } // end anonymous namespace |
| |
| void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, |
| ObjCInterfaceDecl *CurrentClass, |
| ResultTypeCompatibilityKind RTC) { |
| if (!ObjCMethod) |
| return; |
| // Search for overridden methods and merge information down from them. |
| OverrideSearch overrides(*this, ObjCMethod); |
| // Keep track if the method overrides any method in the class's base classes, |
| // its protocols, or its categories' protocols; we will keep that info |
| // in the ObjCMethodDecl. |
| // For this info, a method in an implementation is not considered as |
| // overriding the same method in the interface or its categories. |
| bool hasOverriddenMethodsInBaseOrProtocol = false; |
| for (ObjCMethodDecl *overridden : overrides) { |
| if (!hasOverriddenMethodsInBaseOrProtocol) { |
| if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || |
| CurrentClass != overridden->getClassInterface() || |
| overridden->isOverriding()) { |
| hasOverriddenMethodsInBaseOrProtocol = true; |
| |
| } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { |
| // OverrideSearch will return as "overridden" the same method in the |
| // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to |
| // check whether a category of a base class introduced a method with the |
| // same selector, after the interface method declaration. |
| // To avoid unnecessary lookups in the majority of cases, we use the |
| // extra info bits in GlobalMethodPool to check whether there were any |
| // category methods with this selector. |
| GlobalMethodPool::iterator It = |
| MethodPool.find(ObjCMethod->getSelector()); |
| if (It != MethodPool.end()) { |
| ObjCMethodList &List = |
| ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; |
| unsigned CategCount = List.getBits(); |
| if (CategCount > 0) { |
| // If the method is in a category we'll do lookup if there were at |
| // least 2 category methods recorded, otherwise only one will do. |
| if (CategCount > 1 || |
| !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { |
| OverrideSearch overrides(*this, overridden); |
| for (ObjCMethodDecl *SuperOverridden : overrides) { |
| if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || |
| CurrentClass != SuperOverridden->getClassInterface()) { |
| hasOverriddenMethodsInBaseOrProtocol = true; |
| overridden->setOverriding(true); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Propagate down the 'related result type' bit from overridden methods. |
| if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) |
| ObjCMethod->setRelatedResultType(); |
| |
| // Then merge the declarations. |
| mergeObjCMethodDecls(ObjCMethod, overridden); |
| |
| if (ObjCMethod->isImplicit() && overridden->isImplicit()) |
| continue; // Conflicting properties are detected elsewhere. |
| |
| // Check for overriding methods |
| if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || |
| isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) |
| CheckConflictingOverridingMethod(ObjCMethod, overridden, |
| isa<ObjCProtocolDecl>(overridden->getDeclContext())); |
| |
| if (CurrentClass && overridden->getDeclContext() != CurrentClass && |
| isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && |
| !overridden->isImplicit() /* not meant for properties */) { |
| ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), |
| E = ObjCMethod->param_end(); |
| ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), |
| PrevE = overridden->param_end(); |
| for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { |
| assert(PrevI != overridden->param_end() && "Param mismatch"); |
| QualType T1 = Context.getCanonicalType((*ParamI)->getType()); |
| QualType T2 = Context.getCanonicalType((*PrevI)->getType()); |
| // If type of argument of method in this class does not match its |
| // respective argument type in the super class method, issue warning; |
| if (!Context.typesAreCompatible(T1, T2)) { |
| Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) |
| << T1 << T2; |
| Diag(overridden->getLocation(), diag::note_previous_declaration); |
| break; |
| } |
| } |
| } |
| } |
| |
| ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); |
| } |
| |
| /// Merge type nullability from for a redeclaration of the same entity, |
| /// producing the updated type of the redeclared entity. |
| static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, |
| QualType type, |
| bool usesCSKeyword, |
| SourceLocation prevLoc, |
| QualType prevType, |
| bool prevUsesCSKeyword) { |
| // Determine the nullability of both types. |
| auto nullability = type->getNullability(S.Context); |
| auto prevNullability = prevType->getNullability(S.Context); |
| |
| // Easy case: both have nullability. |
| if (nullability.hasValue() == prevNullability.hasValue()) { |
| // Neither has nullability; continue. |
| if (!nullability) |
| return type; |
| |
| // The nullabilities are equivalent; do nothing. |
| if (*nullability == *prevNullability) |
| return type; |
| |
| // Complain about mismatched nullability. |
| S.Diag(loc, diag::err_nullability_conflicting) |
| << DiagNullabilityKind(*nullability, usesCSKeyword) |
| << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); |
| return type; |
| } |
| |
| // If it's the redeclaration that has nullability, don't change anything. |
| if (nullability) |
| return type; |
| |
| // Otherwise, provide the result with the same nullability. |
| return S.Context.getAttributedType( |
| AttributedType::getNullabilityAttrKind(*prevNullability), |
| type, type); |
| } |
| |
| /// Merge information from the declaration of a method in the \@interface |
| /// (or a category/extension) into the corresponding method in the |
| /// @implementation (for a class or category). |
| static void mergeInterfaceMethodToImpl(Sema &S, |
| ObjCMethodDecl *method, |
| ObjCMethodDecl *prevMethod) { |
| // Merge the objc_requires_super attribute. |
| if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && |
| !method->hasAttr<ObjCRequiresSuperAttr>()) { |
| // merge the attribute into implementation. |
| method->addAttr( |
| ObjCRequiresSuperAttr::CreateImplicit(S.Context, |
| method->getLocation())); |
| } |
| |
| // Merge nullability of the result type. |
| QualType newReturnType |
| = mergeTypeNullabilityForRedecl( |
| S, method->getReturnTypeSourceRange().getBegin(), |
| method->getReturnType(), |
| method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
| prevMethod->getReturnTypeSourceRange().getBegin(), |
| prevMethod->getReturnType(), |
| prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
| method->setReturnType(newReturnType); |
| |
| // Handle each of the parameters. |
| unsigned numParams = method->param_size(); |
| unsigned numPrevParams = prevMethod->param_size(); |
| for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) { |
| ParmVarDecl *param = method->param_begin()[i]; |
| ParmVarDecl *prevParam = prevMethod->param_begin()[i]; |
| |
| // Merge nullability. |
| QualType newParamType |
| = mergeTypeNullabilityForRedecl( |
| S, param->getLocation(), param->getType(), |
| param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
| prevParam->getLocation(), prevParam->getType(), |
| prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
| param->setType(newParamType); |
| } |
| } |
| |
| /// Verify that the method parameters/return value have types that are supported |
| /// by the x86 target. |
| static void checkObjCMethodX86VectorTypes(Sema &SemaRef, |
| const ObjCMethodDecl *Method) { |
| assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == |
| llvm::Triple::x86 && |
| "x86-specific check invoked for a different target"); |
| SourceLocation Loc; |
| QualType T; |
| for (const ParmVarDecl *P : Method->parameters()) { |
| if (P->getType()->isVectorType()) { |
| Loc = P->getBeginLoc(); |
| T = P->getType(); |
| break; |
| } |
| } |
| if (Loc.isInvalid()) { |
| if (Method->getReturnType()->isVectorType()) { |
| Loc = Method->getReturnTypeSourceRange().getBegin(); |
| T = Method->getReturnType(); |
| } else |
| return; |
| } |
| |
| // Vector parameters/return values are not supported by objc_msgSend on x86 in |
| // iOS < 9 and macOS < 10.11. |
| const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); |
| VersionTuple AcceptedInVersion; |
| if (Triple.getOS() == llvm::Triple::IOS) |
| AcceptedInVersion = VersionTuple(/*Major=*/9); |
| else if (Triple.isMacOSX()) |
| AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); |
| else |
| return; |
| if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= |
| AcceptedInVersion) |
| return; |
| SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type) |
| << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 |
| : /*parameter*/ 0) |
| << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9"); |
| } |
| |
| Decl *Sema::ActOnMethodDeclaration( |
| Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, |
| tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
| ArrayRef<SourceLocation> SelectorLocs, Selector Sel, |
| // optional arguments. The number of types/arguments is obtained |
| // from the Sel.getNumArgs(). |
| ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, |
| unsigned CNumArgs, // c-style args |
| const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, |
| bool isVariadic, bool MethodDefinition) { |
| // Make sure we can establish a context for the method. |
| if (!CurContext->isObjCContainer()) { |
| Diag(MethodLoc, diag::err_missing_method_context); |
| return nullptr; |
| } |
| Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext); |
| QualType resultDeclType; |
| |
| bool HasRelatedResultType = false; |
| TypeSourceInfo *ReturnTInfo = nullptr; |
| if (ReturnType) { |
| resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); |
| |
| if (CheckFunctionReturnType(resultDeclType, MethodLoc)) |
| return nullptr; |
| |
| QualType bareResultType = resultDeclType; |
| (void)AttributedType::stripOuterNullability(bareResultType); |
| HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); |
| } else { // get the type for "id". |
| resultDeclType = Context.getObjCIdType(); |
| Diag(MethodLoc, diag::warn_missing_method_return_type) |
| << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); |
| } |
| |
| ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( |
| Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, |
| MethodType == tok::minus, isVariadic, |
| /*isPropertyAccessor=*/false, |
| /*isImplicitlyDeclared=*/false, /*isDefined=*/false, |
| MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional |
| : ObjCMethodDecl::Required, |
| HasRelatedResultType); |
| |
| SmallVector<ParmVarDecl*, 16> Params; |
| |
| for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { |
| QualType ArgType; |
| TypeSourceInfo *DI; |
| |
| if (!ArgInfo[i].Type) { |
| ArgType = Context.getObjCIdType(); |
| DI = nullptr; |
| } else { |
| ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); |
| } |
| |
| LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, |
| LookupOrdinaryName, forRedeclarationInCurContext()); |
| LookupName(R, S); |
| if (R.isSingleResult()) { |
| NamedDecl *PrevDecl = R.getFoundDecl(); |
| if (S->isDeclScope(PrevDecl)) { |
| Diag(ArgInfo[i].NameLoc, |
| (MethodDefinition ? diag::warn_method_param_redefinition |
| : diag::warn_method_param_declaration)) |
| << ArgInfo[i].Name; |
| Diag(PrevDecl->getLocation(), |
| diag::note_previous_declaration); |
| } |
| } |
| |
| SourceLocation StartLoc = DI |
| ? DI->getTypeLoc().getBeginLoc() |
| : ArgInfo[i].NameLoc; |
| |
| ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, |
| ArgInfo[i].NameLoc, ArgInfo[i].Name, |
| ArgType, DI, SC_None); |
| |
| Param->setObjCMethodScopeInfo(i); |
| |
| Param->setObjCDeclQualifier( |
| CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); |
| |
| // Apply the attributes to the parameter. |
| ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); |
| AddPragmaAttributes(TUScope, Param); |
| |
| if (Param->hasAttr<BlocksAttr>()) { |
| Diag(Param->getLocation(), diag::err_block_on_nonlocal); |
| Param->setInvalidDecl(); |
| } |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| |
| Params.push_back(Param); |
| } |
| |
| for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); |
| QualType ArgType = Param->getType(); |
| if (ArgType.isNull()) |
| ArgType = Context.getObjCIdType(); |
| else |
| // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
| ArgType = Context.getAdjustedParameterType(ArgType); |
| |
| Param->setDeclContext(ObjCMethod); |
| Params.push_back(Param); |
| } |
| |
| ObjCMethod->setMethodParams(Context, Params, SelectorLocs); |
| ObjCMethod->setObjCDeclQualifier( |
| CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); |
| |
| ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); |
| AddPragmaAttributes(TUScope, ObjCMethod); |
| |
| // Add the method now. |
| const ObjCMethodDecl *PrevMethod = nullptr; |
| if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { |
| if (MethodType == tok::minus) { |
| PrevMethod = ImpDecl->getInstanceMethod(Sel); |
| ImpDecl->addInstanceMethod(ObjCMethod); |
| } else { |
| PrevMethod = ImpDecl->getClassMethod(Sel); |
| ImpDecl->addClassMethod(ObjCMethod); |
| } |
| |
| // Merge information from the @interface declaration into the |
| // @implementation. |
| if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { |
| if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), |
| ObjCMethod->isInstanceMethod())) { |
| mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD); |
| |
| // Warn about defining -dealloc in a category. |
| if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() && |
| ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { |
| Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) |
| << ObjCMethod->getDeclName(); |
| } |
| } |
| |
| // Warn if a method declared in a protocol to which a category or |
| // extension conforms is non-escaping and the implementation's method is |
| // escaping. |
| for (auto *C : IDecl->visible_categories()) |
| for (auto &P : C->protocols()) |
| if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(), |
| ObjCMethod->isInstanceMethod())) { |
| assert(ObjCMethod->parameters().size() == |
| IMD->parameters().size() && |
| "Methods have different number of parameters"); |
| auto OI = IMD->param_begin(), OE = IMD->param_end(); |
| auto NI = ObjCMethod->param_begin(); |
| for (; OI != OE; ++OI, ++NI) |
| diagnoseNoescape(*NI, *OI, C, P, *this); |
| } |
| } |
| } else { |
| cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); |
| } |
| |
| if (PrevMethod) { |
| // You can never have two method definitions with the same name. |
| Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) |
| << ObjCMethod->getDeclName(); |
| Diag(PrevMethod->getLocation(), diag::note_previous_declaration); |
| ObjCMethod->setInvalidDecl(); |
| return ObjCMethod; |
| } |
| |
| // If this Objective-C method does not have a related result type, but we |
| // are allowed to infer related result types, try to do so based on the |
| // method family. |
| ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); |
| if (!CurrentClass) { |
| if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) |
| CurrentClass = Cat->getClassInterface(); |
| else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) |
| CurrentClass = Impl->getClassInterface(); |
| else if (ObjCCategoryImplDecl *CatImpl |
| = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) |
| CurrentClass = CatImpl->getClassInterface(); |
| } |
| |
| ResultTypeCompatibilityKind RTC |
| = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); |
| |
| CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); |
| |
| bool ARCError = false; |
| if (getLangOpts().ObjCAutoRefCount) |
| ARCError = CheckARCMethodDecl(ObjCMethod); |
| |
| // Infer the related result type when possible. |
| if (!ARCError && RTC == Sema::RTC_Compatible && |
| !ObjCMethod->hasRelatedResultType() && |
| LangOpts.ObjCInferRelatedResultType) { |
| bool InferRelatedResultType = false; |
| switch (ObjCMethod->getMethodFamily()) { |
| case OMF_None: |
| case OMF_copy: |
| case OMF_dealloc: |
| case OMF_finalize: |
| case OMF_mutableCopy: |
| case OMF_release: |
| case OMF_retainCount: |
| case OMF_initialize: |
| case OMF_performSelector: |
| break; |
| |
| case OMF_alloc: |
| case OMF_new: |
| InferRelatedResultType = ObjCMethod->isClassMethod(); |
| break; |
| |
| case OMF_init: |
| case OMF_autorelease: |
| case OMF_retain: |
| case OMF_self: |
| InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
| break; |
| } |
| |
| if (InferRelatedResultType && |
| !ObjCMethod->getReturnType()->isObjCIndependentClassType()) |
| ObjCMethod->setRelatedResultType(); |
| } |
| |
| if (MethodDefinition && |
| Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
| checkObjCMethodX86VectorTypes(*this, ObjCMethod); |
| |
| // + load method cannot have availability attributes. It get called on |
| // startup, so it has to have the availability of the deployment target. |
| if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { |
| if (ObjCMethod->isClassMethod() && |
| ObjCMethod->getSelector().getAsString() == "load") { |
| Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
| << 0; |
| ObjCMethod->dropAttr<AvailabilityAttr>(); |
| } |
| } |
| |
| ActOnDocumentableDecl(ObjCMethod); |
| |
| return ObjCMethod; |
| } |
| |
| bool Sema::CheckObjCDeclScope(Decl *D) { |
| // Following is also an error. But it is caused by a missing @end |
| // and diagnostic is issued elsewhere. |
| if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) |
| return false; |
| |
| // If we switched context to translation unit while we are still lexically in |
| // an objc container, it means the parser missed emitting an error. |
| if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) |
| return false; |
| |
| Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); |
| D->setInvalidDecl(); |
| |
| return true; |
| } |
| |
| /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the |
| /// instance variables of ClassName into Decls. |
| void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
| IdentifierInfo *ClassName, |
| SmallVectorImpl<Decl*> &Decls) { |
| // Check that ClassName is a valid class |
| ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); |
| if (!Class) { |
| Diag(DeclStart, diag::err_undef_interface) << ClassName; |
| return; |
| } |
| if (LangOpts.ObjCRuntime.isNonFragile()) { |
| Diag(DeclStart, diag::err_atdef_nonfragile_interface); |
| return; |
| } |
| |
| // Collect the instance variables |
| SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| Context.DeepCollectObjCIvars(Class, true, Ivars); |
| // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
| for (unsigned i = 0; i < Ivars.size(); i++) { |
| const FieldDecl* ID = Ivars[i]; |
| RecordDecl *Record = dyn_cast<RecordDecl>(TagD); |
| Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, |
| /*FIXME: StartL=*/ID->getLocation(), |
| ID->getLocation(), |
| ID->getIdentifier(), ID->getType(), |
| ID->getBitWidth()); |
| Decls.push_back(FD); |
| } |
| |
| // Introduce all of these fields into the appropriate scope. |
| for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
| D != Decls.end(); ++D) { |
| FieldDecl *FD = cast<FieldDecl>(*D); |
| if (getLangOpts().CPlusPlus) |
| PushOnScopeChains(FD, S); |
| else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) |
| Record->addDecl(FD); |
| } |
| } |
| |
| /// Build a type-check a new Objective-C exception variable declaration. |
| VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| bool Invalid) { |
| // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| // duration shall not be qualified by an address-space qualifier." |
| // Since all parameters have automatic store duration, they can not have |
| // an address space. |
| if (T.getAddressSpace() != LangAS::Default) { |
| Diag(IdLoc, diag::err_arg_with_address_space); |
| Invalid = true; |
| } |
| |
| // An @catch parameter must be an unqualified object pointer type; |
| // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
| if (Invalid) { |
| // Don't do any further checking. |
| } else if (T->isDependentType()) { |
| // Okay: we don't know what this type will instantiate to. |
| } else if (T->isObjCQualifiedIdType()) { |
| Invalid = true; |
| Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); |
| } else if (T->isObjCIdType()) { |
| // Okay: we don't know what this type will instantiate to. |
| } else if (!T->isObjCObjectPointerType()) { |
| Invalid = true; |
| Diag(IdLoc, diag::err_catch_param_not_objc_type); |
| } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { |
| Invalid = true; |
| Diag(IdLoc, diag::err_catch_param_not_objc_type); |
| } |
| |
| VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, |
| T, TInfo, SC_None); |
| New->setExceptionVariable(true); |
| |
| // In ARC, infer 'retaining' for variables of retainable type. |
| if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) |
| Invalid = true; |
| |
| if (Invalid) |
| New->setInvalidDecl(); |
| return New; |
| } |
| |
| Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // We allow the "register" storage class on exception variables because |
| // GCC did, but we drop it completely. Any other storage class is an error. |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) |
| << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); |
| } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
| Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) |
| << DeclSpec::getSpecifierName(SCS); |
| } |
| if (DS.isInlineSpecified()) |
| Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
| << getLangOpts().CPlusPlus17; |
| if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_invalid_thread) |
| << DeclSpec::getSpecifierName(TSCS); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| |
| DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
| |
| // Check that there are no default arguments inside the type of this |
| // exception object (C++ only). |
| if (getLangOpts().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType ExceptionType = TInfo->getType(); |
| |
| VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, |
| D.getSourceRange().getBegin(), |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| D.isInvalidType()); |
| |
| // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) |
| << D.getCXXScopeSpec().getRange(); |
| New->setInvalidDecl(); |
| } |
| |
| // Add the parameter declaration into this scope. |
| S->AddDecl(New); |
| if (D.getIdentifier()) |
| IdResolver.AddDecl(New); |
| |
| ProcessDeclAttributes(S, New, D); |
| |
| if (New->hasAttr<BlocksAttr>()) |
| Diag(New->getLocation(), diag::err_block_on_nonlocal); |
| return New; |
| } |
| |
| /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
| /// initialization. |
| void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, |
| SmallVectorImpl<ObjCIvarDecl*> &Ivars) { |
| for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
| Iv= Iv->getNextIvar()) { |
| QualType QT = Context.getBaseElementType(Iv->getType()); |
| if (QT->isRecordType()) |
| Ivars.push_back(Iv); |
| } |
| } |
| |
| void Sema::DiagnoseUseOfUnimplementedSelectors() { |
| // Load referenced selectors from the external source. |
| if (ExternalSource) { |
| SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; |
| ExternalSource->ReadReferencedSelectors(Sels); |
| for (unsigned I = 0, N = Sels.size(); I != N; ++I) |
| ReferencedSelectors[Sels[I].first] = Sels[I].second; |
| } |
| |
| // Warning will be issued only when selector table is |
| // generated (which means there is at lease one implementation |
| // in the TU). This is to match gcc's behavior. |
| if (ReferencedSelectors.empty() || |
| !Context.AnyObjCImplementation()) |
| return; |
| for (auto &SelectorAndLocation : ReferencedSelectors) { |
| Selector Sel = SelectorAndLocation.first; |
| SourceLocation Loc = SelectorAndLocation.second; |
| if (!LookupImplementedMethodInGlobalPool(Sel)) |
| Diag(Loc, diag::warn_unimplemented_selector) << Sel; |
| } |
| } |
| |
| ObjCIvarDecl * |
| Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, |
| const ObjCPropertyDecl *&PDecl) const { |
| if (Method->isClassMethod()) |
| return nullptr; |
| const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); |
| if (!IDecl) |
| return nullptr; |
| Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, |
| /*shallowCategoryLookup=*/false, |
| /*followSuper=*/false); |
| if (!Method || !Method->isPropertyAccessor()) |
| return nullptr; |
| if ((PDecl = Method->findPropertyDecl())) |
| if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { |
| // property backing ivar must belong to property's class |
| // or be a private ivar in class's implementation. |
| // FIXME. fix the const-ness issue. |
| IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( |
| IV->getIdentifier()); |
| return IV; |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property |
| /// accessor references the backing ivar. |
| class UnusedBackingIvarChecker : |
| public RecursiveASTVisitor<UnusedBackingIvarChecker> { |
| public: |
| Sema &S; |
| const ObjCMethodDecl *Method; |
| const ObjCIvarDecl *IvarD; |
| bool AccessedIvar; |
| bool InvokedSelfMethod; |
| |
| UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, |
| const ObjCIvarDecl *IvarD) |
| : S(S), Method(Method), IvarD(IvarD), |
| AccessedIvar(false), InvokedSelfMethod(false) { |
| assert(IvarD); |
| } |
| |
| bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| if (E->getDecl() == IvarD) { |
| AccessedIvar = true; |
| return false; |
| } |
| return true; |
| } |
| |
| bool VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| if (E->getReceiverKind() == ObjCMessageExpr::Instance && |
| S.isSelfExpr(E->getInstanceReceiver(), Method)) { |
| InvokedSelfMethod = true; |
| } |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, |
| const ObjCImplementationDecl *ImplD) { |
| if (S->hasUnrecoverableErrorOccurred()) |
| return; |
| |
| for (const auto *CurMethod : ImplD->instance_methods()) { |
| unsigned DIAG = diag::warn_unused_property_backing_ivar; |
| SourceLocation Loc = CurMethod->getLocation(); |
| if (Diags.isIgnored(DIAG, Loc)) |
| continue; |
| |
| const ObjCPropertyDecl *PDecl; |
| const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); |
| if (!IV) |
| continue; |
| |
| UnusedBackingIvarChecker Checker(*this, CurMethod, IV); |
| Checker.TraverseStmt(CurMethod->getBody()); |
| if (Checker.AccessedIvar) |
| continue; |
| |
| // Do not issue this warning if backing ivar is used somewhere and accessor |
| // implementation makes a self call. This is to prevent false positive in |
| // cases where the ivar is accessed by another method that the accessor |
| // delegates to. |
| if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { |
| Diag(Loc, DIAG) << IV; |
| Diag(PDecl->getLocation(), diag::note_property_declare); |
| } |
| } |
| } |