| //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides a class for OpenMP runtime code generation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CGCleanup.h" |
| #include "CGOpenMPRuntime.h" |
| #include "CGRecordLayout.h" |
| #include "CodeGenFunction.h" |
| #include "clang/CodeGen/ConstantInitBuilder.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/Basic/BitmaskEnum.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Bitcode/BitcodeReader.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| /// Base class for handling code generation inside OpenMP regions. |
| class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { |
| public: |
| /// Kinds of OpenMP regions used in codegen. |
| enum CGOpenMPRegionKind { |
| /// Region with outlined function for standalone 'parallel' |
| /// directive. |
| ParallelOutlinedRegion, |
| /// Region with outlined function for standalone 'task' directive. |
| TaskOutlinedRegion, |
| /// Region for constructs that do not require function outlining, |
| /// like 'for', 'sections', 'atomic' etc. directives. |
| InlinedRegion, |
| /// Region with outlined function for standalone 'target' directive. |
| TargetRegion, |
| }; |
| |
| CGOpenMPRegionInfo(const CapturedStmt &CS, |
| const CGOpenMPRegionKind RegionKind, |
| const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, |
| bool HasCancel) |
| : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), |
| CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} |
| |
| CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, |
| const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, |
| bool HasCancel) |
| : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), |
| Kind(Kind), HasCancel(HasCancel) {} |
| |
| /// Get a variable or parameter for storing global thread id |
| /// inside OpenMP construct. |
| virtual const VarDecl *getThreadIDVariable() const = 0; |
| |
| /// Emit the captured statement body. |
| void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; |
| |
| /// Get an LValue for the current ThreadID variable. |
| /// \return LValue for thread id variable. This LValue always has type int32*. |
| virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); |
| |
| virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} |
| |
| CGOpenMPRegionKind getRegionKind() const { return RegionKind; } |
| |
| OpenMPDirectiveKind getDirectiveKind() const { return Kind; } |
| |
| bool hasCancel() const { return HasCancel; } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { |
| return Info->getKind() == CR_OpenMP; |
| } |
| |
| ~CGOpenMPRegionInfo() override = default; |
| |
| protected: |
| CGOpenMPRegionKind RegionKind; |
| RegionCodeGenTy CodeGen; |
| OpenMPDirectiveKind Kind; |
| bool HasCancel; |
| }; |
| |
| /// API for captured statement code generation in OpenMP constructs. |
| class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { |
| public: |
| CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, |
| const RegionCodeGenTy &CodeGen, |
| OpenMPDirectiveKind Kind, bool HasCancel, |
| StringRef HelperName) |
| : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, |
| HasCancel), |
| ThreadIDVar(ThreadIDVar), HelperName(HelperName) { |
| assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); |
| } |
| |
| /// Get a variable or parameter for storing global thread id |
| /// inside OpenMP construct. |
| const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } |
| |
| /// Get the name of the capture helper. |
| StringRef getHelperName() const override { return HelperName; } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { |
| return CGOpenMPRegionInfo::classof(Info) && |
| cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == |
| ParallelOutlinedRegion; |
| } |
| |
| private: |
| /// A variable or parameter storing global thread id for OpenMP |
| /// constructs. |
| const VarDecl *ThreadIDVar; |
| StringRef HelperName; |
| }; |
| |
| /// API for captured statement code generation in OpenMP constructs. |
| class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { |
| public: |
| class UntiedTaskActionTy final : public PrePostActionTy { |
| bool Untied; |
| const VarDecl *PartIDVar; |
| const RegionCodeGenTy UntiedCodeGen; |
| llvm::SwitchInst *UntiedSwitch = nullptr; |
| |
| public: |
| UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, |
| const RegionCodeGenTy &UntiedCodeGen) |
| : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} |
| void Enter(CodeGenFunction &CGF) override { |
| if (Untied) { |
| // Emit task switching point. |
| LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(PartIDVar), |
| PartIDVar->getType()->castAs<PointerType>()); |
| llvm::Value *Res = |
| CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation()); |
| llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done."); |
| UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); |
| CGF.EmitBlock(DoneBB); |
| CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); |
| CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); |
| UntiedSwitch->addCase(CGF.Builder.getInt32(0), |
| CGF.Builder.GetInsertBlock()); |
| emitUntiedSwitch(CGF); |
| } |
| } |
| void emitUntiedSwitch(CodeGenFunction &CGF) const { |
| if (Untied) { |
| LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(PartIDVar), |
| PartIDVar->getType()->castAs<PointerType>()); |
| CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), |
| PartIdLVal); |
| UntiedCodeGen(CGF); |
| CodeGenFunction::JumpDest CurPoint = |
| CGF.getJumpDestInCurrentScope(".untied.next."); |
| CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); |
| CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); |
| UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), |
| CGF.Builder.GetInsertBlock()); |
| CGF.EmitBranchThroughCleanup(CurPoint); |
| CGF.EmitBlock(CurPoint.getBlock()); |
| } |
| } |
| unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } |
| }; |
| CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, |
| const VarDecl *ThreadIDVar, |
| const RegionCodeGenTy &CodeGen, |
| OpenMPDirectiveKind Kind, bool HasCancel, |
| const UntiedTaskActionTy &Action) |
| : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), |
| ThreadIDVar(ThreadIDVar), Action(Action) { |
| assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); |
| } |
| |
| /// Get a variable or parameter for storing global thread id |
| /// inside OpenMP construct. |
| const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } |
| |
| /// Get an LValue for the current ThreadID variable. |
| LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; |
| |
| /// Get the name of the capture helper. |
| StringRef getHelperName() const override { return ".omp_outlined."; } |
| |
| void emitUntiedSwitch(CodeGenFunction &CGF) override { |
| Action.emitUntiedSwitch(CGF); |
| } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { |
| return CGOpenMPRegionInfo::classof(Info) && |
| cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == |
| TaskOutlinedRegion; |
| } |
| |
| private: |
| /// A variable or parameter storing global thread id for OpenMP |
| /// constructs. |
| const VarDecl *ThreadIDVar; |
| /// Action for emitting code for untied tasks. |
| const UntiedTaskActionTy &Action; |
| }; |
| |
| /// API for inlined captured statement code generation in OpenMP |
| /// constructs. |
| class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { |
| public: |
| CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, |
| const RegionCodeGenTy &CodeGen, |
| OpenMPDirectiveKind Kind, bool HasCancel) |
| : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), |
| OldCSI(OldCSI), |
| OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {} |
| |
| // Retrieve the value of the context parameter. |
| llvm::Value *getContextValue() const override { |
| if (OuterRegionInfo) |
| return OuterRegionInfo->getContextValue(); |
| llvm_unreachable("No context value for inlined OpenMP region"); |
| } |
| |
| void setContextValue(llvm::Value *V) override { |
| if (OuterRegionInfo) { |
| OuterRegionInfo->setContextValue(V); |
| return; |
| } |
| llvm_unreachable("No context value for inlined OpenMP region"); |
| } |
| |
| /// Lookup the captured field decl for a variable. |
| const FieldDecl *lookup(const VarDecl *VD) const override { |
| if (OuterRegionInfo) |
| return OuterRegionInfo->lookup(VD); |
| // If there is no outer outlined region,no need to lookup in a list of |
| // captured variables, we can use the original one. |
| return nullptr; |
| } |
| |
| FieldDecl *getThisFieldDecl() const override { |
| if (OuterRegionInfo) |
| return OuterRegionInfo->getThisFieldDecl(); |
| return nullptr; |
| } |
| |
| /// Get a variable or parameter for storing global thread id |
| /// inside OpenMP construct. |
| const VarDecl *getThreadIDVariable() const override { |
| if (OuterRegionInfo) |
| return OuterRegionInfo->getThreadIDVariable(); |
| return nullptr; |
| } |
| |
| /// Get an LValue for the current ThreadID variable. |
| LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override { |
| if (OuterRegionInfo) |
| return OuterRegionInfo->getThreadIDVariableLValue(CGF); |
| llvm_unreachable("No LValue for inlined OpenMP construct"); |
| } |
| |
| /// Get the name of the capture helper. |
| StringRef getHelperName() const override { |
| if (auto *OuterRegionInfo = getOldCSI()) |
| return OuterRegionInfo->getHelperName(); |
| llvm_unreachable("No helper name for inlined OpenMP construct"); |
| } |
| |
| void emitUntiedSwitch(CodeGenFunction &CGF) override { |
| if (OuterRegionInfo) |
| OuterRegionInfo->emitUntiedSwitch(CGF); |
| } |
| |
| CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { |
| return CGOpenMPRegionInfo::classof(Info) && |
| cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion; |
| } |
| |
| ~CGOpenMPInlinedRegionInfo() override = default; |
| |
| private: |
| /// CodeGen info about outer OpenMP region. |
| CodeGenFunction::CGCapturedStmtInfo *OldCSI; |
| CGOpenMPRegionInfo *OuterRegionInfo; |
| }; |
| |
| /// API for captured statement code generation in OpenMP target |
| /// constructs. For this captures, implicit parameters are used instead of the |
| /// captured fields. The name of the target region has to be unique in a given |
| /// application so it is provided by the client, because only the client has |
| /// the information to generate that. |
| class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { |
| public: |
| CGOpenMPTargetRegionInfo(const CapturedStmt &CS, |
| const RegionCodeGenTy &CodeGen, StringRef HelperName) |
| : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, |
| /*HasCancel=*/false), |
| HelperName(HelperName) {} |
| |
| /// This is unused for target regions because each starts executing |
| /// with a single thread. |
| const VarDecl *getThreadIDVariable() const override { return nullptr; } |
| |
| /// Get the name of the capture helper. |
| StringRef getHelperName() const override { return HelperName; } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { |
| return CGOpenMPRegionInfo::classof(Info) && |
| cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion; |
| } |
| |
| private: |
| StringRef HelperName; |
| }; |
| |
| static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { |
| llvm_unreachable("No codegen for expressions"); |
| } |
| /// API for generation of expressions captured in a innermost OpenMP |
| /// region. |
| class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { |
| public: |
| CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) |
| : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, |
| OMPD_unknown, |
| /*HasCancel=*/false), |
| PrivScope(CGF) { |
| // Make sure the globals captured in the provided statement are local by |
| // using the privatization logic. We assume the same variable is not |
| // captured more than once. |
| for (const auto &C : CS.captures()) { |
| if (!C.capturesVariable() && !C.capturesVariableByCopy()) |
| continue; |
| |
| const VarDecl *VD = C.getCapturedVar(); |
| if (VD->isLocalVarDeclOrParm()) |
| continue; |
| |
| DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), |
| /*RefersToEnclosingVariableOrCapture=*/false, |
| VD->getType().getNonReferenceType(), VK_LValue, |
| C.getLocation()); |
| PrivScope.addPrivate( |
| VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); }); |
| } |
| (void)PrivScope.Privatize(); |
| } |
| |
| /// Lookup the captured field decl for a variable. |
| const FieldDecl *lookup(const VarDecl *VD) const override { |
| if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) |
| return FD; |
| return nullptr; |
| } |
| |
| /// Emit the captured statement body. |
| void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { |
| llvm_unreachable("No body for expressions"); |
| } |
| |
| /// Get a variable or parameter for storing global thread id |
| /// inside OpenMP construct. |
| const VarDecl *getThreadIDVariable() const override { |
| llvm_unreachable("No thread id for expressions"); |
| } |
| |
| /// Get the name of the capture helper. |
| StringRef getHelperName() const override { |
| llvm_unreachable("No helper name for expressions"); |
| } |
| |
| static bool classof(const CGCapturedStmtInfo *Info) { return false; } |
| |
| private: |
| /// Private scope to capture global variables. |
| CodeGenFunction::OMPPrivateScope PrivScope; |
| }; |
| |
| /// RAII for emitting code of OpenMP constructs. |
| class InlinedOpenMPRegionRAII { |
| CodeGenFunction &CGF; |
| llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField = nullptr; |
| const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
| |
| public: |
| /// Constructs region for combined constructs. |
| /// \param CodeGen Code generation sequence for combined directives. Includes |
| /// a list of functions used for code generation of implicitly inlined |
| /// regions. |
| InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, |
| OpenMPDirectiveKind Kind, bool HasCancel) |
| : CGF(CGF) { |
| // Start emission for the construct. |
| CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( |
| CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); |
| std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); |
| LambdaThisCaptureField = CGF.LambdaThisCaptureField; |
| CGF.LambdaThisCaptureField = nullptr; |
| BlockInfo = CGF.BlockInfo; |
| CGF.BlockInfo = nullptr; |
| } |
| |
| ~InlinedOpenMPRegionRAII() { |
| // Restore original CapturedStmtInfo only if we're done with code emission. |
| auto *OldCSI = |
| cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI(); |
| delete CGF.CapturedStmtInfo; |
| CGF.CapturedStmtInfo = OldCSI; |
| std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); |
| CGF.LambdaThisCaptureField = LambdaThisCaptureField; |
| CGF.BlockInfo = BlockInfo; |
| } |
| }; |
| |
| /// Values for bit flags used in the ident_t to describe the fields. |
| /// All enumeric elements are named and described in accordance with the code |
| /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h |
| enum OpenMPLocationFlags : unsigned { |
| /// Use trampoline for internal microtask. |
| OMP_IDENT_IMD = 0x01, |
| /// Use c-style ident structure. |
| OMP_IDENT_KMPC = 0x02, |
| /// Atomic reduction option for kmpc_reduce. |
| OMP_ATOMIC_REDUCE = 0x10, |
| /// Explicit 'barrier' directive. |
| OMP_IDENT_BARRIER_EXPL = 0x20, |
| /// Implicit barrier in code. |
| OMP_IDENT_BARRIER_IMPL = 0x40, |
| /// Implicit barrier in 'for' directive. |
| OMP_IDENT_BARRIER_IMPL_FOR = 0x40, |
| /// Implicit barrier in 'sections' directive. |
| OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, |
| /// Implicit barrier in 'single' directive. |
| OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140, |
| /// Call of __kmp_for_static_init for static loop. |
| OMP_IDENT_WORK_LOOP = 0x200, |
| /// Call of __kmp_for_static_init for sections. |
| OMP_IDENT_WORK_SECTIONS = 0x400, |
| /// Call of __kmp_for_static_init for distribute. |
| OMP_IDENT_WORK_DISTRIBUTE = 0x800, |
| LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE) |
| }; |
| |
| namespace { |
| LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); |
| /// Values for bit flags for marking which requires clauses have been used. |
| enum OpenMPOffloadingRequiresDirFlags : int64_t { |
| /// flag undefined. |
| OMP_REQ_UNDEFINED = 0x000, |
| /// no requires clause present. |
| OMP_REQ_NONE = 0x001, |
| /// reverse_offload clause. |
| OMP_REQ_REVERSE_OFFLOAD = 0x002, |
| /// unified_address clause. |
| OMP_REQ_UNIFIED_ADDRESS = 0x004, |
| /// unified_shared_memory clause. |
| OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008, |
| /// dynamic_allocators clause. |
| OMP_REQ_DYNAMIC_ALLOCATORS = 0x010, |
| LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS) |
| }; |
| |
| enum OpenMPOffloadingReservedDeviceIDs { |
| /// Device ID if the device was not defined, runtime should get it |
| /// from environment variables in the spec. |
| OMP_DEVICEID_UNDEF = -1, |
| }; |
| } // anonymous namespace |
| |
| /// Describes ident structure that describes a source location. |
| /// All descriptions are taken from |
| /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h |
| /// Original structure: |
| /// typedef struct ident { |
| /// kmp_int32 reserved_1; /**< might be used in Fortran; |
| /// see above */ |
| /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; |
| /// KMP_IDENT_KMPC identifies this union |
| /// member */ |
| /// kmp_int32 reserved_2; /**< not really used in Fortran any more; |
| /// see above */ |
| ///#if USE_ITT_BUILD |
| /// /* but currently used for storing |
| /// region-specific ITT */ |
| /// /* contextual information. */ |
| ///#endif /* USE_ITT_BUILD */ |
| /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for |
| /// C++ */ |
| /// char const *psource; /**< String describing the source location. |
| /// The string is composed of semi-colon separated |
| // fields which describe the source file, |
| /// the function and a pair of line numbers that |
| /// delimit the construct. |
| /// */ |
| /// } ident_t; |
| enum IdentFieldIndex { |
| /// might be used in Fortran |
| IdentField_Reserved_1, |
| /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. |
| IdentField_Flags, |
| /// Not really used in Fortran any more |
| IdentField_Reserved_2, |
| /// Source[4] in Fortran, do not use for C++ |
| IdentField_Reserved_3, |
| /// String describing the source location. The string is composed of |
| /// semi-colon separated fields which describe the source file, the function |
| /// and a pair of line numbers that delimit the construct. |
| IdentField_PSource |
| }; |
| |
| /// Schedule types for 'omp for' loops (these enumerators are taken from |
| /// the enum sched_type in kmp.h). |
| enum OpenMPSchedType { |
| /// Lower bound for default (unordered) versions. |
| OMP_sch_lower = 32, |
| OMP_sch_static_chunked = 33, |
| OMP_sch_static = 34, |
| OMP_sch_dynamic_chunked = 35, |
| OMP_sch_guided_chunked = 36, |
| OMP_sch_runtime = 37, |
| OMP_sch_auto = 38, |
| /// static with chunk adjustment (e.g., simd) |
| OMP_sch_static_balanced_chunked = 45, |
| /// Lower bound for 'ordered' versions. |
| OMP_ord_lower = 64, |
| OMP_ord_static_chunked = 65, |
| OMP_ord_static = 66, |
| OMP_ord_dynamic_chunked = 67, |
| OMP_ord_guided_chunked = 68, |
| OMP_ord_runtime = 69, |
| OMP_ord_auto = 70, |
| OMP_sch_default = OMP_sch_static, |
| /// dist_schedule types |
| OMP_dist_sch_static_chunked = 91, |
| OMP_dist_sch_static = 92, |
| /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. |
| /// Set if the monotonic schedule modifier was present. |
| OMP_sch_modifier_monotonic = (1 << 29), |
| /// Set if the nonmonotonic schedule modifier was present. |
| OMP_sch_modifier_nonmonotonic = (1 << 30), |
| }; |
| |
| enum OpenMPRTLFunction { |
| /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, |
| /// kmpc_micro microtask, ...); |
| OMPRTL__kmpc_fork_call, |
| /// Call to void *__kmpc_threadprivate_cached(ident_t *loc, |
| /// kmp_int32 global_tid, void *data, size_t size, void ***cache); |
| OMPRTL__kmpc_threadprivate_cached, |
| /// Call to void __kmpc_threadprivate_register( ident_t *, |
| /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); |
| OMPRTL__kmpc_threadprivate_register, |
| // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc); |
| OMPRTL__kmpc_global_thread_num, |
| // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *crit); |
| OMPRTL__kmpc_critical, |
| // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 |
| // global_tid, kmp_critical_name *crit, uintptr_t hint); |
| OMPRTL__kmpc_critical_with_hint, |
| // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *crit); |
| OMPRTL__kmpc_end_critical, |
| // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 |
| // global_tid); |
| OMPRTL__kmpc_cancel_barrier, |
| // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_barrier, |
| // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_for_static_fini, |
| // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| OMPRTL__kmpc_serialized_parallel, |
| // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| OMPRTL__kmpc_end_serialized_parallel, |
| // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 num_threads); |
| OMPRTL__kmpc_push_num_threads, |
| // Call to void __kmpc_flush(ident_t *loc); |
| OMPRTL__kmpc_flush, |
| // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); |
| OMPRTL__kmpc_master, |
| // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid); |
| OMPRTL__kmpc_end_master, |
| // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, |
| // int end_part); |
| OMPRTL__kmpc_omp_taskyield, |
| // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); |
| OMPRTL__kmpc_single, |
| // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid); |
| OMPRTL__kmpc_end_single, |
| // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, |
| // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| // kmp_routine_entry_t *task_entry); |
| OMPRTL__kmpc_omp_task_alloc, |
| // Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *, |
| // kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, |
| // size_t sizeof_shareds, kmp_routine_entry_t *task_entry, |
| // kmp_int64 device_id); |
| OMPRTL__kmpc_omp_target_task_alloc, |
| // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t * |
| // new_task); |
| OMPRTL__kmpc_omp_task, |
| // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, |
| // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), |
| // kmp_int32 didit); |
| OMPRTL__kmpc_copyprivate, |
| // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void |
| // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); |
| OMPRTL__kmpc_reduce, |
| // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 |
| // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, |
| // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name |
| // *lck); |
| OMPRTL__kmpc_reduce_nowait, |
| // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *lck); |
| OMPRTL__kmpc_end_reduce, |
| // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *lck); |
| OMPRTL__kmpc_end_reduce_nowait, |
| // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, |
| // kmp_task_t * new_task); |
| OMPRTL__kmpc_omp_task_begin_if0, |
| // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, |
| // kmp_task_t * new_task); |
| OMPRTL__kmpc_omp_task_complete_if0, |
| // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_ordered, |
| // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_end_ordered, |
| // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 |
| // global_tid); |
| OMPRTL__kmpc_omp_taskwait, |
| // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_taskgroup, |
| // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); |
| OMPRTL__kmpc_end_taskgroup, |
| // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, |
| // int proc_bind); |
| OMPRTL__kmpc_push_proc_bind, |
| // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 |
| // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t |
| // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); |
| OMPRTL__kmpc_omp_task_with_deps, |
| // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 |
| // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 |
| // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); |
| OMPRTL__kmpc_omp_wait_deps, |
| // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 |
| // global_tid, kmp_int32 cncl_kind); |
| OMPRTL__kmpc_cancellationpoint, |
| // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 cncl_kind); |
| OMPRTL__kmpc_cancel, |
| // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 num_teams, kmp_int32 thread_limit); |
| OMPRTL__kmpc_push_num_teams, |
| // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro |
| // microtask, ...); |
| OMPRTL__kmpc_fork_teams, |
| // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int |
| // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int |
| // sched, kmp_uint64 grainsize, void *task_dup); |
| OMPRTL__kmpc_taskloop, |
| // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 |
| // num_dims, struct kmp_dim *dims); |
| OMPRTL__kmpc_doacross_init, |
| // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); |
| OMPRTL__kmpc_doacross_fini, |
| // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 |
| // *vec); |
| OMPRTL__kmpc_doacross_post, |
| // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 |
| // *vec); |
| OMPRTL__kmpc_doacross_wait, |
| // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void |
| // *data); |
| OMPRTL__kmpc_task_reduction_init, |
| // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void |
| // *d); |
| OMPRTL__kmpc_task_reduction_get_th_data, |
| // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); |
| OMPRTL__kmpc_alloc, |
| // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); |
| OMPRTL__kmpc_free, |
| |
| // |
| // Offloading related calls |
| // |
| // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64 |
| // size); |
| OMPRTL__kmpc_push_target_tripcount, |
| // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| OMPRTL__tgt_target, |
| // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr, |
| // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| OMPRTL__tgt_target_nowait, |
| // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr, |
| // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types, int32_t num_teams, int32_t thread_limit); |
| OMPRTL__tgt_target_teams, |
| // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void |
| // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t |
| // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit); |
| OMPRTL__tgt_target_teams_nowait, |
| // Call to void __tgt_register_requires(int64_t flags); |
| OMPRTL__tgt_register_requires, |
| // Call to void __tgt_register_lib(__tgt_bin_desc *desc); |
| OMPRTL__tgt_register_lib, |
| // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc); |
| OMPRTL__tgt_unregister_lib, |
| // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); |
| OMPRTL__tgt_target_data_begin, |
| // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| OMPRTL__tgt_target_data_begin_nowait, |
| // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types); |
| OMPRTL__tgt_target_data_end, |
| // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| OMPRTL__tgt_target_data_end_nowait, |
| // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); |
| OMPRTL__tgt_target_data_update, |
| // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| OMPRTL__tgt_target_data_update_nowait, |
| // Call to int64_t __tgt_mapper_num_components(void *rt_mapper_handle); |
| OMPRTL__tgt_mapper_num_components, |
| // Call to void __tgt_push_mapper_component(void *rt_mapper_handle, void |
| // *base, void *begin, int64_t size, int64_t type); |
| OMPRTL__tgt_push_mapper_component, |
| }; |
| |
| /// A basic class for pre|post-action for advanced codegen sequence for OpenMP |
| /// region. |
| class CleanupTy final : public EHScopeStack::Cleanup { |
| PrePostActionTy *Action; |
| |
| public: |
| explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} |
| void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| Action->Exit(CGF); |
| } |
| }; |
| |
| } // anonymous namespace |
| |
| void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| if (PrePostAction) { |
| CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction); |
| Callback(CodeGen, CGF, *PrePostAction); |
| } else { |
| PrePostActionTy Action; |
| Callback(CodeGen, CGF, Action); |
| } |
| } |
| |
| /// Check if the combiner is a call to UDR combiner and if it is so return the |
| /// UDR decl used for reduction. |
| static const OMPDeclareReductionDecl * |
| getReductionInit(const Expr *ReductionOp) { |
| if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) |
| if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) |
| if (const auto *DRE = |
| dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) |
| if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) |
| return DRD; |
| return nullptr; |
| } |
| |
| static void emitInitWithReductionInitializer(CodeGenFunction &CGF, |
| const OMPDeclareReductionDecl *DRD, |
| const Expr *InitOp, |
| Address Private, Address Original, |
| QualType Ty) { |
| if (DRD->getInitializer()) { |
| std::pair<llvm::Function *, llvm::Function *> Reduction = |
| CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); |
| const auto *CE = cast<CallExpr>(InitOp); |
| const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); |
| const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); |
| const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); |
| const auto *LHSDRE = |
| cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); |
| const auto *RHSDRE = |
| cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); |
| CodeGenFunction::OMPPrivateScope PrivateScope(CGF); |
| PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), |
| [=]() { return Private; }); |
| PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), |
| [=]() { return Original; }); |
| (void)PrivateScope.Privatize(); |
| RValue Func = RValue::get(Reduction.second); |
| CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); |
| CGF.EmitIgnoredExpr(InitOp); |
| } else { |
| llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); |
| std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"}); |
| auto *GV = new llvm::GlobalVariable( |
| CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, |
| llvm::GlobalValue::PrivateLinkage, Init, Name); |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); |
| RValue InitRVal; |
| switch (CGF.getEvaluationKind(Ty)) { |
| case TEK_Scalar: |
| InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation()); |
| break; |
| case TEK_Complex: |
| InitRVal = |
| RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation())); |
| break; |
| case TEK_Aggregate: |
| InitRVal = RValue::getAggregate(LV.getAddress()); |
| break; |
| } |
| OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue); |
| CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); |
| CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), |
| /*IsInitializer=*/false); |
| } |
| } |
| |
| /// Emit initialization of arrays of complex types. |
| /// \param DestAddr Address of the array. |
| /// \param Type Type of array. |
| /// \param Init Initial expression of array. |
| /// \param SrcAddr Address of the original array. |
| static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, |
| QualType Type, bool EmitDeclareReductionInit, |
| const Expr *Init, |
| const OMPDeclareReductionDecl *DRD, |
| Address SrcAddr = Address::invalid()) { |
| // Perform element-by-element initialization. |
| QualType ElementTy; |
| |
| // Drill down to the base element type on both arrays. |
| const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); |
| llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); |
| DestAddr = |
| CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); |
| if (DRD) |
| SrcAddr = |
| CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); |
| |
| llvm::Value *SrcBegin = nullptr; |
| if (DRD) |
| SrcBegin = SrcAddr.getPointer(); |
| llvm::Value *DestBegin = DestAddr.getPointer(); |
| // Cast from pointer to array type to pointer to single element. |
| llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); |
| // The basic structure here is a while-do loop. |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); |
| llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); |
| llvm::Value *IsEmpty = |
| CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); |
| CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); |
| |
| // Enter the loop body, making that address the current address. |
| llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); |
| CGF.EmitBlock(BodyBB); |
| |
| CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); |
| |
| llvm::PHINode *SrcElementPHI = nullptr; |
| Address SrcElementCurrent = Address::invalid(); |
| if (DRD) { |
| SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, |
| "omp.arraycpy.srcElementPast"); |
| SrcElementPHI->addIncoming(SrcBegin, EntryBB); |
| SrcElementCurrent = |
| Address(SrcElementPHI, |
| SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| } |
| llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( |
| DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); |
| DestElementPHI->addIncoming(DestBegin, EntryBB); |
| Address DestElementCurrent = |
| Address(DestElementPHI, |
| DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| |
| // Emit copy. |
| { |
| CodeGenFunction::RunCleanupsScope InitScope(CGF); |
| if (EmitDeclareReductionInit) { |
| emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, |
| SrcElementCurrent, ElementTy); |
| } else |
| CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), |
| /*IsInitializer=*/false); |
| } |
| |
| if (DRD) { |
| // Shift the address forward by one element. |
| llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32( |
| SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); |
| SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); |
| } |
| |
| // Shift the address forward by one element. |
| llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32( |
| DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); |
| // Check whether we've reached the end. |
| llvm::Value *Done = |
| CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); |
| CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); |
| DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); |
| |
| // Done. |
| CGF.EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) { |
| return CGF.EmitOMPSharedLValue(E); |
| } |
| |
| LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF, |
| const Expr *E) { |
| if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E)) |
| return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); |
| return LValue(); |
| } |
| |
| void ReductionCodeGen::emitAggregateInitialization( |
| CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, |
| const OMPDeclareReductionDecl *DRD) { |
| // Emit VarDecl with copy init for arrays. |
| // Get the address of the original variable captured in current |
| // captured region. |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| bool EmitDeclareReductionInit = |
| DRD && (DRD->getInitializer() || !PrivateVD->hasInit()); |
| EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(), |
| EmitDeclareReductionInit, |
| EmitDeclareReductionInit ? ClausesData[N].ReductionOp |
| : PrivateVD->getInit(), |
| DRD, SharedLVal.getAddress()); |
| } |
| |
| ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds, |
| ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> ReductionOps) { |
| ClausesData.reserve(Shareds.size()); |
| SharedAddresses.reserve(Shareds.size()); |
| Sizes.reserve(Shareds.size()); |
| BaseDecls.reserve(Shareds.size()); |
| auto IPriv = Privates.begin(); |
| auto IRed = ReductionOps.begin(); |
| for (const Expr *Ref : Shareds) { |
| ClausesData.emplace_back(Ref, *IPriv, *IRed); |
| std::advance(IPriv, 1); |
| std::advance(IRed, 1); |
| } |
| } |
| |
| void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) { |
| assert(SharedAddresses.size() == N && |
| "Number of generated lvalues must be exactly N."); |
| LValue First = emitSharedLValue(CGF, ClausesData[N].Ref); |
| LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref); |
| SharedAddresses.emplace_back(First, Second); |
| } |
| |
| void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) { |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| QualType PrivateType = PrivateVD->getType(); |
| bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref); |
| if (!PrivateType->isVariablyModifiedType()) { |
| Sizes.emplace_back( |
| CGF.getTypeSize( |
| SharedAddresses[N].first.getType().getNonReferenceType()), |
| nullptr); |
| return; |
| } |
| llvm::Value *Size; |
| llvm::Value *SizeInChars; |
| auto *ElemType = |
| cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType()) |
| ->getElementType(); |
| auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType); |
| if (AsArraySection) { |
| Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(), |
| SharedAddresses[N].first.getPointer()); |
| Size = CGF.Builder.CreateNUWAdd( |
| Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); |
| SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf); |
| } else { |
| SizeInChars = CGF.getTypeSize( |
| SharedAddresses[N].first.getType().getNonReferenceType()); |
| Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf); |
| } |
| Sizes.emplace_back(SizeInChars, Size); |
| CodeGenFunction::OpaqueValueMapping OpaqueMap( |
| CGF, |
| cast<OpaqueValueExpr>( |
| CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), |
| RValue::get(Size)); |
| CGF.EmitVariablyModifiedType(PrivateType); |
| } |
| |
| void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N, |
| llvm::Value *Size) { |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| QualType PrivateType = PrivateVD->getType(); |
| if (!PrivateType->isVariablyModifiedType()) { |
| assert(!Size && !Sizes[N].second && |
| "Size should be nullptr for non-variably modified reduction " |
| "items."); |
| return; |
| } |
| CodeGenFunction::OpaqueValueMapping OpaqueMap( |
| CGF, |
| cast<OpaqueValueExpr>( |
| CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), |
| RValue::get(Size)); |
| CGF.EmitVariablyModifiedType(PrivateType); |
| } |
| |
| void ReductionCodeGen::emitInitialization( |
| CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, |
| llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) { |
| assert(SharedAddresses.size() > N && "No variable was generated"); |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| const OMPDeclareReductionDecl *DRD = |
| getReductionInit(ClausesData[N].ReductionOp); |
| QualType PrivateType = PrivateVD->getType(); |
| PrivateAddr = CGF.Builder.CreateElementBitCast( |
| PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); |
| QualType SharedType = SharedAddresses[N].first.getType(); |
| SharedLVal = CGF.MakeAddrLValue( |
| CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(), |
| CGF.ConvertTypeForMem(SharedType)), |
| SharedType, SharedAddresses[N].first.getBaseInfo(), |
| CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType)); |
| if (CGF.getContext().getAsArrayType(PrivateVD->getType())) { |
| emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD); |
| } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { |
| emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp, |
| PrivateAddr, SharedLVal.getAddress(), |
| SharedLVal.getType()); |
| } else if (!DefaultInit(CGF) && PrivateVD->hasInit() && |
| !CGF.isTrivialInitializer(PrivateVD->getInit())) { |
| CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr, |
| PrivateVD->getType().getQualifiers(), |
| /*IsInitializer=*/false); |
| } |
| } |
| |
| bool ReductionCodeGen::needCleanups(unsigned N) { |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| QualType PrivateType = PrivateVD->getType(); |
| QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); |
| return DTorKind != QualType::DK_none; |
| } |
| |
| void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N, |
| Address PrivateAddr) { |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); |
| QualType PrivateType = PrivateVD->getType(); |
| QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); |
| if (needCleanups(N)) { |
| PrivateAddr = CGF.Builder.CreateElementBitCast( |
| PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); |
| CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType); |
| } |
| } |
| |
| static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, |
| LValue BaseLV) { |
| BaseTy = BaseTy.getNonReferenceType(); |
| while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && |
| !CGF.getContext().hasSameType(BaseTy, ElTy)) { |
| if (const auto *PtrTy = BaseTy->getAs<PointerType>()) { |
| BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); |
| } else { |
| LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy); |
| BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal); |
| } |
| BaseTy = BaseTy->getPointeeType(); |
| } |
| return CGF.MakeAddrLValue( |
| CGF.Builder.CreateElementBitCast(BaseLV.getAddress(), |
| CGF.ConvertTypeForMem(ElTy)), |
| BaseLV.getType(), BaseLV.getBaseInfo(), |
| CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType())); |
| } |
| |
| static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, |
| llvm::Type *BaseLVType, CharUnits BaseLVAlignment, |
| llvm::Value *Addr) { |
| Address Tmp = Address::invalid(); |
| Address TopTmp = Address::invalid(); |
| Address MostTopTmp = Address::invalid(); |
| BaseTy = BaseTy.getNonReferenceType(); |
| while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && |
| !CGF.getContext().hasSameType(BaseTy, ElTy)) { |
| Tmp = CGF.CreateMemTemp(BaseTy); |
| if (TopTmp.isValid()) |
| CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); |
| else |
| MostTopTmp = Tmp; |
| TopTmp = Tmp; |
| BaseTy = BaseTy->getPointeeType(); |
| } |
| llvm::Type *Ty = BaseLVType; |
| if (Tmp.isValid()) |
| Ty = Tmp.getElementType(); |
| Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); |
| if (Tmp.isValid()) { |
| CGF.Builder.CreateStore(Addr, Tmp); |
| return MostTopTmp; |
| } |
| return Address(Addr, BaseLVAlignment); |
| } |
| |
| static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) { |
| const VarDecl *OrigVD = nullptr; |
| if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) { |
| const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) |
| Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| DE = cast<DeclRefExpr>(Base); |
| OrigVD = cast<VarDecl>(DE->getDecl()); |
| } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) { |
| const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| DE = cast<DeclRefExpr>(Base); |
| OrigVD = cast<VarDecl>(DE->getDecl()); |
| } |
| return OrigVD; |
| } |
| |
| Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N, |
| Address PrivateAddr) { |
| const DeclRefExpr *DE; |
| if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) { |
| BaseDecls.emplace_back(OrigVD); |
| LValue OriginalBaseLValue = CGF.EmitLValue(DE); |
| LValue BaseLValue = |
| loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(), |
| OriginalBaseLValue); |
| llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff( |
| BaseLValue.getPointer(), SharedAddresses[N].first.getPointer()); |
| llvm::Value *PrivatePointer = |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| PrivateAddr.getPointer(), |
| SharedAddresses[N].first.getAddress().getType()); |
| llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment); |
| return castToBase(CGF, OrigVD->getType(), |
| SharedAddresses[N].first.getType(), |
| OriginalBaseLValue.getAddress().getType(), |
| OriginalBaseLValue.getAlignment(), Ptr); |
| } |
| BaseDecls.emplace_back( |
| cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl())); |
| return PrivateAddr; |
| } |
| |
| bool ReductionCodeGen::usesReductionInitializer(unsigned N) const { |
| const OMPDeclareReductionDecl *DRD = |
| getReductionInit(ClausesData[N].ReductionOp); |
| return DRD && DRD->getInitializer(); |
| } |
| |
| LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { |
| return CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(getThreadIDVariable()), |
| getThreadIDVariable()->getType()->castAs<PointerType>()); |
| } |
| |
| void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CGF.EHStack.pushTerminate(); |
| CodeGen(CGF); |
| CGF.EHStack.popTerminate(); |
| } |
| |
| LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( |
| CodeGenFunction &CGF) { |
| return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), |
| getThreadIDVariable()->getType(), |
| AlignmentSource::Decl); |
| } |
| |
| static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, |
| QualType FieldTy) { |
| auto *Field = FieldDecl::Create( |
| C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, |
| C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| DC->addDecl(Field); |
| return Field; |
| } |
| |
| CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator, |
| StringRef Separator) |
| : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator), |
| OffloadEntriesInfoManager(CGM) { |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *RD = C.buildImplicitRecord("ident_t"); |
| QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); |
| RD->startDefinition(); |
| // reserved_1 |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| // flags |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| // reserved_2 |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| // reserved_3 |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| // psource |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| RD->completeDefinition(); |
| IdentQTy = C.getRecordType(RD); |
| IdentTy = CGM.getTypes().ConvertRecordDeclType(RD); |
| KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); |
| |
| loadOffloadInfoMetadata(); |
| } |
| |
| bool CGOpenMPRuntime::tryEmitDeclareVariant(const GlobalDecl &NewGD, |
| const GlobalDecl &OldGD, |
| llvm::GlobalValue *OrigAddr, |
| bool IsForDefinition) { |
| // Emit at least a definition for the aliasee if the the address of the |
| // original function is requested. |
| if (IsForDefinition || OrigAddr) |
| (void)CGM.GetAddrOfGlobal(NewGD); |
| StringRef NewMangledName = CGM.getMangledName(NewGD); |
| llvm::GlobalValue *Addr = CGM.GetGlobalValue(NewMangledName); |
| if (Addr && !Addr->isDeclaration()) { |
| const auto *D = cast<FunctionDecl>(OldGD.getDecl()); |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeGlobalDeclaration(OldGD); |
| llvm::Type *DeclTy = CGM.getTypes().GetFunctionType(FI); |
| |
| // Create a reference to the named value. This ensures that it is emitted |
| // if a deferred decl. |
| llvm::GlobalValue::LinkageTypes LT = CGM.getFunctionLinkage(OldGD); |
| |
| // Create the new alias itself, but don't set a name yet. |
| auto *GA = |
| llvm::GlobalAlias::create(DeclTy, 0, LT, "", Addr, &CGM.getModule()); |
| |
| if (OrigAddr) { |
| assert(OrigAddr->isDeclaration() && "Expected declaration"); |
| |
| GA->takeName(OrigAddr); |
| OrigAddr->replaceAllUsesWith( |
| llvm::ConstantExpr::getBitCast(GA, OrigAddr->getType())); |
| OrigAddr->eraseFromParent(); |
| } else { |
| GA->setName(CGM.getMangledName(OldGD)); |
| } |
| |
| // Set attributes which are particular to an alias; this is a |
| // specialization of the attributes which may be set on a global function. |
| if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || |
| D->isWeakImported()) |
| GA->setLinkage(llvm::Function::WeakAnyLinkage); |
| |
| CGM.SetCommonAttributes(OldGD, GA); |
| return true; |
| } |
| return false; |
| } |
| |
| void CGOpenMPRuntime::clear() { |
| InternalVars.clear(); |
| // Clean non-target variable declarations possibly used only in debug info. |
| for (const auto &Data : EmittedNonTargetVariables) { |
| if (!Data.getValue().pointsToAliveValue()) |
| continue; |
| auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue()); |
| if (!GV) |
| continue; |
| if (!GV->isDeclaration() || GV->getNumUses() > 0) |
| continue; |
| GV->eraseFromParent(); |
| } |
| // Emit aliases for the deferred aliasees. |
| for (const auto &Pair : DeferredVariantFunction) { |
| StringRef MangledName = CGM.getMangledName(Pair.second.second); |
| llvm::GlobalValue *Addr = CGM.GetGlobalValue(MangledName); |
| // If not able to emit alias, just emit original declaration. |
| (void)tryEmitDeclareVariant(Pair.second.first, Pair.second.second, Addr, |
| /*IsForDefinition=*/false); |
| } |
| } |
| |
| std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const { |
| SmallString<128> Buffer; |
| llvm::raw_svector_ostream OS(Buffer); |
| StringRef Sep = FirstSeparator; |
| for (StringRef Part : Parts) { |
| OS << Sep << Part; |
| Sep = Separator; |
| } |
| return OS.str(); |
| } |
| |
| static llvm::Function * |
| emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, |
| const Expr *CombinerInitializer, const VarDecl *In, |
| const VarDecl *Out, bool IsCombiner) { |
| // void .omp_combiner.(Ty *in, Ty *out); |
| ASTContext &C = CGM.getContext(); |
| QualType PtrTy = C.getPointerType(Ty).withRestrict(); |
| FunctionArgList Args; |
| ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), |
| /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), |
| /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); |
| Args.push_back(&OmpOutParm); |
| Args.push_back(&OmpInParm); |
| const CGFunctionInfo &FnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName( |
| {IsCombiner ? "omp_combiner" : "omp_initializer", ""}); |
| auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); |
| if (CGM.getLangOpts().Optimize) { |
| Fn->removeFnAttr(llvm::Attribute::NoInline); |
| Fn->removeFnAttr(llvm::Attribute::OptimizeNone); |
| Fn->addFnAttr(llvm::Attribute::AlwaysInline); |
| } |
| CodeGenFunction CGF(CGM); |
| // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. |
| // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(), |
| Out->getLocation()); |
| CodeGenFunction::OMPPrivateScope Scope(CGF); |
| Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); |
| Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() { |
| return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>()) |
| .getAddress(); |
| }); |
| Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); |
| Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() { |
| return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>()) |
| .getAddress(); |
| }); |
| (void)Scope.Privatize(); |
| if (!IsCombiner && Out->hasInit() && |
| !CGF.isTrivialInitializer(Out->getInit())) { |
| CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out), |
| Out->getType().getQualifiers(), |
| /*IsInitializer=*/true); |
| } |
| if (CombinerInitializer) |
| CGF.EmitIgnoredExpr(CombinerInitializer); |
| Scope.ForceCleanup(); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| void CGOpenMPRuntime::emitUserDefinedReduction( |
| CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { |
| if (UDRMap.count(D) > 0) |
| return; |
| llvm::Function *Combiner = emitCombinerOrInitializer( |
| CGM, D->getType(), D->getCombiner(), |
| cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()), |
| cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()), |
| /*IsCombiner=*/true); |
| llvm::Function *Initializer = nullptr; |
| if (const Expr *Init = D->getInitializer()) { |
| Initializer = emitCombinerOrInitializer( |
| CGM, D->getType(), |
| D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init |
| : nullptr, |
| cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()), |
| cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()), |
| /*IsCombiner=*/false); |
| } |
| UDRMap.try_emplace(D, Combiner, Initializer); |
| if (CGF) { |
| auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); |
| Decls.second.push_back(D); |
| } |
| } |
| |
| std::pair<llvm::Function *, llvm::Function *> |
| CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { |
| auto I = UDRMap.find(D); |
| if (I != UDRMap.end()) |
| return I->second; |
| emitUserDefinedReduction(/*CGF=*/nullptr, D); |
| return UDRMap.lookup(D); |
| } |
| |
| static llvm::Function *emitParallelOrTeamsOutlinedFunction( |
| CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, |
| const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, |
| const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { |
| assert(ThreadIDVar->getType()->isPointerType() && |
| "thread id variable must be of type kmp_int32 *"); |
| CodeGenFunction CGF(CGM, true); |
| bool HasCancel = false; |
| if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D)) |
| HasCancel = OPD->hasCancel(); |
| else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D)) |
| HasCancel = OPSD->hasCancel(); |
| else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D)) |
| HasCancel = OPFD->hasCancel(); |
| else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D)) |
| HasCancel = OPFD->hasCancel(); |
| else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D)) |
| HasCancel = OPFD->hasCancel(); |
| else if (const auto *OPFD = |
| dyn_cast<OMPTeamsDistributeParallelForDirective>(&D)) |
| HasCancel = OPFD->hasCancel(); |
| else if (const auto *OPFD = |
| dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D)) |
| HasCancel = OPFD->hasCancel(); |
| CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, |
| HasCancel, OutlinedHelperName); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| return CGF.GenerateOpenMPCapturedStmtFunction(*CS); |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); |
| return emitParallelOrTeamsOutlinedFunction( |
| CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); |
| return emitParallelOrTeamsOutlinedFunction( |
| CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| const VarDecl *PartIDVar, const VarDecl *TaskTVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, |
| bool Tied, unsigned &NumberOfParts) { |
| auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc()); |
| llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc()); |
| llvm::Value *TaskArgs[] = { |
| UpLoc, ThreadID, |
| CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), |
| TaskTVar->getType()->castAs<PointerType>()) |
| .getPointer()}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); |
| }; |
| CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, |
| UntiedCodeGen); |
| CodeGen.setAction(Action); |
| assert(!ThreadIDVar->getType()->isPointerType() && |
| "thread id variable must be of type kmp_int32 for tasks"); |
| const OpenMPDirectiveKind Region = |
| isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop |
| : OMPD_task; |
| const CapturedStmt *CS = D.getCapturedStmt(Region); |
| const auto *TD = dyn_cast<OMPTaskDirective>(&D); |
| CodeGenFunction CGF(CGM, true); |
| CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, |
| InnermostKind, |
| TD ? TD->hasCancel() : false, Action); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS); |
| if (!Tied) |
| NumberOfParts = Action.getNumberOfParts(); |
| return Res; |
| } |
| |
| static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM, |
| const RecordDecl *RD, const CGRecordLayout &RL, |
| ArrayRef<llvm::Constant *> Data) { |
| llvm::StructType *StructTy = RL.getLLVMType(); |
| unsigned PrevIdx = 0; |
| ConstantInitBuilder CIBuilder(CGM); |
| auto DI = Data.begin(); |
| for (const FieldDecl *FD : RD->fields()) { |
| unsigned Idx = RL.getLLVMFieldNo(FD); |
| // Fill the alignment. |
| for (unsigned I = PrevIdx; I < Idx; ++I) |
| Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I))); |
| PrevIdx = Idx + 1; |
| Fields.add(*DI); |
| ++DI; |
| } |
| } |
| |
| template <class... As> |
| static llvm::GlobalVariable * |
| createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant, |
| ArrayRef<llvm::Constant *> Data, const Twine &Name, |
| As &&... Args) { |
| const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); |
| const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); |
| ConstantInitBuilder CIBuilder(CGM); |
| ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType()); |
| buildStructValue(Fields, CGM, RD, RL, Data); |
| return Fields.finishAndCreateGlobal( |
| Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant, |
| std::forward<As>(Args)...); |
| } |
| |
| template <typename T> |
| static void |
| createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty, |
| ArrayRef<llvm::Constant *> Data, |
| T &Parent) { |
| const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); |
| const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); |
| ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType()); |
| buildStructValue(Fields, CGM, RD, RL, Data); |
| Fields.finishAndAddTo(Parent); |
| } |
| |
| Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) { |
| CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy); |
| unsigned Reserved2Flags = getDefaultLocationReserved2Flags(); |
| FlagsTy FlagsKey(Flags, Reserved2Flags); |
| llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey); |
| if (!Entry) { |
| if (!DefaultOpenMPPSource) { |
| // Initialize default location for psource field of ident_t structure of |
| // all ident_t objects. Format is ";file;function;line;column;;". |
| // Taken from |
| // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp |
| DefaultOpenMPPSource = |
| CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer(); |
| DefaultOpenMPPSource = |
| llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy); |
| } |
| |
| llvm::Constant *Data[] = { |
| llvm::ConstantInt::getNullValue(CGM.Int32Ty), |
| llvm::ConstantInt::get(CGM.Int32Ty, Flags), |
| llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags), |
| llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource}; |
| llvm::GlobalValue *DefaultOpenMPLocation = |
| createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "", |
| llvm::GlobalValue::PrivateLinkage); |
| DefaultOpenMPLocation->setUnnamedAddr( |
| llvm::GlobalValue::UnnamedAddr::Global); |
| |
| OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation; |
| } |
| return Address(Entry, Align); |
| } |
| |
| void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF, |
| bool AtCurrentPoint) { |
| auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); |
| assert(!Elem.second.ServiceInsertPt && "Insert point is set already."); |
| |
| llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty); |
| if (AtCurrentPoint) { |
| Elem.second.ServiceInsertPt = new llvm::BitCastInst( |
| Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock()); |
| } else { |
| Elem.second.ServiceInsertPt = |
| new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt"); |
| Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt); |
| } |
| } |
| |
| void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) { |
| auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); |
| if (Elem.second.ServiceInsertPt) { |
| llvm::Instruction *Ptr = Elem.second.ServiceInsertPt; |
| Elem.second.ServiceInsertPt = nullptr; |
| Ptr->eraseFromParent(); |
| } |
| } |
| |
| llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| unsigned Flags) { |
| Flags |= OMP_IDENT_KMPC; |
| // If no debug info is generated - return global default location. |
| if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || |
| Loc.isInvalid()) |
| return getOrCreateDefaultLocation(Flags).getPointer(); |
| |
| assert(CGF.CurFn && "No function in current CodeGenFunction."); |
| |
| CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy); |
| Address LocValue = Address::invalid(); |
| auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); |
| if (I != OpenMPLocThreadIDMap.end()) |
| LocValue = Address(I->second.DebugLoc, Align); |
| |
| // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if |
| // GetOpenMPThreadID was called before this routine. |
| if (!LocValue.isValid()) { |
| // Generate "ident_t .kmpc_loc.addr;" |
| Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr"); |
| auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); |
| Elem.second.DebugLoc = AI.getPointer(); |
| LocValue = AI; |
| |
| if (!Elem.second.ServiceInsertPt) |
| setLocThreadIdInsertPt(CGF); |
| CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
| CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); |
| CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags), |
| CGF.getTypeSize(IdentQTy)); |
| } |
| |
| // char **psource = &.kmpc_loc_<flags>.addr.psource; |
| LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy); |
| auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin(); |
| LValue PSource = |
| CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource)); |
| |
| llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding()); |
| if (OMPDebugLoc == nullptr) { |
| SmallString<128> Buffer2; |
| llvm::raw_svector_ostream OS2(Buffer2); |
| // Build debug location |
| PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); |
| OS2 << ";" << PLoc.getFilename() << ";"; |
| if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) |
| OS2 << FD->getQualifiedNameAsString(); |
| OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; |
| OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str()); |
| OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc; |
| } |
| // *psource = ";<File>;<Function>;<Line>;<Column>;;"; |
| CGF.EmitStoreOfScalar(OMPDebugLoc, PSource); |
| |
| // Our callers always pass this to a runtime function, so for |
| // convenience, go ahead and return a naked pointer. |
| return LocValue.getPointer(); |
| } |
| |
| llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| assert(CGF.CurFn && "No function in current CodeGenFunction."); |
| |
| llvm::Value *ThreadID = nullptr; |
| // Check whether we've already cached a load of the thread id in this |
| // function. |
| auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); |
| if (I != OpenMPLocThreadIDMap.end()) { |
| ThreadID = I->second.ThreadID; |
| if (ThreadID != nullptr) |
| return ThreadID; |
| } |
| // If exceptions are enabled, do not use parameter to avoid possible crash. |
| if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions || |
| !CGF.getLangOpts().CXXExceptions || |
| CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { |
| if (auto *OMPRegionInfo = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { |
| if (OMPRegionInfo->getThreadIDVariable()) { |
| // Check if this an outlined function with thread id passed as argument. |
| LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); |
| ThreadID = CGF.EmitLoadOfScalar(LVal, Loc); |
| // If value loaded in entry block, cache it and use it everywhere in |
| // function. |
| if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { |
| auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); |
| Elem.second.ThreadID = ThreadID; |
| } |
| return ThreadID; |
| } |
| } |
| } |
| |
| // This is not an outlined function region - need to call __kmpc_int32 |
| // kmpc_global_thread_num(ident_t *loc). |
| // Generate thread id value and cache this value for use across the |
| // function. |
| auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); |
| if (!Elem.second.ServiceInsertPt) |
| setLocThreadIdInsertPt(CGF); |
| CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
| CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); |
| llvm::CallInst *Call = CGF.Builder.CreateCall( |
| createRuntimeFunction(OMPRTL__kmpc_global_thread_num), |
| emitUpdateLocation(CGF, Loc)); |
| Call->setCallingConv(CGF.getRuntimeCC()); |
| Elem.second.ThreadID = Call; |
| return Call; |
| } |
| |
| void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { |
| assert(CGF.CurFn && "No function in current CodeGenFunction."); |
| if (OpenMPLocThreadIDMap.count(CGF.CurFn)) { |
| clearLocThreadIdInsertPt(CGF); |
| OpenMPLocThreadIDMap.erase(CGF.CurFn); |
| } |
| if (FunctionUDRMap.count(CGF.CurFn) > 0) { |
| for(auto *D : FunctionUDRMap[CGF.CurFn]) |
| UDRMap.erase(D); |
| FunctionUDRMap.erase(CGF.CurFn); |
| } |
| auto I = FunctionUDMMap.find(CGF.CurFn); |
| if (I != FunctionUDMMap.end()) { |
| for(auto *D : I->second) |
| UDMMap.erase(D); |
| FunctionUDMMap.erase(I); |
| } |
| } |
| |
| llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { |
| return IdentTy->getPointerTo(); |
| } |
| |
| llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { |
| if (!Kmpc_MicroTy) { |
| // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) |
| llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), |
| llvm::PointerType::getUnqual(CGM.Int32Ty)}; |
| Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); |
| } |
| return llvm::PointerType::getUnqual(Kmpc_MicroTy); |
| } |
| |
| llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) { |
| llvm::FunctionCallee RTLFn = nullptr; |
| switch (static_cast<OpenMPRTLFunction>(Function)) { |
| case OMPRTL__kmpc_fork_call: { |
| // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro |
| // microtask, ...); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| getKmpc_MicroPointerTy()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call"); |
| if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { |
| if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { |
| llvm::LLVMContext &Ctx = F->getContext(); |
| llvm::MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the __kmpc_fork_call: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the __kmpc_fork_call are passed to the |
| // callback callee. |
| F->addMetadata( |
| llvm::LLVMContext::MD_callback, |
| *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( |
| 2, {-1, -1}, |
| /* VarArgsArePassed */ true)})); |
| } |
| } |
| break; |
| } |
| case OMPRTL__kmpc_global_thread_num: { |
| // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num"); |
| break; |
| } |
| case OMPRTL__kmpc_threadprivate_cached: { |
| // Build void *__kmpc_threadprivate_cached(ident_t *loc, |
| // kmp_int32 global_tid, void *data, size_t size, void ***cache); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.VoidPtrTy, CGM.SizeTy, |
| CGM.VoidPtrTy->getPointerTo()->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached"); |
| break; |
| } |
| case OMPRTL__kmpc_critical: { |
| // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *crit); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical"); |
| break; |
| } |
| case OMPRTL__kmpc_critical_with_hint: { |
| // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *crit, uintptr_t hint); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| llvm::PointerType::getUnqual(KmpCriticalNameTy), |
| CGM.IntPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint"); |
| break; |
| } |
| case OMPRTL__kmpc_threadprivate_register: { |
| // Build void __kmpc_threadprivate_register(ident_t *, void *data, |
| // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); |
| // typedef void *(*kmpc_ctor)(void *); |
| auto *KmpcCtorTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, |
| /*isVarArg*/ false)->getPointerTo(); |
| // typedef void *(*kmpc_cctor)(void *, void *); |
| llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *KmpcCopyCtorTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs, |
| /*isVarArg*/ false) |
| ->getPointerTo(); |
| // typedef void (*kmpc_dtor)(void *); |
| auto *KmpcDtorTy = |
| llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false) |
| ->getPointerTo(); |
| llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy, |
| KmpcCopyCtorTy, KmpcDtorTy}; |
| auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs, |
| /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register"); |
| break; |
| } |
| case OMPRTL__kmpc_end_critical: { |
| // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *crit); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical"); |
| break; |
| } |
| case OMPRTL__kmpc_cancel_barrier: { |
| // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier"); |
| break; |
| } |
| case OMPRTL__kmpc_barrier: { |
| // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier"); |
| break; |
| } |
| case OMPRTL__kmpc_for_static_fini: { |
| // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini"); |
| break; |
| } |
| case OMPRTL__kmpc_push_num_threads: { |
| // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 num_threads) |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads"); |
| break; |
| } |
| case OMPRTL__kmpc_serialized_parallel: { |
| // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); |
| break; |
| } |
| case OMPRTL__kmpc_end_serialized_parallel: { |
| // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); |
| break; |
| } |
| case OMPRTL__kmpc_flush: { |
| // Build void __kmpc_flush(ident_t *loc); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush"); |
| break; |
| } |
| case OMPRTL__kmpc_master: { |
| // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master"); |
| break; |
| } |
| case OMPRTL__kmpc_end_master: { |
| // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_taskyield: { |
| // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, |
| // int end_part); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield"); |
| break; |
| } |
| case OMPRTL__kmpc_single: { |
| // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single"); |
| break; |
| } |
| case OMPRTL__kmpc_end_single: { |
| // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_task_alloc: { |
| // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, |
| // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| // kmp_routine_entry_t *task_entry); |
| assert(KmpRoutineEntryPtrTy != nullptr && |
| "Type kmp_routine_entry_t must be created."); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, |
| CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy}; |
| // Return void * and then cast to particular kmp_task_t type. |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_target_task_alloc: { |
| // Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid, |
| // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| // kmp_routine_entry_t *task_entry, kmp_int64 device_id); |
| assert(KmpRoutineEntryPtrTy != nullptr && |
| "Type kmp_routine_entry_t must be created."); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, |
| CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy, |
| CGM.Int64Ty}; |
| // Return void * and then cast to particular kmp_task_t type. |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_task: { |
| // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t |
| // *new_task); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task"); |
| break; |
| } |
| case OMPRTL__kmpc_copyprivate: { |
| // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, |
| // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), |
| // kmp_int32 didit); |
| llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *CpyFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy, |
| CGM.VoidPtrTy, CpyFnTy->getPointerTo(), |
| CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate"); |
| break; |
| } |
| case OMPRTL__kmpc_reduce: { |
| // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void |
| // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); |
| llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, |
| CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce"); |
| break; |
| } |
| case OMPRTL__kmpc_reduce_nowait: { |
| // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 |
| // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, |
| // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name |
| // *lck); |
| llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, |
| /*isVarArg=*/false); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, |
| CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait"); |
| break; |
| } |
| case OMPRTL__kmpc_end_reduce: { |
| // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *lck); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce"); |
| break; |
| } |
| case OMPRTL__kmpc_end_reduce_nowait: { |
| // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, |
| // kmp_critical_name *lck); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, |
| llvm::PointerType::getUnqual(KmpCriticalNameTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = |
| CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_task_begin_if0: { |
| // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t |
| // *new_task); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = |
| CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_task_complete_if0: { |
| // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t |
| // *new_task); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, |
| /*Name=*/"__kmpc_omp_task_complete_if0"); |
| break; |
| } |
| case OMPRTL__kmpc_ordered: { |
| // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered"); |
| break; |
| } |
| case OMPRTL__kmpc_end_ordered: { |
| // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_taskwait: { |
| // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait"); |
| break; |
| } |
| case OMPRTL__kmpc_taskgroup: { |
| // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup"); |
| break; |
| } |
| case OMPRTL__kmpc_end_taskgroup: { |
| // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup"); |
| break; |
| } |
| case OMPRTL__kmpc_push_proc_bind: { |
| // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, |
| // int proc_bind) |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_task_with_deps: { |
| // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, |
| // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, |
| // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, |
| CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); |
| RTLFn = |
| CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps"); |
| break; |
| } |
| case OMPRTL__kmpc_omp_wait_deps: { |
| // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, |
| // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, |
| // kmp_depend_info_t *noalias_dep_list); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.Int32Ty, CGM.VoidPtrTy, |
| CGM.Int32Ty, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps"); |
| break; |
| } |
| case OMPRTL__kmpc_cancellationpoint: { |
| // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 |
| // global_tid, kmp_int32 cncl_kind) |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint"); |
| break; |
| } |
| case OMPRTL__kmpc_cancel: { |
| // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 cncl_kind) |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel"); |
| break; |
| } |
| case OMPRTL__kmpc_push_num_teams: { |
| // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid, |
| // kmp_int32 num_teams, kmp_int32 num_threads) |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, |
| CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams"); |
| break; |
| } |
| case OMPRTL__kmpc_fork_teams: { |
| // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro |
| // microtask, ...); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| getKmpc_MicroPointerTy()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams"); |
| if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { |
| if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { |
| llvm::LLVMContext &Ctx = F->getContext(); |
| llvm::MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the __kmpc_fork_teams: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the __kmpc_fork_teams are passed to the |
| // callback callee. |
| F->addMetadata( |
| llvm::LLVMContext::MD_callback, |
| *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( |
| 2, {-1, -1}, |
| /* VarArgsArePassed */ true)})); |
| } |
| } |
| break; |
| } |
| case OMPRTL__kmpc_taskloop: { |
| // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int |
| // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int |
| // sched, kmp_uint64 grainsize, void *task_dup); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), |
| CGM.IntTy, |
| CGM.VoidPtrTy, |
| CGM.IntTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty, |
| CGM.IntTy, |
| CGM.IntTy, |
| CGM.Int64Ty, |
| CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop"); |
| break; |
| } |
| case OMPRTL__kmpc_doacross_init: { |
| // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 |
| // num_dims, struct kmp_dim *dims); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), |
| CGM.Int32Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init"); |
| break; |
| } |
| case OMPRTL__kmpc_doacross_fini: { |
| // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini"); |
| break; |
| } |
| case OMPRTL__kmpc_doacross_post: { |
| // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 |
| // *vec); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post"); |
| break; |
| } |
| case OMPRTL__kmpc_doacross_wait: { |
| // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 |
| // *vec); |
| llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait"); |
| break; |
| } |
| case OMPRTL__kmpc_task_reduction_init: { |
| // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void |
| // *data); |
| llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = |
| CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init"); |
| break; |
| } |
| case OMPRTL__kmpc_task_reduction_get_th_data: { |
| // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void |
| // *d); |
| llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction( |
| FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data"); |
| break; |
| } |
| case OMPRTL__kmpc_alloc: { |
| // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t |
| // al); omp_allocator_handle_t type is void *. |
| llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc"); |
| break; |
| } |
| case OMPRTL__kmpc_free: { |
| // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t |
| // al); omp_allocator_handle_t type is void *. |
| llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free"); |
| break; |
| } |
| case OMPRTL__kmpc_push_target_tripcount: { |
| // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64 |
| // size); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty}; |
| llvm::FunctionType *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount"); |
| break; |
| } |
| case OMPRTL__tgt_target: { |
| // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.VoidPtrTy, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target"); |
| break; |
| } |
| case OMPRTL__tgt_target_nowait: { |
| // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr, |
| // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, |
| // int64_t *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.VoidPtrTy, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait"); |
| break; |
| } |
| case OMPRTL__tgt_target_teams: { |
| // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr, |
| // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, |
| // int64_t *arg_types, int32_t num_teams, int32_t thread_limit); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.VoidPtrTy, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int32Ty, |
| CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams"); |
| break; |
| } |
| case OMPRTL__tgt_target_teams_nowait: { |
| // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void |
| // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t |
| // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.VoidPtrTy, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int32Ty, |
| CGM.Int32Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait"); |
| break; |
| } |
| case OMPRTL__tgt_register_requires: { |
| // Build void __tgt_register_requires(int64_t flags); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires"); |
| break; |
| } |
| case OMPRTL__tgt_register_lib: { |
| // Build void __tgt_register_lib(__tgt_bin_desc *desc); |
| QualType ParamTy = |
| CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); |
| llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib"); |
| break; |
| } |
| case OMPRTL__tgt_unregister_lib: { |
| // Build void __tgt_unregister_lib(__tgt_bin_desc *desc); |
| QualType ParamTy = |
| CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); |
| llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_begin: { |
| // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_begin_nowait: { |
| // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_end: { |
| // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_end_nowait: { |
| // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_update: { |
| // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num, |
| // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update"); |
| break; |
| } |
| case OMPRTL__tgt_target_data_update_nowait: { |
| // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t |
| // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t |
| // *arg_types); |
| llvm::Type *TypeParams[] = {CGM.Int64Ty, |
| CGM.Int32Ty, |
| CGM.VoidPtrPtrTy, |
| CGM.VoidPtrPtrTy, |
| CGM.Int64Ty->getPointerTo(), |
| CGM.Int64Ty->getPointerTo()}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait"); |
| break; |
| } |
| case OMPRTL__tgt_mapper_num_components: { |
| // Build int64_t __tgt_mapper_num_components(void *rt_mapper_handle); |
| llvm::Type *TypeParams[] = {CGM.VoidPtrTy}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_mapper_num_components"); |
| break; |
| } |
| case OMPRTL__tgt_push_mapper_component: { |
| // Build void __tgt_push_mapper_component(void *rt_mapper_handle, void |
| // *base, void *begin, int64_t size, int64_t type); |
| llvm::Type *TypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.VoidPtrTy, |
| CGM.Int64Ty, CGM.Int64Ty}; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_push_mapper_component"); |
| break; |
| } |
| } |
| assert(RTLFn && "Unable to find OpenMP runtime function"); |
| return RTLFn; |
| } |
| |
| llvm::FunctionCallee |
| CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) { |
| assert((IVSize == 32 || IVSize == 64) && |
| "IV size is not compatible with the omp runtime"); |
| StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" |
| : "__kmpc_for_static_init_4u") |
| : (IVSigned ? "__kmpc_for_static_init_8" |
| : "__kmpc_for_static_init_8u"); |
| llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; |
| auto *PtrTy = llvm::PointerType::getUnqual(ITy); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), // loc |
| CGM.Int32Ty, // tid |
| CGM.Int32Ty, // schedtype |
| llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter |
| PtrTy, // p_lower |
| PtrTy, // p_upper |
| PtrTy, // p_stride |
| ITy, // incr |
| ITy // chunk |
| }; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| return CGM.CreateRuntimeFunction(FnTy, Name); |
| } |
| |
| llvm::FunctionCallee |
| CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { |
| assert((IVSize == 32 || IVSize == 64) && |
| "IV size is not compatible with the omp runtime"); |
| StringRef Name = |
| IVSize == 32 |
| ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") |
| : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); |
| llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; |
| llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc |
| CGM.Int32Ty, // tid |
| CGM.Int32Ty, // schedtype |
| ITy, // lower |
| ITy, // upper |
| ITy, // stride |
| ITy // chunk |
| }; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); |
| return CGM.CreateRuntimeFunction(FnTy, Name); |
| } |
| |
| llvm::FunctionCallee |
| CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { |
| assert((IVSize == 32 || IVSize == 64) && |
| "IV size is not compatible with the omp runtime"); |
| StringRef Name = |
| IVSize == 32 |
| ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") |
| : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), // loc |
| CGM.Int32Ty, // tid |
| }; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction(FnTy, Name); |
| } |
| |
| llvm::FunctionCallee |
| CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { |
| assert((IVSize == 32 || IVSize == 64) && |
| "IV size is not compatible with the omp runtime"); |
| StringRef Name = |
| IVSize == 32 |
| ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") |
| : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); |
| llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; |
| auto *PtrTy = llvm::PointerType::getUnqual(ITy); |
| llvm::Type *TypeParams[] = { |
| getIdentTyPointerTy(), // loc |
| CGM.Int32Ty, // tid |
| llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter |
| PtrTy, // p_lower |
| PtrTy, // p_upper |
| PtrTy // p_stride |
| }; |
| auto *FnTy = |
| llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); |
| return CGM.CreateRuntimeFunction(FnTy, Name); |
| } |
| |
| /// Obtain information that uniquely identifies a target entry. This |
| /// consists of the file and device IDs as well as line number associated with |
| /// the relevant entry source location. |
| static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, |
| unsigned &DeviceID, unsigned &FileID, |
| unsigned &LineNum) { |
| SourceManager &SM = C.getSourceManager(); |
| |
| // The loc should be always valid and have a file ID (the user cannot use |
| // #pragma directives in macros) |
| |
| assert(Loc.isValid() && "Source location is expected to be always valid."); |
| |
| PresumedLoc PLoc = SM.getPresumedLoc(Loc); |
| assert(PLoc.isValid() && "Source location is expected to be always valid."); |
| |
| llvm::sys::fs::UniqueID ID; |
| if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) |
| SM.getDiagnostics().Report(diag::err_cannot_open_file) |
| << PLoc.getFilename() << EC.message(); |
| |
| DeviceID = ID.getDevice(); |
| FileID = ID.getFile(); |
| LineNum = PLoc.getLine(); |
| } |
| |
| Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) { |
| if (CGM.getLangOpts().OpenMPSimd) |
| return Address::invalid(); |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| HasRequiresUnifiedSharedMemory))) { |
| SmallString<64> PtrName; |
| { |
| llvm::raw_svector_ostream OS(PtrName); |
| OS << CGM.getMangledName(GlobalDecl(VD)); |
| if (!VD->isExternallyVisible()) { |
| unsigned DeviceID, FileID, Line; |
| getTargetEntryUniqueInfo(CGM.getContext(), |
| VD->getCanonicalDecl()->getBeginLoc(), |
| DeviceID, FileID, Line); |
| OS << llvm::format("_%x", FileID); |
| } |
| OS << "_decl_tgt_ref_ptr"; |
| } |
| llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName); |
| if (!Ptr) { |
| QualType PtrTy = CGM.getContext().getPointerType(VD->getType()); |
| Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy), |
| PtrName); |
| |
| auto *GV = cast<llvm::GlobalVariable>(Ptr); |
| GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage); |
| |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| GV->setInitializer(CGM.GetAddrOfGlobal(VD)); |
| registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr)); |
| } |
| return Address(Ptr, CGM.getContext().getDeclAlign(VD)); |
| } |
| return Address::invalid(); |
| } |
| |
| llvm::Constant * |
| CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { |
| assert(!CGM.getLangOpts().OpenMPUseTLS || |
| !CGM.getContext().getTargetInfo().isTLSSupported()); |
| // Lookup the entry, lazily creating it if necessary. |
| std::string Suffix = getName({"cache", ""}); |
| return getOrCreateInternalVariable( |
| CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix)); |
| } |
| |
| Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, |
| const VarDecl *VD, |
| Address VDAddr, |
| SourceLocation Loc) { |
| if (CGM.getLangOpts().OpenMPUseTLS && |
| CGM.getContext().getTargetInfo().isTLSSupported()) |
| return VDAddr; |
| |
| llvm::Type *VarTy = VDAddr.getElementType(); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| CGF.Builder.CreatePointerCast(VDAddr.getPointer(), |
| CGM.Int8PtrTy), |
| CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), |
| getOrCreateThreadPrivateCache(VD)}; |
| return Address(CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), |
| VDAddr.getAlignment()); |
| } |
| |
| void CGOpenMPRuntime::emitThreadPrivateVarInit( |
| CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, |
| llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { |
| // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime |
| // library. |
| llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc); |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), |
| OMPLoc); |
| // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) |
| // to register constructor/destructor for variable. |
| llvm::Value *Args[] = { |
| OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy), |
| Ctor, CopyCtor, Dtor}; |
| CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args); |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( |
| const VarDecl *VD, Address VDAddr, SourceLocation Loc, |
| bool PerformInit, CodeGenFunction *CGF) { |
| if (CGM.getLangOpts().OpenMPUseTLS && |
| CGM.getContext().getTargetInfo().isTLSSupported()) |
| return nullptr; |
| |
| VD = VD->getDefinition(CGM.getContext()); |
| if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) { |
| QualType ASTTy = VD->getType(); |
| |
| llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; |
| const Expr *Init = VD->getAnyInitializer(); |
| if (CGM.getLangOpts().CPlusPlus && PerformInit) { |
| // Generate function that re-emits the declaration's initializer into the |
| // threadprivate copy of the variable VD |
| CodeGenFunction CtorCGF(CGM); |
| FunctionArgList Args; |
| ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, |
| /*Id=*/nullptr, CGM.getContext().VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&Dst); |
| |
| const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| CGM.getContext().VoidPtrTy, Args); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); |
| std::string Name = getName({"__kmpc_global_ctor_", ""}); |
| llvm::Function *Fn = |
| CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc); |
| CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, |
| Args, Loc, Loc); |
| llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar( |
| CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, |
| CGM.getContext().VoidPtrTy, Dst.getLocation()); |
| Address Arg = Address(ArgVal, VDAddr.getAlignment()); |
| Arg = CtorCGF.Builder.CreateElementBitCast( |
| Arg, CtorCGF.ConvertTypeForMem(ASTTy)); |
| CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), |
| /*IsInitializer=*/true); |
| ArgVal = CtorCGF.EmitLoadOfScalar( |
| CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, |
| CGM.getContext().VoidPtrTy, Dst.getLocation()); |
| CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); |
| CtorCGF.FinishFunction(); |
| Ctor = Fn; |
| } |
| if (VD->getType().isDestructedType() != QualType::DK_none) { |
| // Generate function that emits destructor call for the threadprivate copy |
| // of the variable VD |
| CodeGenFunction DtorCGF(CGM); |
| FunctionArgList Args; |
| ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, |
| /*Id=*/nullptr, CGM.getContext().VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&Dst); |
| |
| const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| CGM.getContext().VoidTy, Args); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); |
| std::string Name = getName({"__kmpc_global_dtor_", ""}); |
| llvm::Function *Fn = |
| CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc); |
| auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); |
| DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, |
| Loc, Loc); |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); |
| llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar( |
| DtorCGF.GetAddrOfLocalVar(&Dst), |
| /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); |
| DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, |
| DtorCGF.getDestroyer(ASTTy.isDestructedType()), |
| DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); |
| DtorCGF.FinishFunction(); |
| Dtor = Fn; |
| } |
| // Do not emit init function if it is not required. |
| if (!Ctor && !Dtor) |
| return nullptr; |
| |
| llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; |
| auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, |
| /*isVarArg=*/false) |
| ->getPointerTo(); |
| // Copying constructor for the threadprivate variable. |
| // Must be NULL - reserved by runtime, but currently it requires that this |
| // parameter is always NULL. Otherwise it fires assertion. |
| CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); |
| if (Ctor == nullptr) { |
| auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, |
| /*isVarArg=*/false) |
| ->getPointerTo(); |
| Ctor = llvm::Constant::getNullValue(CtorTy); |
| } |
| if (Dtor == nullptr) { |
| auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, |
| /*isVarArg=*/false) |
| ->getPointerTo(); |
| Dtor = llvm::Constant::getNullValue(DtorTy); |
| } |
| if (!CGF) { |
| auto *InitFunctionTy = |
| llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); |
| std::string Name = getName({"__omp_threadprivate_init_", ""}); |
| llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction( |
| InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction()); |
| CodeGenFunction InitCGF(CGM); |
| FunctionArgList ArgList; |
| InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, |
| CGM.getTypes().arrangeNullaryFunction(), ArgList, |
| Loc, Loc); |
| emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); |
| InitCGF.FinishFunction(); |
| return InitFunction; |
| } |
| emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); |
| } |
| return nullptr; |
| } |
| |
| bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD, |
| llvm::GlobalVariable *Addr, |
| bool PerformInit) { |
| if (CGM.getLangOpts().OMPTargetTriples.empty() && |
| !CGM.getLangOpts().OpenMPIsDevice) |
| return false; |
| Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| HasRequiresUnifiedSharedMemory)) |
| return CGM.getLangOpts().OpenMPIsDevice; |
| VD = VD->getDefinition(CGM.getContext()); |
| if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second) |
| return CGM.getLangOpts().OpenMPIsDevice; |
| |
| QualType ASTTy = VD->getType(); |
| |
| SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc(); |
| // Produce the unique prefix to identify the new target regions. We use |
| // the source location of the variable declaration which we know to not |
| // conflict with any target region. |
| unsigned DeviceID; |
| unsigned FileID; |
| unsigned Line; |
| getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line); |
| SmallString<128> Buffer, Out; |
| { |
| llvm::raw_svector_ostream OS(Buffer); |
| OS << "__omp_offloading_" << llvm::format("_%x", DeviceID) |
| << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; |
| } |
| |
| const Expr *Init = VD->getAnyInitializer(); |
| if (CGM.getLangOpts().CPlusPlus && PerformInit) { |
| llvm::Constant *Ctor; |
| llvm::Constant *ID; |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| // Generate function that re-emits the declaration's initializer into |
| // the threadprivate copy of the variable VD |
| CodeGenFunction CtorCGF(CGM); |
| |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction( |
| FTy, Twine(Buffer, "_ctor"), FI, Loc); |
| auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF); |
| CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, |
| FunctionArgList(), Loc, Loc); |
| auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF); |
| CtorCGF.EmitAnyExprToMem(Init, |
| Address(Addr, CGM.getContext().getDeclAlign(VD)), |
| Init->getType().getQualifiers(), |
| /*IsInitializer=*/true); |
| CtorCGF.FinishFunction(); |
| Ctor = Fn; |
| ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); |
| CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor)); |
| } else { |
| Ctor = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::PrivateLinkage, |
| llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor")); |
| ID = Ctor; |
| } |
| |
| // Register the information for the entry associated with the constructor. |
| Out.clear(); |
| OffloadEntriesInfoManager.registerTargetRegionEntryInfo( |
| DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor, |
| ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor); |
| } |
| if (VD->getType().isDestructedType() != QualType::DK_none) { |
| llvm::Constant *Dtor; |
| llvm::Constant *ID; |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| // Generate function that emits destructor call for the threadprivate |
| // copy of the variable VD |
| CodeGenFunction DtorCGF(CGM); |
| |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction( |
| FTy, Twine(Buffer, "_dtor"), FI, Loc); |
| auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); |
| DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, |
| FunctionArgList(), Loc, Loc); |
| // Create a scope with an artificial location for the body of this |
| // function. |
| auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); |
| DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)), |
| ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), |
| DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); |
| DtorCGF.FinishFunction(); |
| Dtor = Fn; |
| ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); |
| CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor)); |
| } else { |
| Dtor = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::PrivateLinkage, |
| llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor")); |
| ID = Dtor; |
| } |
| // Register the information for the entry associated with the destructor. |
| Out.clear(); |
| OffloadEntriesInfoManager.registerTargetRegionEntryInfo( |
| DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor, |
| ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor); |
| } |
| return CGM.getLangOpts().OpenMPIsDevice; |
| } |
| |
| Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF, |
| QualType VarType, |
| StringRef Name) { |
| std::string Suffix = getName({"artificial", ""}); |
| std::string CacheSuffix = getName({"cache", ""}); |
| llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType); |
| llvm::Value *GAddr = |
| getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix)); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, SourceLocation()), |
| getThreadID(CGF, SourceLocation()), |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy), |
| CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy, |
| /*isSigned=*/false), |
| getOrCreateInternalVariable( |
| CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))}; |
| return Address( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), |
| VarLVType->getPointerTo(/*AddrSpace=*/0)), |
| CGM.getPointerAlign()); |
| } |
| |
| void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond, |
| const RegionCodeGenTy &ThenGen, |
| const RegionCodeGenTy &ElseGen) { |
| CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); |
| |
| // If the condition constant folds and can be elided, try to avoid emitting |
| // the condition and the dead arm of the if/else. |
| bool CondConstant; |
| if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { |
| if (CondConstant) |
| ThenGen(CGF); |
| else |
| ElseGen(CGF); |
| return; |
| } |
| |
| // Otherwise, the condition did not fold, or we couldn't elide it. Just |
| // emit the conditional branch. |
| llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then"); |
| llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end"); |
| CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); |
| |
| // Emit the 'then' code. |
| CGF.EmitBlock(ThenBlock); |
| ThenGen(CGF); |
| CGF.EmitBranch(ContBlock); |
| // Emit the 'else' code if present. |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ElseBlock); |
| ElseGen(CGF); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBranch(ContBlock); |
| // Emit the continuation block for code after the if. |
| CGF.EmitBlock(ContBlock, /*IsFinished=*/true); |
| } |
| |
| void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, |
| const Expr *IfCond) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| llvm::Value *Args[] = { |
| RTLoc, |
| CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars |
| CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; |
| llvm::SmallVector<llvm::Value *, 16> RealArgs; |
| RealArgs.append(std::begin(Args), std::end(Args)); |
| RealArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| |
| llvm::FunctionCallee RTLFn = |
| RT.createRuntimeFunction(OMPRTL__kmpc_fork_call); |
| CGF.EmitRuntimeCall(RTLFn, RealArgs); |
| }; |
| auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| llvm::Value *ThreadID = RT.getThreadID(CGF, Loc); |
| // Build calls: |
| // __kmpc_serialized_parallel(&Loc, GTid); |
| llvm::Value *Args[] = {RTLoc, ThreadID}; |
| CGF.EmitRuntimeCall( |
| RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args); |
| |
| // OutlinedFn(>id, &zero_bound, CapturedStruct); |
| Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); |
| Address ZeroAddrBound = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".bound.zero.addr"); |
| CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0)); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| // ThreadId for serialized parallels is 0. |
| OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddrBound.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| |
| // __kmpc_end_serialized_parallel(&Loc, GTid); |
| llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; |
| CGF.EmitRuntimeCall( |
| RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), |
| EndArgs); |
| }; |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); |
| } else { |
| RegionCodeGenTy ThenRCG(ThenGen); |
| ThenRCG(CGF); |
| } |
| } |
| |
| // If we're inside an (outlined) parallel region, use the region info's |
| // thread-ID variable (it is passed in a first argument of the outlined function |
| // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in |
| // regular serial code region, get thread ID by calling kmp_int32 |
| // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and |
| // return the address of that temp. |
| Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| if (auto *OMPRegionInfo = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) |
| if (OMPRegionInfo->getThreadIDVariable()) |
| return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(); |
| |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| QualType Int32Ty = |
| CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); |
| Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); |
| CGF.EmitStoreOfScalar(ThreadID, |
| CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); |
| |
| return ThreadIDTemp; |
| } |
| |
| llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable( |
| llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << Name; |
| StringRef RuntimeName = Out.str(); |
| auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first; |
| if (Elem.second) { |
| assert(Elem.second->getType()->getPointerElementType() == Ty && |
| "OMP internal variable has different type than requested"); |
| return &*Elem.second; |
| } |
| |
| return Elem.second = new llvm::GlobalVariable( |
| CGM.getModule(), Ty, /*IsConstant*/ false, |
| llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), |
| Elem.first(), /*InsertBefore=*/nullptr, |
| llvm::GlobalValue::NotThreadLocal, AddressSpace); |
| } |
| |
| llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { |
| std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); |
| std::string Name = getName({Prefix, "var"}); |
| return getOrCreateInternalVariable(KmpCriticalNameTy, Name); |
| } |
| |
| namespace { |
| /// Common pre(post)-action for different OpenMP constructs. |
| class CommonActionTy final : public PrePostActionTy { |
| llvm::FunctionCallee EnterCallee; |
| ArrayRef<llvm::Value *> EnterArgs; |
| llvm::FunctionCallee ExitCallee; |
| ArrayRef<llvm::Value *> ExitArgs; |
| bool Conditional; |
| llvm::BasicBlock *ContBlock = nullptr; |
| |
| public: |
| CommonActionTy(llvm::FunctionCallee EnterCallee, |
| ArrayRef<llvm::Value *> EnterArgs, |
| llvm::FunctionCallee ExitCallee, |
| ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) |
| : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
| ExitArgs(ExitArgs), Conditional(Conditional) {} |
| void Enter(CodeGenFunction &CGF) override { |
| llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); |
| if (Conditional) { |
| llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); |
| auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); |
| ContBlock = CGF.createBasicBlock("omp_if.end"); |
| // Generate the branch (If-stmt) |
| CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); |
| CGF.EmitBlock(ThenBlock); |
| } |
| } |
| void Done(CodeGenFunction &CGF) { |
| // Emit the rest of blocks/branches |
| CGF.EmitBranch(ContBlock); |
| CGF.EmitBlock(ContBlock, true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| CGF.EmitRuntimeCall(ExitCallee, ExitArgs); |
| } |
| }; |
| } // anonymous namespace |
| |
| void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, |
| StringRef CriticalName, |
| const RegionCodeGenTy &CriticalOpGen, |
| SourceLocation Loc, const Expr *Hint) { |
| // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); |
| // CriticalOpGen(); |
| // __kmpc_end_critical(ident_t *, gtid, Lock); |
| // Prepare arguments and build a call to __kmpc_critical |
| if (!CGF.HaveInsertPoint()) |
| return; |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| getCriticalRegionLock(CriticalName)}; |
| llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), |
| std::end(Args)); |
| if (Hint) { |
| EnterArgs.push_back(CGF.Builder.CreateIntCast( |
| CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false)); |
| } |
| CommonActionTy Action( |
| createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint |
| : OMPRTL__kmpc_critical), |
| EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args); |
| CriticalOpGen.setAction(Action); |
| emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); |
| } |
| |
| void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &MasterOpGen, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // if(__kmpc_master(ident_t *, gtid)) { |
| // MasterOpGen(); |
| // __kmpc_end_master(ident_t *, gtid); |
| // } |
| // Prepare arguments and build a call to __kmpc_master |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args, |
| createRuntimeFunction(OMPRTL__kmpc_end_master), Args, |
| /*Conditional=*/true); |
| MasterOpGen.setAction(Action); |
| emitInlinedDirective(CGF, OMPD_master, MasterOpGen); |
| Action.Done(CGF); |
| } |
| |
| void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_omp_taskyield(loc, thread_id, 0); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args); |
| if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) |
| Region->emitUntiedSwitch(CGF); |
| } |
| |
| void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &TaskgroupOpGen, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // __kmpc_taskgroup(ident_t *, gtid); |
| // TaskgroupOpGen(); |
| // __kmpc_end_taskgroup(ident_t *, gtid); |
| // Prepare arguments and build a call to __kmpc_taskgroup |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args, |
| createRuntimeFunction(OMPRTL__kmpc_end_taskgroup), |
| Args); |
| TaskgroupOpGen.setAction(Action); |
| emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); |
| } |
| |
| /// Given an array of pointers to variables, project the address of a |
| /// given variable. |
| static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, |
| unsigned Index, const VarDecl *Var) { |
| // Pull out the pointer to the variable. |
| Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index); |
| llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); |
| |
| Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); |
| Addr = CGF.Builder.CreateElementBitCast( |
| Addr, CGF.ConvertTypeForMem(Var->getType())); |
| return Addr; |
| } |
| |
| static llvm::Value *emitCopyprivateCopyFunction( |
| CodeGenModule &CGM, llvm::Type *ArgsType, |
| ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs, |
| ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps, |
| SourceLocation Loc) { |
| ASTContext &C = CGM.getContext(); |
| // void copy_func(void *LHSArg, void *RHSArg); |
| FunctionArgList Args; |
| ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&LHSArg); |
| Args.push_back(&RHSArg); |
| const auto &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| std::string Name = |
| CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"}); |
| auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), |
| llvm::GlobalValue::InternalLinkage, Name, |
| &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| // Dest = (void*[n])(LHSArg); |
| // Src = (void*[n])(RHSArg); |
| Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), |
| ArgsType), CGF.getPointerAlign()); |
| Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), |
| ArgsType), CGF.getPointerAlign()); |
| // *(Type0*)Dst[0] = *(Type0*)Src[0]; |
| // *(Type1*)Dst[1] = *(Type1*)Src[1]; |
| // ... |
| // *(Typen*)Dst[n] = *(Typen*)Src[n]; |
| for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { |
| const auto *DestVar = |
| cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()); |
| Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); |
| |
| const auto *SrcVar = |
| cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()); |
| Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); |
| |
| const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl(); |
| QualType Type = VD->getType(); |
| CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); |
| } |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &SingleOpGen, |
| SourceLocation Loc, |
| ArrayRef<const Expr *> CopyprivateVars, |
| ArrayRef<const Expr *> SrcExprs, |
| ArrayRef<const Expr *> DstExprs, |
| ArrayRef<const Expr *> AssignmentOps) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| assert(CopyprivateVars.size() == SrcExprs.size() && |
| CopyprivateVars.size() == DstExprs.size() && |
| CopyprivateVars.size() == AssignmentOps.size()); |
| ASTContext &C = CGM.getContext(); |
| // int32 did_it = 0; |
| // if(__kmpc_single(ident_t *, gtid)) { |
| // SingleOpGen(); |
| // __kmpc_end_single(ident_t *, gtid); |
| // did_it = 1; |
| // } |
| // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, |
| // <copy_func>, did_it); |
| |
| Address DidIt = Address::invalid(); |
| if (!CopyprivateVars.empty()) { |
| // int32 did_it = 0; |
| QualType KmpInt32Ty = |
| C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); |
| DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); |
| CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); |
| } |
| // Prepare arguments and build a call to __kmpc_single |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args, |
| createRuntimeFunction(OMPRTL__kmpc_end_single), Args, |
| /*Conditional=*/true); |
| SingleOpGen.setAction(Action); |
| emitInlinedDirective(CGF, OMPD_single, SingleOpGen); |
| if (DidIt.isValid()) { |
| // did_it = 1; |
| CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); |
| } |
| Action.Done(CGF); |
| // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, |
| // <copy_func>, did_it); |
| if (DidIt.isValid()) { |
| llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); |
| QualType CopyprivateArrayTy = C.getConstantArrayType( |
| C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| // Create a list of all private variables for copyprivate. |
| Address CopyprivateList = |
| CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); |
| for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy), |
| Elem); |
| } |
| // Build function that copies private values from single region to all other |
| // threads in the corresponding parallel region. |
| llvm::Value *CpyFn = emitCopyprivateCopyFunction( |
| CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), |
| CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc); |
| llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy); |
| Address CL = |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, |
| CGF.VoidPtrTy); |
| llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), // ident_t *<loc> |
| getThreadID(CGF, Loc), // i32 <gtid> |
| BufSize, // size_t <buf_size> |
| CL.getPointer(), // void *<copyprivate list> |
| CpyFn, // void (*) (void *, void *) <copy_func> |
| DidItVal // i32 did_it |
| }; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args); |
| } |
| } |
| |
| void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &OrderedOpGen, |
| SourceLocation Loc, bool IsThreads) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // __kmpc_ordered(ident_t *, gtid); |
| // OrderedOpGen(); |
| // __kmpc_end_ordered(ident_t *, gtid); |
| // Prepare arguments and build a call to __kmpc_ordered |
| if (IsThreads) { |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args, |
| createRuntimeFunction(OMPRTL__kmpc_end_ordered), |
| Args); |
| OrderedOpGen.setAction(Action); |
| emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); |
| return; |
| } |
| emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); |
| } |
| |
| unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) { |
| unsigned Flags; |
| if (Kind == OMPD_for) |
| Flags = OMP_IDENT_BARRIER_IMPL_FOR; |
| else if (Kind == OMPD_sections) |
| Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; |
| else if (Kind == OMPD_single) |
| Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; |
| else if (Kind == OMPD_barrier) |
| Flags = OMP_IDENT_BARRIER_EXPL; |
| else |
| Flags = OMP_IDENT_BARRIER_IMPL; |
| return Flags; |
| } |
| |
| void CGOpenMPRuntime::getDefaultScheduleAndChunk( |
| CodeGenFunction &CGF, const OMPLoopDirective &S, |
| OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const { |
| // Check if the loop directive is actually a doacross loop directive. In this |
| // case choose static, 1 schedule. |
| if (llvm::any_of( |
| S.getClausesOfKind<OMPOrderedClause>(), |
| [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) { |
| ScheduleKind = OMPC_SCHEDULE_static; |
| // Chunk size is 1 in this case. |
| llvm::APInt ChunkSize(32, 1); |
| ChunkExpr = IntegerLiteral::Create( |
| CGF.getContext(), ChunkSize, |
| CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), |
| SourceLocation()); |
| } |
| } |
| |
| void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, |
| OpenMPDirectiveKind Kind, bool EmitChecks, |
| bool ForceSimpleCall) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_cancel_barrier(loc, thread_id); |
| // Build call __kmpc_barrier(loc, thread_id); |
| unsigned Flags = getDefaultFlagsForBarriers(Kind); |
| // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, |
| // thread_id); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), |
| getThreadID(CGF, Loc)}; |
| if (auto *OMPRegionInfo = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { |
| if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { |
| llvm::Value *Result = CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args); |
| if (EmitChecks) { |
| // if (__kmpc_cancel_barrier()) { |
| // exit from construct; |
| // } |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); |
| llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); |
| llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); |
| CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); |
| CGF.EmitBlock(ExitBB); |
| // exit from construct; |
| CodeGenFunction::JumpDest CancelDestination = |
| CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); |
| CGF.EmitBranchThroughCleanup(CancelDestination); |
| CGF.EmitBlock(ContBB, /*IsFinished=*/true); |
| } |
| return; |
| } |
| } |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args); |
| } |
| |
| /// Map the OpenMP loop schedule to the runtime enumeration. |
| static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, |
| bool Chunked, bool Ordered) { |
| switch (ScheduleKind) { |
| case OMPC_SCHEDULE_static: |
| return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) |
| : (Ordered ? OMP_ord_static : OMP_sch_static); |
| case OMPC_SCHEDULE_dynamic: |
| return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; |
| case OMPC_SCHEDULE_guided: |
| return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; |
| case OMPC_SCHEDULE_runtime: |
| return Ordered ? OMP_ord_runtime : OMP_sch_runtime; |
| case OMPC_SCHEDULE_auto: |
| return Ordered ? OMP_ord_auto : OMP_sch_auto; |
| case OMPC_SCHEDULE_unknown: |
| assert(!Chunked && "chunk was specified but schedule kind not known"); |
| return Ordered ? OMP_ord_static : OMP_sch_static; |
| } |
| llvm_unreachable("Unexpected runtime schedule"); |
| } |
| |
| /// Map the OpenMP distribute schedule to the runtime enumeration. |
| static OpenMPSchedType |
| getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { |
| // only static is allowed for dist_schedule |
| return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; |
| } |
| |
| bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, |
| bool Chunked) const { |
| OpenMPSchedType Schedule = |
| getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); |
| return Schedule == OMP_sch_static; |
| } |
| |
| bool CGOpenMPRuntime::isStaticNonchunked( |
| OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { |
| OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); |
| return Schedule == OMP_dist_sch_static; |
| } |
| |
| bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind, |
| bool Chunked) const { |
| OpenMPSchedType Schedule = |
| getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); |
| return Schedule == OMP_sch_static_chunked; |
| } |
| |
| bool CGOpenMPRuntime::isStaticChunked( |
| OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { |
| OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); |
| return Schedule == OMP_dist_sch_static_chunked; |
| } |
| |
| bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { |
| OpenMPSchedType Schedule = |
| getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); |
| assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); |
| return Schedule != OMP_sch_static; |
| } |
| |
| static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule, |
| OpenMPScheduleClauseModifier M1, |
| OpenMPScheduleClauseModifier M2) { |
| int Modifier = 0; |
| switch (M1) { |
| case OMPC_SCHEDULE_MODIFIER_monotonic: |
| Modifier = OMP_sch_modifier_monotonic; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_nonmonotonic: |
| Modifier = OMP_sch_modifier_nonmonotonic; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_simd: |
| if (Schedule == OMP_sch_static_chunked) |
| Schedule = OMP_sch_static_balanced_chunked; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_last: |
| case OMPC_SCHEDULE_MODIFIER_unknown: |
| break; |
| } |
| switch (M2) { |
| case OMPC_SCHEDULE_MODIFIER_monotonic: |
| Modifier = OMP_sch_modifier_monotonic; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_nonmonotonic: |
| Modifier = OMP_sch_modifier_nonmonotonic; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_simd: |
| if (Schedule == OMP_sch_static_chunked) |
| Schedule = OMP_sch_static_balanced_chunked; |
| break; |
| case OMPC_SCHEDULE_MODIFIER_last: |
| case OMPC_SCHEDULE_MODIFIER_unknown: |
| break; |
| } |
| // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription. |
| // If the static schedule kind is specified or if the ordered clause is |
| // specified, and if the nonmonotonic modifier is not specified, the effect is |
| // as if the monotonic modifier is specified. Otherwise, unless the monotonic |
| // modifier is specified, the effect is as if the nonmonotonic modifier is |
| // specified. |
| if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) { |
| if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static || |
| Schedule == OMP_sch_static_balanced_chunked || |
| Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static)) |
| Modifier = OMP_sch_modifier_nonmonotonic; |
| } |
| return Schedule | Modifier; |
| } |
| |
| void CGOpenMPRuntime::emitForDispatchInit( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, |
| bool Ordered, const DispatchRTInput &DispatchValues) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| OpenMPSchedType Schedule = getRuntimeSchedule( |
| ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); |
| assert(Ordered || |
| (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && |
| Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && |
| Schedule != OMP_sch_static_balanced_chunked)); |
| // Call __kmpc_dispatch_init( |
| // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, |
| // kmp_int[32|64] lower, kmp_int[32|64] upper, |
| // kmp_int[32|64] stride, kmp_int[32|64] chunk); |
| |
| // If the Chunk was not specified in the clause - use default value 1. |
| llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk |
| : CGF.Builder.getIntN(IVSize, 1); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), |
| getThreadID(CGF, Loc), |
| CGF.Builder.getInt32(addMonoNonMonoModifier( |
| CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type |
| DispatchValues.LB, // Lower |
| DispatchValues.UB, // Upper |
| CGF.Builder.getIntN(IVSize, 1), // Stride |
| Chunk // Chunk |
| }; |
| CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); |
| } |
| |
| static void emitForStaticInitCall( |
| CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, |
| llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule, |
| OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, |
| const CGOpenMPRuntime::StaticRTInput &Values) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| assert(!Values.Ordered); |
| assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || |
| Schedule == OMP_sch_static_balanced_chunked || |
| Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || |
| Schedule == OMP_dist_sch_static || |
| Schedule == OMP_dist_sch_static_chunked); |
| |
| // Call __kmpc_for_static_init( |
| // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, |
| // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, |
| // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, |
| // kmp_int[32|64] incr, kmp_int[32|64] chunk); |
| llvm::Value *Chunk = Values.Chunk; |
| if (Chunk == nullptr) { |
| assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || |
| Schedule == OMP_dist_sch_static) && |
| "expected static non-chunked schedule"); |
| // If the Chunk was not specified in the clause - use default value 1. |
| Chunk = CGF.Builder.getIntN(Values.IVSize, 1); |
| } else { |
| assert((Schedule == OMP_sch_static_chunked || |
| Schedule == OMP_sch_static_balanced_chunked || |
| Schedule == OMP_ord_static_chunked || |
| Schedule == OMP_dist_sch_static_chunked) && |
| "expected static chunked schedule"); |
| } |
| llvm::Value *Args[] = { |
| UpdateLocation, |
| ThreadId, |
| CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1, |
| M2)), // Schedule type |
| Values.IL.getPointer(), // &isLastIter |
| Values.LB.getPointer(), // &LB |
| Values.UB.getPointer(), // &UB |
| Values.ST.getPointer(), // &Stride |
| CGF.Builder.getIntN(Values.IVSize, 1), // Incr |
| Chunk // Chunk |
| }; |
| CGF.EmitRuntimeCall(ForStaticInitFunction, Args); |
| } |
| |
| void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind DKind, |
| const OpenMPScheduleTy &ScheduleKind, |
| const StaticRTInput &Values) { |
| OpenMPSchedType ScheduleNum = getRuntimeSchedule( |
| ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered); |
| assert(isOpenMPWorksharingDirective(DKind) && |
| "Expected loop-based or sections-based directive."); |
| llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc, |
| isOpenMPLoopDirective(DKind) |
| ? OMP_IDENT_WORK_LOOP |
| : OMP_IDENT_WORK_SECTIONS); |
| llvm::Value *ThreadId = getThreadID(CGF, Loc); |
| llvm::FunctionCallee StaticInitFunction = |
| createForStaticInitFunction(Values.IVSize, Values.IVSigned); |
| emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, |
| ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values); |
| } |
| |
| void CGOpenMPRuntime::emitDistributeStaticInit( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| OpenMPDistScheduleClauseKind SchedKind, |
| const CGOpenMPRuntime::StaticRTInput &Values) { |
| OpenMPSchedType ScheduleNum = |
| getRuntimeSchedule(SchedKind, Values.Chunk != nullptr); |
| llvm::Value *UpdatedLocation = |
| emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE); |
| llvm::Value *ThreadId = getThreadID(CGF, Loc); |
| llvm::FunctionCallee StaticInitFunction = |
| createForStaticInitFunction(Values.IVSize, Values.IVSigned); |
| emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, |
| ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, |
| OMPC_SCHEDULE_MODIFIER_unknown, Values); |
| } |
| |
| void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind DKind) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc, |
| isOpenMPDistributeDirective(DKind) |
| ? OMP_IDENT_WORK_DISTRIBUTE |
| : isOpenMPLoopDirective(DKind) |
| ? OMP_IDENT_WORK_LOOP |
| : OMP_IDENT_WORK_SECTIONS), |
| getThreadID(CGF, Loc)}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini), |
| Args); |
| } |
| |
| void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| unsigned IVSize, |
| bool IVSigned) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); |
| } |
| |
| llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, |
| SourceLocation Loc, unsigned IVSize, |
| bool IVSigned, Address IL, |
| Address LB, Address UB, |
| Address ST) { |
| // Call __kmpc_dispatch_next( |
| // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, |
| // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, |
| // kmp_int[32|64] *p_stride); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), |
| getThreadID(CGF, Loc), |
| IL.getPointer(), // &isLastIter |
| LB.getPointer(), // &Lower |
| UB.getPointer(), // &Upper |
| ST.getPointer() // &Stride |
| }; |
| llvm::Value *Call = |
| CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); |
| return CGF.EmitScalarConversion( |
| Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1), |
| CGF.getContext().BoolTy, Loc); |
| } |
| |
| void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, |
| llvm::Value *NumThreads, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads), |
| Args); |
| } |
| |
| void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, |
| OpenMPProcBindClauseKind ProcBind, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Constants for proc bind value accepted by the runtime. |
| enum ProcBindTy { |
| ProcBindFalse = 0, |
| ProcBindTrue, |
| ProcBindMaster, |
| ProcBindClose, |
| ProcBindSpread, |
| ProcBindIntel, |
| ProcBindDefault |
| } RuntimeProcBind; |
| switch (ProcBind) { |
| case OMPC_PROC_BIND_master: |
| RuntimeProcBind = ProcBindMaster; |
| break; |
| case OMPC_PROC_BIND_close: |
| RuntimeProcBind = ProcBindClose; |
| break; |
| case OMPC_PROC_BIND_spread: |
| RuntimeProcBind = ProcBindSpread; |
| break; |
| case OMPC_PROC_BIND_unknown: |
| llvm_unreachable("Unsupported proc_bind value."); |
| } |
| // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args); |
| } |
| |
| void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call void __kmpc_flush(ident_t *loc) |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush), |
| emitUpdateLocation(CGF, Loc)); |
| } |
| |
| namespace { |
| /// Indexes of fields for type kmp_task_t. |
| enum KmpTaskTFields { |
| /// List of shared variables. |
| KmpTaskTShareds, |
| /// Task routine. |
| KmpTaskTRoutine, |
| /// Partition id for the untied tasks. |
| KmpTaskTPartId, |
| /// Function with call of destructors for private variables. |
| Data1, |
| /// Task priority. |
| Data2, |
| /// (Taskloops only) Lower bound. |
| KmpTaskTLowerBound, |
| /// (Taskloops only) Upper bound. |
| KmpTaskTUpperBound, |
| /// (Taskloops only) Stride. |
| KmpTaskTStride, |
| /// (Taskloops only) Is last iteration flag. |
| KmpTaskTLastIter, |
| /// (Taskloops only) Reduction data. |
| KmpTaskTReductions, |
| }; |
| } // anonymous namespace |
| |
| bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { |
| return OffloadEntriesTargetRegion.empty() && |
| OffloadEntriesDeviceGlobalVar.empty(); |
| } |
| |
| /// Initialize target region entry. |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: |
| initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, |
| StringRef ParentName, unsigned LineNum, |
| unsigned Order) { |
| assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " |
| "only required for the device " |
| "code generation."); |
| OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = |
| OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, |
| OMPTargetRegionEntryTargetRegion); |
| ++OffloadingEntriesNum; |
| } |
| |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: |
| registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, |
| StringRef ParentName, unsigned LineNum, |
| llvm::Constant *Addr, llvm::Constant *ID, |
| OMPTargetRegionEntryKind Flags) { |
| // If we are emitting code for a target, the entry is already initialized, |
| // only has to be registered. |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "Unable to find target region on line '%0' in the device code."); |
| CGM.getDiags().Report(DiagID) << LineNum; |
| return; |
| } |
| auto &Entry = |
| OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; |
| assert(Entry.isValid() && "Entry not initialized!"); |
| Entry.setAddress(Addr); |
| Entry.setID(ID); |
| Entry.setFlags(Flags); |
| } else { |
| OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); |
| OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; |
| ++OffloadingEntriesNum; |
| } |
| } |
| |
| bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( |
| unsigned DeviceID, unsigned FileID, StringRef ParentName, |
| unsigned LineNum) const { |
| auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); |
| if (PerDevice == OffloadEntriesTargetRegion.end()) |
| return false; |
| auto PerFile = PerDevice->second.find(FileID); |
| if (PerFile == PerDevice->second.end()) |
| return false; |
| auto PerParentName = PerFile->second.find(ParentName); |
| if (PerParentName == PerFile->second.end()) |
| return false; |
| auto PerLine = PerParentName->second.find(LineNum); |
| if (PerLine == PerParentName->second.end()) |
| return false; |
| // Fail if this entry is already registered. |
| if (PerLine->second.getAddress() || PerLine->second.getID()) |
| return false; |
| return true; |
| } |
| |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( |
| const OffloadTargetRegionEntryInfoActTy &Action) { |
| // Scan all target region entries and perform the provided action. |
| for (const auto &D : OffloadEntriesTargetRegion) |
| for (const auto &F : D.second) |
| for (const auto &P : F.second) |
| for (const auto &L : P.second) |
| Action(D.first, F.first, P.first(), L.first, L.second); |
| } |
| |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: |
| initializeDeviceGlobalVarEntryInfo(StringRef Name, |
| OMPTargetGlobalVarEntryKind Flags, |
| unsigned Order) { |
| assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " |
| "only required for the device " |
| "code generation."); |
| OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); |
| ++OffloadingEntriesNum; |
| } |
| |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: |
| registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr, |
| CharUnits VarSize, |
| OMPTargetGlobalVarEntryKind Flags, |
| llvm::GlobalValue::LinkageTypes Linkage) { |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; |
| assert(Entry.isValid() && Entry.getFlags() == Flags && |
| "Entry not initialized!"); |
| assert((!Entry.getAddress() || Entry.getAddress() == Addr) && |
| "Resetting with the new address."); |
| if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { |
| if (Entry.getVarSize().isZero()) { |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| } |
| return; |
| } |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| Entry.setAddress(Addr); |
| } else { |
| if (hasDeviceGlobalVarEntryInfo(VarName)) { |
| auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; |
| assert(Entry.isValid() && Entry.getFlags() == Flags && |
| "Entry not initialized!"); |
| assert((!Entry.getAddress() || Entry.getAddress() == Addr) && |
| "Resetting with the new address."); |
| if (Entry.getVarSize().isZero()) { |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| } |
| return; |
| } |
| OffloadEntriesDeviceGlobalVar.try_emplace( |
| VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage); |
| ++OffloadingEntriesNum; |
| } |
| } |
| |
| void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: |
| actOnDeviceGlobalVarEntriesInfo( |
| const OffloadDeviceGlobalVarEntryInfoActTy &Action) { |
| // Scan all target region entries and perform the provided action. |
| for (const auto &E : OffloadEntriesDeviceGlobalVar) |
| Action(E.getKey(), E.getValue()); |
| } |
| |
| void CGOpenMPRuntime::createOffloadEntry( |
| llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags, |
| llvm::GlobalValue::LinkageTypes Linkage) { |
| StringRef Name = Addr->getName(); |
| llvm::Module &M = CGM.getModule(); |
| llvm::LLVMContext &C = M.getContext(); |
| |
| // Create constant string with the name. |
| llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); |
| |
| std::string StringName = getName({"omp_offloading", "entry_name"}); |
| auto *Str = new llvm::GlobalVariable( |
| M, StrPtrInit->getType(), /*isConstant=*/true, |
| llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName); |
| Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| |
| llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy), |
| llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy), |
| llvm::ConstantInt::get(CGM.SizeTy, Size), |
| llvm::ConstantInt::get(CGM.Int32Ty, Flags), |
| llvm::ConstantInt::get(CGM.Int32Ty, 0)}; |
| std::string EntryName = getName({"omp_offloading", "entry", ""}); |
| llvm::GlobalVariable *Entry = createGlobalStruct( |
| CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data, |
| Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage); |
| |
| // The entry has to be created in the section the linker expects it to be. |
| Entry->setSection("omp_offloading_entries"); |
| } |
| |
| void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { |
| // Emit the offloading entries and metadata so that the device codegen side |
| // can easily figure out what to emit. The produced metadata looks like |
| // this: |
| // |
| // !omp_offload.info = !{!1, ...} |
| // |
| // Right now we only generate metadata for function that contain target |
| // regions. |
| |
| // If we are in simd mode or there are no entries, we don't need to do |
| // anything. |
| if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty()) |
| return; |
| |
| llvm::Module &M = CGM.getModule(); |
| llvm::LLVMContext &C = M.getContext(); |
| SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, |
| SourceLocation, StringRef>, |
| 16> |
| OrderedEntries(OffloadEntriesInfoManager.size()); |
| llvm::SmallVector<StringRef, 16> ParentFunctions( |
| OffloadEntriesInfoManager.size()); |
| |
| // Auxiliary methods to create metadata values and strings. |
| auto &&GetMDInt = [this](unsigned V) { |
| return llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(CGM.Int32Ty, V)); |
| }; |
| |
| auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); }; |
| |
| // Create the offloading info metadata node. |
| llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); |
| |
| // Create function that emits metadata for each target region entry; |
| auto &&TargetRegionMetadataEmitter = |
| [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, |
| &GetMDString]( |
| unsigned DeviceID, unsigned FileID, StringRef ParentName, |
| unsigned Line, |
| const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { |
| // Generate metadata for target regions. Each entry of this metadata |
| // contains: |
| // - Entry 0 -> Kind of this type of metadata (0). |
| // - Entry 1 -> Device ID of the file where the entry was identified. |
| // - Entry 2 -> File ID of the file where the entry was identified. |
| // - Entry 3 -> Mangled name of the function where the entry was |
| // identified. |
| // - Entry 4 -> Line in the file where the entry was identified. |
| // - Entry 5 -> Order the entry was created. |
| // The first element of the metadata node is the kind. |
| llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID), |
| GetMDInt(FileID), GetMDString(ParentName), |
| GetMDInt(Line), GetMDInt(E.getOrder())}; |
| |
| SourceLocation Loc; |
| for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(), |
| E = CGM.getContext().getSourceManager().fileinfo_end(); |
| I != E; ++I) { |
| if (I->getFirst()->getUniqueID().getDevice() == DeviceID && |
| I->getFirst()->getUniqueID().getFile() == FileID) { |
| Loc = CGM.getContext().getSourceManager().translateFileLineCol( |
| I->getFirst(), Line, 1); |
| break; |
| } |
| } |
| // Save this entry in the right position of the ordered entries array. |
| OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName); |
| ParentFunctions[E.getOrder()] = ParentName; |
| |
| // Add metadata to the named metadata node. |
| MD->addOperand(llvm::MDNode::get(C, Ops)); |
| }; |
| |
| OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( |
| TargetRegionMetadataEmitter); |
| |
| // Create function that emits metadata for each device global variable entry; |
| auto &&DeviceGlobalVarMetadataEmitter = |
| [&C, &OrderedEntries, &GetMDInt, &GetMDString, |
| MD](StringRef MangledName, |
| const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar |
| &E) { |
| // Generate metadata for global variables. Each entry of this metadata |
| // contains: |
| // - Entry 0 -> Kind of this type of metadata (1). |
| // - Entry 1 -> Mangled name of the variable. |
| // - Entry 2 -> Declare target kind. |
| // - Entry 3 -> Order the entry was created. |
| // The first element of the metadata node is the kind. |
| llvm::Metadata *Ops[] = { |
| GetMDInt(E.getKind()), GetMDString(MangledName), |
| GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; |
| |
| // Save this entry in the right position of the ordered entries array. |
| OrderedEntries[E.getOrder()] = |
| std::make_tuple(&E, SourceLocation(), MangledName); |
| |
| // Add metadata to the named metadata node. |
| MD->addOperand(llvm::MDNode::get(C, Ops)); |
| }; |
| |
| OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo( |
| DeviceGlobalVarMetadataEmitter); |
| |
| for (const auto &E : OrderedEntries) { |
| assert(std::get<0>(E) && "All ordered entries must exist!"); |
| if (const auto *CE = |
| dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>( |
| std::get<0>(E))) { |
| if (!CE->getID() || !CE->getAddress()) { |
| // Do not blame the entry if the parent funtion is not emitted. |
| StringRef FnName = ParentFunctions[CE->getOrder()]; |
| if (!CGM.GetGlobalValue(FnName)) |
| continue; |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "Offloading entry for target region in %0 is incorrect: either the " |
| "address or the ID is invalid."); |
| CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName; |
| continue; |
| } |
| createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0, |
| CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage); |
| } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy:: |
| OffloadEntryInfoDeviceGlobalVar>( |
| std::get<0>(E))) { |
| OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags = |
| static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( |
| CE->getFlags()); |
| switch (Flags) { |
| case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: { |
| if (CGM.getLangOpts().OpenMPIsDevice && |
| CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()) |
| continue; |
| if (!CE->getAddress()) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Error, "Offloading entry for declare target " |
| "variable %0 is incorrect: the " |
| "address is invalid."); |
| CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E); |
| continue; |
| } |
| // The vaiable has no definition - no need to add the entry. |
| if (CE->getVarSize().isZero()) |
| continue; |
| break; |
| } |
| case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink: |
| assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || |
| (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && |
| "Declaret target link address is set."); |
| if (CGM.getLangOpts().OpenMPIsDevice) |
| continue; |
| if (!CE->getAddress()) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "Offloading entry for declare target variable is incorrect: the " |
| "address is invalid."); |
| CGM.getDiags().Report(DiagID); |
| continue; |
| } |
| break; |
| } |
| createOffloadEntry(CE->getAddress(), CE->getAddress(), |
| CE->getVarSize().getQuantity(), Flags, |
| CE->getLinkage()); |
| } else { |
| llvm_unreachable("Unsupported entry kind."); |
| } |
| } |
| } |
| |
| /// Loads all the offload entries information from the host IR |
| /// metadata. |
| void CGOpenMPRuntime::loadOffloadInfoMetadata() { |
| // If we are in target mode, load the metadata from the host IR. This code has |
| // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). |
| |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| return; |
| |
| if (CGM.getLangOpts().OMPHostIRFile.empty()) |
| return; |
| |
| auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); |
| if (auto EC = Buf.getError()) { |
| CGM.getDiags().Report(diag::err_cannot_open_file) |
| << CGM.getLangOpts().OMPHostIRFile << EC.message(); |
| return; |
| } |
| |
| llvm::LLVMContext C; |
| auto ME = expectedToErrorOrAndEmitErrors( |
| C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); |
| |
| if (auto EC = ME.getError()) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'"); |
| CGM.getDiags().Report(DiagID) |
| << CGM.getLangOpts().OMPHostIRFile << EC.message(); |
| return; |
| } |
| |
| llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); |
| if (!MD) |
| return; |
| |
| for (llvm::MDNode *MN : MD->operands()) { |
| auto &&GetMDInt = [MN](unsigned Idx) { |
| auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx)); |
| return cast<llvm::ConstantInt>(V->getValue())->getZExtValue(); |
| }; |
| |
| auto &&GetMDString = [MN](unsigned Idx) { |
| auto *V = cast<llvm::MDString>(MN->getOperand(Idx)); |
| return V->getString(); |
| }; |
| |
| switch (GetMDInt(0)) { |
| default: |
| llvm_unreachable("Unexpected metadata!"); |
| break; |
| case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: |
| OffloadingEntryInfoTargetRegion: |
| OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( |
| /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2), |
| /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4), |
| /*Order=*/GetMDInt(5)); |
| break; |
| case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: |
| OffloadingEntryInfoDeviceGlobalVar: |
| OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo( |
| /*MangledName=*/GetMDString(1), |
| static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( |
| /*Flags=*/GetMDInt(2)), |
| /*Order=*/GetMDInt(3)); |
| break; |
| } |
| } |
| } |
| |
| void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { |
| if (!KmpRoutineEntryPtrTy) { |
| // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. |
| ASTContext &C = CGM.getContext(); |
| QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| KmpRoutineEntryPtrQTy = C.getPointerType( |
| C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); |
| KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); |
| } |
| } |
| |
| QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { |
| // Make sure the type of the entry is already created. This is the type we |
| // have to create: |
| // struct __tgt_offload_entry{ |
| // void *addr; // Pointer to the offload entry info. |
| // // (function or global) |
| // char *name; // Name of the function or global. |
| // size_t size; // Size of the entry info (0 if it a function). |
| // int32_t flags; // Flags associated with the entry, e.g. 'link'. |
| // int32_t reserved; // Reserved, to use by the runtime library. |
| // }; |
| if (TgtOffloadEntryQTy.isNull()) { |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry"); |
| RD->startDefinition(); |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); |
| addFieldToRecordDecl(C, RD, C.getSizeType()); |
| addFieldToRecordDecl( |
| C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); |
| addFieldToRecordDecl( |
| C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); |
| RD->completeDefinition(); |
| RD->addAttr(PackedAttr::CreateImplicit(C)); |
| TgtOffloadEntryQTy = C.getRecordType(RD); |
| } |
| return TgtOffloadEntryQTy; |
| } |
| |
| QualType CGOpenMPRuntime::getTgtDeviceImageQTy() { |
| // These are the types we need to build: |
| // struct __tgt_device_image{ |
| // void *ImageStart; // Pointer to the target code start. |
| // void *ImageEnd; // Pointer to the target code end. |
| // // We also add the host entries to the device image, as it may be useful |
| // // for the target runtime to have access to that information. |
| // __tgt_offload_entry *EntriesBegin; // Begin of the table with all |
| // // the entries. |
| // __tgt_offload_entry *EntriesEnd; // End of the table with all the |
| // // entries (non inclusive). |
| // }; |
| if (TgtDeviceImageQTy.isNull()) { |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image"); |
| RD->startDefinition(); |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); |
| addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); |
| RD->completeDefinition(); |
| TgtDeviceImageQTy = C.getRecordType(RD); |
| } |
| return TgtDeviceImageQTy; |
| } |
| |
| QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() { |
| // struct __tgt_bin_desc{ |
| // int32_t NumDevices; // Number of devices supported. |
| // __tgt_device_image *DeviceImages; // Arrays of device images |
| // // (one per device). |
| // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the |
| // // entries. |
| // __tgt_offload_entry *EntriesEnd; // End of the table with all the |
| // // entries (non inclusive). |
| // }; |
| if (TgtBinaryDescriptorQTy.isNull()) { |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc"); |
| RD->startDefinition(); |
| addFieldToRecordDecl( |
| C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); |
| addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy())); |
| addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); |
| addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); |
| RD->completeDefinition(); |
| TgtBinaryDescriptorQTy = C.getRecordType(RD); |
| } |
| return TgtBinaryDescriptorQTy; |
| } |
| |
| namespace { |
| struct PrivateHelpersTy { |
| PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy, |
| const VarDecl *PrivateElemInit) |
| : Original(Original), PrivateCopy(PrivateCopy), |
| PrivateElemInit(PrivateElemInit) {} |
| const VarDecl *Original; |
| const VarDecl *PrivateCopy; |
| const VarDecl *PrivateElemInit; |
| }; |
| typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy; |
| } // anonymous namespace |
| |
| static RecordDecl * |
| createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) { |
| if (!Privates.empty()) { |
| ASTContext &C = CGM.getContext(); |
| // Build struct .kmp_privates_t. { |
| // /* private vars */ |
| // }; |
| RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t"); |
| RD->startDefinition(); |
| for (const auto &Pair : Privates) { |
| const VarDecl *VD = Pair.second.Original; |
| QualType Type = VD->getType().getNonReferenceType(); |
| FieldDecl *FD = addFieldToRecordDecl(C, RD, Type); |
| if (VD->hasAttrs()) { |
| for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), |
| E(VD->getAttrs().end()); |
| I != E; ++I) |
| FD->addAttr(*I); |
| } |
| } |
| RD->completeDefinition(); |
| return RD; |
| } |
| return nullptr; |
| } |
| |
| static RecordDecl * |
| createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, |
| QualType KmpInt32Ty, |
| QualType KmpRoutineEntryPointerQTy) { |
| ASTContext &C = CGM.getContext(); |
| // Build struct kmp_task_t { |
| // void * shareds; |
| // kmp_routine_entry_t routine; |
| // kmp_int32 part_id; |
| // kmp_cmplrdata_t data1; |
| // kmp_cmplrdata_t data2; |
| // For taskloops additional fields: |
| // kmp_uint64 lb; |
| // kmp_uint64 ub; |
| // kmp_int64 st; |
| // kmp_int32 liter; |
| // void * reductions; |
| // }; |
| RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); |
| UD->startDefinition(); |
| addFieldToRecordDecl(C, UD, KmpInt32Ty); |
| addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); |
| UD->completeDefinition(); |
| QualType KmpCmplrdataTy = C.getRecordType(UD); |
| RecordDecl *RD = C.buildImplicitRecord("kmp_task_t"); |
| RD->startDefinition(); |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| addFieldToRecordDecl(C, RD, KmpCmplrdataTy); |
| addFieldToRecordDecl(C, RD, KmpCmplrdataTy); |
| if (isOpenMPTaskLoopDirective(Kind)) { |
| QualType KmpUInt64Ty = |
| CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); |
| QualType KmpInt64Ty = |
| CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); |
| addFieldToRecordDecl(C, RD, KmpUInt64Ty); |
| addFieldToRecordDecl(C, RD, KmpUInt64Ty); |
| addFieldToRecordDecl(C, RD, KmpInt64Ty); |
| addFieldToRecordDecl(C, RD, KmpInt32Ty); |
| addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| } |
| RD->completeDefinition(); |
| return RD; |
| } |
| |
| static RecordDecl * |
| createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, |
| ArrayRef<PrivateDataTy> Privates) { |
| ASTContext &C = CGM.getContext(); |
| // Build struct kmp_task_t_with_privates { |
| // kmp_task_t task_data; |
| // .kmp_privates_t. privates; |
| // }; |
| RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); |
| RD->startDefinition(); |
| addFieldToRecordDecl(C, RD, KmpTaskTQTy); |
| if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) |
| addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); |
| RD->completeDefinition(); |
| return RD; |
| } |
| |
| /// Emit a proxy function which accepts kmp_task_t as the second |
| /// argument. |
| /// \code |
| /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { |
| /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, |
| /// For taskloops: |
| /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, |
| /// tt->reductions, tt->shareds); |
| /// return 0; |
| /// } |
| /// \endcode |
| static llvm::Function * |
| emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, |
| OpenMPDirectiveKind Kind, QualType KmpInt32Ty, |
| QualType KmpTaskTWithPrivatesPtrQTy, |
| QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, |
| QualType SharedsPtrTy, llvm::Function *TaskFunction, |
| llvm::Value *TaskPrivatesMap) { |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| KmpTaskTWithPrivatesPtrQTy.withRestrict(), |
| ImplicitParamDecl::Other); |
| Args.push_back(&GtidArg); |
| Args.push_back(&TaskTypeArg); |
| const auto &TaskEntryFnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); |
| llvm::FunctionType *TaskEntryTy = |
| CGM.getTypes().GetFunctionType(TaskEntryFnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""}); |
| auto *TaskEntry = llvm::Function::Create( |
| TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo); |
| TaskEntry->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args, |
| Loc, Loc); |
| |
| // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, |
| // tt, |
| // For taskloops: |
| // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, |
| // tt->task_data.shareds); |
| llvm::Value *GtidParam = CGF.EmitLoadOfScalar( |
| CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); |
| LValue TDBase = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(&TaskTypeArg), |
| KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); |
| const auto *KmpTaskTWithPrivatesQTyRD = |
| cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); |
| LValue Base = |
| CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); |
| const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); |
| auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); |
| LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); |
| llvm::Value *PartidParam = PartIdLVal.getPointer(); |
| |
| auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); |
| LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); |
| llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(SharedsLVal, Loc), |
| CGF.ConvertTypeForMem(SharedsPtrTy)); |
| |
| auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); |
| llvm::Value *PrivatesParam; |
| if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { |
| LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); |
| PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| PrivatesLVal.getPointer(), CGF.VoidPtrTy); |
| } else { |
| PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); |
| } |
| |
| llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, |
| TaskPrivatesMap, |
| CGF.Builder |
| .CreatePointerBitCastOrAddrSpaceCast( |
| TDBase.getAddress(), CGF.VoidPtrTy) |
| .getPointer()}; |
| SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs), |
| std::end(CommonArgs)); |
| if (isOpenMPTaskLoopDirective(Kind)) { |
| auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); |
| LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI); |
| llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc); |
| auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); |
| LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI); |
| llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc); |
| auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); |
| LValue StLVal = CGF.EmitLValueForField(Base, *StFI); |
| llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc); |
| auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); |
| LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); |
| llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc); |
| auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions); |
| LValue RLVal = CGF.EmitLValueForField(Base, *RFI); |
| llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc); |
| CallArgs.push_back(LBParam); |
| CallArgs.push_back(UBParam); |
| CallArgs.push_back(StParam); |
| CallArgs.push_back(LIParam); |
| CallArgs.push_back(RParam); |
| } |
| CallArgs.push_back(SharedsParam); |
| |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction, |
| CallArgs); |
| CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)), |
| CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); |
| CGF.FinishFunction(); |
| return TaskEntry; |
| } |
| |
| static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, |
| SourceLocation Loc, |
| QualType KmpInt32Ty, |
| QualType KmpTaskTWithPrivatesPtrQTy, |
| QualType KmpTaskTWithPrivatesQTy) { |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| KmpTaskTWithPrivatesPtrQTy.withRestrict(), |
| ImplicitParamDecl::Other); |
| Args.push_back(&GtidArg); |
| Args.push_back(&TaskTypeArg); |
| const auto &DestructorFnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); |
| llvm::FunctionType *DestructorFnTy = |
| CGM.getTypes().GetFunctionType(DestructorFnInfo); |
| std::string Name = |
| CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""}); |
| auto *DestructorFn = |
| llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn, |
| DestructorFnInfo); |
| DestructorFn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, |
| Args, Loc, Loc); |
| |
| LValue Base = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(&TaskTypeArg), |
| KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); |
| const auto *KmpTaskTWithPrivatesQTyRD = |
| cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); |
| auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); |
| Base = CGF.EmitLValueForField(Base, *FI); |
| for (const auto *Field : |
| cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) { |
| if (QualType::DestructionKind DtorKind = |
| Field->getType().isDestructedType()) { |
| LValue FieldLValue = CGF.EmitLValueForField(Base, Field); |
| CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType()); |
| } |
| } |
| CGF.FinishFunction(); |
| return DestructorFn; |
| } |
| |
| /// Emit a privates mapping function for correct handling of private and |
| /// firstprivate variables. |
| /// \code |
| /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1> |
| /// **noalias priv1,..., <tyn> **noalias privn) { |
| /// *priv1 = &.privates.priv1; |
| /// ...; |
| /// *privn = &.privates.privn; |
| /// } |
| /// \endcode |
| static llvm::Value * |
| emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, |
| ArrayRef<const Expr *> PrivateVars, |
| ArrayRef<const Expr *> FirstprivateVars, |
| ArrayRef<const Expr *> LastprivateVars, |
| QualType PrivatesQTy, |
| ArrayRef<PrivateDataTy> Privates) { |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl TaskPrivatesArg( |
| C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getPointerType(PrivatesQTy).withConst().withRestrict(), |
| ImplicitParamDecl::Other); |
| Args.push_back(&TaskPrivatesArg); |
| llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos; |
| unsigned Counter = 1; |
| for (const Expr *E : PrivateVars) { |
| Args.push_back(ImplicitParamDecl::Create( |
| C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getPointerType(C.getPointerType(E->getType())) |
| .withConst() |
| .withRestrict(), |
| ImplicitParamDecl::Other)); |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| PrivateVarsPos[VD] = Counter; |
| ++Counter; |
| } |
| for (const Expr *E : FirstprivateVars) { |
| Args.push_back(ImplicitParamDecl::Create( |
| C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getPointerType(C.getPointerType(E->getType())) |
| .withConst() |
| .withRestrict(), |
| ImplicitParamDecl::Other)); |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| PrivateVarsPos[VD] = Counter; |
| ++Counter; |
| } |
| for (const Expr *E : LastprivateVars) { |
| Args.push_back(ImplicitParamDecl::Create( |
| C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getPointerType(C.getPointerType(E->getType())) |
| .withConst() |
| .withRestrict(), |
| ImplicitParamDecl::Other)); |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| PrivateVarsPos[VD] = Counter; |
| ++Counter; |
| } |
| const auto &TaskPrivatesMapFnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *TaskPrivatesMapTy = |
| CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); |
| std::string Name = |
| CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""}); |
| auto *TaskPrivatesMap = llvm::Function::Create( |
| TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name, |
| &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap, |
| TaskPrivatesMapFnInfo); |
| if (CGM.getLangOpts().Optimize) { |
| TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); |
| TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone); |
| TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); |
| } |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, |
| TaskPrivatesMapFnInfo, Args, Loc, Loc); |
| |
| // *privi = &.privates.privi; |
| LValue Base = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(&TaskPrivatesArg), |
| TaskPrivatesArg.getType()->castAs<PointerType>()); |
| const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl()); |
| Counter = 0; |
| for (const FieldDecl *Field : PrivatesQTyRD->fields()) { |
| LValue FieldLVal = CGF.EmitLValueForField(Base, Field); |
| const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; |
| LValue RefLVal = |
| CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); |
| LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue( |
| RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>()); |
| CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal); |
| ++Counter; |
| } |
| CGF.FinishFunction(); |
| return TaskPrivatesMap; |
| } |
| |
| /// Emit initialization for private variables in task-based directives. |
| static void emitPrivatesInit(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| Address KmpTaskSharedsPtr, LValue TDBase, |
| const RecordDecl *KmpTaskTWithPrivatesQTyRD, |
| QualType SharedsTy, QualType SharedsPtrTy, |
| const OMPTaskDataTy &Data, |
| ArrayRef<PrivateDataTy> Privates, bool ForDup) { |
| ASTContext &C = CGF.getContext(); |
| auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); |
| LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); |
| OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind()) |
| ? OMPD_taskloop |
| : OMPD_task; |
| const CapturedStmt &CS = *D.getCapturedStmt(Kind); |
| CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS); |
| LValue SrcBase; |
| bool IsTargetTask = |
| isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) || |
| isOpenMPTargetExecutionDirective(D.getDirectiveKind()); |
| // For target-based directives skip 3 firstprivate arrays BasePointersArray, |
| // PointersArray and SizesArray. The original variables for these arrays are |
| // not captured and we get their addresses explicitly. |
| if ((!IsTargetTask && !Data.FirstprivateVars.empty()) || |
| (IsTargetTask && KmpTaskSharedsPtr.isValid())) { |
| SrcBase = CGF.MakeAddrLValue( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), |
| SharedsTy); |
| } |
| FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin(); |
| for (const PrivateDataTy &Pair : Privates) { |
| const VarDecl *VD = Pair.second.PrivateCopy; |
| const Expr *Init = VD->getAnyInitializer(); |
| if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) && |
| !CGF.isTrivialInitializer(Init)))) { |
| LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); |
| if (const VarDecl *Elem = Pair.second.PrivateElemInit) { |
| const VarDecl *OriginalVD = Pair.second.Original; |
| // Check if the variable is the target-based BasePointersArray, |
| // PointersArray or SizesArray. |
| LValue SharedRefLValue; |
| QualType Type = PrivateLValue.getType(); |
| const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD); |
| if (IsTargetTask && !SharedField) { |
| assert(isa<ImplicitParamDecl>(OriginalVD) && |
| isa<CapturedDecl>(OriginalVD->getDeclContext()) && |
| cast<CapturedDecl>(OriginalVD->getDeclContext()) |
| ->getNumParams() == 0 && |
| isa<TranslationUnitDecl>( |
| cast<CapturedDecl>(OriginalVD->getDeclContext()) |
| ->getDeclContext()) && |
| "Expected artificial target data variable."); |
| SharedRefLValue = |
| CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type); |
| } else { |
| SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); |
| SharedRefLValue = CGF.MakeAddrLValue( |
| Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)), |
| SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl), |
| SharedRefLValue.getTBAAInfo()); |
| } |
| if (Type->isArrayType()) { |
| // Initialize firstprivate array. |
| if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) { |
| // Perform simple memcpy. |
| CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type); |
| } else { |
| // Initialize firstprivate array using element-by-element |
| // initialization. |
| CGF.EmitOMPAggregateAssign( |
| PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type, |
| [&CGF, Elem, Init, &CapturesInfo](Address DestElement, |
| Address SrcElement) { |
| // Clean up any temporaries needed by the initialization. |
| CodeGenFunction::OMPPrivateScope InitScope(CGF); |
| InitScope.addPrivate( |
| Elem, [SrcElement]() -> Address { return SrcElement; }); |
| (void)InitScope.Privatize(); |
| // Emit initialization for single element. |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( |
| CGF, &CapturesInfo); |
| CGF.EmitAnyExprToMem(Init, DestElement, |
| Init->getType().getQualifiers(), |
| /*IsInitializer=*/false); |
| }); |
| } |
| } else { |
| CodeGenFunction::OMPPrivateScope InitScope(CGF); |
| InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address { |
| return SharedRefLValue.getAddress(); |
| }); |
| (void)InitScope.Privatize(); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); |
| CGF.EmitExprAsInit(Init, VD, PrivateLValue, |
| /*capturedByInit=*/false); |
| } |
| } else { |
| CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); |
| } |
| } |
| ++FI; |
| } |
| } |
| |
| /// Check if duplication function is required for taskloops. |
| static bool checkInitIsRequired(CodeGenFunction &CGF, |
| ArrayRef<PrivateDataTy> Privates) { |
| bool InitRequired = false; |
| for (const PrivateDataTy &Pair : Privates) { |
| const VarDecl *VD = Pair.second.PrivateCopy; |
| const Expr *Init = VD->getAnyInitializer(); |
| InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) && |
| !CGF.isTrivialInitializer(Init)); |
| if (InitRequired) |
| break; |
| } |
| return InitRequired; |
| } |
| |
| |
| /// Emit task_dup function (for initialization of |
| /// private/firstprivate/lastprivate vars and last_iter flag) |
| /// \code |
| /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int |
| /// lastpriv) { |
| /// // setup lastprivate flag |
| /// task_dst->last = lastpriv; |
| /// // could be constructor calls here... |
| /// } |
| /// \endcode |
| static llvm::Value * |
| emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, |
| const OMPExecutableDirective &D, |
| QualType KmpTaskTWithPrivatesPtrQTy, |
| const RecordDecl *KmpTaskTWithPrivatesQTyRD, |
| const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, |
| QualType SharedsPtrTy, const OMPTaskDataTy &Data, |
| ArrayRef<PrivateDataTy> Privates, bool WithLastIter) { |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| KmpTaskTWithPrivatesPtrQTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| KmpTaskTWithPrivatesPtrQTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&DstArg); |
| Args.push_back(&SrcArg); |
| Args.push_back(&LastprivArg); |
| const auto &TaskDupFnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""}); |
| auto *TaskDup = llvm::Function::Create( |
| TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo); |
| TaskDup->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc, |
| Loc); |
| |
| LValue TDBase = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(&DstArg), |
| KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); |
| // task_dst->liter = lastpriv; |
| if (WithLastIter) { |
| auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); |
| LValue Base = CGF.EmitLValueForField( |
| TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); |
| LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); |
| llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( |
| CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); |
| CGF.EmitStoreOfScalar(Lastpriv, LILVal); |
| } |
| |
| // Emit initial values for private copies (if any). |
| assert(!Privates.empty()); |
| Address KmpTaskSharedsPtr = Address::invalid(); |
| if (!Data.FirstprivateVars.empty()) { |
| LValue TDBase = CGF.EmitLoadOfPointerLValue( |
| CGF.GetAddrOfLocalVar(&SrcArg), |
| KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); |
| LValue Base = CGF.EmitLValueForField( |
| TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); |
| KmpTaskSharedsPtr = Address( |
| CGF.EmitLoadOfScalar(CGF.EmitLValueForField( |
| Base, *std::next(KmpTaskTQTyRD->field_begin(), |
| KmpTaskTShareds)), |
| Loc), |
| CGF.getNaturalTypeAlignment(SharedsTy)); |
| } |
| emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, |
| SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); |
| CGF.FinishFunction(); |
| return TaskDup; |
| } |
| |
| /// Checks if destructor function is required to be generated. |
| /// \return true if cleanups are required, false otherwise. |
| static bool |
| checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) { |
| bool NeedsCleanup = false; |
| auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); |
| const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl()); |
| for (const FieldDecl *FD : PrivateRD->fields()) { |
| NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType(); |
| if (NeedsCleanup) |
| break; |
| } |
| return NeedsCleanup; |
| } |
| |
| CGOpenMPRuntime::TaskResultTy |
| CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, |
| const OMPExecutableDirective &D, |
| llvm::Function *TaskFunction, QualType SharedsTy, |
| Address Shareds, const OMPTaskDataTy &Data) { |
| ASTContext &C = CGM.getContext(); |
| llvm::SmallVector<PrivateDataTy, 4> Privates; |
| // Aggregate privates and sort them by the alignment. |
| auto I = Data.PrivateCopies.begin(); |
| for (const Expr *E : Data.PrivateVars) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| Privates.emplace_back( |
| C.getDeclAlign(VD), |
| PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), |
| /*PrivateElemInit=*/nullptr)); |
| ++I; |
| } |
| I = Data.FirstprivateCopies.begin(); |
| auto IElemInitRef = Data.FirstprivateInits.begin(); |
| for (const Expr *E : Data.FirstprivateVars) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| Privates.emplace_back( |
| C.getDeclAlign(VD), |
| PrivateHelpersTy( |
| VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), |
| cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))); |
| ++I; |
| ++IElemInitRef; |
| } |
| I = Data.LastprivateCopies.begin(); |
| for (const Expr *E : Data.LastprivateVars) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| Privates.emplace_back( |
| C.getDeclAlign(VD), |
| PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), |
| /*PrivateElemInit=*/nullptr)); |
| ++I; |
| } |
| llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) { |
| return L.first > R.first; |
| }); |
| QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); |
| // Build type kmp_routine_entry_t (if not built yet). |
| emitKmpRoutineEntryT(KmpInt32Ty); |
| // Build type kmp_task_t (if not built yet). |
| if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) { |
| if (SavedKmpTaskloopTQTy.isNull()) { |
| SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl( |
| CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); |
| } |
| KmpTaskTQTy = SavedKmpTaskloopTQTy; |
| } else { |
| assert((D.getDirectiveKind() == OMPD_task || |
| isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || |
| isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && |
| "Expected taskloop, task or target directive"); |
| if (SavedKmpTaskTQTy.isNull()) { |
| SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( |
| CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); |
| } |
| KmpTaskTQTy = SavedKmpTaskTQTy; |
| } |
| const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); |
| // Build particular struct kmp_task_t for the given task. |
| const RecordDecl *KmpTaskTWithPrivatesQTyRD = |
| createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); |
| QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); |
| QualType KmpTaskTWithPrivatesPtrQTy = |
| C.getPointerType(KmpTaskTWithPrivatesQTy); |
| llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); |
| llvm::Type *KmpTaskTWithPrivatesPtrTy = |
| KmpTaskTWithPrivatesTy->getPointerTo(); |
| llvm::Value *KmpTaskTWithPrivatesTySize = |
| CGF.getTypeSize(KmpTaskTWithPrivatesQTy); |
| QualType SharedsPtrTy = C.getPointerType(SharedsTy); |
| |
| // Emit initial values for private copies (if any). |
| llvm::Value *TaskPrivatesMap = nullptr; |
| llvm::Type *TaskPrivatesMapTy = |
| std::next(TaskFunction->arg_begin(), 3)->getType(); |
| if (!Privates.empty()) { |
| auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); |
| TaskPrivatesMap = emitTaskPrivateMappingFunction( |
| CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars, |
| FI->getType(), Privates); |
| TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TaskPrivatesMap, TaskPrivatesMapTy); |
| } else { |
| TaskPrivatesMap = llvm::ConstantPointerNull::get( |
| cast<llvm::PointerType>(TaskPrivatesMapTy)); |
| } |
| // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, |
| // kmp_task_t *tt); |
| llvm::Function *TaskEntry = emitProxyTaskFunction( |
| CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, |
| KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, |
| TaskPrivatesMap); |
| |
| // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, |
| // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
| // kmp_routine_entry_t *task_entry); |
| // Task flags. Format is taken from |
| // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h, |
| // description of kmp_tasking_flags struct. |
| enum { |
| TiedFlag = 0x1, |
| FinalFlag = 0x2, |
| DestructorsFlag = 0x8, |
| PriorityFlag = 0x20 |
| }; |
| unsigned Flags = Data.Tied ? TiedFlag : 0; |
| bool NeedsCleanup = false; |
| if (!Privates.empty()) { |
| NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD); |
| if (NeedsCleanup) |
| Flags = Flags | DestructorsFlag; |
| } |
| if (Data.Priority.getInt()) |
| Flags = Flags | PriorityFlag; |
| llvm::Value *TaskFlags = |
| Data.Final.getPointer() |
| ? CGF.Builder.CreateSelect(Data.Final.getPointer(), |
| CGF.Builder.getInt32(FinalFlag), |
| CGF.Builder.getInt32(/*C=*/0)) |
| : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); |
| TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); |
| llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); |
| SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc), |
| getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize, |
| SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TaskEntry, KmpRoutineEntryPtrTy)}; |
| llvm::Value *NewTask; |
| if (D.hasClausesOfKind<OMPNowaitClause>()) { |
| // Check if we have any device clause associated with the directive. |
| const Expr *Device = nullptr; |
| if (auto *C = D.getSingleClause<OMPDeviceClause>()) |
| Device = C->getDevice(); |
| // Emit device ID if any otherwise use default value. |
| llvm::Value *DeviceID; |
| if (Device) |
| DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), |
| CGF.Int64Ty, /*isSigned=*/true); |
| else |
| DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); |
| AllocArgs.push_back(DeviceID); |
| NewTask = CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs); |
| } else { |
| NewTask = CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs); |
| } |
| llvm::Value *NewTaskNewTaskTTy = |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| NewTask, KmpTaskTWithPrivatesPtrTy); |
| LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, |
| KmpTaskTWithPrivatesQTy); |
| LValue TDBase = |
| CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); |
| // Fill the data in the resulting kmp_task_t record. |
| // Copy shareds if there are any. |
| Address KmpTaskSharedsPtr = Address::invalid(); |
| if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { |
| KmpTaskSharedsPtr = |
| Address(CGF.EmitLoadOfScalar( |
| CGF.EmitLValueForField( |
| TDBase, *std::next(KmpTaskTQTyRD->field_begin(), |
| KmpTaskTShareds)), |
| Loc), |
| CGF.getNaturalTypeAlignment(SharedsTy)); |
| LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy); |
| LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy); |
| CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap); |
| } |
| // Emit initial values for private copies (if any). |
| TaskResultTy Result; |
| if (!Privates.empty()) { |
| emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, |
| SharedsTy, SharedsPtrTy, Data, Privates, |
| /*ForDup=*/false); |
| if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && |
| (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { |
| Result.TaskDupFn = emitTaskDupFunction( |
| CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, |
| KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, |
| /*WithLastIter=*/!Data.LastprivateVars.empty()); |
| } |
| } |
| // Fields of union "kmp_cmplrdata_t" for destructors and priority. |
| enum { Priority = 0, Destructors = 1 }; |
| // Provide pointer to function with destructors for privates. |
| auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); |
| const RecordDecl *KmpCmplrdataUD = |
| (*FI)->getType()->getAsUnionType()->getDecl(); |
| if (NeedsCleanup) { |
| llvm::Value *DestructorFn = emitDestructorsFunction( |
| CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, |
| KmpTaskTWithPrivatesQTy); |
| LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); |
| LValue DestructorsLV = CGF.EmitLValueForField( |
| Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); |
| CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| DestructorFn, KmpRoutineEntryPtrTy), |
| DestructorsLV); |
| } |
| // Set priority. |
| if (Data.Priority.getInt()) { |
| LValue Data2LV = CGF.EmitLValueForField( |
| TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); |
| LValue PriorityLV = CGF.EmitLValueForField( |
| Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); |
| CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); |
| } |
| Result.NewTask = NewTask; |
| Result.TaskEntry = TaskEntry; |
| Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; |
| Result.TDBase = TDBase; |
| Result.KmpTaskTQTyRD = KmpTaskTQTyRD; |
| return Result; |
| } |
| |
| void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, |
| const OMPExecutableDirective &D, |
| llvm::Function *TaskFunction, |
| QualType SharedsTy, Address Shareds, |
| const Expr *IfCond, |
| const OMPTaskDataTy &Data) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| TaskResultTy Result = |
| emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); |
| llvm::Value *NewTask = Result.NewTask; |
| llvm::Function *TaskEntry = Result.TaskEntry; |
| llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; |
| LValue TDBase = Result.TDBase; |
| const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; |
| ASTContext &C = CGM.getContext(); |
| // Process list of dependences. |
| Address DependenciesArray = Address::invalid(); |
| unsigned NumDependencies = Data.Dependences.size(); |
| if (NumDependencies) { |
| // Dependence kind for RTL. |
| enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 }; |
| enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; |
| RecordDecl *KmpDependInfoRD; |
| QualType FlagsTy = |
| C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); |
| llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); |
| if (KmpDependInfoTy.isNull()) { |
| KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); |
| KmpDependInfoRD->startDefinition(); |
| addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); |
| addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); |
| addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); |
| KmpDependInfoRD->completeDefinition(); |
| KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); |
| } else { |
| KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); |
| } |
| // Define type kmp_depend_info[<Dependences.size()>]; |
| QualType KmpDependInfoArrayTy = C.getConstantArrayType( |
| KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), |
| nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); |
| // kmp_depend_info[<Dependences.size()>] deps; |
| DependenciesArray = |
| CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); |
| for (unsigned I = 0; I < NumDependencies; ++I) { |
| const Expr *E = Data.Dependences[I].second; |
| LValue Addr = CGF.EmitLValue(E); |
| llvm::Value *Size; |
| QualType Ty = E->getType(); |
| if (const auto *ASE = |
| dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) { |
| LValue UpAddrLVal = |
| CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false); |
| llvm::Value *UpAddr = |
| CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1); |
| llvm::Value *LowIntPtr = |
| CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy); |
| llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy); |
| Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); |
| } else { |
| Size = CGF.getTypeSize(Ty); |
| } |
| LValue Base = CGF.MakeAddrLValue( |
| CGF.Builder.CreateConstArrayGEP(DependenciesArray, I), |
| KmpDependInfoTy); |
| // deps[i].base_addr = &<Dependences[i].second>; |
| LValue BaseAddrLVal = CGF.EmitLValueForField( |
| Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); |
| CGF.EmitStoreOfScalar( |
| CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy), |
| BaseAddrLVal); |
| // deps[i].len = sizeof(<Dependences[i].second>); |
| LValue LenLVal = CGF.EmitLValueForField( |
| Base, *std::next(KmpDependInfoRD->field_begin(), Len)); |
| CGF.EmitStoreOfScalar(Size, LenLVal); |
| // deps[i].flags = <Dependences[i].first>; |
| RTLDependenceKindTy DepKind; |
| switch (Data.Dependences[I].first) { |
| case OMPC_DEPEND_in: |
| DepKind = DepIn; |
| break; |
| // Out and InOut dependencies must use the same code. |
| case OMPC_DEPEND_out: |
| case OMPC_DEPEND_inout: |
| DepKind = DepInOut; |
| break; |
| case OMPC_DEPEND_mutexinoutset: |
| DepKind = DepMutexInOutSet; |
| break; |
| case OMPC_DEPEND_source: |
| case OMPC_DEPEND_sink: |
| case OMPC_DEPEND_unknown: |
| llvm_unreachable("Unknown task dependence type"); |
| } |
| LValue FlagsLVal = CGF.EmitLValueForField( |
| Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); |
| CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), |
| FlagsLVal); |
| } |
| DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy); |
| } |
| |
| // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() |
| // libcall. |
| // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, |
| // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, |
| // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence |
| // list is not empty |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; |
| llvm::Value *DepTaskArgs[7]; |
| if (NumDependencies) { |
| DepTaskArgs[0] = UpLoc; |
| DepTaskArgs[1] = ThreadID; |
| DepTaskArgs[2] = NewTask; |
| DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies); |
| DepTaskArgs[4] = DependenciesArray.getPointer(); |
| DepTaskArgs[5] = CGF.Builder.getInt32(0); |
| DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); |
| } |
| auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies, |
| &TaskArgs, |
| &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { |
| if (!Data.Tied) { |
| auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); |
| LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); |
| CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); |
| } |
| if (NumDependencies) { |
| CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs); |
| } else { |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), |
| TaskArgs); |
| } |
| // Check if parent region is untied and build return for untied task; |
| if (auto *Region = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) |
| Region->emitUntiedSwitch(CGF); |
| }; |
| |
| llvm::Value *DepWaitTaskArgs[6]; |
| if (NumDependencies) { |
| DepWaitTaskArgs[0] = UpLoc; |
| DepWaitTaskArgs[1] = ThreadID; |
| DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies); |
| DepWaitTaskArgs[3] = DependenciesArray.getPointer(); |
| DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); |
| DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); |
| } |
| auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, |
| NumDependencies, &DepWaitTaskArgs, |
| Loc](CodeGenFunction &CGF, PrePostActionTy &) { |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| CodeGenFunction::RunCleanupsScope LocalScope(CGF); |
| // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, |
| // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 |
| // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info |
| // is specified. |
| if (NumDependencies) |
| CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps), |
| DepWaitTaskArgs); |
| // Call proxy_task_entry(gtid, new_task); |
| auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy, |
| Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; |
| CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry, |
| OutlinedFnArgs); |
| }; |
| |
| // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, |
| // kmp_task_t *new_task); |
| // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, |
| // kmp_task_t *new_task); |
| RegionCodeGenTy RCG(CodeGen); |
| CommonActionTy Action( |
| RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs, |
| RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs); |
| RCG.setAction(Action); |
| RCG(CGF); |
| }; |
| |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); |
| } else { |
| RegionCodeGenTy ThenRCG(ThenCodeGen); |
| ThenRCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, |
| const OMPLoopDirective &D, |
| llvm::Function *TaskFunction, |
| QualType SharedsTy, Address Shareds, |
| const Expr *IfCond, |
| const OMPTaskDataTy &Data) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| TaskResultTy Result = |
| emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); |
| // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() |
| // libcall. |
| // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int |
| // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int |
| // sched, kmp_uint64 grainsize, void *task_dup); |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *IfVal; |
| if (IfCond) { |
| IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, |
| /*isSigned=*/true); |
| } else { |
| IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); |
| } |
| |
| LValue LBLVal = CGF.EmitLValueForField( |
| Result.TDBase, |
| *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); |
| const auto *LBVar = |
| cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl()); |
| CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(), |
| /*IsInitializer=*/true); |
| LValue UBLVal = CGF.EmitLValueForField( |
| Result.TDBase, |
| *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); |
| const auto *UBVar = |
| cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl()); |
| CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(), |
| /*IsInitializer=*/true); |
| LValue StLVal = CGF.EmitLValueForField( |
| Result.TDBase, |
| *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); |
| const auto *StVar = |
| cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl()); |
| CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(), |
| /*IsInitializer=*/true); |
| // Store reductions address. |
| LValue RedLVal = CGF.EmitLValueForField( |
| Result.TDBase, |
| *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions)); |
| if (Data.Reductions) { |
| CGF.EmitStoreOfScalar(Data.Reductions, RedLVal); |
| } else { |
| CGF.EmitNullInitialization(RedLVal.getAddress(), |
| CGF.getContext().VoidPtrTy); |
| } |
| enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; |
| llvm::Value *TaskArgs[] = { |
| UpLoc, |
| ThreadID, |
| Result.NewTask, |
| IfVal, |
| LBLVal.getPointer(), |
| UBLVal.getPointer(), |
| CGF.EmitLoadOfScalar(StLVal, Loc), |
| llvm::ConstantInt::getSigned( |
| CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler |
| llvm::ConstantInt::getSigned( |
| CGF.IntTy, Data.Schedule.getPointer() |
| ? Data.Schedule.getInt() ? NumTasks : Grainsize |
| : NoSchedule), |
| Data.Schedule.getPointer() |
| ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, |
| /*isSigned=*/false) |
| : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), |
| Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| Result.TaskDupFn, CGF.VoidPtrTy) |
| : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs); |
| } |
| |
| /// Emit reduction operation for each element of array (required for |
| /// array sections) LHS op = RHS. |
| /// \param Type Type of array. |
| /// \param LHSVar Variable on the left side of the reduction operation |
| /// (references element of array in original variable). |
| /// \param RHSVar Variable on the right side of the reduction operation |
| /// (references element of array in original variable). |
| /// \param RedOpGen Generator of reduction operation with use of LHSVar and |
| /// RHSVar. |
| static void EmitOMPAggregateReduction( |
| CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, |
| const VarDecl *RHSVar, |
| const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *, |
| const Expr *, const Expr *)> &RedOpGen, |
| const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, |
| const Expr *UpExpr = nullptr) { |
| // Perform element-by-element initialization. |
| QualType ElementTy; |
| Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); |
| Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); |
| |
| // Drill down to the base element type on both arrays. |
| const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); |
| llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); |
| |
| llvm::Value *RHSBegin = RHSAddr.getPointer(); |
| llvm::Value *LHSBegin = LHSAddr.getPointer(); |
| // Cast from pointer to array type to pointer to single element. |
| llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); |
| // The basic structure here is a while-do loop. |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); |
| llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); |
| llvm::Value *IsEmpty = |
| CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); |
| CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); |
| |
| // Enter the loop body, making that address the current address. |
| llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); |
| CGF.EmitBlock(BodyBB); |
| |
| CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); |
| |
| llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( |
| RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); |
| RHSElementPHI->addIncoming(RHSBegin, EntryBB); |
| Address RHSElementCurrent = |
| Address(RHSElementPHI, |
| RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| |
| llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( |
| LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); |
| LHSElementPHI->addIncoming(LHSBegin, EntryBB); |
| Address LHSElementCurrent = |
| Address(LHSElementPHI, |
| LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| |
| // Emit copy. |
| CodeGenFunction::OMPPrivateScope Scope(CGF); |
| Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; }); |
| Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; }); |
| Scope.Privatize(); |
| RedOpGen(CGF, XExpr, EExpr, UpExpr); |
| Scope.ForceCleanup(); |
| |
| // Shift the address forward by one element. |
| llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32( |
| LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); |
| llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32( |
| RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); |
| // Check whether we've reached the end. |
| llvm::Value *Done = |
| CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); |
| CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); |
| LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); |
| RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); |
| |
| // Done. |
| CGF.EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| /// Emit reduction combiner. If the combiner is a simple expression emit it as |
| /// is, otherwise consider it as combiner of UDR decl and emit it as a call of |
| /// UDR combiner function. |
| static void emitReductionCombiner(CodeGenFunction &CGF, |
| const Expr *ReductionOp) { |
| if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) |
| if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) |
| if (const auto *DRE = |
| dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) |
| if (const auto *DRD = |
| dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) { |
| std::pair<llvm::Function *, llvm::Function *> Reduction = |
| CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); |
| RValue Func = RValue::get(Reduction.first); |
| CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); |
| CGF.EmitIgnoredExpr(ReductionOp); |
| return; |
| } |
| CGF.EmitIgnoredExpr(ReductionOp); |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitReductionFunction( |
| SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
| ArrayRef<const Expr *> ReductionOps) { |
| ASTContext &C = CGM.getContext(); |
| |
| // void reduction_func(void *LHSArg, void *RHSArg); |
| FunctionArgList Args; |
| ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&LHSArg); |
| Args.push_back(&RHSArg); |
| const auto &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| std::string Name = getName({"omp", "reduction", "reduction_func"}); |
| auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), |
| llvm::GlobalValue::InternalLinkage, Name, |
| &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| // Dst = (void*[n])(LHSArg); |
| // Src = (void*[n])(RHSArg); |
| Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), |
| ArgsType), CGF.getPointerAlign()); |
| Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), |
| ArgsType), CGF.getPointerAlign()); |
| |
| // ... |
| // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]); |
| // ... |
| CodeGenFunction::OMPPrivateScope Scope(CGF); |
| auto IPriv = Privates.begin(); |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { |
| const auto *RHSVar = |
| cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()); |
| Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() { |
| return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); |
| }); |
| const auto *LHSVar = |
| cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()); |
| Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() { |
| return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); |
| }); |
| QualType PrivTy = (*IPriv)->getType(); |
| if (PrivTy->isVariablyModifiedType()) { |
| // Get array size and emit VLA type. |
| ++Idx; |
| Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx); |
| llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); |
| const VariableArrayType *VLA = |
| CGF.getContext().getAsVariableArrayType(PrivTy); |
| const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr()); |
| CodeGenFunction::OpaqueValueMapping OpaqueMap( |
| CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); |
| CGF.EmitVariablyModifiedType(PrivTy); |
| } |
| } |
| Scope.Privatize(); |
| IPriv = Privates.begin(); |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| for (const Expr *E : ReductionOps) { |
| if ((*IPriv)->getType()->isArrayType()) { |
| // Emit reduction for array section. |
| const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); |
| const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); |
| EmitOMPAggregateReduction( |
| CGF, (*IPriv)->getType(), LHSVar, RHSVar, |
| [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { |
| emitReductionCombiner(CGF, E); |
| }); |
| } else { |
| // Emit reduction for array subscript or single variable. |
| emitReductionCombiner(CGF, E); |
| } |
| ++IPriv; |
| ++ILHS; |
| ++IRHS; |
| } |
| Scope.ForceCleanup(); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, |
| const Expr *ReductionOp, |
| const Expr *PrivateRef, |
| const DeclRefExpr *LHS, |
| const DeclRefExpr *RHS) { |
| if (PrivateRef->getType()->isArrayType()) { |
| // Emit reduction for array section. |
| const auto *LHSVar = cast<VarDecl>(LHS->getDecl()); |
| const auto *RHSVar = cast<VarDecl>(RHS->getDecl()); |
| EmitOMPAggregateReduction( |
| CGF, PrivateRef->getType(), LHSVar, RHSVar, |
| [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { |
| emitReductionCombiner(CGF, ReductionOp); |
| }); |
| } else { |
| // Emit reduction for array subscript or single variable. |
| emitReductionCombiner(CGF, ReductionOp); |
| } |
| } |
| |
| void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, |
| ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> LHSExprs, |
| ArrayRef<const Expr *> RHSExprs, |
| ArrayRef<const Expr *> ReductionOps, |
| ReductionOptionsTy Options) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| bool WithNowait = Options.WithNowait; |
| bool SimpleReduction = Options.SimpleReduction; |
| |
| // Next code should be emitted for reduction: |
| // |
| // static kmp_critical_name lock = { 0 }; |
| // |
| // void reduce_func(void *lhs[<n>], void *rhs[<n>]) { |
| // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); |
| // ... |
| // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1], |
| // *(Type<n>-1*)rhs[<n>-1]); |
| // } |
| // |
| // ... |
| // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]}; |
| // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), |
| // RedList, reduce_func, &<lock>)) { |
| // case 1: |
| // ... |
| // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); |
| // ... |
| // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); |
| // break; |
| // case 2: |
| // ... |
| // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); |
| // ... |
| // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);] |
| // break; |
| // default:; |
| // } |
| // |
| // if SimpleReduction is true, only the next code is generated: |
| // ... |
| // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); |
| // ... |
| |
| ASTContext &C = CGM.getContext(); |
| |
| if (SimpleReduction) { |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| auto IPriv = Privates.begin(); |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| for (const Expr *E : ReductionOps) { |
| emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), |
| cast<DeclRefExpr>(*IRHS)); |
| ++IPriv; |
| ++ILHS; |
| ++IRHS; |
| } |
| return; |
| } |
| |
| // 1. Build a list of reduction variables. |
| // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
| auto Size = RHSExprs.size(); |
| for (const Expr *E : Privates) { |
| if (E->getType()->isVariablyModifiedType()) |
| // Reserve place for array size. |
| ++Size; |
| } |
| llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); |
| QualType ReductionArrayTy = |
| C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| Address ReductionList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); |
| auto IPriv = Privates.begin(); |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), |
| Elem); |
| if ((*IPriv)->getType()->isVariablyModifiedType()) { |
| // Store array size. |
| ++Idx; |
| Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| llvm::Value *Size = CGF.Builder.CreateIntCast( |
| CGF.getVLASize( |
| CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) |
| .NumElts, |
| CGF.SizeTy, /*isSigned=*/false); |
| CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), |
| Elem); |
| } |
| } |
| |
| // 2. Emit reduce_func(). |
| llvm::Function *ReductionFn = emitReductionFunction( |
| Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, |
| LHSExprs, RHSExprs, ReductionOps); |
| |
| // 3. Create static kmp_critical_name lock = { 0 }; |
| std::string Name = getName({"reduction"}); |
| llvm::Value *Lock = getCriticalRegionLock(Name); |
| |
| // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), |
| // RedList, reduce_func, &<lock>); |
| llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); |
| llvm::Value *ThreadId = getThreadID(CGF, Loc); |
| llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); |
| llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| ReductionList.getPointer(), CGF.VoidPtrTy); |
| llvm::Value *Args[] = { |
| IdentTLoc, // ident_t *<loc> |
| ThreadId, // i32 <gtid> |
| CGF.Builder.getInt32(RHSExprs.size()), // i32 <n> |
| ReductionArrayTySize, // size_type sizeof(RedList) |
| RL, // void *RedList |
| ReductionFn, // void (*) (void *, void *) <reduce_func> |
| Lock // kmp_critical_name *&<lock> |
| }; |
| llvm::Value *Res = CGF.EmitRuntimeCall( |
| createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait |
| : OMPRTL__kmpc_reduce), |
| Args); |
| |
| // 5. Build switch(res) |
| llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); |
| llvm::SwitchInst *SwInst = |
| CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); |
| |
| // 6. Build case 1: |
| // ... |
| // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); |
| // ... |
| // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); |
| // break; |
| llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); |
| SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); |
| CGF.EmitBlock(Case1BB); |
| |
| // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); |
| llvm::Value *EndArgs[] = { |
| IdentTLoc, // ident_t *<loc> |
| ThreadId, // i32 <gtid> |
| Lock // kmp_critical_name *&<lock> |
| }; |
| auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps]( |
| CodeGenFunction &CGF, PrePostActionTy &Action) { |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| auto IPriv = Privates.begin(); |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| for (const Expr *E : ReductionOps) { |
| RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), |
| cast<DeclRefExpr>(*IRHS)); |
| ++IPriv; |
| ++ILHS; |
| ++IRHS; |
| } |
| }; |
| RegionCodeGenTy RCG(CodeGen); |
| CommonActionTy Action( |
| nullptr, llvm::None, |
| createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait |
| : OMPRTL__kmpc_end_reduce), |
| EndArgs); |
| RCG.setAction(Action); |
| RCG(CGF); |
| |
| CGF.EmitBranch(DefaultBB); |
| |
| // 7. Build case 2: |
| // ... |
| // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); |
| // ... |
| // break; |
| llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); |
| SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); |
| CGF.EmitBlock(Case2BB); |
| |
| auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps]( |
| CodeGenFunction &CGF, PrePostActionTy &Action) { |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| auto IPriv = Privates.begin(); |
| for (const Expr *E : ReductionOps) { |
| const Expr *XExpr = nullptr; |
| const Expr *EExpr = nullptr; |
| const Expr *UpExpr = nullptr; |
| BinaryOperatorKind BO = BO_Comma; |
| if (const auto *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Assign) { |
| XExpr = BO->getLHS(); |
| UpExpr = BO->getRHS(); |
| } |
| } |
| // Try to emit update expression as a simple atomic. |
| const Expr *RHSExpr = UpExpr; |
| if (RHSExpr) { |
| // Analyze RHS part of the whole expression. |
| if (const auto *ACO = dyn_cast<AbstractConditionalOperator>( |
| RHSExpr->IgnoreParenImpCasts())) { |
| // If this is a conditional operator, analyze its condition for |
| // min/max reduction operator. |
| RHSExpr = ACO->getCond(); |
| } |
| if (const auto *BORHS = |
| dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) { |
| EExpr = BORHS->getRHS(); |
| BO = BORHS->getOpcode(); |
| } |
| } |
| if (XExpr) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); |
| auto &&AtomicRedGen = [BO, VD, |
| Loc](CodeGenFunction &CGF, const Expr *XExpr, |
| const Expr *EExpr, const Expr *UpExpr) { |
| LValue X = CGF.EmitLValue(XExpr); |
| RValue E; |
| if (EExpr) |
| E = CGF.EmitAnyExpr(EExpr); |
| CGF.EmitOMPAtomicSimpleUpdateExpr( |
| X, E, BO, /*IsXLHSInRHSPart=*/true, |
| llvm::AtomicOrdering::Monotonic, Loc, |
| [&CGF, UpExpr, VD, Loc](RValue XRValue) { |
| CodeGenFunction::OMPPrivateScope PrivateScope(CGF); |
| PrivateScope.addPrivate( |
| VD, [&CGF, VD, XRValue, Loc]() { |
| Address LHSTemp = CGF.CreateMemTemp(VD->getType()); |
| CGF.emitOMPSimpleStore( |
| CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, |
| VD->getType().getNonReferenceType(), Loc); |
| return LHSTemp; |
| }); |
| (void)PrivateScope.Privatize(); |
| return CGF.EmitAnyExpr(UpExpr); |
| }); |
| }; |
| if ((*IPriv)->getType()->isArrayType()) { |
| // Emit atomic reduction for array section. |
| const auto *RHSVar = |
| cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); |
| EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, |
| AtomicRedGen, XExpr, EExpr, UpExpr); |
| } else { |
| // Emit atomic reduction for array subscript or single variable. |
| AtomicRedGen(CGF, XExpr, EExpr, UpExpr); |
| } |
| } else { |
| // Emit as a critical region. |
| auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, |
| const Expr *, const Expr *) { |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| std::string Name = RT.getName({"atomic_reduction"}); |
| RT.emitCriticalRegion( |
| CGF, Name, |
| [=](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| emitReductionCombiner(CGF, E); |
| }, |
| Loc); |
| }; |
| if ((*IPriv)->getType()->isArrayType()) { |
| const auto *LHSVar = |
| cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); |
| const auto *RHSVar = |
| cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); |
| EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, |
| CritRedGen); |
| } else { |
| CritRedGen(CGF, nullptr, nullptr, nullptr); |
| } |
| } |
| ++ILHS; |
| ++IRHS; |
| ++IPriv; |
| } |
| }; |
| RegionCodeGenTy AtomicRCG(AtomicCodeGen); |
| if (!WithNowait) { |
| // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>); |
| llvm::Value *EndArgs[] = { |
| IdentTLoc, // ident_t *<loc> |
| ThreadId, // i32 <gtid> |
| Lock // kmp_critical_name *&<lock> |
| }; |
| CommonActionTy Action(nullptr, llvm::None, |
| createRuntimeFunction(OMPRTL__kmpc_end_reduce), |
| EndArgs); |
| AtomicRCG.setAction(Action); |
| AtomicRCG(CGF); |
| } else { |
| AtomicRCG(CGF); |
| } |
| |
| CGF.EmitBranch(DefaultBB); |
| CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); |
| } |
| |
| /// Generates unique name for artificial threadprivate variables. |
| /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>" |
| static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix, |
| const Expr *Ref) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| const clang::DeclRefExpr *DE; |
| const VarDecl *D = ::getBaseDecl(Ref, DE); |
| if (!D) |
| D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl()); |
| D = D->getCanonicalDecl(); |
| std::string Name = CGM.getOpenMPRuntime().getName( |
| {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)}); |
| Out << Prefix << Name << "_" |
| << D->getCanonicalDecl()->getBeginLoc().getRawEncoding(); |
| return Out.str(); |
| } |
| |
| /// Emits reduction initializer function: |
| /// \code |
| /// void @.red_init(void* %arg) { |
| /// %0 = bitcast void* %arg to <type>* |
| /// store <type> <init>, <type>* %0 |
| /// ret void |
| /// } |
| /// \endcode |
| static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM, |
| SourceLocation Loc, |
| ReductionCodeGen &RCG, unsigned N) { |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.emplace_back(&Param); |
| const auto &FnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""}); |
| auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); |
| Address PrivateAddr = CGF.EmitLoadOfPointer( |
| CGF.GetAddrOfLocalVar(&Param), |
| C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); |
| llvm::Value *Size = nullptr; |
| // If the size of the reduction item is non-constant, load it from global |
| // threadprivate variable. |
| if (RCG.getSizes(N).second) { |
| Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().getSizeType(), |
| generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); |
| Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, |
| CGM.getContext().getSizeType(), Loc); |
| } |
| RCG.emitAggregateType(CGF, N, Size); |
| LValue SharedLVal; |
| // If initializer uses initializer from declare reduction construct, emit a |
| // pointer to the address of the original reduction item (reuired by reduction |
| // initializer) |
| if (RCG.usesReductionInitializer(N)) { |
| Address SharedAddr = |
| CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().VoidPtrTy, |
| generateUniqueName(CGM, "reduction", RCG.getRefExpr(N))); |
| SharedAddr = CGF.EmitLoadOfPointer( |
| SharedAddr, |
| CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr()); |
| SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy); |
| } else { |
| SharedLVal = CGF.MakeNaturalAlignAddrLValue( |
| llvm::ConstantPointerNull::get(CGM.VoidPtrTy), |
| CGM.getContext().VoidPtrTy); |
| } |
| // Emit the initializer: |
| // %0 = bitcast void* %arg to <type>* |
| // store <type> <init>, <type>* %0 |
| RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal, |
| [](CodeGenFunction &) { return false; }); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// Emits reduction combiner function: |
| /// \code |
| /// void @.red_comb(void* %arg0, void* %arg1) { |
| /// %lhs = bitcast void* %arg0 to <type>* |
| /// %rhs = bitcast void* %arg1 to <type>* |
| /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs) |
| /// store <type> %2, <type>* %lhs |
| /// ret void |
| /// } |
| /// \endcode |
| static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM, |
| SourceLocation Loc, |
| ReductionCodeGen &RCG, unsigned N, |
| const Expr *ReductionOp, |
| const Expr *LHS, const Expr *RHS, |
| const Expr *PrivateRef) { |
| ASTContext &C = CGM.getContext(); |
| const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl()); |
| const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl()); |
| FunctionArgList Args; |
| ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.emplace_back(&ParamInOut); |
| Args.emplace_back(&ParamIn); |
| const auto &FnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""}); |
| auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); |
| llvm::Value *Size = nullptr; |
| // If the size of the reduction item is non-constant, load it from global |
| // threadprivate variable. |
| if (RCG.getSizes(N).second) { |
| Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().getSizeType(), |
| generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); |
| Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, |
| CGM.getContext().getSizeType(), Loc); |
| } |
| RCG.emitAggregateType(CGF, N, Size); |
| // Remap lhs and rhs variables to the addresses of the function arguments. |
| // %lhs = bitcast void* %arg0 to <type>* |
| // %rhs = bitcast void* %arg1 to <type>* |
| CodeGenFunction::OMPPrivateScope PrivateScope(CGF); |
| PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() { |
| // Pull out the pointer to the variable. |
| Address PtrAddr = CGF.EmitLoadOfPointer( |
| CGF.GetAddrOfLocalVar(&ParamInOut), |
| C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); |
| return CGF.Builder.CreateElementBitCast( |
| PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType())); |
| }); |
| PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() { |
| // Pull out the pointer to the variable. |
| Address PtrAddr = CGF.EmitLoadOfPointer( |
| CGF.GetAddrOfLocalVar(&ParamIn), |
| C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); |
| return CGF.Builder.CreateElementBitCast( |
| PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType())); |
| }); |
| PrivateScope.Privatize(); |
| // Emit the combiner body: |
| // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs) |
| // store <type> %2, <type>* %lhs |
| CGM.getOpenMPRuntime().emitSingleReductionCombiner( |
| CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS), |
| cast<DeclRefExpr>(RHS)); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// Emits reduction finalizer function: |
| /// \code |
| /// void @.red_fini(void* %arg) { |
| /// %0 = bitcast void* %arg to <type>* |
| /// <destroy>(<type>* %0) |
| /// ret void |
| /// } |
| /// \endcode |
| static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM, |
| SourceLocation Loc, |
| ReductionCodeGen &RCG, unsigned N) { |
| if (!RCG.needCleanups(N)) |
| return nullptr; |
| ASTContext &C = CGM.getContext(); |
| FunctionArgList Args; |
| ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.emplace_back(&Param); |
| const auto &FnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""}); |
| auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); |
| Address PrivateAddr = CGF.EmitLoadOfPointer( |
| CGF.GetAddrOfLocalVar(&Param), |
| C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); |
| llvm::Value *Size = nullptr; |
| // If the size of the reduction item is non-constant, load it from global |
| // threadprivate variable. |
| if (RCG.getSizes(N).second) { |
| Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().getSizeType(), |
| generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); |
| Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, |
| CGM.getContext().getSizeType(), Loc); |
| } |
| RCG.emitAggregateType(CGF, N, Size); |
| // Emit the finalizer body: |
| // <destroy>(<type>* %0) |
| RCG.emitCleanups(CGF, N, PrivateAddr); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| llvm::Value *CGOpenMPRuntime::emitTaskReductionInit( |
| CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, |
| ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { |
| if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty()) |
| return nullptr; |
| |
| // Build typedef struct: |
| // kmp_task_red_input { |
| // void *reduce_shar; // shared reduction item |
| // size_t reduce_size; // size of data item |
| // void *reduce_init; // data initialization routine |
| // void *reduce_fini; // data finalization routine |
| // void *reduce_comb; // data combiner routine |
| // kmp_task_red_flags_t flags; // flags for additional info from compiler |
| // } kmp_task_red_input_t; |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t"); |
| RD->startDefinition(); |
| const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType()); |
| const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); |
| const FieldDecl *FlagsFD = addFieldToRecordDecl( |
| C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false)); |
| RD->completeDefinition(); |
| QualType RDType = C.getRecordType(RD); |
| unsigned Size = Data.ReductionVars.size(); |
| llvm::APInt ArraySize(/*numBits=*/64, Size); |
| QualType ArrayRDType = C.getConstantArrayType( |
| RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); |
| // kmp_task_red_input_t .rd_input.[Size]; |
| Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input."); |
| ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies, |
| Data.ReductionOps); |
| for (unsigned Cnt = 0; Cnt < Size; ++Cnt) { |
| // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt]; |
| llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0), |
| llvm::ConstantInt::get(CGM.SizeTy, Cnt)}; |
| llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP( |
| TaskRedInput.getPointer(), Idxs, |
| /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc, |
| ".rd_input.gep."); |
| LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType); |
| // ElemLVal.reduce_shar = &Shareds[Cnt]; |
| LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD); |
| RCG.emitSharedLValue(CGF, Cnt); |
| llvm::Value *CastedShared = |
| CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer()); |
| CGF.EmitStoreOfScalar(CastedShared, SharedLVal); |
| RCG.emitAggregateType(CGF, Cnt); |
| llvm::Value *SizeValInChars; |
| llvm::Value *SizeVal; |
| std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt); |
| // We use delayed creation/initialization for VLAs, array sections and |
| // custom reduction initializations. It is required because runtime does not |
| // provide the way to pass the sizes of VLAs/array sections to |
| // initializer/combiner/finalizer functions and does not pass the pointer to |
| // original reduction item to the initializer. Instead threadprivate global |
| // variables are used to store these values and use them in the functions. |
| bool DelayedCreation = !!SizeVal; |
| SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy, |
| /*isSigned=*/false); |
| LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD); |
| CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal); |
| // ElemLVal.reduce_init = init; |
| LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD); |
| llvm::Value *InitAddr = |
| CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt)); |
| CGF.EmitStoreOfScalar(InitAddr, InitLVal); |
| DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt); |
| // ElemLVal.reduce_fini = fini; |
| LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD); |
| llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt); |
| llvm::Value *FiniAddr = Fini |
| ? CGF.EmitCastToVoidPtr(Fini) |
| : llvm::ConstantPointerNull::get(CGM.VoidPtrTy); |
| CGF.EmitStoreOfScalar(FiniAddr, FiniLVal); |
| // ElemLVal.reduce_comb = comb; |
| LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD); |
| llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction( |
| CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt], |
| RHSExprs[Cnt], Data.ReductionCopies[Cnt])); |
| CGF.EmitStoreOfScalar(CombAddr, CombLVal); |
| // ElemLVal.flags = 0; |
| LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD); |
| if (DelayedCreation) { |
| CGF.EmitStoreOfScalar( |
| llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true), |
| FlagsLVal); |
| } else |
| CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType()); |
| } |
| // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void |
| // *data); |
| llvm::Value *Args[] = { |
| CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, |
| /*isSigned=*/true), |
| llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(), |
| CGM.VoidPtrTy)}; |
| return CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args); |
| } |
| |
| void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| ReductionCodeGen &RCG, |
| unsigned N) { |
| auto Sizes = RCG.getSizes(N); |
| // Emit threadprivate global variable if the type is non-constant |
| // (Sizes.second = nullptr). |
| if (Sizes.second) { |
| llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy, |
| /*isSigned=*/false); |
| Address SizeAddr = getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().getSizeType(), |
| generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); |
| CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false); |
| } |
| // Store address of the original reduction item if custom initializer is used. |
| if (RCG.usesReductionInitializer(N)) { |
| Address SharedAddr = getAddrOfArtificialThreadPrivate( |
| CGF, CGM.getContext().VoidPtrTy, |
| generateUniqueName(CGM, "reduction", RCG.getRefExpr(N))); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy), |
| SharedAddr, /*IsVolatile=*/false); |
| } |
| } |
| |
| Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| llvm::Value *ReductionsPtr, |
| LValue SharedLVal) { |
| // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void |
| // *d); |
| llvm::Value *Args[] = { |
| CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, |
| /*isSigned=*/true), |
| ReductionsPtr, |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(), |
| CGM.VoidPtrTy)}; |
| return Address( |
| CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args), |
| SharedLVal.getAlignment()); |
| } |
| |
| void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 |
| // global_tid); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; |
| // Ignore return result until untied tasks are supported. |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args); |
| if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) |
| Region->emitUntiedSwitch(CGF); |
| } |
| |
| void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, |
| OpenMPDirectiveKind InnerKind, |
| const RegionCodeGenTy &CodeGen, |
| bool HasCancel) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel); |
| CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); |
| } |
| |
| namespace { |
| enum RTCancelKind { |
| CancelNoreq = 0, |
| CancelParallel = 1, |
| CancelLoop = 2, |
| CancelSections = 3, |
| CancelTaskgroup = 4 |
| }; |
| } // anonymous namespace |
| |
| static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { |
| RTCancelKind CancelKind = CancelNoreq; |
| if (CancelRegion == OMPD_parallel) |
| CancelKind = CancelParallel; |
| else if (CancelRegion == OMPD_for) |
| CancelKind = CancelLoop; |
| else if (CancelRegion == OMPD_sections) |
| CancelKind = CancelSections; |
| else { |
| assert(CancelRegion == OMPD_taskgroup); |
| CancelKind = CancelTaskgroup; |
| } |
| return CancelKind; |
| } |
| |
| void CGOpenMPRuntime::emitCancellationPointCall( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| OpenMPDirectiveKind CancelRegion) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 |
| // global_tid, kmp_int32 cncl_kind); |
| if (auto *OMPRegionInfo = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { |
| // For 'cancellation point taskgroup', the task region info may not have a |
| // cancel. This may instead happen in another adjacent task. |
| if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), |
| CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; |
| // Ignore return result until untied tasks are supported. |
| llvm::Value *Result = CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args); |
| // if (__kmpc_cancellationpoint()) { |
| // exit from construct; |
| // } |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); |
| llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); |
| llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); |
| CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); |
| CGF.EmitBlock(ExitBB); |
| // exit from construct; |
| CodeGenFunction::JumpDest CancelDest = |
| CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); |
| CGF.EmitBranchThroughCleanup(CancelDest); |
| CGF.EmitBlock(ContBB, /*IsFinished=*/true); |
| } |
| } |
| } |
| |
| void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, |
| const Expr *IfCond, |
| OpenMPDirectiveKind CancelRegion) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, |
| // kmp_int32 cncl_kind); |
| if (auto *OMPRegionInfo = |
| dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { |
| auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); |
| llvm::Value *Args[] = { |
| RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), |
| CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; |
| // Ignore return result until untied tasks are supported. |
| llvm::Value *Result = CGF.EmitRuntimeCall( |
| RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args); |
| // if (__kmpc_cancel()) { |
| // exit from construct; |
| // } |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); |
| llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); |
| llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); |
| CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); |
| CGF.EmitBlock(ExitBB); |
| // exit from construct; |
| CodeGenFunction::JumpDest CancelDest = |
| CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); |
| CGF.EmitBranchThroughCleanup(CancelDest); |
| CGF.EmitBlock(ContBB, /*IsFinished=*/true); |
| }; |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, ThenGen, |
| [](CodeGenFunction &, PrePostActionTy &) {}); |
| } else { |
| RegionCodeGenTy ThenRCG(ThenGen); |
| ThenRCG(CGF); |
| } |
| } |
| } |
| |
| void CGOpenMPRuntime::emitTargetOutlinedFunction( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| assert(!ParentName.empty() && "Invalid target region parent name!"); |
| HasEmittedTargetRegion = true; |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| } |
| |
| void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| // Create a unique name for the entry function using the source location |
| // information of the current target region. The name will be something like: |
| // |
| // __omp_offloading_DD_FFFF_PP_lBB |
| // |
| // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the |
| // mangled name of the function that encloses the target region and BB is the |
| // line number of the target region. |
| |
| unsigned DeviceID; |
| unsigned FileID; |
| unsigned Line; |
| getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID, |
| Line); |
| SmallString<64> EntryFnName; |
| { |
| llvm::raw_svector_ostream OS(EntryFnName); |
| OS << "__omp_offloading" << llvm::format("_%x", DeviceID) |
| << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; |
| } |
| |
| const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); |
| |
| CodeGenFunction CGF(CGM, true); |
| CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| |
| OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS); |
| |
| // If this target outline function is not an offload entry, we don't need to |
| // register it. |
| if (!IsOffloadEntry) |
| return; |
| |
| // The target region ID is used by the runtime library to identify the current |
| // target region, so it only has to be unique and not necessarily point to |
| // anything. It could be the pointer to the outlined function that implements |
| // the target region, but we aren't using that so that the compiler doesn't |
| // need to keep that, and could therefore inline the host function if proven |
| // worthwhile during optimization. In the other hand, if emitting code for the |
| // device, the ID has to be the function address so that it can retrieved from |
| // the offloading entry and launched by the runtime library. We also mark the |
| // outlined function to have external linkage in case we are emitting code for |
| // the device, because these functions will be entry points to the device. |
| |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); |
| OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage); |
| OutlinedFn->setDSOLocal(false); |
| } else { |
| std::string Name = getName({EntryFnName, "region_id"}); |
| OutlinedFnID = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::WeakAnyLinkage, |
| llvm::Constant::getNullValue(CGM.Int8Ty), Name); |
| } |
| |
| // Register the information for the entry associated with this target region. |
| OffloadEntriesInfoManager.registerTargetRegionEntryInfo( |
| DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, |
| OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion); |
| } |
| |
| /// Checks if the expression is constant or does not have non-trivial function |
| /// calls. |
| static bool isTrivial(ASTContext &Ctx, const Expr * E) { |
| // We can skip constant expressions. |
| // We can skip expressions with trivial calls or simple expressions. |
| return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) || |
| !E->hasNonTrivialCall(Ctx)) && |
| !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true); |
| } |
| |
| const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx, |
| const Stmt *Body) { |
| const Stmt *Child = Body->IgnoreContainers(); |
| while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) { |
| Child = nullptr; |
| for (const Stmt *S : C->body()) { |
| if (const auto *E = dyn_cast<Expr>(S)) { |
| if (isTrivial(Ctx, E)) |
| continue; |
| } |
| // Some of the statements can be ignored. |
| if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) || |
| isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S)) |
| continue; |
| // Analyze declarations. |
| if (const auto *DS = dyn_cast<DeclStmt>(S)) { |
| if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) { |
| if (isa<EmptyDecl>(D) || isa<DeclContext>(D) || |
| isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) || |
| isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) || |
| isa<UsingDirectiveDecl>(D) || |
| isa<OMPDeclareReductionDecl>(D) || |
| isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D)) |
| return true; |
| const auto *VD = dyn_cast<VarDecl>(D); |
| if (!VD) |
| return false; |
| return VD->isConstexpr() || |
| ((VD->getType().isTrivialType(Ctx) || |
| VD->getType()->isReferenceType()) && |
| (!VD->hasInit() || isTrivial(Ctx, VD->getInit()))); |
| })) |
| continue; |
| } |
| // Found multiple children - cannot get the one child only. |
| if (Child) |
| return nullptr; |
| Child = S; |
| } |
| if (Child) |
| Child = Child->IgnoreContainers(); |
| } |
| return Child; |
| } |
| |
| /// Emit the number of teams for a target directive. Inspect the num_teams |
| /// clause associated with a teams construct combined or closely nested |
| /// with the target directive. |
| /// |
| /// Emit a team of size one for directives such as 'target parallel' that |
| /// have no associated teams construct. |
| /// |
| /// Otherwise, return nullptr. |
| static llvm::Value * |
| emitNumTeamsForTargetDirective(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D) { |
| assert(!CGF.getLangOpts().OpenMPIsDevice && |
| "Clauses associated with the teams directive expected to be emitted " |
| "only for the host!"); |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| assert(isOpenMPTargetExecutionDirective(DirectiveKind) && |
| "Expected target-based executable directive."); |
| CGBuilderTy &Bld = CGF.Builder; |
| switch (DirectiveKind) { |
| case OMPD_target: { |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = |
| CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body); |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) { |
| if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) { |
| CGOpenMPInnerExprInfo CGInfo(CGF, *CS); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| const Expr *NumTeams = |
| NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams(); |
| llvm::Value *NumTeamsVal = |
| CGF.EmitScalarExpr(NumTeams, |
| /*IgnoreResultAssign*/ true); |
| return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, |
| /*isSigned=*/true); |
| } |
| return Bld.getInt32(0); |
| } |
| if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) || |
| isOpenMPSimdDirective(NestedDir->getDirectiveKind())) |
| return Bld.getInt32(1); |
| return Bld.getInt32(0); |
| } |
| return nullptr; |
| } |
| case OMPD_target_teams: |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: { |
| if (D.hasClausesOfKind<OMPNumTeamsClause>()) { |
| CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); |
| const Expr *NumTeams = |
| D.getSingleClause<OMPNumTeamsClause>()->getNumTeams(); |
| llvm::Value *NumTeamsVal = |
| CGF.EmitScalarExpr(NumTeams, |
| /*IgnoreResultAssign*/ true); |
| return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, |
| /*isSigned=*/true); |
| } |
| return Bld.getInt32(0); |
| } |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_simd: |
| return Bld.getInt32(1); |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_requires: |
| case OMPD_unknown: |
| break; |
| } |
| llvm_unreachable("Unexpected directive kind."); |
| } |
| |
| static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS, |
| llvm::Value *DefaultThreadLimitVal) { |
| const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( |
| CGF.getContext(), CS->getCapturedStmt()); |
| if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { |
| if (isOpenMPParallelDirective(Dir->getDirectiveKind())) { |
| llvm::Value *NumThreads = nullptr; |
| llvm::Value *CondVal = nullptr; |
| // Handle if clause. If if clause present, the number of threads is |
| // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. |
| if (Dir->hasClausesOfKind<OMPIfClause>()) { |
| CGOpenMPInnerExprInfo CGInfo(CGF, *CS); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| const OMPIfClause *IfClause = nullptr; |
| for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) { |
| if (C->getNameModifier() == OMPD_unknown || |
| C->getNameModifier() == OMPD_parallel) { |
| IfClause = C; |
| break; |
| } |
| } |
| if (IfClause) { |
| const Expr *Cond = IfClause->getCondition(); |
| bool Result; |
| if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { |
| if (!Result) |
| return CGF.Builder.getInt32(1); |
| } else { |
| CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange()); |
| if (const auto *PreInit = |
| cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) { |
| for (const auto *I : PreInit->decls()) { |
| if (!I->hasAttr<OMPCaptureNoInitAttr>()) { |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } else { |
| CodeGenFunction::AutoVarEmission Emission = |
| CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); |
| CGF.EmitAutoVarCleanups(Emission); |
| } |
| } |
| } |
| CondVal = CGF.EvaluateExprAsBool(Cond); |
| } |
| } |
| } |
| // Check the value of num_threads clause iff if clause was not specified |
| // or is not evaluated to false. |
| if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) { |
| CGOpenMPInnerExprInfo CGInfo(CGF, *CS); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| const auto *NumThreadsClause = |
| Dir->getSingleClause<OMPNumThreadsClause>(); |
| CodeGenFunction::LexicalScope Scope( |
| CGF, NumThreadsClause->getNumThreads()->getSourceRange()); |
| if (const auto *PreInit = |
| cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) { |
| for (const auto *I : PreInit->decls()) { |
| if (!I->hasAttr<OMPCaptureNoInitAttr>()) { |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } else { |
| CodeGenFunction::AutoVarEmission Emission = |
| CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); |
| CGF.EmitAutoVarCleanups(Emission); |
| } |
| } |
| } |
| NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads()); |
| NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, |
| /*isSigned=*/false); |
| if (DefaultThreadLimitVal) |
| NumThreads = CGF.Builder.CreateSelect( |
| CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads), |
| DefaultThreadLimitVal, NumThreads); |
| } else { |
| NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal |
| : CGF.Builder.getInt32(0); |
| } |
| // Process condition of the if clause. |
| if (CondVal) { |
| NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads, |
| CGF.Builder.getInt32(1)); |
| } |
| return NumThreads; |
| } |
| if (isOpenMPSimdDirective(Dir->getDirectiveKind())) |
| return CGF.Builder.getInt32(1); |
| return DefaultThreadLimitVal; |
| } |
| return DefaultThreadLimitVal ? DefaultThreadLimitVal |
| : CGF.Builder.getInt32(0); |
| } |
| |
| /// Emit the number of threads for a target directive. Inspect the |
| /// thread_limit clause associated with a teams construct combined or closely |
| /// nested with the target directive. |
| /// |
| /// Emit the num_threads clause for directives such as 'target parallel' that |
| /// have no associated teams construct. |
| /// |
| /// Otherwise, return nullptr. |
| static llvm::Value * |
| emitNumThreadsForTargetDirective(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D) { |
| assert(!CGF.getLangOpts().OpenMPIsDevice && |
| "Clauses associated with the teams directive expected to be emitted " |
| "only for the host!"); |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| assert(isOpenMPTargetExecutionDirective(DirectiveKind) && |
| "Expected target-based executable directive."); |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Value *ThreadLimitVal = nullptr; |
| llvm::Value *NumThreadsVal = nullptr; |
| switch (DirectiveKind) { |
| case OMPD_target: { |
| const CapturedStmt *CS = D.getInnermostCapturedStmt(); |
| if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) |
| return NumThreads; |
| const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( |
| CGF.getContext(), CS->getCapturedStmt()); |
| if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { |
| if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) { |
| CGOpenMPInnerExprInfo CGInfo(CGF, *CS); |
| CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); |
| const auto *ThreadLimitClause = |
| Dir->getSingleClause<OMPThreadLimitClause>(); |
| CodeGenFunction::LexicalScope Scope( |
| CGF, ThreadLimitClause->getThreadLimit()->getSourceRange()); |
| if (const auto *PreInit = |
| cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) { |
| for (const auto *I : PreInit->decls()) { |
| if (!I->hasAttr<OMPCaptureNoInitAttr>()) { |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } else { |
| CodeGenFunction::AutoVarEmission Emission = |
| CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); |
| CGF.EmitAutoVarCleanups(Emission); |
| } |
| } |
| } |
| llvm::Value *ThreadLimit = CGF.EmitScalarExpr( |
| ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); |
| ThreadLimitVal = |
| Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); |
| } |
| if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) && |
| !isOpenMPDistributeDirective(Dir->getDirectiveKind())) { |
| CS = Dir->getInnermostCapturedStmt(); |
| const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( |
| CGF.getContext(), CS->getCapturedStmt()); |
| Dir = dyn_cast_or_null<OMPExecutableDirective>(Child); |
| } |
| if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) && |
| !isOpenMPSimdDirective(Dir->getDirectiveKind())) { |
| CS = Dir->getInnermostCapturedStmt(); |
| if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) |
| return NumThreads; |
| } |
| if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind())) |
| return Bld.getInt32(1); |
| } |
| return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); |
| } |
| case OMPD_target_teams: { |
| if (D.hasClausesOfKind<OMPThreadLimitClause>()) { |
| CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); |
| const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); |
| llvm::Value *ThreadLimit = CGF.EmitScalarExpr( |
| ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); |
| ThreadLimitVal = |
| Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); |
| } |
| const CapturedStmt *CS = D.getInnermostCapturedStmt(); |
| if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) |
| return NumThreads; |
| const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( |
| CGF.getContext(), CS->getCapturedStmt()); |
| if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { |
| if (Dir->getDirectiveKind() == OMPD_distribute) { |
| CS = Dir->getInnermostCapturedStmt(); |
| if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) |
| return NumThreads; |
| } |
| } |
| return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); |
| } |
| case OMPD_target_teams_distribute: |
| if (D.hasClausesOfKind<OMPThreadLimitClause>()) { |
| CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); |
| const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); |
| llvm::Value *ThreadLimit = CGF.EmitScalarExpr( |
| ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); |
| ThreadLimitVal = |
| Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); |
| } |
| return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal); |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: { |
| llvm::Value *CondVal = nullptr; |
| // Handle if clause. If if clause present, the number of threads is |
| // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. |
| if (D.hasClausesOfKind<OMPIfClause>()) { |
| const OMPIfClause *IfClause = nullptr; |
| for (const auto *C : D.getClausesOfKind<OMPIfClause>()) { |
| if (C->getNameModifier() == OMPD_unknown || |
| C->getNameModifier() == OMPD_parallel) { |
| IfClause = C; |
| break; |
| } |
| } |
| if (IfClause) { |
| const Expr *Cond = IfClause->getCondition(); |
| bool Result; |
| if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { |
| if (!Result) |
| return Bld.getInt32(1); |
| } else { |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| CondVal = CGF.EvaluateExprAsBool(Cond); |
| } |
| } |
| } |
| if (D.hasClausesOfKind<OMPThreadLimitClause>()) { |
| CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); |
| const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); |
| llvm::Value *ThreadLimit = CGF.EmitScalarExpr( |
| ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); |
| ThreadLimitVal = |
| Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); |
| } |
| if (D.hasClausesOfKind<OMPNumThreadsClause>()) { |
| CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); |
| const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>(); |
| llvm::Value *NumThreads = CGF.EmitScalarExpr( |
| NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true); |
| NumThreadsVal = |
| Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false); |
| ThreadLimitVal = ThreadLimitVal |
| ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal, |
| ThreadLimitVal), |
| NumThreadsVal, ThreadLimitVal) |
| : NumThreadsVal; |
| } |
| if (!ThreadLimitVal) |
| ThreadLimitVal = Bld.getInt32(0); |
| if (CondVal) |
| return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1)); |
| return ThreadLimitVal; |
| } |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_simd: |
| return Bld.getInt32(1); |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_requires: |
| case OMPD_unknown: |
| break; |
| } |
| llvm_unreachable("Unsupported directive kind."); |
| } |
| |
| namespace { |
| LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); |
| |
| // Utility to handle information from clauses associated with a given |
| // construct that use mappable expressions (e.g. 'map' clause, 'to' clause). |
| // It provides a convenient interface to obtain the information and generate |
| // code for that information. |
| class MappableExprsHandler { |
| public: |
| /// Values for bit flags used to specify the mapping type for |
| /// offloading. |
| enum OpenMPOffloadMappingFlags : uint64_t { |
| /// No flags |
| OMP_MAP_NONE = 0x0, |
| /// Allocate memory on the device and move data from host to device. |
| OMP_MAP_TO = 0x01, |
| /// Allocate memory on the device and move data from device to host. |
| OMP_MAP_FROM = 0x02, |
| /// Always perform the requested mapping action on the element, even |
| /// if it was already mapped before. |
| OMP_MAP_ALWAYS = 0x04, |
| /// Delete the element from the device environment, ignoring the |
| /// current reference count associated with the element. |
| OMP_MAP_DELETE = 0x08, |
| /// The element being mapped is a pointer-pointee pair; both the |
| /// pointer and the pointee should be mapped. |
| OMP_MAP_PTR_AND_OBJ = 0x10, |
| /// This flags signals that the base address of an entry should be |
| /// passed to the target kernel as an argument. |
| OMP_MAP_TARGET_PARAM = 0x20, |
| /// Signal that the runtime library has to return the device pointer |
| /// in the current position for the data being mapped. Used when we have the |
| /// use_device_ptr clause. |
| OMP_MAP_RETURN_PARAM = 0x40, |
| /// This flag signals that the reference being passed is a pointer to |
| /// private data. |
| OMP_MAP_PRIVATE = 0x80, |
| /// Pass the element to the device by value. |
| OMP_MAP_LITERAL = 0x100, |
| /// Implicit map |
| OMP_MAP_IMPLICIT = 0x200, |
| /// Close is a hint to the runtime to allocate memory close to |
| /// the target device. |
| OMP_MAP_CLOSE = 0x400, |
| /// The 16 MSBs of the flags indicate whether the entry is member of some |
| /// struct/class. |
| OMP_MAP_MEMBER_OF = 0xffff000000000000, |
| LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF), |
| }; |
| |
| /// Get the offset of the OMP_MAP_MEMBER_OF field. |
| static unsigned getFlagMemberOffset() { |
| unsigned Offset = 0; |
| for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1); |
| Remain = Remain >> 1) |
| Offset++; |
| return Offset; |
| } |
| |
| /// Class that associates information with a base pointer to be passed to the |
| /// runtime library. |
| class BasePointerInfo { |
| /// The base pointer. |
| llvm::Value *Ptr = nullptr; |
| /// The base declaration that refers to this device pointer, or null if |
| /// there is none. |
| const ValueDecl *DevPtrDecl = nullptr; |
| |
| public: |
| BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) |
| : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} |
| llvm::Value *operator*() const { return Ptr; } |
| const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } |
| void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } |
| }; |
| |
| using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>; |
| using MapValuesArrayTy = SmallVector<llvm::Value *, 4>; |
| using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>; |
| |
| /// Map between a struct and the its lowest & highest elements which have been |
| /// mapped. |
| /// [ValueDecl *] --> {LE(FieldIndex, Pointer), |
| /// HE(FieldIndex, Pointer)} |
| struct StructRangeInfoTy { |
| std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = { |
| 0, Address::invalid()}; |
| std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = { |
| 0, Address::invalid()}; |
| Address Base = Address::invalid(); |
| }; |
| |
| private: |
| /// Kind that defines how a device pointer has to be returned. |
| struct MapInfo { |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components; |
| OpenMPMapClauseKind MapType = OMPC_MAP_unknown; |
| ArrayRef<OpenMPMapModifierKind> MapModifiers; |
| bool ReturnDevicePointer = false; |
| bool IsImplicit = false; |
| |
| MapInfo() = default; |
| MapInfo( |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components, |
| OpenMPMapClauseKind MapType, |
| ArrayRef<OpenMPMapModifierKind> MapModifiers, |
| bool ReturnDevicePointer, bool IsImplicit) |
| : Components(Components), MapType(MapType), MapModifiers(MapModifiers), |
| ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {} |
| }; |
| |
| /// If use_device_ptr is used on a pointer which is a struct member and there |
| /// is no map information about it, then emission of that entry is deferred |
| /// until the whole struct has been processed. |
| struct DeferredDevicePtrEntryTy { |
| const Expr *IE = nullptr; |
| const ValueDecl *VD = nullptr; |
| |
| DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD) |
| : IE(IE), VD(VD) {} |
| }; |
| |
| /// The target directive from where the mappable clauses were extracted. It |
| /// is either a executable directive or a user-defined mapper directive. |
| llvm::PointerUnion<const OMPExecutableDirective *, |
| const OMPDeclareMapperDecl *> |
| CurDir; |
| |
| /// Function the directive is being generated for. |
| CodeGenFunction &CGF; |
| |
| /// Set of all first private variables in the current directive. |
| /// bool data is set to true if the variable is implicitly marked as |
| /// firstprivate, false otherwise. |
| llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls; |
| |
| /// Map between device pointer declarations and their expression components. |
| /// The key value for declarations in 'this' is null. |
| llvm::DenseMap< |
| const ValueDecl *, |
| SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>> |
| DevPointersMap; |
| |
| llvm::Value *getExprTypeSize(const Expr *E) const { |
| QualType ExprTy = E->getType().getCanonicalType(); |
| |
| // Reference types are ignored for mapping purposes. |
| if (const auto *RefTy = ExprTy->getAs<ReferenceType>()) |
| ExprTy = RefTy->getPointeeType().getCanonicalType(); |
| |
| // Given that an array section is considered a built-in type, we need to |
| // do the calculation based on the length of the section instead of relying |
| // on CGF.getTypeSize(E->getType()). |
| if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) { |
| QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( |
| OAE->getBase()->IgnoreParenImpCasts()) |
| .getCanonicalType(); |
| |
| // If there is no length associated with the expression and lower bound is |
| // not specified too, that means we are using the whole length of the |
| // base. |
| if (!OAE->getLength() && OAE->getColonLoc().isValid() && |
| !OAE->getLowerBound()) |
| return CGF.getTypeSize(BaseTy); |
| |
| llvm::Value *ElemSize; |
| if (const auto *PTy = BaseTy->getAs<PointerType>()) { |
| ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); |
| } else { |
| const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr()); |
| assert(ATy && "Expecting array type if not a pointer type."); |
| ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); |
| } |
| |
| // If we don't have a length at this point, that is because we have an |
| // array section with a single element. |
| if (!OAE->getLength() && OAE->getColonLoc().isInvalid()) |
| return ElemSize; |
| |
| if (const Expr *LenExpr = OAE->getLength()) { |
| llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr); |
| LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(), |
| CGF.getContext().getSizeType(), |
| LenExpr->getExprLoc()); |
| return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); |
| } |
| assert(!OAE->getLength() && OAE->getColonLoc().isValid() && |
| OAE->getLowerBound() && "expected array_section[lb:]."); |
| // Size = sizetype - lb * elemtype; |
| llvm::Value *LengthVal = CGF.getTypeSize(BaseTy); |
| llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound()); |
| LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(), |
| CGF.getContext().getSizeType(), |
| OAE->getLowerBound()->getExprLoc()); |
| LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize); |
| llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal); |
| llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal); |
| LengthVal = CGF.Builder.CreateSelect( |
| Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0)); |
| return LengthVal; |
| } |
| return CGF.getTypeSize(ExprTy); |
| } |
| |
| /// Return the corresponding bits for a given map clause modifier. Add |
| /// a flag marking the map as a pointer if requested. Add a flag marking the |
| /// map as the first one of a series of maps that relate to the same map |
| /// expression. |
| OpenMPOffloadMappingFlags getMapTypeBits( |
| OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers, |
| bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const { |
| OpenMPOffloadMappingFlags Bits = |
| IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE; |
| switch (MapType) { |
| case OMPC_MAP_alloc: |
| case OMPC_MAP_release: |
| // alloc and release is the default behavior in the runtime library, i.e. |
| // if we don't pass any bits alloc/release that is what the runtime is |
| // going to do. Therefore, we don't need to signal anything for these two |
| // type modifiers. |
| break; |
| case OMPC_MAP_to: |
| Bits |= OMP_MAP_TO; |
| break; |
| case OMPC_MAP_from: |
| Bits |= OMP_MAP_FROM; |
| break; |
| case OMPC_MAP_tofrom: |
| Bits |= OMP_MAP_TO | OMP_MAP_FROM; |
| break; |
| case OMPC_MAP_delete: |
| Bits |= OMP_MAP_DELETE; |
| break; |
| case OMPC_MAP_unknown: |
| llvm_unreachable("Unexpected map type!"); |
| } |
| if (AddPtrFlag) |
| Bits |= OMP_MAP_PTR_AND_OBJ; |
| if (AddIsTargetParamFlag) |
| Bits |= OMP_MAP_TARGET_PARAM; |
| if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always) |
| != MapModifiers.end()) |
| Bits |= OMP_MAP_ALWAYS; |
| if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close) |
| != MapModifiers.end()) |
| Bits |= OMP_MAP_CLOSE; |
| return Bits; |
| } |
| |
| /// Return true if the provided expression is a final array section. A |
| /// final array section, is one whose length can't be proved to be one. |
| bool isFinalArraySectionExpression(const Expr *E) const { |
| const auto *OASE = dyn_cast<OMPArraySectionExpr>(E); |
| |
| // It is not an array section and therefore not a unity-size one. |
| if (!OASE) |
| return false; |
| |
| // An array section with no colon always refer to a single element. |
| if (OASE->getColonLoc().isInvalid()) |
| return false; |
| |
| const Expr *Length = OASE->getLength(); |
| |
| // If we don't have a length we have to check if the array has size 1 |
| // for this dimension. Also, we should always expect a length if the |
| // base type is pointer. |
| if (!Length) { |
| QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType( |
| OASE->getBase()->IgnoreParenImpCasts()) |
| .getCanonicalType(); |
| if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr())) |
| return ATy->getSize().getSExtValue() != 1; |
| // If we don't have a constant dimension length, we have to consider |
| // the current section as having any size, so it is not necessarily |
| // unitary. If it happen to be unity size, that's user fault. |
| return true; |
| } |
| |
| // Check if the length evaluates to 1. |
| Expr::EvalResult Result; |
| if (!Length->EvaluateAsInt(Result, CGF.getContext())) |
| return true; // Can have more that size 1. |
| |
| llvm::APSInt ConstLength = Result.Val.getInt(); |
| return ConstLength.getSExtValue() != 1; |
| } |
| |
| /// Generate the base pointers, section pointers, sizes and map type |
| /// bits for the provided map type, map modifier, and expression components. |
| /// \a IsFirstComponent should be set to true if the provided set of |
| /// components is the first associated with a capture. |
| void generateInfoForComponentList( |
| OpenMPMapClauseKind MapType, |
| ArrayRef<OpenMPMapModifierKind> MapModifiers, |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components, |
| MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, |
| MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, |
| StructRangeInfoTy &PartialStruct, bool IsFirstComponentList, |
| bool IsImplicit, |
| ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> |
| OverlappedElements = llvm::None) const { |
| // The following summarizes what has to be generated for each map and the |
| // types below. The generated information is expressed in this order: |
| // base pointer, section pointer, size, flags |
| // (to add to the ones that come from the map type and modifier). |
| // |
| // double d; |
| // int i[100]; |
| // float *p; |
| // |
| // struct S1 { |
| // int i; |
| // float f[50]; |
| // } |
| // struct S2 { |
| // int i; |
| // float f[50]; |
| // S1 s; |
| // double *p; |
| // struct S2 *ps; |
| // } |
| // S2 s; |
| // S2 *ps; |
| // |
| // map(d) |
| // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM |
| // |
| // map(i) |
| // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM |
| // |
| // map(i[1:23]) |
| // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM |
| // |
| // map(p) |
| // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM |
| // |
| // map(p[1:24]) |
| // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM |
| // |
| // map(s) |
| // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM |
| // |
| // map(s.i) |
| // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM |
| // |
| // map(s.s.f) |
| // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM |
| // |
| // map(s.p) |
| // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM |
| // |
| // map(to: s.p[:22]) |
| // &s, &(s.p), sizeof(double*), TARGET_PARAM (*) |
| // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**) |
| // &(s.p), &(s.p[0]), 22*sizeof(double), |
| // MEMBER_OF(1) | PTR_AND_OBJ | TO (***) |
| // (*) alloc space for struct members, only this is a target parameter |
| // (**) map the pointer (nothing to be mapped in this example) (the compiler |
| // optimizes this entry out, same in the examples below) |
| // (***) map the pointee (map: to) |
| // |
| // map(s.ps) |
| // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM |
| // |
| // map(from: s.ps->s.i) |
| // &s, &(s.ps), sizeof(S2*), TARGET_PARAM |
| // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) |
| // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM |
| // |
| // map(to: s.ps->ps) |
| // &s, &(s.ps), sizeof(S2*), TARGET_PARAM |
| // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) |
| // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO |
| // |
| // map(s.ps->ps->ps) |
| // &s, &(s.ps), sizeof(S2*), TARGET_PARAM |
| // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) |
| // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ |
| // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM |
| // |
| // map(to: s.ps->ps->s.f[:22]) |
| // &s, &(s.ps), sizeof(S2*), TARGET_PARAM |
| // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) |
| // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ |
| // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO |
| // |
| // map(ps) |
| // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM |
| // |
| // map(ps->i) |
| // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM |
| // |
| // map(ps->s.f) |
| // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM |
| // |
| // map(from: ps->p) |
| // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM |
| // |
| // map(to: ps->p[:22]) |
| // ps, &(ps->p), sizeof(double*), TARGET_PARAM |
| // ps, &(ps->p), sizeof(double*), MEMBER_OF(1) |
| // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO |
| // |
| // map(ps->ps) |
| // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM |
| // |
| // map(from: ps->ps->s.i) |
| // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) |
| // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM |
| // |
| // map(from: ps->ps->ps) |
| // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) |
| // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM |
| // |
| // map(ps->ps->ps->ps) |
| // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) |
| // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ |
| // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM |
| // |
| // map(to: ps->ps->ps->s.f[:22]) |
| // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) |
| // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ |
| // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO |
| // |
| // map(to: s.f[:22]) map(from: s.p[:33]) |
| // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) + |
| // sizeof(double*) (**), TARGET_PARAM |
| // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO |
| // &s, &(s.p), sizeof(double*), MEMBER_OF(1) |
| // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM |
| // (*) allocate contiguous space needed to fit all mapped members even if |
| // we allocate space for members not mapped (in this example, |
| // s.f[22..49] and s.s are not mapped, yet we must allocate space for |
| // them as well because they fall between &s.f[0] and &s.p) |
| // |
| // map(from: s.f[:22]) map(to: ps->p[:33]) |
| // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM |
| // ps, &(ps->p), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*) |
| // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO |
| // (*) the struct this entry pertains to is the 2nd element in the list of |
| // arguments, hence MEMBER_OF(2) |
| // |
| // map(from: s.f[:22], s.s) map(to: ps->p[:33]) |
| // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM |
| // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM |
| // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM |
| // ps, &(ps->p), sizeof(S2*), TARGET_PARAM |
| // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*) |
| // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO |
| // (*) the struct this entry pertains to is the 4th element in the list |
| // of arguments, hence MEMBER_OF(4) |
| |
| // Track if the map information being generated is the first for a capture. |
| bool IsCaptureFirstInfo = IsFirstComponentList; |
| // When the variable is on a declare target link or in a to clause with |
| // unified memory, a reference is needed to hold the host/device address |
| // of the variable. |
| bool RequiresReference = false; |
| |
| // Scan the components from the base to the complete expression. |
| auto CI = Components.rbegin(); |
| auto CE = Components.rend(); |
| auto I = CI; |
| |
| // Track if the map information being generated is the first for a list of |
| // components. |
| bool IsExpressionFirstInfo = true; |
| Address BP = Address::invalid(); |
| const Expr *AssocExpr = I->getAssociatedExpression(); |
| const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr); |
| const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr); |
| |
| if (isa<MemberExpr>(AssocExpr)) { |
| // The base is the 'this' pointer. The content of the pointer is going |
| // to be the base of the field being mapped. |
| BP = CGF.LoadCXXThisAddress(); |
| } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) || |
| (OASE && |
| isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) { |
| BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(); |
| } else { |
| // The base is the reference to the variable. |
| // BP = &Var. |
| BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(); |
| if (const auto *VD = |
| dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) { |
| if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { |
| if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) { |
| RequiresReference = true; |
| BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); |
| } |
| } |
| } |
| |
| // If the variable is a pointer and is being dereferenced (i.e. is not |
| // the last component), the base has to be the pointer itself, not its |
| // reference. References are ignored for mapping purposes. |
| QualType Ty = |
| I->getAssociatedDeclaration()->getType().getNonReferenceType(); |
| if (Ty->isAnyPointerType() && std::next(I) != CE) { |
| BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>()); |
| |
| // We do not need to generate individual map information for the |
| // pointer, it can be associated with the combined storage. |
| ++I; |
| } |
| } |
| |
| // Track whether a component of the list should be marked as MEMBER_OF some |
| // combined entry (for partial structs). Only the first PTR_AND_OBJ entry |
| // in a component list should be marked as MEMBER_OF, all subsequent entries |
| // do not belong to the base struct. E.g. |
| // struct S2 s; |
| // s.ps->ps->ps->f[:] |
| // (1) (2) (3) (4) |
| // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a |
| // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3) |
| // is the pointee of ps(2) which is not member of struct s, so it should not |
| // be marked as such (it is still PTR_AND_OBJ). |
| // The variable is initialized to false so that PTR_AND_OBJ entries which |
| // are not struct members are not considered (e.g. array of pointers to |
| // data). |
| bool ShouldBeMemberOf = false; |
| |
| // Variable keeping track of whether or not we have encountered a component |
| // in the component list which is a member expression. Useful when we have a |
| // pointer or a final array section, in which case it is the previous |
| // component in the list which tells us whether we have a member expression. |
| // E.g. X.f[:] |
| // While processing the final array section "[:]" it is "f" which tells us |
| // whether we are dealing with a member of a declared struct. |
| const MemberExpr *EncounteredME = nullptr; |
| |
| for (; I != CE; ++I) { |
| // If the current component is member of a struct (parent struct) mark it. |
| if (!EncounteredME) { |
| EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression()); |
| // If we encounter a PTR_AND_OBJ entry from now on it should be marked |
| // as MEMBER_OF the parent struct. |
| if (EncounteredME) |
| ShouldBeMemberOf = true; |
| } |
| |
| auto Next = std::next(I); |
| |
| // We need to generate the addresses and sizes if this is the last |
| // component, if the component is a pointer or if it is an array section |
| // whose length can't be proved to be one. If this is a pointer, it |
| // becomes the base address for the following components. |
| |
| // A final array section, is one whose length can't be proved to be one. |
| bool IsFinalArraySection = |
| isFinalArraySectionExpression(I->getAssociatedExpression()); |
| |
| // Get information on whether the element is a pointer. Have to do a |
| // special treatment for array sections given that they are built-in |
| // types. |
| const auto *OASE = |
| dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression()); |
| bool IsPointer = |
| (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE) |
| .getCanonicalType() |
| ->isAnyPointerType()) || |
| I->getAssociatedExpression()->getType()->isAnyPointerType(); |
| |
| if (Next == CE || IsPointer || IsFinalArraySection) { |
| // If this is not the last component, we expect the pointer to be |
| // associated with an array expression or member expression. |
| assert((Next == CE || |
| isa<MemberExpr>(Next->getAssociatedExpression()) || |
| isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || |
| isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && |
| "Unexpected expression"); |
| |
| Address LB = |
| CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress(); |
| |
| // If this component is a pointer inside the base struct then we don't |
| // need to create any entry for it - it will be combined with the object |
| // it is pointing to into a single PTR_AND_OBJ entry. |
| bool IsMemberPointer = |
| IsPointer && EncounteredME && |
| (dyn_cast<MemberExpr>(I->getAssociatedExpression()) == |
| EncounteredME); |
| if (!OverlappedElements.empty()) { |
| // Handle base element with the info for overlapped elements. |
| assert(!PartialStruct.Base.isValid() && "The base element is set."); |
| assert(Next == CE && |
| "Expected last element for the overlapped elements."); |
| assert(!IsPointer && |
| "Unexpected base element with the pointer type."); |
| // Mark the whole struct as the struct that requires allocation on the |
| // device. |
| PartialStruct.LowestElem = {0, LB}; |
| CharUnits TypeSize = CGF.getContext().getTypeSizeInChars( |
| I->getAssociatedExpression()->getType()); |
| Address HB = CGF.Builder.CreateConstGEP( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB, |
| CGF.VoidPtrTy), |
| TypeSize.getQuantity() - 1); |
| PartialStruct.HighestElem = { |
| std::numeric_limits<decltype( |
| PartialStruct.HighestElem.first)>::max(), |
| HB}; |
| PartialStruct.Base = BP; |
| // Emit data for non-overlapped data. |
| OpenMPOffloadMappingFlags Flags = |
| OMP_MAP_MEMBER_OF | |
| getMapTypeBits(MapType, MapModifiers, IsImplicit, |
| /*AddPtrFlag=*/false, |
| /*AddIsTargetParamFlag=*/false); |
| LB = BP; |
| llvm::Value *Size = nullptr; |
| // Do bitcopy of all non-overlapped structure elements. |
| for (OMPClauseMappableExprCommon::MappableExprComponentListRef |
| Component : OverlappedElements) { |
| Address ComponentLB = Address::invalid(); |
| for (const OMPClauseMappableExprCommon::MappableComponent &MC : |
| Component) { |
| if (MC.getAssociatedDeclaration()) { |
| ComponentLB = |
| CGF.EmitOMPSharedLValue(MC.getAssociatedExpression()) |
| .getAddress(); |
| Size = CGF.Builder.CreatePtrDiff( |
| CGF.EmitCastToVoidPtr(ComponentLB.getPointer()), |
| CGF.EmitCastToVoidPtr(LB.getPointer())); |
| break; |
| } |
| } |
| BasePointers.push_back(BP.getPointer()); |
| Pointers.push_back(LB.getPointer()); |
| Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, |
| /*isSigned=*/true)); |
| Types.push_back(Flags); |
| LB = CGF.Builder.CreateConstGEP(ComponentLB, 1); |
| } |
| BasePointers.push_back(BP.getPointer()); |
| Pointers.push_back(LB.getPointer()); |
| Size = CGF.Builder.CreatePtrDiff( |
| CGF.EmitCastToVoidPtr( |
| CGF.Builder.CreateConstGEP(HB, 1).getPointer()), |
| CGF.EmitCastToVoidPtr(LB.getPointer())); |
| Sizes.push_back( |
| CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); |
| Types.push_back(Flags); |
| break; |
| } |
| llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression()); |
| if (!IsMemberPointer) { |
| BasePointers.push_back(BP.getPointer()); |
| Pointers.push_back(LB.getPointer()); |
| Sizes.push_back( |
| CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); |
| |
| // We need to add a pointer flag for each map that comes from the |
| // same expression except for the first one. We also need to signal |
| // this map is the first one that relates with the current capture |
| // (there is a set of entries for each capture). |
| OpenMPOffloadMappingFlags Flags = getMapTypeBits( |
| MapType, MapModifiers, IsImplicit, |
| !IsExpressionFirstInfo || RequiresReference, |
| IsCaptureFirstInfo && !RequiresReference); |
| |
| if (!IsExpressionFirstInfo) { |
| // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well, |
| // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags. |
| if (IsPointer) |
| Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS | |
| OMP_MAP_DELETE | OMP_MAP_CLOSE); |
| |
| if (ShouldBeMemberOf) { |
| // Set placeholder value MEMBER_OF=FFFF to indicate that the flag |
| // should be later updated with the correct value of MEMBER_OF. |
| Flags |= OMP_MAP_MEMBER_OF; |
| // From now on, all subsequent PTR_AND_OBJ entries should not be |
| // marked as MEMBER_OF. |
| ShouldBeMemberOf = false; |
| } |
| } |
| |
| Types.push_back(Flags); |
| } |
| |
| // If we have encountered a member expression so far, keep track of the |
| // mapped member. If the parent is "*this", then the value declaration |
| // is nullptr. |
| if (EncounteredME) { |
| const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl()); |
| unsigned FieldIndex = FD->getFieldIndex(); |
| |
| // Update info about the lowest and highest elements for this struct |
| if (!PartialStruct.Base.isValid()) { |
| PartialStruct.LowestElem = {FieldIndex, LB}; |
| PartialStruct.HighestElem = {FieldIndex, LB}; |
| PartialStruct.Base = BP; |
| } else if (FieldIndex < PartialStruct.LowestElem.first) { |
| PartialStruct.LowestElem = {FieldIndex, LB}; |
| } else if (FieldIndex > PartialStruct.HighestElem.first) { |
| PartialStruct.HighestElem = {FieldIndex, LB}; |
| } |
| } |
| |
| // If we have a final array section, we are done with this expression. |
| if (IsFinalArraySection) |
| break; |
| |
| // The pointer becomes the base for the next element. |
| if (Next != CE) |
| BP = LB; |
| |
| IsExpressionFirstInfo = false; |
| IsCaptureFirstInfo = false; |
| } |
| } |
| } |
| |
| /// Return the adjusted map modifiers if the declaration a capture refers to |
| /// appears in a first-private clause. This is expected to be used only with |
| /// directives that start with 'target'. |
| MappableExprsHandler::OpenMPOffloadMappingFlags |
| getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const { |
| assert(Cap.capturesVariable() && "Expected capture by reference only!"); |
| |
| // A first private variable captured by reference will use only the |
| // 'private ptr' and 'map to' flag. Return the right flags if the captured |
| // declaration is known as first-private in this handler. |
| if (FirstPrivateDecls.count(Cap.getCapturedVar())) { |
| if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) && |
| Cap.getCaptureKind() == CapturedStmt::VCK_ByRef) |
| return MappableExprsHandler::OMP_MAP_ALWAYS | |
| MappableExprsHandler::OMP_MAP_TO; |
| if (Cap.getCapturedVar()->getType()->isAnyPointerType()) |
| return MappableExprsHandler::OMP_MAP_TO | |
| MappableExprsHandler::OMP_MAP_PTR_AND_OBJ; |
| return MappableExprsHandler::OMP_MAP_PRIVATE | |
| MappableExprsHandler::OMP_MAP_TO; |
| } |
| return MappableExprsHandler::OMP_MAP_TO | |
| MappableExprsHandler::OMP_MAP_FROM; |
| } |
| |
| static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) { |
| // Rotate by getFlagMemberOffset() bits. |
| return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1) |
| << getFlagMemberOffset()); |
| } |
| |
| static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags, |
| OpenMPOffloadMappingFlags MemberOfFlag) { |
| // If the entry is PTR_AND_OBJ but has not been marked with the special |
| // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be |
| // marked as MEMBER_OF. |
| if ((Flags & OMP_MAP_PTR_AND_OBJ) && |
| ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF)) |
| return; |
| |
| // Reset the placeholder value to prepare the flag for the assignment of the |
| // proper MEMBER_OF value. |
| Flags &= ~OMP_MAP_MEMBER_OF; |
| Flags |= MemberOfFlag; |
| } |
| |
| void getPlainLayout(const CXXRecordDecl *RD, |
| llvm::SmallVectorImpl<const FieldDecl *> &Layout, |
| bool AsBase) const { |
| const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD); |
| |
| llvm::StructType *St = |
| AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType(); |
| |
| unsigned NumElements = St->getNumElements(); |
| llvm::SmallVector< |
| llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4> |
| RecordLayout(NumElements); |
| |
| // Fill bases. |
| for (const auto &I : RD->bases()) { |
| if (I.isVirtual()) |
| continue; |
| const auto *Base = I.getType()->getAsCXXRecordDecl(); |
| // Ignore empty bases. |
| if (Base->isEmpty() || CGF.getContext() |
| .getASTRecordLayout(Base) |
| .getNonVirtualSize() |
| .isZero()) |
| continue; |
| |
| unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base); |
| RecordLayout[FieldIndex] = Base; |
| } |
| // Fill in virtual bases. |
| for (const auto &I : RD->vbases()) { |
| const auto *Base = I.getType()->getAsCXXRecordDecl(); |
| // Ignore empty bases. |
| if (Base->isEmpty()) |
| continue; |
| unsigned FieldIndex = RL.getVirtualBaseIndex(Base); |
| if (RecordLayout[FieldIndex]) |
| continue; |
| RecordLayout[FieldIndex] = Base; |
| } |
| // Fill in all the fields. |
| assert(!RD->isUnion() && "Unexpected union."); |
| for (const auto *Field : RD->fields()) { |
| // Fill in non-bitfields. (Bitfields always use a zero pattern, which we |
| // will fill in later.) |
| if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) { |
| unsigned FieldIndex = RL.getLLVMFieldNo(Field); |
| RecordLayout[FieldIndex] = Field; |
| } |
| } |
| for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *> |
| &Data : RecordLayout) { |
| if (Data.isNull()) |
| continue; |
| if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>()) |
| getPlainLayout(Base, Layout, /*AsBase=*/true); |
| else |
| Layout.push_back(Data.get<const FieldDecl *>()); |
| } |
| } |
| |
| public: |
| MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) |
| : CurDir(&Dir), CGF(CGF) { |
| // Extract firstprivate clause information. |
| for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>()) |
| for (const auto *D : C->varlists()) |
| FirstPrivateDecls.try_emplace( |
| cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit()); |
| // Extract device pointer clause information. |
| for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>()) |
| for (auto L : C->component_lists()) |
| DevPointersMap[L.first].push_back(L.second); |
| } |
| |
| /// Constructor for the declare mapper directive. |
| MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF) |
| : CurDir(&Dir), CGF(CGF) {} |
| |
| /// Generate code for the combined entry if we have a partially mapped struct |
| /// and take care of the mapping flags of the arguments corresponding to |
| /// individual struct members. |
| void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, |
| MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes, |
| const StructRangeInfoTy &PartialStruct) const { |
| // Base is the base of the struct |
| BasePointers.push_back(PartialStruct.Base.getPointer()); |
| // Pointer is the address of the lowest element |
| llvm::Value *LB = PartialStruct.LowestElem.second.getPointer(); |
| Pointers.push_back(LB); |
| // Size is (addr of {highest+1} element) - (addr of lowest element) |
| llvm::Value *HB = PartialStruct.HighestElem.second.getPointer(); |
| llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1); |
| llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy); |
| llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy); |
| llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr); |
| llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty, |
| /*isSigned=*/false); |
| Sizes.push_back(Size); |
| // Map type is always TARGET_PARAM |
| Types.push_back(OMP_MAP_TARGET_PARAM); |
| // Remove TARGET_PARAM flag from the first element |
| (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM; |
| |
| // All other current entries will be MEMBER_OF the combined entry |
| // (except for PTR_AND_OBJ entries which do not have a placeholder value |
| // 0xFFFF in the MEMBER_OF field). |
| OpenMPOffloadMappingFlags MemberOfFlag = |
| getMemberOfFlag(BasePointers.size() - 1); |
| for (auto &M : CurTypes) |
| setCorrectMemberOfFlag(M, MemberOfFlag); |
| } |
| |
| /// Generate all the base pointers, section pointers, sizes and map |
| /// types for the extracted mappable expressions. Also, for each item that |
| /// relates with a device pointer, a pair of the relevant declaration and |
| /// index where it occurs is appended to the device pointers info array. |
| void generateAllInfo(MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, |
| MapFlagsArrayTy &Types) const { |
| // We have to process the component lists that relate with the same |
| // declaration in a single chunk so that we can generate the map flags |
| // correctly. Therefore, we organize all lists in a map. |
| llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info; |
| |
| // Helper function to fill the information map for the different supported |
| // clauses. |
| auto &&InfoGen = [&Info]( |
| const ValueDecl *D, |
| OMPClauseMappableExprCommon::MappableExprComponentListRef L, |
| OpenMPMapClauseKind MapType, |
| ArrayRef<OpenMPMapModifierKind> MapModifiers, |
| bool ReturnDevicePointer, bool IsImplicit) { |
| const ValueDecl *VD = |
| D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; |
| Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer, |
| IsImplicit); |
| }; |
| |
| assert(CurDir.is<const OMPExecutableDirective *>() && |
| "Expect a executable directive"); |
| const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>(); |
| for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) |
| for (const auto &L : C->component_lists()) { |
| InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(), |
| /*ReturnDevicePointer=*/false, C->isImplicit()); |
| } |
| for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>()) |
| for (const auto &L : C->component_lists()) { |
| InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None, |
| /*ReturnDevicePointer=*/false, C->isImplicit()); |
| } |
| for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>()) |
| for (const auto &L : C->component_lists()) { |
| InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None, |
| /*ReturnDevicePointer=*/false, C->isImplicit()); |
| } |
| |
| // Look at the use_device_ptr clause information and mark the existing map |
| // entries as such. If there is no map information for an entry in the |
| // use_device_ptr list, we create one with map type 'alloc' and zero size |
| // section. It is the user fault if that was not mapped before. If there is |
| // no map information and the pointer is a struct member, then we defer the |
| // emission of that entry until the whole struct has been processed. |
| llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>> |
| DeferredInfo; |
| |
| for (const auto *C : |
| CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) { |
| for (const auto &L : C->component_lists()) { |
| assert(!L.second.empty() && "Not expecting empty list of components!"); |
| const ValueDecl *VD = L.second.back().getAssociatedDeclaration(); |
| VD = cast<ValueDecl>(VD->getCanonicalDecl()); |
| const Expr *IE = L.second.back().getAssociatedExpression(); |
| // If the first component is a member expression, we have to look into |
| // 'this', which maps to null in the map of map information. Otherwise |
| // look directly for the information. |
| auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); |
| |
| // We potentially have map information for this declaration already. |
| // Look for the first set of components that refer to it. |
| if (It != Info.end()) { |
| auto CI = std::find_if( |
| It->second.begin(), It->second.end(), [VD](const MapInfo &MI) { |
| return MI.Components.back().getAssociatedDeclaration() == VD; |
| }); |
| // If we found a map entry, signal that the pointer has to be returned |
| // and move on to the next declaration. |
| if (CI != It->second.end()) { |
| CI->ReturnDevicePointer = true; |
| continue; |
| } |
| } |
| |
| // We didn't find any match in our map information - generate a zero |
| // size array section - if the pointer is a struct member we defer this |
| // action until the whole struct has been processed. |
| if (isa<MemberExpr>(IE)) { |
| // Insert the pointer into Info to be processed by |
| // generateInfoForComponentList. Because it is a member pointer |
| // without a pointee, no entry will be generated for it, therefore |
| // we need to generate one after the whole struct has been processed. |
| // Nonetheless, generateInfoForComponentList must be called to take |
| // the pointer into account for the calculation of the range of the |
| // partial struct. |
| InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None, |
| /*ReturnDevicePointer=*/false, C->isImplicit()); |
| DeferredInfo[nullptr].emplace_back(IE, VD); |
| } else { |
| llvm::Value *Ptr = |
| CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc()); |
| BasePointers.emplace_back(Ptr, VD); |
| Pointers.push_back(Ptr); |
| Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty)); |
| Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM); |
| } |
| } |
| } |
| |
| for (const auto &M : Info) { |
| // We need to know when we generate information for the first component |
| // associated with a capture, because the mapping flags depend on it. |
| bool IsFirstComponentList = true; |
| |
| // Temporary versions of arrays |
| MapBaseValuesArrayTy CurBasePointers; |
| MapValuesArrayTy CurPointers; |
| MapValuesArrayTy CurSizes; |
| MapFlagsArrayTy CurTypes; |
| StructRangeInfoTy PartialStruct; |
| |
| for (const MapInfo &L : M.second) { |
| assert(!L.Components.empty() && |
| "Not expecting declaration with no component lists."); |
| |
| // Remember the current base pointer index. |
| unsigned CurrentBasePointersIdx = CurBasePointers.size(); |
| generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components, |
| CurBasePointers, CurPointers, CurSizes, |
| CurTypes, PartialStruct, |
| IsFirstComponentList, L.IsImplicit); |
| |
| // If this entry relates with a device pointer, set the relevant |
| // declaration and add the 'return pointer' flag. |
| if (L.ReturnDevicePointer) { |
| assert(CurBasePointers.size() > CurrentBasePointersIdx && |
| "Unexpected number of mapped base pointers."); |
| |
| const ValueDecl *RelevantVD = |
| L.Components.back().getAssociatedDeclaration(); |
| assert(RelevantVD && |
| "No relevant declaration related with device pointer??"); |
| |
| CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD); |
| CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM; |
| } |
| IsFirstComponentList = false; |
| } |
| |
| // Append any pending zero-length pointers which are struct members and |
| // used with use_device_ptr. |
| auto CI = DeferredInfo.find(M.first); |
| if (CI != DeferredInfo.end()) { |
| for (const DeferredDevicePtrEntryTy &L : CI->second) { |
| llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer(); |
| llvm::Value *Ptr = this->CGF.EmitLoadOfScalar( |
| this->CGF.EmitLValue(L.IE), L.IE->getExprLoc()); |
| CurBasePointers.emplace_back(BasePtr, L.VD); |
| CurPointers.push_back(Ptr); |
| CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty)); |
| // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder |
| // value MEMBER_OF=FFFF so that the entry is later updated with the |
| // correct value of MEMBER_OF. |
| CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM | |
| OMP_MAP_MEMBER_OF); |
| } |
| } |
| |
| // If there is an entry in PartialStruct it means we have a struct with |
| // individual members mapped. Emit an extra combined entry. |
| if (PartialStruct.Base.isValid()) |
| emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes, |
| PartialStruct); |
| |
| // We need to append the results of this capture to what we already have. |
| BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); |
| Pointers.append(CurPointers.begin(), CurPointers.end()); |
| Sizes.append(CurSizes.begin(), CurSizes.end()); |
| Types.append(CurTypes.begin(), CurTypes.end()); |
| } |
| } |
| |
| /// Generate all the base pointers, section pointers, sizes and map types for |
| /// the extracted map clauses of user-defined mapper. |
| void generateAllInfoForMapper(MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, |
| MapValuesArrayTy &Sizes, |
| MapFlagsArrayTy &Types) const { |
| assert(CurDir.is<const OMPDeclareMapperDecl *>() && |
| "Expect a declare mapper directive"); |
| const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>(); |
| // We have to process the component lists that relate with the same |
| // declaration in a single chunk so that we can generate the map flags |
| // correctly. Therefore, we organize all lists in a map. |
| llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info; |
| |
| // Helper function to fill the information map for the different supported |
| // clauses. |
| auto &&InfoGen = [&Info]( |
| const ValueDecl *D, |
| OMPClauseMappableExprCommon::MappableExprComponentListRef L, |
| OpenMPMapClauseKind MapType, |
| ArrayRef<OpenMPMapModifierKind> MapModifiers, |
| bool ReturnDevicePointer, bool IsImplicit) { |
| const ValueDecl *VD = |
| D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; |
| Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer, |
| IsImplicit); |
| }; |
| |
| for (const auto *C : CurMapperDir->clauselists()) { |
| const auto *MC = cast<OMPMapClause>(C); |
| for (const auto &L : MC->component_lists()) { |
| InfoGen(L.first, L.second, MC->getMapType(), MC->getMapTypeModifiers(), |
| /*ReturnDevicePointer=*/false, MC->isImplicit()); |
| } |
| } |
| |
| for (const auto &M : Info) { |
| // We need to know when we generate information for the first component |
| // associated with a capture, because the mapping flags depend on it. |
| bool IsFirstComponentList = true; |
| |
| // Temporary versions of arrays |
| MapBaseValuesArrayTy CurBasePointers; |
| MapValuesArrayTy CurPointers; |
| MapValuesArrayTy CurSizes; |
| MapFlagsArrayTy CurTypes; |
| StructRangeInfoTy PartialStruct; |
| |
| for (const MapInfo &L : M.second) { |
| assert(!L.Components.empty() && |
| "Not expecting declaration with no component lists."); |
| generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components, |
| CurBasePointers, CurPointers, CurSizes, |
| CurTypes, PartialStruct, |
| IsFirstComponentList, L.IsImplicit); |
| IsFirstComponentList = false; |
| } |
| |
| // If there is an entry in PartialStruct it means we have a struct with |
| // individual members mapped. Emit an extra combined entry. |
| if (PartialStruct.Base.isValid()) |
| emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes, |
| PartialStruct); |
| |
| // We need to append the results of this capture to what we already have. |
| BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); |
| Pointers.append(CurPointers.begin(), CurPointers.end()); |
| Sizes.append(CurSizes.begin(), CurSizes.end()); |
| Types.append(CurTypes.begin(), CurTypes.end()); |
| } |
| } |
| |
| /// Emit capture info for lambdas for variables captured by reference. |
| void generateInfoForLambdaCaptures( |
| const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, |
| MapFlagsArrayTy &Types, |
| llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const { |
| const auto *RD = VD->getType() |
| .getCanonicalType() |
| .getNonReferenceType() |
| ->getAsCXXRecordDecl(); |
| if (!RD || !RD->isLambda()) |
| return; |
| Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD)); |
| LValue VDLVal = CGF.MakeAddrLValue( |
| VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); |
| llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; |
| FieldDecl *ThisCapture = nullptr; |
| RD->getCaptureFields(Captures, ThisCapture); |
| if (ThisCapture) { |
| LValue ThisLVal = |
| CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); |
| LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture); |
| LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer()); |
| BasePointers.push_back(ThisLVal.getPointer()); |
| Pointers.push_back(ThisLValVal.getPointer()); |
| Sizes.push_back( |
| CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), |
| CGF.Int64Ty, /*isSigned=*/true)); |
| Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | |
| OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); |
| } |
| for (const LambdaCapture &LC : RD->captures()) { |
| if (!LC.capturesVariable()) |
| continue; |
| const VarDecl *VD = LC.getCapturedVar(); |
| if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType()) |
| continue; |
| auto It = Captures.find(VD); |
| assert(It != Captures.end() && "Found lambda capture without field."); |
| LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); |
| if (LC.getCaptureKind() == LCK_ByRef) { |
| LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second); |
| LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer()); |
| BasePointers.push_back(VarLVal.getPointer()); |
| Pointers.push_back(VarLValVal.getPointer()); |
| Sizes.push_back(CGF.Builder.CreateIntCast( |
| CGF.getTypeSize( |
| VD->getType().getCanonicalType().getNonReferenceType()), |
| CGF.Int64Ty, /*isSigned=*/true)); |
| } else { |
| RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation()); |
| LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer()); |
| BasePointers.push_back(VarLVal.getPointer()); |
| Pointers.push_back(VarRVal.getScalarVal()); |
| Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0)); |
| } |
| Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | |
| OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); |
| } |
| } |
| |
| /// Set correct indices for lambdas captures. |
| void adjustMemberOfForLambdaCaptures( |
| const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers, |
| MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, |
| MapFlagsArrayTy &Types) const { |
| for (unsigned I = 0, E = Types.size(); I < E; ++I) { |
| // Set correct member_of idx for all implicit lambda captures. |
| if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | |
| OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT)) |
| continue; |
| llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]); |
| assert(BasePtr && "Unable to find base lambda address."); |
| int TgtIdx = -1; |
| for (unsigned J = I; J > 0; --J) { |
| unsigned Idx = J - 1; |
| if (Pointers[Idx] != BasePtr) |
| continue; |
| TgtIdx = Idx; |
| break; |
| } |
| assert(TgtIdx != -1 && "Unable to find parent lambda."); |
| // All other current entries will be MEMBER_OF the combined entry |
| // (except for PTR_AND_OBJ entries which do not have a placeholder value |
| // 0xFFFF in the MEMBER_OF field). |
| OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx); |
| setCorrectMemberOfFlag(Types[I], MemberOfFlag); |
| } |
| } |
| |
| /// Generate the base pointers, section pointers, sizes and map types |
| /// associated to a given capture. |
| void generateInfoForCapture(const CapturedStmt::Capture *Cap, |
| llvm::Value *Arg, |
| MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, |
| MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, |
| StructRangeInfoTy &PartialStruct) const { |
| assert(!Cap->capturesVariableArrayType() && |
| "Not expecting to generate map info for a variable array type!"); |
| |
| // We need to know when we generating information for the first component |
| const ValueDecl *VD = Cap->capturesThis() |
| ? nullptr |
| : Cap->getCapturedVar()->getCanonicalDecl(); |
| |
| // If this declaration appears in a is_device_ptr clause we just have to |
| // pass the pointer by value. If it is a reference to a declaration, we just |
| // pass its value. |
| if (DevPointersMap.count(VD)) { |
| BasePointers.emplace_back(Arg, VD); |
| Pointers.push_back(Arg); |
| Sizes.push_back( |
| CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), |
| CGF.Int64Ty, /*isSigned=*/true)); |
| Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM); |
| return; |
| } |
| |
| using MapData = |
| std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef, |
| OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>; |
| SmallVector<MapData, 4> DeclComponentLists; |
| assert(CurDir.is<const OMPExecutableDirective *>() && |
| "Expect a executable directive"); |
| const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>(); |
| for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) { |
| for (const auto &L : C->decl_component_lists(VD)) { |
| assert(L.first == VD && |
| "We got information for the wrong declaration??"); |
| assert(!L.second.empty() && |
| "Not expecting declaration with no component lists."); |
| DeclComponentLists.emplace_back(L.second, C->getMapType(), |
| C->getMapTypeModifiers(), |
| C->isImplicit()); |
| } |
| } |
| |
| // Find overlapping elements (including the offset from the base element). |
| llvm::SmallDenseMap< |
| const MapData *, |
| llvm::SmallVector< |
| OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>, |
| 4> |
| OverlappedData; |
| size_t Count = 0; |
| for (const MapData &L : DeclComponentLists) { |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components; |
| OpenMPMapClauseKind MapType; |
| ArrayRef<OpenMPMapModifierKind> MapModifiers; |
| bool IsImplicit; |
| std::tie(Components, MapType, MapModifiers, IsImplicit) = L; |
| ++Count; |
| for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) { |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components1; |
| std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1; |
| auto CI = Components.rbegin(); |
| auto CE = Components.rend(); |
| auto SI = Components1.rbegin(); |
| auto SE = Components1.rend(); |
| for (; CI != CE && SI != SE; ++CI, ++SI) { |
| if (CI->getAssociatedExpression()->getStmtClass() != |
| SI->getAssociatedExpression()->getStmtClass()) |
| break; |
| // Are we dealing with different variables/fields? |
| if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration()) |
| break; |
| } |
| // Found overlapping if, at least for one component, reached the head of |
| // the components list. |
| if (CI == CE || SI == SE) { |
| assert((CI != CE || SI != SE) && |
| "Unexpected full match of the mapping components."); |
| const MapData &BaseData = CI == CE ? L : L1; |
| OMPClauseMappableExprCommon::MappableExprComponentListRef SubData = |
| SI == SE ? Components : Components1; |
| auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData); |
| OverlappedElements.getSecond().push_back(SubData); |
| } |
| } |
| } |
| // Sort the overlapped elements for each item. |
| llvm::SmallVector<const FieldDecl *, 4> Layout; |
| if (!OverlappedData.empty()) { |
| if (const auto *CRD = |
| VD->getType().getCanonicalType()->getAsCXXRecordDecl()) |
| getPlainLayout(CRD, Layout, /*AsBase=*/false); |
| else { |
| const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl(); |
| Layout.append(RD->field_begin(), RD->field_end()); |
| } |
| } |
| for (auto &Pair : OverlappedData) { |
| llvm::sort( |
| Pair.getSecond(), |
| [&Layout]( |
| OMPClauseMappableExprCommon::MappableExprComponentListRef First, |
| OMPClauseMappableExprCommon::MappableExprComponentListRef |
| Second) { |
| auto CI = First.rbegin(); |
| auto CE = First.rend(); |
| auto SI = Second.rbegin(); |
| auto SE = Second.rend(); |
| for (; CI != CE && SI != SE; ++CI, ++SI) { |
| if (CI->getAssociatedExpression()->getStmtClass() != |
| SI->getAssociatedExpression()->getStmtClass()) |
| break; |
| // Are we dealing with different variables/fields? |
| if (CI->getAssociatedDeclaration() != |
| SI->getAssociatedDeclaration()) |
| break; |
| } |
| |
| // Lists contain the same elements. |
| if (CI == CE && SI == SE) |
| return false; |
| |
| // List with less elements is less than list with more elements. |
| if (CI == CE || SI == SE) |
| return CI == CE; |
| |
| const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration()); |
| const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration()); |
| if (FD1->getParent() == FD2->getParent()) |
| return FD1->getFieldIndex() < FD2->getFieldIndex(); |
| const auto It = |
| llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) { |
| return FD == FD1 || FD == FD2; |
| }); |
| return *It == FD1; |
| }); |
| } |
| |
| // Associated with a capture, because the mapping flags depend on it. |
| // Go through all of the elements with the overlapped elements. |
| for (const auto &Pair : OverlappedData) { |
| const MapData &L = *Pair.getFirst(); |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components; |
| OpenMPMapClauseKind MapType; |
| ArrayRef<OpenMPMapModifierKind> MapModifiers; |
| bool IsImplicit; |
| std::tie(Components, MapType, MapModifiers, IsImplicit) = L; |
| ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> |
| OverlappedComponents = Pair.getSecond(); |
| bool IsFirstComponentList = true; |
| generateInfoForComponentList(MapType, MapModifiers, Components, |
| BasePointers, Pointers, Sizes, Types, |
| PartialStruct, IsFirstComponentList, |
| IsImplicit, OverlappedComponents); |
| } |
| // Go through other elements without overlapped elements. |
| bool IsFirstComponentList = OverlappedData.empty(); |
| for (const MapData &L : DeclComponentLists) { |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components; |
| OpenMPMapClauseKind MapType; |
| ArrayRef<OpenMPMapModifierKind> MapModifiers; |
| bool IsImplicit; |
| std::tie(Components, MapType, MapModifiers, IsImplicit) = L; |
| auto It = OverlappedData.find(&L); |
| if (It == OverlappedData.end()) |
| generateInfoForComponentList(MapType, MapModifiers, Components, |
| BasePointers, Pointers, Sizes, Types, |
| PartialStruct, IsFirstComponentList, |
| IsImplicit); |
| IsFirstComponentList = false; |
| } |
| } |
| |
| /// Generate the base pointers, section pointers, sizes and map types |
| /// associated with the declare target link variables. |
| void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers, |
| MapValuesArrayTy &Pointers, |
| MapValuesArrayTy &Sizes, |
| MapFlagsArrayTy &Types) const { |
| assert(CurDir.is<const OMPExecutableDirective *>() && |
| "Expect a executable directive"); |
| const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>(); |
| // Map other list items in the map clause which are not captured variables |
| // but "declare target link" global variables. |
| for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) { |
| for (const auto &L : C->component_lists()) { |
| if (!L.first) |
| continue; |
| const auto *VD = dyn_cast<VarDecl>(L.first); |
| if (!VD) |
| continue; |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || |
| !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link) |
| continue; |
| StructRangeInfoTy PartialStruct; |
| generateInfoForComponentList( |
| C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers, |
| Pointers, Sizes, Types, PartialStruct, |
| /*IsFirstComponentList=*/true, C->isImplicit()); |
| assert(!PartialStruct.Base.isValid() && |
| "No partial structs for declare target link expected."); |
| } |
| } |
| } |
| |
| /// Generate the default map information for a given capture \a CI, |
| /// record field declaration \a RI and captured value \a CV. |
| void generateDefaultMapInfo(const CapturedStmt::Capture &CI, |
| const FieldDecl &RI, llvm::Value *CV, |
| MapBaseValuesArrayTy &CurBasePointers, |
| MapValuesArrayTy &CurPointers, |
| MapValuesArrayTy &CurSizes, |
| MapFlagsArrayTy &CurMapTypes) const { |
| bool IsImplicit = true; |
| // Do the default mapping. |
| if (CI.capturesThis()) { |
| CurBasePointers.push_back(CV); |
| CurPointers.push_back(CV); |
| const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr()); |
| CurSizes.push_back( |
| CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()), |
| CGF.Int64Ty, /*isSigned=*/true)); |
| // Default map type. |
| CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM); |
| } else if (CI.capturesVariableByCopy()) { |
| CurBasePointers.push_back(CV); |
| CurPointers.push_back(CV); |
| if (!RI.getType()->isAnyPointerType()) { |
| // We have to signal to the runtime captures passed by value that are |
| // not pointers. |
| CurMapTypes.push_back(OMP_MAP_LITERAL); |
| CurSizes.push_back(CGF.Builder.CreateIntCast( |
| CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true)); |
| } else { |
| // Pointers are implicitly mapped with a zero size and no flags |
| // (other than first map that is added for all implicit maps). |
| CurMapTypes.push_back(OMP_MAP_NONE); |
| CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty)); |
| } |
| const VarDecl *VD = CI.getCapturedVar(); |
| auto I = FirstPrivateDecls.find(VD); |
| if (I != FirstPrivateDecls.end()) |
| IsImplicit = I->getSecond(); |
| } else { |
| assert(CI.capturesVariable() && "Expected captured reference."); |
| const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr()); |
| QualType ElementType = PtrTy->getPointeeType(); |
| CurSizes.push_back(CGF.Builder.CreateIntCast( |
| CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true)); |
| // The default map type for a scalar/complex type is 'to' because by |
| // default the value doesn't have to be retrieved. For an aggregate |
| // type, the default is 'tofrom'. |
| CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI)); |
| const VarDecl *VD = CI.getCapturedVar(); |
| auto I = FirstPrivateDecls.find(VD); |
| if (I != FirstPrivateDecls.end() && |
| VD->getType().isConstant(CGF.getContext())) { |
| llvm::Constant *Addr = |
| CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD); |
| // Copy the value of the original variable to the new global copy. |
| CGF.Builder.CreateMemCpy( |
| CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(), |
| Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)), |
| CurSizes.back(), /*IsVolatile=*/false); |
| // Use new global variable as the base pointers. |
| CurBasePointers.push_back(Addr); |
| CurPointers.push_back(Addr); |
| } else { |
| CurBasePointers.push_back(CV); |
| if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) { |
| Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue( |
| CV, ElementType, CGF.getContext().getDeclAlign(VD), |
| AlignmentSource::Decl)); |
| CurPointers.push_back(PtrAddr.getPointer()); |
| } else { |
| CurPointers.push_back(CV); |
| } |
| } |
| if (I != FirstPrivateDecls.end()) |
| IsImplicit = I->getSecond(); |
| } |
| // Every default map produces a single argument which is a target parameter. |
| CurMapTypes.back() |= OMP_MAP_TARGET_PARAM; |
| |
| // Add flag stating this is an implicit map. |
| if (IsImplicit) |
| CurMapTypes.back() |= OMP_MAP_IMPLICIT; |
| } |
| }; |
| } // anonymous namespace |
| |
| /// Emit the arrays used to pass the captures and map information to the |
| /// offloading runtime library. If there is no map or capture information, |
| /// return nullptr by reference. |
| static void |
| emitOffloadingArrays(CodeGenFunction &CGF, |
| MappableExprsHandler::MapBaseValuesArrayTy &BasePointers, |
| MappableExprsHandler::MapValuesArrayTy &Pointers, |
| MappableExprsHandler::MapValuesArrayTy &Sizes, |
| MappableExprsHandler::MapFlagsArrayTy &MapTypes, |
| CGOpenMPRuntime::TargetDataInfo &Info) { |
| CodeGenModule &CGM = CGF.CGM; |
| ASTContext &Ctx = CGF.getContext(); |
| |
| // Reset the array information. |
| Info.clearArrayInfo(); |
| Info.NumberOfPtrs = BasePointers.size(); |
| |
| if (Info.NumberOfPtrs) { |
| // Detect if we have any capture size requiring runtime evaluation of the |
| // size so that a constant array could be eventually used. |
| bool hasRuntimeEvaluationCaptureSize = false; |
| for (llvm::Value *S : Sizes) |
| if (!isa<llvm::Constant>(S)) { |
| hasRuntimeEvaluationCaptureSize = true; |
| break; |
| } |
| |
| llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); |
| QualType PointerArrayType = Ctx.getConstantArrayType( |
| Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| |
| Info.BasePointersArray = |
| CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); |
| Info.PointersArray = |
| CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); |
| |
| // If we don't have any VLA types or other types that require runtime |
| // evaluation, we can use a constant array for the map sizes, otherwise we |
| // need to fill up the arrays as we do for the pointers. |
| QualType Int64Ty = |
| Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); |
| if (hasRuntimeEvaluationCaptureSize) { |
| QualType SizeArrayType = Ctx.getConstantArrayType( |
| Int64Ty, PointerNumAP, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| Info.SizesArray = |
| CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); |
| } else { |
| // We expect all the sizes to be constant, so we collect them to create |
| // a constant array. |
| SmallVector<llvm::Constant *, 16> ConstSizes; |
| for (llvm::Value *S : Sizes) |
| ConstSizes.push_back(cast<llvm::Constant>(S)); |
| |
| auto *SizesArrayInit = llvm::ConstantArray::get( |
| llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes); |
| std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"}); |
| auto *SizesArrayGbl = new llvm::GlobalVariable( |
| CGM.getModule(), SizesArrayInit->getType(), |
| /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, |
| SizesArrayInit, Name); |
| SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| Info.SizesArray = SizesArrayGbl; |
| } |
| |
| // The map types are always constant so we don't need to generate code to |
| // fill arrays. Instead, we create an array constant. |
| SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0); |
| llvm::copy(MapTypes, Mapping.begin()); |
| llvm::Constant *MapTypesArrayInit = |
| llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping); |
| std::string MaptypesName = |
| CGM.getOpenMPRuntime().getName({"offload_maptypes"}); |
| auto *MapTypesArrayGbl = new llvm::GlobalVariable( |
| CGM.getModule(), MapTypesArrayInit->getType(), |
| /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, |
| MapTypesArrayInit, MaptypesName); |
| MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| Info.MapTypesArray = MapTypesArrayGbl; |
| |
| for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { |
| llvm::Value *BPVal = *BasePointers[I]; |
| llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), |
| Info.BasePointersArray, 0, I); |
| BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0)); |
| Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); |
| CGF.Builder.CreateStore(BPVal, BPAddr); |
| |
| if (Info.requiresDevicePointerInfo()) |
| if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl()) |
| Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr); |
| |
| llvm::Value *PVal = Pointers[I]; |
| llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), |
| Info.PointersArray, 0, I); |
| P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| P, PVal->getType()->getPointerTo(/*AddrSpace=*/0)); |
| Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); |
| CGF.Builder.CreateStore(PVal, PAddr); |
| |
| if (hasRuntimeEvaluationCaptureSize) { |
| llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), |
| Info.SizesArray, |
| /*Idx0=*/0, |
| /*Idx1=*/I); |
| Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty)); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true), |
| SAddr); |
| } |
| } |
| } |
| } |
| |
| /// Emit the arguments to be passed to the runtime library based on the |
| /// arrays of pointers, sizes and map types. |
| static void emitOffloadingArraysArgument( |
| CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, |
| llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, |
| llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) { |
| CodeGenModule &CGM = CGF.CGM; |
| if (Info.NumberOfPtrs) { |
| BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), |
| Info.BasePointersArray, |
| /*Idx0=*/0, /*Idx1=*/0); |
| PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), |
| Info.PointersArray, |
| /*Idx0=*/0, |
| /*Idx1=*/0); |
| SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray, |
| /*Idx0=*/0, /*Idx1=*/0); |
| MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( |
| llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), |
| Info.MapTypesArray, |
| /*Idx0=*/0, |
| /*Idx1=*/0); |
| } else { |
| BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); |
| PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); |
| SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); |
| MapTypesArrayArg = |
| llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); |
| } |
| } |
| |
| /// Check for inner distribute directive. |
| static const OMPExecutableDirective * |
| getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) { |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = |
| CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); |
| |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
| switch (D.getDirectiveKind()) { |
| case OMPD_target: |
| if (isOpenMPDistributeDirective(DKind)) |
| return NestedDir; |
| if (DKind == OMPD_teams) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return nullptr; |
| ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPDistributeDirective(DKind)) |
| return NND; |
| } |
| } |
| return nullptr; |
| case OMPD_target_teams: |
| if (isOpenMPDistributeDirective(DKind)) |
| return NestedDir; |
| return nullptr; |
| case OMPD_target_parallel: |
| case OMPD_target_simd: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| return nullptr; |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_requires: |
| case OMPD_unknown: |
| llvm_unreachable("Unexpected directive."); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Emit the user-defined mapper function. The code generation follows the |
| /// pattern in the example below. |
| /// \code |
| /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle, |
| /// void *base, void *begin, |
| /// int64_t size, int64_t type) { |
| /// // Allocate space for an array section first. |
| /// if (size > 1 && !maptype.IsDelete) |
| /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, |
| /// size*sizeof(Ty), clearToFrom(type)); |
| /// // Map members. |
| /// for (unsigned i = 0; i < size; i++) { |
| /// // For each component specified by this mapper: |
| /// for (auto c : all_components) { |
| /// if (c.hasMapper()) |
| /// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size, |
| /// c.arg_type); |
| /// else |
| /// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base, |
| /// c.arg_begin, c.arg_size, c.arg_type); |
| /// } |
| /// } |
| /// // Delete the array section. |
| /// if (size > 1 && maptype.IsDelete) |
| /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, |
| /// size*sizeof(Ty), clearToFrom(type)); |
| /// } |
| /// \endcode |
| void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D, |
| CodeGenFunction *CGF) { |
| if (UDMMap.count(D) > 0) |
| return; |
| ASTContext &C = CGM.getContext(); |
| QualType Ty = D->getType(); |
| QualType PtrTy = C.getPointerType(Ty).withRestrict(); |
| QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); |
| auto *MapperVarDecl = |
| cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl()); |
| SourceLocation Loc = D->getLocation(); |
| CharUnits ElementSize = C.getTypeSizeInChars(Ty); |
| |
| // Prepare mapper function arguments and attributes. |
| ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, |
| ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&HandleArg); |
| Args.push_back(&BaseArg); |
| Args.push_back(&BeginArg); |
| Args.push_back(&SizeArg); |
| Args.push_back(&TypeArg); |
| const CGFunctionInfo &FnInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); |
| SmallString<64> TyStr; |
| llvm::raw_svector_ostream Out(TyStr); |
| CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out); |
| std::string Name = getName({"omp_mapper", TyStr, D->getName()}); |
| auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, |
| Name, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); |
| Fn->removeFnAttr(llvm::Attribute::OptimizeNone); |
| // Start the mapper function code generation. |
| CodeGenFunction MapperCGF(CGM); |
| MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); |
| // Compute the starting and end addreses of array elements. |
| llvm::Value *Size = MapperCGF.EmitLoadOfScalar( |
| MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false, |
| C.getPointerType(Int64Ty), Loc); |
| llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast( |
| MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(), |
| CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy))); |
| llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size); |
| llvm::Value *MapType = MapperCGF.EmitLoadOfScalar( |
| MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false, |
| C.getPointerType(Int64Ty), Loc); |
| // Prepare common arguments for array initiation and deletion. |
| llvm::Value *Handle = MapperCGF.EmitLoadOfScalar( |
| MapperCGF.GetAddrOfLocalVar(&HandleArg), |
| /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); |
| llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar( |
| MapperCGF.GetAddrOfLocalVar(&BaseArg), |
| /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); |
| llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar( |
| MapperCGF.GetAddrOfLocalVar(&BeginArg), |
| /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); |
| |
| // Emit array initiation if this is an array section and \p MapType indicates |
| // that memory allocation is required. |
| llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head"); |
| emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, |
| ElementSize, HeadBB, /*IsInit=*/true); |
| |
| // Emit a for loop to iterate through SizeArg of elements and map all of them. |
| |
| // Emit the loop header block. |
| MapperCGF.EmitBlock(HeadBB); |
| llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body"); |
| llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done"); |
| // Evaluate whether the initial condition is satisfied. |
| llvm::Value *IsEmpty = |
| MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty"); |
| MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); |
| llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock(); |
| |
| // Emit the loop body block. |
| MapperCGF.EmitBlock(BodyBB); |
| llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI( |
| PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent"); |
| PtrPHI->addIncoming(PtrBegin, EntryBB); |
| Address PtrCurrent = |
| Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg) |
| .getAlignment() |
| .alignmentOfArrayElement(ElementSize)); |
| // Privatize the declared variable of mapper to be the current array element. |
| CodeGenFunction::OMPPrivateScope Scope(MapperCGF); |
| Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() { |
| return MapperCGF |
| .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>()) |
| .getAddress(); |
| }); |
| (void)Scope.Privatize(); |
| |
| // Get map clause information. Fill up the arrays with all mapped variables. |
| MappableExprsHandler::MapBaseValuesArrayTy BasePointers; |
| MappableExprsHandler::MapValuesArrayTy Pointers; |
| MappableExprsHandler::MapValuesArrayTy Sizes; |
| MappableExprsHandler::MapFlagsArrayTy MapTypes; |
| MappableExprsHandler MEHandler(*D, MapperCGF); |
| MEHandler.generateAllInfoForMapper(BasePointers, Pointers, Sizes, MapTypes); |
| |
| // Call the runtime API __tgt_mapper_num_components to get the number of |
| // pre-existing components. |
| llvm::Value *OffloadingArgs[] = {Handle}; |
| llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__tgt_mapper_num_components), OffloadingArgs); |
| llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl( |
| PreviousSize, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset())); |
| |
| // Fill up the runtime mapper handle for all components. |
| for (unsigned I = 0; I < BasePointers.size(); ++I) { |
| llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast( |
| *BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); |
| llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast( |
| Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); |
| llvm::Value *CurSizeArg = Sizes[I]; |
| |
| // Extract the MEMBER_OF field from the map type. |
| llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member"); |
| MapperCGF.EmitBlock(MemberBB); |
| llvm::Value *OriMapType = MapperCGF.Builder.getInt64(MapTypes[I]); |
| llvm::Value *Member = MapperCGF.Builder.CreateAnd( |
| OriMapType, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF)); |
| llvm::BasicBlock *MemberCombineBB = |
| MapperCGF.createBasicBlock("omp.member.combine"); |
| llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type"); |
| llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member); |
| MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB); |
| // Add the number of pre-existing components to the MEMBER_OF field if it |
| // is valid. |
| MapperCGF.EmitBlock(MemberCombineBB); |
| llvm::Value *CombinedMember = |
| MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize); |
| // Do nothing if it is not a member of previous components. |
| MapperCGF.EmitBlock(TypeBB); |
| llvm::PHINode *MemberMapType = |
| MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype"); |
| MemberMapType->addIncoming(OriMapType, MemberBB); |
| MemberMapType->addIncoming(CombinedMember, MemberCombineBB); |
| |
| // Combine the map type inherited from user-defined mapper with that |
| // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM |
| // bits of the \a MapType, which is the input argument of the mapper |
| // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM |
| // bits of MemberMapType. |
| // [OpenMP 5.0], 1.2.6. map-type decay. |
| // | alloc | to | from | tofrom | release | delete |
| // ---------------------------------------------------------- |
| // alloc | alloc | alloc | alloc | alloc | release | delete |
| // to | alloc | to | alloc | to | release | delete |
| // from | alloc | alloc | from | from | release | delete |
| // tofrom | alloc | to | from | tofrom | release | delete |
| llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd( |
| MapType, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO | |
| MappableExprsHandler::OMP_MAP_FROM)); |
| llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc"); |
| llvm::BasicBlock *AllocElseBB = |
| MapperCGF.createBasicBlock("omp.type.alloc.else"); |
| llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to"); |
| llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else"); |
| llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from"); |
| llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end"); |
| llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom); |
| MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB); |
| // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM. |
| MapperCGF.EmitBlock(AllocBB); |
| llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd( |
| MemberMapType, |
| MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | |
| MappableExprsHandler::OMP_MAP_FROM))); |
| MapperCGF.Builder.CreateBr(EndBB); |
| MapperCGF.EmitBlock(AllocElseBB); |
| llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ( |
| LeftToFrom, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO)); |
| MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB); |
| // In case of to, clear OMP_MAP_FROM. |
| MapperCGF.EmitBlock(ToBB); |
| llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd( |
| MemberMapType, |
| MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM)); |
| MapperCGF.Builder.CreateBr(EndBB); |
| MapperCGF.EmitBlock(ToElseBB); |
| llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ( |
| LeftToFrom, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM)); |
| MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB); |
| // In case of from, clear OMP_MAP_TO. |
| MapperCGF.EmitBlock(FromBB); |
| llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd( |
| MemberMapType, |
| MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO)); |
| // In case of tofrom, do nothing. |
| MapperCGF.EmitBlock(EndBB); |
| llvm::PHINode *CurMapType = |
| MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype"); |
| CurMapType->addIncoming(AllocMapType, AllocBB); |
| CurMapType->addIncoming(ToMapType, ToBB); |
| CurMapType->addIncoming(FromMapType, FromBB); |
| CurMapType->addIncoming(MemberMapType, ToElseBB); |
| |
| // TODO: call the corresponding mapper function if a user-defined mapper is |
| // associated with this map clause. |
| // Call the runtime API __tgt_push_mapper_component to fill up the runtime |
| // data structure. |
| llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg, |
| CurSizeArg, CurMapType}; |
| MapperCGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__tgt_push_mapper_component), |
| OffloadingArgs); |
| } |
| |
| // Update the pointer to point to the next element that needs to be mapped, |
| // and check whether we have mapped all elements. |
| llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32( |
| PtrPHI, /*Idx0=*/1, "omp.arraymap.next"); |
| PtrPHI->addIncoming(PtrNext, BodyBB); |
| llvm::Value *IsDone = |
| MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone"); |
| llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit"); |
| MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB); |
| |
| MapperCGF.EmitBlock(ExitBB); |
| // Emit array deletion if this is an array section and \p MapType indicates |
| // that deletion is required. |
| emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, |
| ElementSize, DoneBB, /*IsInit=*/false); |
| |
| // Emit the function exit block. |
| MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true); |
| MapperCGF.FinishFunction(); |
| UDMMap.try_emplace(D, Fn); |
| if (CGF) { |
| auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn); |
| Decls.second.push_back(D); |
| } |
| } |
| |
| /// Emit the array initialization or deletion portion for user-defined mapper |
| /// code generation. First, it evaluates whether an array section is mapped and |
| /// whether the \a MapType instructs to delete this section. If \a IsInit is |
| /// true, and \a MapType indicates to not delete this array, array |
| /// initialization code is generated. If \a IsInit is false, and \a MapType |
| /// indicates to not this array, array deletion code is generated. |
| void CGOpenMPRuntime::emitUDMapperArrayInitOrDel( |
| CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base, |
| llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType, |
| CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) { |
| StringRef Prefix = IsInit ? ".init" : ".del"; |
| |
| // Evaluate if this is an array section. |
| llvm::BasicBlock *IsDeleteBB = |
| MapperCGF.createBasicBlock("omp.array" + Prefix + ".evaldelete"); |
| llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.array" + Prefix); |
| llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE( |
| Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray"); |
| MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB); |
| |
| // Evaluate if we are going to delete this section. |
| MapperCGF.EmitBlock(IsDeleteBB); |
| llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd( |
| MapType, |
| MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE)); |
| llvm::Value *DeleteCond; |
| if (IsInit) { |
| DeleteCond = MapperCGF.Builder.CreateIsNull( |
| DeleteBit, "omp.array" + Prefix + ".delete"); |
| } else { |
| DeleteCond = MapperCGF.Builder.CreateIsNotNull( |
| DeleteBit, "omp.array" + Prefix + ".delete"); |
| } |
| MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB); |
| |
| MapperCGF.EmitBlock(BodyBB); |
| // Get the array size by multiplying element size and element number (i.e., \p |
| // Size). |
| llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul( |
| Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity())); |
| // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves |
| // memory allocation/deletion purpose only. |
| llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd( |
| MapType, |
| MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | |
| MappableExprsHandler::OMP_MAP_FROM))); |
| // Call the runtime API __tgt_push_mapper_component to fill up the runtime |
| // data structure. |
| llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg}; |
| MapperCGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__tgt_push_mapper_component), OffloadingArgs); |
| } |
| |
| void CGOpenMPRuntime::emitTargetNumIterationsCall( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, |
| llvm::Value *DeviceID, |
| llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, |
| const OMPLoopDirective &D)> |
| SizeEmitter) { |
| OpenMPDirectiveKind Kind = D.getDirectiveKind(); |
| const OMPExecutableDirective *TD = &D; |
| // Get nested teams distribute kind directive, if any. |
| if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind)) |
| TD = getNestedDistributeDirective(CGM.getContext(), D); |
| if (!TD) |
| return; |
| const auto *LD = cast<OMPLoopDirective>(TD); |
| auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) { |
| llvm::Value *Args[] = {DeviceID, NumIterations}; |
| CGF.EmitRuntimeCall( |
| createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args); |
| } |
| }; |
| emitInlinedDirective(CGF, OMPD_unknown, CodeGen); |
| } |
| |
| void CGOpenMPRuntime::emitTargetCall( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, |
| llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, |
| const Expr *Device, |
| llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, |
| const OMPLoopDirective &D)> |
| SizeEmitter) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| assert(OutlinedFn && "Invalid outlined function!"); |
| |
| const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>(); |
| llvm::SmallVector<llvm::Value *, 16> CapturedVars; |
| const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); |
| auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); |
| }; |
| emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen); |
| |
| CodeGenFunction::OMPTargetDataInfo InputInfo; |
| llvm::Value *MapTypesArray = nullptr; |
| // Fill up the pointer arrays and transfer execution to the device. |
| auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo, |
| &MapTypesArray, &CS, RequiresOuterTask, &CapturedVars, |
| SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) { |
| // On top of the arrays that were filled up, the target offloading call |
| // takes as arguments the device id as well as the host pointer. The host |
| // pointer is used by the runtime library to identify the current target |
| // region, so it only has to be unique and not necessarily point to |
| // anything. It could be the pointer to the outlined function that |
| // implements the target region, but we aren't using that so that the |
| // compiler doesn't need to keep that, and could therefore inline the host |
| // function if proven worthwhile during optimization. |
| |
| // From this point on, we need to have an ID of the target region defined. |
| assert(OutlinedFnID && "Invalid outlined function ID!"); |
| |
| // Emit device ID if any. |
| llvm::Value *DeviceID; |
| if (Device) { |
| DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), |
| CGF.Int64Ty, /*isSigned=*/true); |
| } else { |
| DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); |
| } |
| |
| // Emit the number of elements in the offloading arrays. |
| llvm::Value *PointerNum = |
| CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); |
| |
| // Return value of the runtime offloading call. |
| llvm::Value *Return; |
| |
| llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D); |
| llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D); |
| |
| // Emit tripcount for the target loop-based directive. |
| emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter); |
| |
| bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); |
| // The target region is an outlined function launched by the runtime |
| // via calls __tgt_target() or __tgt_target_teams(). |
| // |
| // __tgt_target() launches a target region with one team and one thread, |
| // executing a serial region. This master thread may in turn launch |
| // more threads within its team upon encountering a parallel region, |
| // however, no additional teams can be launched on the device. |
| // |
| // __tgt_target_teams() launches a target region with one or more teams, |
| // each with one or more threads. This call is required for target |
| // constructs such as: |
| // 'target teams' |
| // 'target' / 'teams' |
| // 'target teams distribute parallel for' |
| // 'target parallel' |
| // and so on. |
| // |
| // Note that on the host and CPU targets, the runtime implementation of |
| // these calls simply call the outlined function without forking threads. |
| // The outlined functions themselves have runtime calls to |
| // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by |
| // the compiler in emitTeamsCall() and emitParallelCall(). |
| // |
| // In contrast, on the NVPTX target, the implementation of |
| // __tgt_target_teams() launches a GPU kernel with the requested number |
| // of teams and threads so no additional calls to the runtime are required. |
| if (NumTeams) { |
| // If we have NumTeams defined this means that we have an enclosed teams |
| // region. Therefore we also expect to have NumThreads defined. These two |
| // values should be defined in the presence of a teams directive, |
| // regardless of having any clauses associated. If the user is using teams |
| // but no clauses, these two values will be the default that should be |
| // passed to the runtime library - a 32-bit integer with the value zero. |
| assert(NumThreads && "Thread limit expression should be available along " |
| "with number of teams."); |
| llvm::Value *OffloadingArgs[] = {DeviceID, |
| OutlinedFnID, |
| PointerNum, |
| InputInfo.BasePointersArray.getPointer(), |
| InputInfo.PointersArray.getPointer(), |
| InputInfo.SizesArray.getPointer(), |
| MapTypesArray, |
| NumTeams, |
| NumThreads}; |
| Return = CGF.EmitRuntimeCall( |
| createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait |
| : OMPRTL__tgt_target_teams), |
| OffloadingArgs); |
| } else { |
| llvm::Value *OffloadingArgs[] = {DeviceID, |
| OutlinedFnID, |
| PointerNum, |
| InputInfo.BasePointersArray.getPointer(), |
| InputInfo.PointersArray.getPointer(), |
| InputInfo.SizesArray.getPointer(), |
| MapTypesArray}; |
| Return = CGF.EmitRuntimeCall( |
| createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait |
| : OMPRTL__tgt_target), |
| OffloadingArgs); |
| } |
| |
| // Check the error code and execute the host version if required. |
| llvm::BasicBlock *OffloadFailedBlock = |
| CGF.createBasicBlock("omp_offload.failed"); |
| llvm::BasicBlock *OffloadContBlock = |
| CGF.createBasicBlock("omp_offload.cont"); |
| llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return); |
| CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); |
| |
| CGF.EmitBlock(OffloadFailedBlock); |
| if (RequiresOuterTask) { |
| CapturedVars.clear(); |
| CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); |
| } |
| emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); |
| CGF.EmitBranch(OffloadContBlock); |
| |
| CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); |
| }; |
| |
| // Notify that the host version must be executed. |
| auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars, |
| RequiresOuterTask](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| if (RequiresOuterTask) { |
| CapturedVars.clear(); |
| CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); |
| } |
| emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); |
| }; |
| |
| auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, |
| &CapturedVars, RequiresOuterTask, |
| &CS](CodeGenFunction &CGF, PrePostActionTy &) { |
| // Fill up the arrays with all the captured variables. |
| MappableExprsHandler::MapBaseValuesArrayTy BasePointers; |
| MappableExprsHandler::MapValuesArrayTy Pointers; |
| MappableExprsHandler::MapValuesArrayTy Sizes; |
| MappableExprsHandler::MapFlagsArrayTy MapTypes; |
| |
| // Get mappable expression information. |
| MappableExprsHandler MEHandler(D, CGF); |
| llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers; |
| |
| auto RI = CS.getCapturedRecordDecl()->field_begin(); |
| auto CV = CapturedVars.begin(); |
| for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), |
| CE = CS.capture_end(); |
| CI != CE; ++CI, ++RI, ++CV) { |
| MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers; |
| MappableExprsHandler::MapValuesArrayTy CurPointers; |
| MappableExprsHandler::MapValuesArrayTy CurSizes; |
| MappableExprsHandler::MapFlagsArrayTy CurMapTypes; |
| MappableExprsHandler::StructRangeInfoTy PartialStruct; |
| |
| // VLA sizes are passed to the outlined region by copy and do not have map |
| // information associated. |
| if (CI->capturesVariableArrayType()) { |
| CurBasePointers.push_back(*CV); |
| CurPointers.push_back(*CV); |
| CurSizes.push_back(CGF.Builder.CreateIntCast( |
| CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true)); |
| // Copy to the device as an argument. No need to retrieve it. |
| CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL | |
| MappableExprsHandler::OMP_MAP_TARGET_PARAM | |
| MappableExprsHandler::OMP_MAP_IMPLICIT); |
| } else { |
| // If we have any information in the map clause, we use it, otherwise we |
| // just do a default mapping. |
| MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers, |
| CurSizes, CurMapTypes, PartialStruct); |
| if (CurBasePointers.empty()) |
| MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers, |
| CurPointers, CurSizes, CurMapTypes); |
| // Generate correct mapping for variables captured by reference in |
| // lambdas. |
| if (CI->capturesVariable()) |
| MEHandler.generateInfoForLambdaCaptures( |
| CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes, |
| CurMapTypes, LambdaPointers); |
| } |
| // We expect to have at least an element of information for this capture. |
| assert(!CurBasePointers.empty() && |
| "Non-existing map pointer for capture!"); |
| assert(CurBasePointers.size() == CurPointers.size() && |
| CurBasePointers.size() == CurSizes.size() && |
| CurBasePointers.size() == CurMapTypes.size() && |
| "Inconsistent map information sizes!"); |
| |
| // If there is an entry in PartialStruct it means we have a struct with |
| // individual members mapped. Emit an extra combined entry. |
| if (PartialStruct.Base.isValid()) |
| MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes, |
| CurMapTypes, PartialStruct); |
| |
| // We need to append the results of this capture to what we already have. |
| BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); |
| Pointers.append(CurPointers.begin(), CurPointers.end()); |
| Sizes.append(CurSizes.begin(), CurSizes.end()); |
| MapTypes.append(CurMapTypes.begin(), CurMapTypes.end()); |
| } |
| // Adjust MEMBER_OF flags for the lambdas captures. |
| MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers, |
| Pointers, MapTypes); |
| // Map other list items in the map clause which are not captured variables |
| // but "declare target link" global variables. |
| MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes, |
| MapTypes); |
| |
| TargetDataInfo Info; |
| // Fill up the arrays and create the arguments. |
| emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); |
| emitOffloadingArraysArgument(CGF, Info.BasePointersArray, |
| Info.PointersArray, Info.SizesArray, |
| Info.MapTypesArray, Info); |
| InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; |
| InputInfo.BasePointersArray = |
| Address(Info.BasePointersArray, CGM.getPointerAlign()); |
| InputInfo.PointersArray = |
| Address(Info.PointersArray, CGM.getPointerAlign()); |
| InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign()); |
| MapTypesArray = Info.MapTypesArray; |
| if (RequiresOuterTask) |
| CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); |
| else |
| emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); |
| }; |
| |
| auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask]( |
| CodeGenFunction &CGF, PrePostActionTy &) { |
| if (RequiresOuterTask) { |
| CodeGenFunction::OMPTargetDataInfo InputInfo; |
| CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo); |
| } else { |
| emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen); |
| } |
| }; |
| |
| // If we have a target function ID it means that we need to support |
| // offloading, otherwise, just execute on the host. We need to execute on host |
| // regardless of the conditional in the if clause if, e.g., the user do not |
| // specify target triples. |
| if (OutlinedFnID) { |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen); |
| } else { |
| RegionCodeGenTy ThenRCG(TargetThenGen); |
| ThenRCG(CGF); |
| } |
| } else { |
| RegionCodeGenTy ElseRCG(TargetElseGen); |
| ElseRCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, |
| StringRef ParentName) { |
| if (!S) |
| return; |
| |
| // Codegen OMP target directives that offload compute to the device. |
| bool RequiresDeviceCodegen = |
| isa<OMPExecutableDirective>(S) && |
| isOpenMPTargetExecutionDirective( |
| cast<OMPExecutableDirective>(S)->getDirectiveKind()); |
| |
| if (RequiresDeviceCodegen) { |
| const auto &E = *cast<OMPExecutableDirective>(S); |
| unsigned DeviceID; |
| unsigned FileID; |
| unsigned Line; |
| getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID, |
| FileID, Line); |
| |
| // Is this a target region that should not be emitted as an entry point? If |
| // so just signal we are done with this target region. |
| if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, |
| ParentName, Line)) |
| return; |
| |
| switch (E.getDirectiveKind()) { |
| case OMPD_target: |
| CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName, |
| cast<OMPTargetDirective>(E)); |
| break; |
| case OMPD_target_parallel: |
| CodeGenFunction::EmitOMPTargetParallelDeviceFunction( |
| CGM, ParentName, cast<OMPTargetParallelDirective>(E)); |
| break; |
| case OMPD_target_teams: |
| CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( |
| CGM, ParentName, cast<OMPTargetTeamsDirective>(E)); |
| break; |
| case OMPD_target_teams_distribute: |
| CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( |
| CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E)); |
| break; |
| case OMPD_target_teams_distribute_simd: |
| CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
| CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E)); |
| break; |
| case OMPD_target_parallel_for: |
| CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( |
| CGM, ParentName, cast<OMPTargetParallelForDirective>(E)); |
| break; |
| case OMPD_target_parallel_for_simd: |
| CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( |
| CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E)); |
| break; |
| case OMPD_target_simd: |
| CodeGenFunction::EmitOMPTargetSimdDeviceFunction( |
| CGM, ParentName, cast<OMPTargetSimdDirective>(E)); |
| break; |
| case OMPD_target_teams_distribute_parallel_for: |
| CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
| CGM, ParentName, |
| cast<OMPTargetTeamsDistributeParallelForDirective>(E)); |
| break; |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| CodeGenFunction:: |
| EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
| CGM, ParentName, |
| cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E)); |
| break; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_requires: |
| case OMPD_unknown: |
| llvm_unreachable("Unknown target directive for OpenMP device codegen."); |
| } |
| return; |
| } |
| |
| if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) { |
| if (!E->hasAssociatedStmt() || !E->getAssociatedStmt()) |
| return; |
| |
| scanForTargetRegionsFunctions( |
| E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName); |
| return; |
| } |
| |
| // If this is a lambda function, look into its body. |
| if (const auto *L = dyn_cast<LambdaExpr>(S)) |
| S = L->getBody(); |
| |
| // Keep looking for target regions recursively. |
| for (const Stmt *II : S->children()) |
| scanForTargetRegionsFunctions(II, ParentName); |
| } |
| |
| bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { |
| // If emitting code for the host, we do not process FD here. Instead we do |
| // the normal code generation. |
| if (!CGM.getLangOpts().OpenMPIsDevice) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) { |
| Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
| OMPDeclareTargetDeclAttr::getDeviceType(FD); |
| // Do not emit device_type(nohost) functions for the host. |
| if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) |
| return true; |
| } |
| return false; |
| } |
| |
| const ValueDecl *VD = cast<ValueDecl>(GD.getDecl()); |
| StringRef Name = CGM.getMangledName(GD); |
| // Try to detect target regions in the function. |
| if (const auto *FD = dyn_cast<FunctionDecl>(VD)) { |
| scanForTargetRegionsFunctions(FD->getBody(), Name); |
| Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
| OMPDeclareTargetDeclAttr::getDeviceType(FD); |
| // Do not emit device_type(nohost) functions for the host. |
| if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host) |
| return true; |
| } |
| |
| // Do not to emit function if it is not marked as declare target. |
| return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) && |
| AlreadyEmittedTargetFunctions.count(Name) == 0; |
| } |
| |
| bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| return false; |
| |
| // Check if there are Ctors/Dtors in this declaration and look for target |
| // regions in it. We use the complete variant to produce the kernel name |
| // mangling. |
| QualType RDTy = cast<VarDecl>(GD.getDecl())->getType(); |
| if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { |
| for (const CXXConstructorDecl *Ctor : RD->ctors()) { |
| StringRef ParentName = |
| CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); |
| scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); |
| } |
| if (const CXXDestructorDecl *Dtor = RD->getDestructor()) { |
| StringRef ParentName = |
| CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); |
| scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); |
| } |
| } |
| |
| // Do not to emit variable if it is not marked as declare target. |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration( |
| cast<VarDecl>(GD.getDecl())); |
| if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| HasRequiresUnifiedSharedMemory)) { |
| DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl())); |
| return true; |
| } |
| return false; |
| } |
| |
| llvm::Constant * |
| CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF, |
| const VarDecl *VD) { |
| assert(VD->getType().isConstant(CGM.getContext()) && |
| "Expected constant variable."); |
| StringRef VarName; |
| llvm::Constant *Addr; |
| llvm::GlobalValue::LinkageTypes Linkage; |
| QualType Ty = VD->getType(); |
| SmallString<128> Buffer; |
| { |
| unsigned DeviceID; |
| unsigned FileID; |
| unsigned Line; |
| getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID, |
| FileID, Line); |
| llvm::raw_svector_ostream OS(Buffer); |
| OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID) |
| << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; |
| VarName = OS.str(); |
| } |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| Addr = |
| getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName, |
| getDefaultFirstprivateAddressSpace()); |
| cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage); |
| CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty); |
| CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr)); |
| OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( |
| VarName, Addr, VarSize, |
| OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage); |
| return Addr; |
| } |
| |
| void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD, |
| llvm::Constant *Addr) { |
| if (CGM.getLangOpts().OMPTargetTriples.empty() && |
| !CGM.getLangOpts().OpenMPIsDevice) |
| return; |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (!Res) { |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| // Register non-target variables being emitted in device code (debug info |
| // may cause this). |
| StringRef VarName = CGM.getMangledName(VD); |
| EmittedNonTargetVariables.try_emplace(VarName, Addr); |
| } |
| return; |
| } |
| // Register declare target variables. |
| OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags; |
| StringRef VarName; |
| CharUnits VarSize; |
| llvm::GlobalValue::LinkageTypes Linkage; |
| |
| if (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| !HasRequiresUnifiedSharedMemory) { |
| Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; |
| VarName = CGM.getMangledName(VD); |
| if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) { |
| VarSize = CGM.getContext().getTypeSizeInChars(VD->getType()); |
| assert(!VarSize.isZero() && "Expected non-zero size of the variable"); |
| } else { |
| VarSize = CharUnits::Zero(); |
| } |
| Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false); |
| // Temp solution to prevent optimizations of the internal variables. |
| if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) { |
| std::string RefName = getName({VarName, "ref"}); |
| if (!CGM.GetGlobalValue(RefName)) { |
| llvm::Constant *AddrRef = |
| getOrCreateInternalVariable(Addr->getType(), RefName); |
| auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef); |
| GVAddrRef->setConstant(/*Val=*/true); |
| GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage); |
| GVAddrRef->setInitializer(Addr); |
| CGM.addCompilerUsedGlobal(GVAddrRef); |
| } |
| } |
| } else { |
| assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| HasRequiresUnifiedSharedMemory)) && |
| "Declare target attribute must link or to with unified memory."); |
| if (*Res == OMPDeclareTargetDeclAttr::MT_Link) |
| Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink; |
| else |
| Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; |
| |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| VarName = Addr->getName(); |
| Addr = nullptr; |
| } else { |
| VarName = getAddrOfDeclareTargetVar(VD).getName(); |
| Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer()); |
| } |
| VarSize = CGM.getPointerSize(); |
| Linkage = llvm::GlobalValue::WeakAnyLinkage; |
| } |
| |
| OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( |
| VarName, Addr, VarSize, Flags, Linkage); |
| } |
| |
| bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { |
| if (isa<FunctionDecl>(GD.getDecl()) || |
| isa<OMPDeclareReductionDecl>(GD.getDecl())) |
| return emitTargetFunctions(GD); |
| |
| return emitTargetGlobalVariable(GD); |
| } |
| |
| void CGOpenMPRuntime::emitDeferredTargetDecls() const { |
| for (const VarDecl *VD : DeferredGlobalVariables) { |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (!Res) |
| continue; |
| if (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| !HasRequiresUnifiedSharedMemory) { |
| CGM.EmitGlobal(VD); |
| } else { |
| assert((*Res == OMPDeclareTargetDeclAttr::MT_Link || |
| (*Res == OMPDeclareTargetDeclAttr::MT_To && |
| HasRequiresUnifiedSharedMemory)) && |
| "Expected link clause or to clause with unified memory."); |
| (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); |
| } |
| } |
| } |
| |
| void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D) const { |
| assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && |
| " Expected target-based directive."); |
| } |
| |
| void CGOpenMPRuntime::checkArchForUnifiedAddressing( |
| const OMPRequiresDecl *D) { |
| for (const OMPClause *Clause : D->clauselists()) { |
| if (Clause->getClauseKind() == OMPC_unified_shared_memory) { |
| HasRequiresUnifiedSharedMemory = true; |
| break; |
| } |
| } |
| } |
| |
| bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD, |
| LangAS &AS) { |
| if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) |
| return false; |
| const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
| switch(A->getAllocatorType()) { |
| case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
| // Not supported, fallback to the default mem space. |
| case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
| case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
| case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
| case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
| case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
| case OMPAllocateDeclAttr::OMPConstMemAlloc: |
| case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
| AS = LangAS::Default; |
| return true; |
| case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
| llvm_unreachable("Expected predefined allocator for the variables with the " |
| "static storage."); |
| } |
| return false; |
| } |
| |
| bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const { |
| return HasRequiresUnifiedSharedMemory; |
| } |
| |
| CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII( |
| CodeGenModule &CGM) |
| : CGM(CGM) { |
| if (CGM.getLangOpts().OpenMPIsDevice) { |
| SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal; |
| CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false; |
| } |
| } |
| |
| CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() { |
| if (CGM.getLangOpts().OpenMPIsDevice) |
| CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal; |
| } |
| |
| bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) { |
| if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal) |
| return true; |
| |
| StringRef Name = CGM.getMangledName(GD); |
| const auto *D = cast<FunctionDecl>(GD.getDecl()); |
| // Do not to emit function if it is marked as declare target as it was already |
| // emitted. |
| if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) { |
| if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) { |
| if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name))) |
| return !F->isDeclaration(); |
| return false; |
| } |
| return true; |
| } |
| |
| return !AlreadyEmittedTargetFunctions.insert(Name).second; |
| } |
| |
| llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() { |
| // If we don't have entries or if we are emitting code for the device, we |
| // don't need to do anything. |
| if (CGM.getLangOpts().OMPTargetTriples.empty() || |
| CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice || |
| (OffloadEntriesInfoManager.empty() && |
| !HasEmittedDeclareTargetRegion && |
| !HasEmittedTargetRegion)) |
| return nullptr; |
| |
| // Create and register the function that handles the requires directives. |
| ASTContext &C = CGM.getContext(); |
| |
| llvm::Function *RequiresRegFn; |
| { |
| CodeGenFunction CGF(CGM); |
| const auto &FI = CGM.getTypes().arrangeNullaryFunction(); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); |
| std::string ReqName = getName({"omp_offloading", "requires_reg"}); |
| RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {}); |
| OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE; |
| // TODO: check for other requires clauses. |
| // The requires directive takes effect only when a target region is |
| // present in the compilation unit. Otherwise it is ignored and not |
| // passed to the runtime. This avoids the runtime from throwing an error |
| // for mismatching requires clauses across compilation units that don't |
| // contain at least 1 target region. |
| assert((HasEmittedTargetRegion || |
| HasEmittedDeclareTargetRegion || |
| !OffloadEntriesInfoManager.empty()) && |
| "Target or declare target region expected."); |
| if (HasRequiresUnifiedSharedMemory) |
| Flags = OMP_REQ_UNIFIED_SHARED_MEMORY; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires), |
| llvm::ConstantInt::get(CGM.Int64Ty, Flags)); |
| CGF.FinishFunction(); |
| } |
| return RequiresRegFn; |
| } |
| |
| void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| |
| // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); |
| llvm::Value *Args[] = { |
| RTLoc, |
| CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars |
| CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; |
| llvm::SmallVector<llvm::Value *, 16> RealArgs; |
| RealArgs.append(std::begin(Args), std::end(Args)); |
| RealArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| |
| llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams); |
| CGF.EmitRuntimeCall(RTLFn, RealArgs); |
| } |
| |
| void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, |
| const Expr *NumTeams, |
| const Expr *ThreadLimit, |
| SourceLocation Loc) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| |
| llvm::Value *NumTeamsVal = |
| NumTeams |
| ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), |
| CGF.CGM.Int32Ty, /* isSigned = */ true) |
| : CGF.Builder.getInt32(0); |
| |
| llvm::Value *ThreadLimitVal = |
| ThreadLimit |
| ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), |
| CGF.CGM.Int32Ty, /* isSigned = */ true) |
| : CGF.Builder.getInt32(0); |
| |
| // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) |
| llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, |
| ThreadLimitVal}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams), |
| PushNumTeamsArgs); |
| } |
| |
| void CGOpenMPRuntime::emitTargetDataCalls( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, |
| const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| // Action used to replace the default codegen action and turn privatization |
| // off. |
| PrePostActionTy NoPrivAction; |
| |
| // Generate the code for the opening of the data environment. Capture all the |
| // arguments of the runtime call by reference because they are used in the |
| // closing of the region. |
| auto &&BeginThenGen = [this, &D, Device, &Info, |
| &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) { |
| // Fill up the arrays with all the mapped variables. |
| MappableExprsHandler::MapBaseValuesArrayTy BasePointers; |
| MappableExprsHandler::MapValuesArrayTy Pointers; |
| MappableExprsHandler::MapValuesArrayTy Sizes; |
| MappableExprsHandler::MapFlagsArrayTy MapTypes; |
| |
| // Get map clause information. |
| MappableExprsHandler MCHandler(D, CGF); |
| MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); |
| |
| // Fill up the arrays and create the arguments. |
| emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); |
| |
| llvm::Value *BasePointersArrayArg = nullptr; |
| llvm::Value *PointersArrayArg = nullptr; |
| llvm::Value *SizesArrayArg = nullptr; |
| llvm::Value *MapTypesArrayArg = nullptr; |
| emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, |
| SizesArrayArg, MapTypesArrayArg, Info); |
| |
| // Emit device ID if any. |
| llvm::Value *DeviceID = nullptr; |
| if (Device) { |
| DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), |
| CGF.Int64Ty, /*isSigned=*/true); |
| } else { |
| DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); |
| } |
| |
| // Emit the number of elements in the offloading arrays. |
| llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); |
| |
| llvm::Value *OffloadingArgs[] = { |
| DeviceID, PointerNum, BasePointersArrayArg, |
| PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin), |
| OffloadingArgs); |
| |
| // If device pointer privatization is required, emit the body of the region |
| // here. It will have to be duplicated: with and without privatization. |
| if (!Info.CaptureDeviceAddrMap.empty()) |
| CodeGen(CGF); |
| }; |
| |
| // Generate code for the closing of the data region. |
| auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| assert(Info.isValid() && "Invalid data environment closing arguments."); |
| |
| llvm::Value *BasePointersArrayArg = nullptr; |
| llvm::Value *PointersArrayArg = nullptr; |
| llvm::Value *SizesArrayArg = nullptr; |
| llvm::Value *MapTypesArrayArg = nullptr; |
| emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, |
| SizesArrayArg, MapTypesArrayArg, Info); |
| |
| // Emit device ID if any. |
| llvm::Value *DeviceID = nullptr; |
| if (Device) { |
| DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), |
| CGF.Int64Ty, /*isSigned=*/true); |
| } else { |
| DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); |
| } |
| |
| // Emit the number of elements in the offloading arrays. |
| llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); |
| |
| llvm::Value *OffloadingArgs[] = { |
| DeviceID, PointerNum, BasePointersArrayArg, |
| PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end), |
| OffloadingArgs); |
| }; |
| |
| // If we need device pointer privatization, we need to emit the body of the |
| // region with no privatization in the 'else' branch of the conditional. |
| // Otherwise, we don't have to do anything. |
| auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| if (!Info.CaptureDeviceAddrMap.empty()) { |
| CodeGen.setAction(NoPrivAction); |
| CodeGen(CGF); |
| } |
| }; |
| |
| // We don't have to do anything to close the region if the if clause evaluates |
| // to false. |
| auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; |
| |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); |
| } else { |
| RegionCodeGenTy RCG(BeginThenGen); |
| RCG(CGF); |
| } |
| |
| // If we don't require privatization of device pointers, we emit the body in |
| // between the runtime calls. This avoids duplicating the body code. |
| if (Info.CaptureDeviceAddrMap.empty()) { |
| CodeGen.setAction(NoPrivAction); |
| CodeGen(CGF); |
| } |
| |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen); |
| } else { |
| RegionCodeGenTy RCG(EndThenGen); |
| RCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntime::emitTargetDataStandAloneCall( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, |
| const Expr *Device) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| assert((isa<OMPTargetEnterDataDirective>(D) || |
| isa<OMPTargetExitDataDirective>(D) || |
| isa<OMPTargetUpdateDirective>(D)) && |
| "Expecting either target enter, exit data, or update directives."); |
| |
| CodeGenFunction::OMPTargetDataInfo InputInfo; |
| llvm::Value *MapTypesArray = nullptr; |
| // Generate the code for the opening of the data environment. |
| auto &&ThenGen = [this, &D, Device, &InputInfo, |
| &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) { |
| // Emit device ID if any. |
| llvm::Value *DeviceID = nullptr; |
| if (Device) { |
| DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), |
| CGF.Int64Ty, /*isSigned=*/true); |
| } else { |
| DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); |
| } |
| |
| // Emit the number of elements in the offloading arrays. |
| llvm::Constant *PointerNum = |
| CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); |
| |
| llvm::Value *OffloadingArgs[] = {DeviceID, |
| PointerNum, |
| InputInfo.BasePointersArray.getPointer(), |
| InputInfo.PointersArray.getPointer(), |
| InputInfo.SizesArray.getPointer(), |
| MapTypesArray}; |
| |
| // Select the right runtime function call for each expected standalone |
| // directive. |
| const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); |
| OpenMPRTLFunction RTLFn; |
| switch (D.getDirectiveKind()) { |
| case OMPD_target_enter_data: |
| RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait |
| : OMPRTL__tgt_target_data_begin; |
| break; |
| case OMPD_target_exit_data: |
| RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait |
| : OMPRTL__tgt_target_data_end; |
| break; |
| case OMPD_target_update: |
| RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait |
| : OMPRTL__tgt_target_data_update; |
| break; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_target: |
| case OMPD_target_simd: |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_target_teams: |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| llvm_unreachable("Unexpected standalone target data directive."); |
| break; |
| } |
| CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs); |
| }; |
| |
| auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray]( |
| CodeGenFunction &CGF, PrePostActionTy &) { |
| // Fill up the arrays with all the mapped variables. |
| MappableExprsHandler::MapBaseValuesArrayTy BasePointers; |
| MappableExprsHandler::MapValuesArrayTy Pointers; |
| MappableExprsHandler::MapValuesArrayTy Sizes; |
| MappableExprsHandler::MapFlagsArrayTy MapTypes; |
| |
| // Get map clause information. |
| MappableExprsHandler MEHandler(D, CGF); |
| MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); |
| |
| TargetDataInfo Info; |
| // Fill up the arrays and create the arguments. |
| emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); |
| emitOffloadingArraysArgument(CGF, Info.BasePointersArray, |
| Info.PointersArray, Info.SizesArray, |
| Info.MapTypesArray, Info); |
| InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; |
| InputInfo.BasePointersArray = |
| Address(Info.BasePointersArray, CGM.getPointerAlign()); |
| InputInfo.PointersArray = |
| Address(Info.PointersArray, CGM.getPointerAlign()); |
| InputInfo.SizesArray = |
| Address(Info.SizesArray, CGM.getPointerAlign()); |
| MapTypesArray = Info.MapTypesArray; |
| if (D.hasClausesOfKind<OMPDependClause>()) |
| CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); |
| else |
| emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); |
| }; |
| |
| if (IfCond) { |
| emitOMPIfClause(CGF, IfCond, TargetThenGen, |
| [](CodeGenFunction &CGF, PrePostActionTy &) {}); |
| } else { |
| RegionCodeGenTy ThenRCG(TargetThenGen); |
| ThenRCG(CGF); |
| } |
| } |
| |
| namespace { |
| /// Kind of parameter in a function with 'declare simd' directive. |
| enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; |
| /// Attribute set of the parameter. |
| struct ParamAttrTy { |
| ParamKindTy Kind = Vector; |
| llvm::APSInt StrideOrArg; |
| llvm::APSInt Alignment; |
| }; |
| } // namespace |
| |
| static unsigned evaluateCDTSize(const FunctionDecl *FD, |
| ArrayRef<ParamAttrTy> ParamAttrs) { |
| // Every vector variant of a SIMD-enabled function has a vector length (VLEN). |
| // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument |
| // of that clause. The VLEN value must be power of 2. |
| // In other case the notion of the function`s "characteristic data type" (CDT) |
| // is used to compute the vector length. |
| // CDT is defined in the following order: |
| // a) For non-void function, the CDT is the return type. |
| // b) If the function has any non-uniform, non-linear parameters, then the |
| // CDT is the type of the first such parameter. |
| // c) If the CDT determined by a) or b) above is struct, union, or class |
| // type which is pass-by-value (except for the type that maps to the |
| // built-in complex data type), the characteristic data type is int. |
| // d) If none of the above three cases is applicable, the CDT is int. |
| // The VLEN is then determined based on the CDT and the size of vector |
| // register of that ISA for which current vector version is generated. The |
| // VLEN is computed using the formula below: |
| // VLEN = sizeof(vector_register) / sizeof(CDT), |
| // where vector register size specified in section 3.2.1 Registers and the |
| // Stack Frame of original AMD64 ABI document. |
| QualType RetType = FD->getReturnType(); |
| if (RetType.isNull()) |
| return 0; |
| ASTContext &C = FD->getASTContext(); |
| QualType CDT; |
| if (!RetType.isNull() && !RetType->isVoidType()) { |
| CDT = RetType; |
| } else { |
| unsigned Offset = 0; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (ParamAttrs[Offset].Kind == Vector) |
| CDT = C.getPointerType(C.getRecordType(MD->getParent())); |
| ++Offset; |
| } |
| if (CDT.isNull()) { |
| for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { |
| if (ParamAttrs[I + Offset].Kind == Vector) { |
| CDT = FD->getParamDecl(I)->getType(); |
| break; |
| } |
| } |
| } |
| } |
| if (CDT.isNull()) |
| CDT = C.IntTy; |
| CDT = CDT->getCanonicalTypeUnqualified(); |
| if (CDT->isRecordType() || CDT->isUnionType()) |
| CDT = C.IntTy; |
| return C.getTypeSize(CDT); |
| } |
| |
| static void |
| emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, |
| const llvm::APSInt &VLENVal, |
| ArrayRef<ParamAttrTy> ParamAttrs, |
| OMPDeclareSimdDeclAttr::BranchStateTy State) { |
| struct ISADataTy { |
| char ISA; |
| unsigned VecRegSize; |
| }; |
| ISADataTy ISAData[] = { |
| { |
| 'b', 128 |
| }, // SSE |
| { |
| 'c', 256 |
| }, // AVX |
| { |
| 'd', 256 |
| }, // AVX2 |
| { |
| 'e', 512 |
| }, // AVX512 |
| }; |
| llvm::SmallVector<char, 2> Masked; |
| switch (State) { |
| case OMPDeclareSimdDeclAttr::BS_Undefined: |
| Masked.push_back('N'); |
| Masked.push_back('M'); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Notinbranch: |
| Masked.push_back('N'); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Inbranch: |
| Masked.push_back('M'); |
| break; |
| } |
| for (char Mask : Masked) { |
| for (const ISADataTy &Data : ISAData) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << "_ZGV" << Data.ISA << Mask; |
| if (!VLENVal) { |
| unsigned NumElts = evaluateCDTSize(FD, ParamAttrs); |
| assert(NumElts && "Non-zero simdlen/cdtsize expected"); |
| Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts); |
| } else { |
| Out << VLENVal; |
| } |
| for (const ParamAttrTy &ParamAttr : ParamAttrs) { |
| switch (ParamAttr.Kind){ |
| case LinearWithVarStride: |
| Out << 's' << ParamAttr.StrideOrArg; |
| break; |
| case Linear: |
| Out << 'l'; |
| if (!!ParamAttr.StrideOrArg) |
| Out << ParamAttr.StrideOrArg; |
| break; |
| case Uniform: |
| Out << 'u'; |
| break; |
| case Vector: |
| Out << 'v'; |
| break; |
| } |
| if (!!ParamAttr.Alignment) |
| Out << 'a' << ParamAttr.Alignment; |
| } |
| Out << '_' << Fn->getName(); |
| Fn->addFnAttr(Out.str()); |
| } |
| } |
| } |
| |
| // This are the Functions that are needed to mangle the name of the |
| // vector functions generated by the compiler, according to the rules |
| // defined in the "Vector Function ABI specifications for AArch64", |
| // available at |
| // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi. |
| |
| /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI. |
| /// |
| /// TODO: Need to implement the behavior for reference marked with a |
| /// var or no linear modifiers (1.b in the section). For this, we |
| /// need to extend ParamKindTy to support the linear modifiers. |
| static bool getAArch64MTV(QualType QT, ParamKindTy Kind) { |
| QT = QT.getCanonicalType(); |
| |
| if (QT->isVoidType()) |
| return false; |
| |
| if (Kind == ParamKindTy::Uniform) |
| return false; |
| |
| if (Kind == ParamKindTy::Linear) |
| return false; |
| |
| // TODO: Handle linear references with modifiers |
| |
| if (Kind == ParamKindTy::LinearWithVarStride) |
| return false; |
| |
| return true; |
| } |
| |
| /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI. |
| static bool getAArch64PBV(QualType QT, ASTContext &C) { |
| QT = QT.getCanonicalType(); |
| unsigned Size = C.getTypeSize(QT); |
| |
| // Only scalars and complex within 16 bytes wide set PVB to true. |
| if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128) |
| return false; |
| |
| if (QT->isFloatingType()) |
| return true; |
| |
| if (QT->isIntegerType()) |
| return true; |
| |
| if (QT->isPointerType()) |
| return true; |
| |
| // TODO: Add support for complex types (section 3.1.2, item 2). |
| |
| return false; |
| } |
| |
| /// Computes the lane size (LS) of a return type or of an input parameter, |
| /// as defined by `LS(P)` in 3.2.1 of the AAVFABI. |
| /// TODO: Add support for references, section 3.2.1, item 1. |
| static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) { |
| if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) { |
| QualType PTy = QT.getCanonicalType()->getPointeeType(); |
| if (getAArch64PBV(PTy, C)) |
| return C.getTypeSize(PTy); |
| } |
| if (getAArch64PBV(QT, C)) |
| return C.getTypeSize(QT); |
| |
| return C.getTypeSize(C.getUIntPtrType()); |
| } |
| |
| // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the |
| // signature of the scalar function, as defined in 3.2.2 of the |
| // AAVFABI. |
| static std::tuple<unsigned, unsigned, bool> |
| getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) { |
| QualType RetType = FD->getReturnType().getCanonicalType(); |
| |
| ASTContext &C = FD->getASTContext(); |
| |
| bool OutputBecomesInput = false; |
| |
| llvm::SmallVector<unsigned, 8> Sizes; |
| if (!RetType->isVoidType()) { |
| Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C)); |
| if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {})) |
| OutputBecomesInput = true; |
| } |
| for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { |
| QualType QT = FD->getParamDecl(I)->getType().getCanonicalType(); |
| Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C)); |
| } |
| |
| assert(!Sizes.empty() && "Unable to determine NDS and WDS."); |
| // The LS of a function parameter / return value can only be a power |
| // of 2, starting from 8 bits, up to 128. |
| assert(std::all_of(Sizes.begin(), Sizes.end(), |
| [](unsigned Size) { |
| return Size == 8 || Size == 16 || Size == 32 || |
| Size == 64 || Size == 128; |
| }) && |
| "Invalid size"); |
| |
| return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)), |
| *std::max_element(std::begin(Sizes), std::end(Sizes)), |
| OutputBecomesInput); |
| } |
| |
| /// Mangle the parameter part of the vector function name according to |
| /// their OpenMP classification. The mangling function is defined in |
| /// section 3.5 of the AAVFABI. |
| static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| for (const auto &ParamAttr : ParamAttrs) { |
| switch (ParamAttr.Kind) { |
| case LinearWithVarStride: |
| Out << "ls" << ParamAttr.StrideOrArg; |
| break; |
| case Linear: |
| Out << 'l'; |
| // Don't print the step value if it is not present or if it is |
| // equal to 1. |
| if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1) |
| Out << ParamAttr.StrideOrArg; |
| break; |
| case Uniform: |
| Out << 'u'; |
| break; |
| case Vector: |
| Out << 'v'; |
| break; |
| } |
| |
| if (!!ParamAttr.Alignment) |
| Out << 'a' << ParamAttr.Alignment; |
| } |
| |
| return Out.str(); |
| } |
| |
| // Function used to add the attribute. The parameter `VLEN` is |
| // templated to allow the use of "x" when targeting scalable functions |
| // for SVE. |
| template <typename T> |
| static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix, |
| char ISA, StringRef ParSeq, |
| StringRef MangledName, bool OutputBecomesInput, |
| llvm::Function *Fn) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << Prefix << ISA << LMask << VLEN; |
| if (OutputBecomesInput) |
| Out << "v"; |
| Out << ParSeq << "_" << MangledName; |
| Fn->addFnAttr(Out.str()); |
| } |
| |
| // Helper function to generate the Advanced SIMD names depending on |
| // the value of the NDS when simdlen is not present. |
| static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask, |
| StringRef Prefix, char ISA, |
| StringRef ParSeq, StringRef MangledName, |
| bool OutputBecomesInput, |
| llvm::Function *Fn) { |
| switch (NDS) { |
| case 8: |
| addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case 16: |
| addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case 32: |
| addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case 64: |
| case 128: |
| addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| default: |
| llvm_unreachable("Scalar type is too wide."); |
| } |
| } |
| |
| /// Emit vector function attributes for AArch64, as defined in the AAVFABI. |
| static void emitAArch64DeclareSimdFunction( |
| CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN, |
| ArrayRef<ParamAttrTy> ParamAttrs, |
| OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName, |
| char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) { |
| |
| // Get basic data for building the vector signature. |
| const auto Data = getNDSWDS(FD, ParamAttrs); |
| const unsigned NDS = std::get<0>(Data); |
| const unsigned WDS = std::get<1>(Data); |
| const bool OutputBecomesInput = std::get<2>(Data); |
| |
| // Check the values provided via `simdlen` by the user. |
| // 1. A `simdlen(1)` doesn't produce vector signatures, |
| if (UserVLEN == 1) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Warning, |
| "The clause simdlen(1) has no effect when targeting aarch64."); |
| CGM.getDiags().Report(SLoc, DiagID); |
| return; |
| } |
| |
| // 2. Section 3.3.1, item 1: user input must be a power of 2 for |
| // Advanced SIMD output. |
| if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Warning, "The value specified in simdlen must be a " |
| "power of 2 when targeting Advanced SIMD."); |
| CGM.getDiags().Report(SLoc, DiagID); |
| return; |
| } |
| |
| // 3. Section 3.4.1. SVE fixed lengh must obey the architectural |
| // limits. |
| if (ISA == 's' && UserVLEN != 0) { |
| if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) { |
| unsigned DiagID = CGM.getDiags().getCustomDiagID( |
| DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit " |
| "lanes in the architectural constraints " |
| "for SVE (min is 128-bit, max is " |
| "2048-bit, by steps of 128-bit)"); |
| CGM.getDiags().Report(SLoc, DiagID) << WDS; |
| return; |
| } |
| } |
| |
| // Sort out parameter sequence. |
| const std::string ParSeq = mangleVectorParameters(ParamAttrs); |
| StringRef Prefix = "_ZGV"; |
| // Generate simdlen from user input (if any). |
| if (UserVLEN) { |
| if (ISA == 's') { |
| // SVE generates only a masked function. |
| addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| } else { |
| assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); |
| // Advanced SIMD generates one or two functions, depending on |
| // the `[not]inbranch` clause. |
| switch (State) { |
| case OMPDeclareSimdDeclAttr::BS_Undefined: |
| addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Notinbranch: |
| addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Inbranch: |
| addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| } |
| } |
| } else { |
| // If no user simdlen is provided, follow the AAVFABI rules for |
| // generating the vector length. |
| if (ISA == 's') { |
| // SVE, section 3.4.1, item 1. |
| addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| } else { |
| assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); |
| // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or |
| // two vector names depending on the use of the clause |
| // `[not]inbranch`. |
| switch (State) { |
| case OMPDeclareSimdDeclAttr::BS_Undefined: |
| addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Notinbranch: |
| addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| case OMPDeclareSimdDeclAttr::BS_Inbranch: |
| addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, |
| OutputBecomesInput, Fn); |
| break; |
| } |
| } |
| } |
| } |
| |
| void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, |
| llvm::Function *Fn) { |
| ASTContext &C = CGM.getContext(); |
| FD = FD->getMostRecentDecl(); |
| // Map params to their positions in function decl. |
| llvm::DenseMap<const Decl *, unsigned> ParamPositions; |
| if (isa<CXXMethodDecl>(FD)) |
| ParamPositions.try_emplace(FD, 0); |
| unsigned ParamPos = ParamPositions.size(); |
| for (const ParmVarDecl *P : FD->parameters()) { |
| ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos); |
| ++ParamPos; |
| } |
| while (FD) { |
| for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) { |
| llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size()); |
| // Mark uniform parameters. |
| for (const Expr *E : Attr->uniforms()) { |
| E = E->IgnoreParenImpCasts(); |
| unsigned Pos; |
| if (isa<CXXThisExpr>(E)) { |
| Pos = ParamPositions[FD]; |
| } else { |
| const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) |
| ->getCanonicalDecl(); |
| Pos = ParamPositions[PVD]; |
| } |
| ParamAttrs[Pos].Kind = Uniform; |
| } |
| // Get alignment info. |
| auto NI = Attr->alignments_begin(); |
| for (const Expr *E : Attr->aligneds()) { |
| E = E->IgnoreParenImpCasts(); |
| unsigned Pos; |
| QualType ParmTy; |
| if (isa<CXXThisExpr>(E)) { |
| Pos = ParamPositions[FD]; |
| ParmTy = E->getType(); |
| } else { |
| const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) |
| ->getCanonicalDecl(); |
| Pos = ParamPositions[PVD]; |
| ParmTy = PVD->getType(); |
| } |
| ParamAttrs[Pos].Alignment = |
| (*NI) |
| ? (*NI)->EvaluateKnownConstInt(C) |
| : llvm::APSInt::getUnsigned( |
| C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) |
| .getQuantity()); |
| ++NI; |
| } |
| // Mark linear parameters. |
| auto SI = Attr->steps_begin(); |
| auto MI = Attr->modifiers_begin(); |
| for (const Expr *E : Attr->linears()) { |
| E = E->IgnoreParenImpCasts(); |
| unsigned Pos; |
| if (isa<CXXThisExpr>(E)) { |
| Pos = ParamPositions[FD]; |
| } else { |
| const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) |
| ->getCanonicalDecl(); |
| Pos = ParamPositions[PVD]; |
| } |
| ParamAttrTy &ParamAttr = ParamAttrs[Pos]; |
| ParamAttr.Kind = Linear; |
| if (*SI) { |
| Expr::EvalResult Result; |
| if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) { |
| if (const auto *DRE = |
| cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) { |
| if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) { |
| ParamAttr.Kind = LinearWithVarStride; |
| ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( |
| ParamPositions[StridePVD->getCanonicalDecl()]); |
| } |
| } |
| } else { |
| ParamAttr.StrideOrArg = Result.Val.getInt(); |
| } |
| } |
| ++SI; |
| ++MI; |
| } |
| llvm::APSInt VLENVal; |
| SourceLocation ExprLoc; |
| const Expr *VLENExpr = Attr->getSimdlen(); |
| if (VLENExpr) { |
| VLENVal = VLENExpr->EvaluateKnownConstInt(C); |
| ExprLoc = VLENExpr->getExprLoc(); |
| } |
| OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); |
| if (CGM.getTriple().getArch() == llvm::Triple::x86 || |
| CGM.getTriple().getArch() == llvm::Triple::x86_64) { |
| emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); |
| } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) { |
| unsigned VLEN = VLENVal.getExtValue(); |
| StringRef MangledName = Fn->getName(); |
| if (CGM.getTarget().hasFeature("sve")) |
| emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, |
| MangledName, 's', 128, Fn, ExprLoc); |
| if (CGM.getTarget().hasFeature("neon")) |
| emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, |
| MangledName, 'n', 128, Fn, ExprLoc); |
| } |
| } |
| FD = FD->getPreviousDecl(); |
| } |
| } |
| |
| namespace { |
| /// Cleanup action for doacross support. |
| class DoacrossCleanupTy final : public EHScopeStack::Cleanup { |
| public: |
| static const int DoacrossFinArgs = 2; |
| |
| private: |
| llvm::FunctionCallee RTLFn; |
| llvm::Value *Args[DoacrossFinArgs]; |
| |
| public: |
| DoacrossCleanupTy(llvm::FunctionCallee RTLFn, |
| ArrayRef<llvm::Value *> CallArgs) |
| : RTLFn(RTLFn) { |
| assert(CallArgs.size() == DoacrossFinArgs); |
| std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); |
| } |
| void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| CGF.EmitRuntimeCall(RTLFn, Args); |
| } |
| }; |
| } // namespace |
| |
| void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, |
| const OMPLoopDirective &D, |
| ArrayRef<Expr *> NumIterations) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| ASTContext &C = CGM.getContext(); |
| QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); |
| RecordDecl *RD; |
| if (KmpDimTy.isNull()) { |
| // Build struct kmp_dim { // loop bounds info casted to kmp_int64 |
| // kmp_int64 lo; // lower |
| // kmp_int64 up; // upper |
| // kmp_int64 st; // stride |
| // }; |
| RD = C.buildImplicitRecord("kmp_dim"); |
| RD->startDefinition(); |
| addFieldToRecordDecl(C, RD, Int64Ty); |
| addFieldToRecordDecl(C, RD, Int64Ty); |
| addFieldToRecordDecl(C, RD, Int64Ty); |
| RD->completeDefinition(); |
| KmpDimTy = C.getRecordType(RD); |
| } else { |
| RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl()); |
| } |
| llvm::APInt Size(/*numBits=*/32, NumIterations.size()); |
| QualType ArrayTy = |
| C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0); |
| |
| Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); |
| CGF.EmitNullInitialization(DimsAddr, ArrayTy); |
| enum { LowerFD = 0, UpperFD, StrideFD }; |
| // Fill dims with data. |
| for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) { |
| LValue DimsLVal = CGF.MakeAddrLValue( |
| CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy); |
| // dims.upper = num_iterations; |
| LValue UpperLVal = CGF.EmitLValueForField( |
| DimsLVal, *std::next(RD->field_begin(), UpperFD)); |
| llvm::Value *NumIterVal = |
| CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]), |
| D.getNumIterations()->getType(), Int64Ty, |
| D.getNumIterations()->getExprLoc()); |
| CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); |
| // dims.stride = 1; |
| LValue StrideLVal = CGF.EmitLValueForField( |
| DimsLVal, *std::next(RD->field_begin(), StrideFD)); |
| CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), |
| StrideLVal); |
| } |
| |
| // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, |
| // kmp_int32 num_dims, struct kmp_dim * dims); |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, D.getBeginLoc()), |
| getThreadID(CGF, D.getBeginLoc()), |
| llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()), |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(), |
| CGM.VoidPtrTy)}; |
| |
| llvm::FunctionCallee RTLFn = |
| createRuntimeFunction(OMPRTL__kmpc_doacross_init); |
| CGF.EmitRuntimeCall(RTLFn, Args); |
| llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { |
| emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())}; |
| llvm::FunctionCallee FiniRTLFn = |
| createRuntimeFunction(OMPRTL__kmpc_doacross_fini); |
| CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn, |
| llvm::makeArrayRef(FiniArgs)); |
| } |
| |
| void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, |
| const OMPDependClause *C) { |
| QualType Int64Ty = |
| CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); |
| llvm::APInt Size(/*numBits=*/32, C->getNumLoops()); |
| QualType ArrayTy = CGM.getContext().getConstantArrayType( |
| Int64Ty, Size, nullptr, ArrayType::Normal, 0); |
| Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr"); |
| for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) { |
| const Expr *CounterVal = C->getLoopData(I); |
| assert(CounterVal); |
| llvm::Value *CntVal = CGF.EmitScalarConversion( |
| CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, |
| CounterVal->getExprLoc()); |
| CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I), |
| /*Volatile=*/false, Int64Ty); |
| } |
| llvm::Value *Args[] = { |
| emitUpdateLocation(CGF, C->getBeginLoc()), |
| getThreadID(CGF, C->getBeginLoc()), |
| CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()}; |
| llvm::FunctionCallee RTLFn; |
| if (C->getDependencyKind() == OMPC_DEPEND_source) { |
| RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post); |
| } else { |
| assert(C->getDependencyKind() == OMPC_DEPEND_sink); |
| RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait); |
| } |
| CGF.EmitRuntimeCall(RTLFn, Args); |
| } |
| |
| void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc, |
| llvm::FunctionCallee Callee, |
| ArrayRef<llvm::Value *> Args) const { |
| assert(Loc.isValid() && "Outlined function call location must be valid."); |
| auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); |
| |
| if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) { |
| if (Fn->doesNotThrow()) { |
| CGF.EmitNounwindRuntimeCall(Fn, Args); |
| return; |
| } |
| } |
| CGF.EmitRuntimeCall(Callee, Args); |
| } |
| |
| void CGOpenMPRuntime::emitOutlinedFunctionCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, |
| ArrayRef<llvm::Value *> Args) const { |
| emitCall(CGF, Loc, OutlinedFn, Args); |
| } |
| |
| void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD)) |
| HasEmittedDeclareTargetRegion = true; |
| } |
| |
| Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF, |
| const VarDecl *NativeParam, |
| const VarDecl *TargetParam) const { |
| return CGF.GetAddrOfLocalVar(NativeParam); |
| } |
| |
| namespace { |
| /// Cleanup action for allocate support. |
| class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { |
| public: |
| static const int CleanupArgs = 3; |
| |
| private: |
| llvm::FunctionCallee RTLFn; |
| llvm::Value *Args[CleanupArgs]; |
| |
| public: |
| OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, |
| ArrayRef<llvm::Value *> CallArgs) |
| : RTLFn(RTLFn) { |
| assert(CallArgs.size() == CleanupArgs && |
| "Size of arguments does not match."); |
| std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); |
| } |
| void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| CGF.EmitRuntimeCall(RTLFn, Args); |
| } |
| }; |
| } // namespace |
| |
| Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF, |
| const VarDecl *VD) { |
| if (!VD) |
| return Address::invalid(); |
| const VarDecl *CVD = VD->getCanonicalDecl(); |
| if (!CVD->hasAttr<OMPAllocateDeclAttr>()) |
| return Address::invalid(); |
| const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); |
| // Use the default allocation. |
| if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc && |
| !AA->getAllocator()) |
| return Address::invalid(); |
| llvm::Value *Size; |
| CharUnits Align = CGM.getContext().getDeclAlign(CVD); |
| if (CVD->getType()->isVariablyModifiedType()) { |
| Size = CGF.getTypeSize(CVD->getType()); |
| // Align the size: ((size + align - 1) / align) * align |
| Size = CGF.Builder.CreateNUWAdd( |
| Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); |
| Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); |
| Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); |
| } else { |
| CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); |
| Size = CGM.getSize(Sz.alignTo(Align)); |
| } |
| llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc()); |
| assert(AA->getAllocator() && |
| "Expected allocator expression for non-default allocator."); |
| llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); |
| // According to the standard, the original allocator type is a enum (integer). |
| // Convert to pointer type, if required. |
| if (Allocator->getType()->isIntegerTy()) |
| Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); |
| else if (Allocator->getType()->isPointerTy()) |
| Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, |
| CGM.VoidPtrTy); |
| llvm::Value *Args[] = {ThreadID, Size, Allocator}; |
| |
| llvm::Value *Addr = |
| CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args, |
| CVD->getName() + ".void.addr"); |
| llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr, |
| Allocator}; |
| llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free); |
| |
| CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn, |
| llvm::makeArrayRef(FiniArgs)); |
| Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| Addr, |
| CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), |
| CVD->getName() + ".addr"); |
| return Address(Addr, Align); |
| } |
| |
| /// Checks current context and returns true if it matches the context selector. |
| template <OMPDeclareVariantAttr::CtxSelectorSetType CtxSet, |
| OMPDeclareVariantAttr::CtxSelectorType Ctx> |
| static bool checkContext(const OMPDeclareVariantAttr *A) { |
| assert(CtxSet != OMPDeclareVariantAttr::CtxSetUnknown && |
| Ctx != OMPDeclareVariantAttr::CtxUnknown && |
| "Unknown context selector or context selector set."); |
| return false; |
| } |
| |
| /// Checks for implementation={vendor(<vendor>)} context selector. |
| /// \returns true iff <vendor>="llvm", false otherwise. |
| template <> |
| bool checkContext<OMPDeclareVariantAttr::CtxSetImplementation, |
| OMPDeclareVariantAttr::CtxVendor>( |
| const OMPDeclareVariantAttr *A) { |
| return llvm::all_of(A->implVendors(), |
| [](StringRef S) { return !S.compare_lower("llvm"); }); |
| } |
| |
| static bool greaterCtxScore(ASTContext &Ctx, const Expr *LHS, const Expr *RHS) { |
| // If both scores are unknown, choose the very first one. |
| if (!LHS && !RHS) |
| return true; |
| // If only one is known, return this one. |
| if (LHS && !RHS) |
| return true; |
| if (!LHS && RHS) |
| return false; |
| llvm::APSInt LHSVal = LHS->EvaluateKnownConstInt(Ctx); |
| llvm::APSInt RHSVal = RHS->EvaluateKnownConstInt(Ctx); |
| return llvm::APSInt::compareValues(LHSVal, RHSVal) >= 0; |
| } |
| |
| namespace { |
| /// Comparator for the priority queue for context selector. |
| class OMPDeclareVariantAttrComparer |
| : public std::greater<const OMPDeclareVariantAttr *> { |
| private: |
| ASTContext &Ctx; |
| |
| public: |
| OMPDeclareVariantAttrComparer(ASTContext &Ctx) : Ctx(Ctx) {} |
| bool operator()(const OMPDeclareVariantAttr *LHS, |
| const OMPDeclareVariantAttr *RHS) const { |
| const Expr *LHSExpr = nullptr; |
| const Expr *RHSExpr = nullptr; |
| if (LHS->getCtxScore() == OMPDeclareVariantAttr::ScoreSpecified) |
| LHSExpr = LHS->getScore(); |
| if (RHS->getCtxScore() == OMPDeclareVariantAttr::ScoreSpecified) |
| RHSExpr = RHS->getScore(); |
| return greaterCtxScore(Ctx, LHSExpr, RHSExpr); |
| } |
| }; |
| } // anonymous namespace |
| |
| /// Finds the variant function that matches current context with its context |
| /// selector. |
| static const FunctionDecl *getDeclareVariantFunction(ASTContext &Ctx, |
| const FunctionDecl *FD) { |
| if (!FD->hasAttrs() || !FD->hasAttr<OMPDeclareVariantAttr>()) |
| return FD; |
| // Iterate through all DeclareVariant attributes and check context selectors. |
| auto &&Comparer = [&Ctx](const OMPDeclareVariantAttr *LHS, |
| const OMPDeclareVariantAttr *RHS) { |
| const Expr *LHSExpr = nullptr; |
| const Expr *RHSExpr = nullptr; |
| if (LHS->getCtxScore() == OMPDeclareVariantAttr::ScoreSpecified) |
| LHSExpr = LHS->getScore(); |
| if (RHS->getCtxScore() == OMPDeclareVariantAttr::ScoreSpecified) |
| RHSExpr = RHS->getScore(); |
| return greaterCtxScore(Ctx, LHSExpr, RHSExpr); |
| }; |
| const OMPDeclareVariantAttr *TopMostAttr = nullptr; |
| for (const auto *A : FD->specific_attrs<OMPDeclareVariantAttr>()) { |
| const OMPDeclareVariantAttr *SelectedAttr = nullptr; |
| switch (A->getCtxSelectorSet()) { |
| case OMPDeclareVariantAttr::CtxSetImplementation: |
| switch (A->getCtxSelector()) { |
| case OMPDeclareVariantAttr::CtxVendor: |
| if (checkContext<OMPDeclareVariantAttr::CtxSetImplementation, |
| OMPDeclareVariantAttr::CtxVendor>(A)) |
| SelectedAttr = A; |
| break; |
| case OMPDeclareVariantAttr::CtxUnknown: |
| llvm_unreachable( |
| "Unknown context selector in implementation selector set."); |
| } |
| break; |
| case OMPDeclareVariantAttr::CtxSetUnknown: |
| llvm_unreachable("Unknown context selector set."); |
| } |
| // If the attribute matches the context, find the attribute with the highest |
| // score. |
| if (SelectedAttr && (!TopMostAttr || !Comparer(TopMostAttr, SelectedAttr))) |
| TopMostAttr = SelectedAttr; |
| } |
| if (!TopMostAttr) |
| return FD; |
| return cast<FunctionDecl>( |
| cast<DeclRefExpr>(TopMostAttr->getVariantFuncRef()->IgnoreParenImpCasts()) |
| ->getDecl()); |
| } |
| |
| bool CGOpenMPRuntime::emitDeclareVariant(GlobalDecl GD, bool IsForDefinition) { |
| const auto *D = cast<FunctionDecl>(GD.getDecl()); |
| // If the original function is defined already, use its definition. |
| StringRef MangledName = CGM.getMangledName(GD); |
| llvm::GlobalValue *Orig = CGM.GetGlobalValue(MangledName); |
| if (Orig && !Orig->isDeclaration()) |
| return false; |
| const FunctionDecl *NewFD = getDeclareVariantFunction(CGM.getContext(), D); |
| // Emit original function if it does not have declare variant attribute or the |
| // context does not match. |
| if (NewFD == D) |
| return false; |
| GlobalDecl NewGD = GD.getWithDecl(NewFD); |
| if (tryEmitDeclareVariant(NewGD, GD, Orig, IsForDefinition)) { |
| DeferredVariantFunction.erase(D); |
| return true; |
| } |
| DeferredVariantFunction.insert(std::make_pair(D, std::make_pair(NewGD, GD))); |
| return true; |
| } |
| |
| llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| const VarDecl *PartIDVar, const VarDecl *TaskTVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, |
| bool Tied, unsigned &NumberOfParts) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, |
| const Expr *IfCond) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitCriticalRegion( |
| CodeGenFunction &CGF, StringRef CriticalName, |
| const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, |
| const Expr *Hint) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &MasterOpGen, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskgroupRegion( |
| CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitSingleRegion( |
| CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, |
| SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars, |
| ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs, |
| ArrayRef<const Expr *> AssignmentOps) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF, |
| const RegionCodeGenTy &OrderedOpGen, |
| SourceLocation Loc, |
| bool IsThreads) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind Kind, |
| bool EmitChecks, |
| bool ForceSimpleCall) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitForDispatchInit( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, |
| bool Ordered, const DispatchRTInput &DispatchValues) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitForStaticInit( |
| CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind, |
| const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitDistributeStaticInit( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| unsigned IVSize, |
| bool IVSigned) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind DKind) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| unsigned IVSize, bool IVSigned, |
| Address IL, Address LB, |
| Address UB, Address ST) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF, |
| llvm::Value *NumThreads, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF, |
| OpenMPProcBindClauseKind ProcBind, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, |
| const VarDecl *VD, |
| Address VDAddr, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition( |
| const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, |
| CodeGenFunction *CGF) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate( |
| CodeGenFunction &CGF, QualType VarType, StringRef Name) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF, |
| ArrayRef<const Expr *> Vars, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, |
| const OMPExecutableDirective &D, |
| llvm::Function *TaskFunction, |
| QualType SharedsTy, Address Shareds, |
| const Expr *IfCond, |
| const OMPTaskDataTy &Data) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskLoopCall( |
| CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, |
| llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, |
| const Expr *IfCond, const OMPTaskDataTy &Data) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitReduction( |
| CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
| ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { |
| assert(Options.SimpleReduction && "Only simple reduction is expected."); |
| CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, |
| ReductionOps, Options); |
| } |
| |
| llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit( |
| CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, |
| ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| ReductionCodeGen &RCG, |
| unsigned N) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| llvm::Value *ReductionsPtr, |
| LValue SharedLVal) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitCancellationPointCall( |
| CodeGenFunction &CGF, SourceLocation Loc, |
| OpenMPDirectiveKind CancelRegion) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF, |
| SourceLocation Loc, const Expr *IfCond, |
| OpenMPDirectiveKind CancelRegion) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTargetCall( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, |
| llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, |
| const Expr *Device, |
| llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, |
| const OMPLoopDirective &D)> |
| SizeEmitter) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) { |
| return false; |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF, |
| const Expr *NumTeams, |
| const Expr *ThreadLimit, |
| SourceLocation Loc) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTargetDataCalls( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, |
| const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, |
| const Expr *Device) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF, |
| const OMPLoopDirective &D, |
| ArrayRef<Expr *> NumIterations) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, |
| const OMPDependClause *C) { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| const VarDecl * |
| CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD, |
| const VarDecl *NativeParam) const { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |
| |
| Address |
| CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF, |
| const VarDecl *NativeParam, |
| const VarDecl *TargetParam) const { |
| llvm_unreachable("Not supported in SIMD-only mode"); |
| } |