| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements decl-related attribute processing. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Sema/SemaInternal.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/Basic/CharInfo.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Sema/DeclSpec.h" | 
 | #include "clang/Sema/DelayedDiagnostic.h" | 
 | #include "clang/Sema/Lookup.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | using namespace clang; | 
 | using namespace sema; | 
 |  | 
 | namespace AttributeLangSupport { | 
 |   enum LANG { | 
 |     C, | 
 |     Cpp, | 
 |     ObjC | 
 |   }; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Helper functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isFunctionOrMethod - Return true if the given decl has function | 
 | /// type (function or function-typed variable) or an Objective-C | 
 | /// method. | 
 | static bool isFunctionOrMethod(const Decl *D) { | 
 |   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); | 
 | } | 
 |  | 
 | /// Return true if the given decl has a declarator that should have | 
 | /// been processed by Sema::GetTypeForDeclarator. | 
 | static bool hasDeclarator(const Decl *D) { | 
 |   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. | 
 |   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || | 
 |          isa<ObjCPropertyDecl>(D); | 
 | } | 
 |  | 
 | /// hasFunctionProto - Return true if the given decl has a argument | 
 | /// information. This decl should have already passed | 
 | /// isFunctionOrMethod or isFunctionOrMethodOrBlock. | 
 | static bool hasFunctionProto(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return isa<FunctionProtoType>(FnTy); | 
 |   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); | 
 | } | 
 |  | 
 | /// getFunctionOrMethodNumParams - Return number of function or method | 
 | /// parameters. It is an error to call this on a K&R function (use | 
 | /// hasFunctionProto first). | 
 | static unsigned getFunctionOrMethodNumParams(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->getNumParams(); | 
 |   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->getNumParams(); | 
 |   return cast<ObjCMethodDecl>(D)->param_size(); | 
 | } | 
 |  | 
 | static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->getParamType(Idx); | 
 |   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->getParamDecl(Idx)->getType(); | 
 |  | 
 |   return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType(); | 
 | } | 
 |  | 
 | static QualType getFunctionOrMethodResultType(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->getReturnType(); | 
 |   return cast<ObjCMethodDecl>(D)->getReturnType(); | 
 | } | 
 |  | 
 | static bool isFunctionOrMethodVariadic(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) { | 
 |     const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy); | 
 |     return proto->isVariadic(); | 
 |   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->isVariadic(); | 
 |   else { | 
 |     return cast<ObjCMethodDecl>(D)->isVariadic(); | 
 |   } | 
 | } | 
 |  | 
 | static bool isInstanceMethod(const Decl *D) { | 
 |   if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) | 
 |     return MethodDecl->isInstance(); | 
 |   return false; | 
 | } | 
 |  | 
 | static inline bool isNSStringType(QualType T, ASTContext &Ctx) { | 
 |   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); | 
 |   if (!PT) | 
 |     return false; | 
 |  | 
 |   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); | 
 |   if (!Cls) | 
 |     return false; | 
 |  | 
 |   IdentifierInfo* ClsName = Cls->getIdentifier(); | 
 |  | 
 |   // FIXME: Should we walk the chain of classes? | 
 |   return ClsName == &Ctx.Idents.get("NSString") || | 
 |          ClsName == &Ctx.Idents.get("NSMutableString"); | 
 | } | 
 |  | 
 | static inline bool isCFStringType(QualType T, ASTContext &Ctx) { | 
 |   const PointerType *PT = T->getAs<PointerType>(); | 
 |   if (!PT) | 
 |     return false; | 
 |  | 
 |   const RecordType *RT = PT->getPointeeType()->getAs<RecordType>(); | 
 |   if (!RT) | 
 |     return false; | 
 |  | 
 |   const RecordDecl *RD = RT->getDecl(); | 
 |   if (RD->getTagKind() != TTK_Struct) | 
 |     return false; | 
 |  | 
 |   return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); | 
 | } | 
 |  | 
 | static unsigned getNumAttributeArgs(const AttributeList &Attr) { | 
 |   // FIXME: Include the type in the argument list. | 
 |   return Attr.getNumArgs() + Attr.hasParsedType(); | 
 | } | 
 |  | 
 | /// \brief Check if the attribute has exactly as many args as Num. May | 
 | /// output an error. | 
 | static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr, | 
 |                                   unsigned Num) { | 
 |   if (getNumAttributeArgs(Attr) != Num) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |       << Attr.getName() << Num; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Check if the attribute has at least as many args as Num. May | 
 | /// output an error. | 
 | static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr, | 
 |                                          unsigned Num) { | 
 |   if (getNumAttributeArgs(Attr) < Num) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) | 
 |       << Attr.getName() << Num; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief If Expr is a valid integer constant, get the value of the integer | 
 | /// expression and return success or failure. May output an error. | 
 | static bool checkUInt32Argument(Sema &S, const AttributeList &Attr, | 
 |                                 const Expr *Expr, uint32_t &Val, | 
 |                                 unsigned Idx = UINT_MAX) { | 
 |   llvm::APSInt I(32); | 
 |   if (Expr->isTypeDependent() || Expr->isValueDependent() || | 
 |       !Expr->isIntegerConstantExpr(I, S.Context)) { | 
 |     if (Idx != UINT_MAX) | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << Attr.getName() << Idx << AANT_ArgumentIntegerConstant | 
 |         << Expr->getSourceRange(); | 
 |     else | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | 
 |         << Attr.getName() << AANT_ArgumentIntegerConstant | 
 |         << Expr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |   Val = (uint32_t)I.getZExtValue(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Diagnose mutually exclusive attributes when present on a given | 
 | /// declaration. Returns true if diagnosed. | 
 | template <typename AttrTy> | 
 | static bool checkAttrMutualExclusion(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr) { | 
 |   if (AttrTy *A = D->getAttr<AttrTy>()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) | 
 |       << Attr.getName() << A; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Check if IdxExpr is a valid parameter index for a function or | 
 | /// instance method D.  May output an error. | 
 | /// | 
 | /// \returns true if IdxExpr is a valid index. | 
 | static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D, | 
 |                                                 const AttributeList &Attr, | 
 |                                                 unsigned AttrArgNum, | 
 |                                                 const Expr *IdxExpr, | 
 |                                                 uint64_t &Idx) { | 
 |   assert(isFunctionOrMethod(D)); | 
 |  | 
 |   // In C++ the implicit 'this' function parameter also counts. | 
 |   // Parameters are counted from one. | 
 |   bool HP = hasFunctionProto(D); | 
 |   bool HasImplicitThisParam = isInstanceMethod(D); | 
 |   bool IV = HP && isFunctionOrMethodVariadic(D); | 
 |   unsigned NumParams = | 
 |       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; | 
 |  | 
 |   llvm::APSInt IdxInt; | 
 |   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || | 
 |       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant | 
 |       << IdxExpr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   Idx = IdxInt.getLimitedValue(); | 
 |   if (Idx < 1 || (!IV && Idx > NumParams)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |       << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |   Idx--; // Convert to zero-based. | 
 |   if (HasImplicitThisParam) { | 
 |     if (Idx == 0) { | 
 |       S.Diag(Attr.getLoc(), | 
 |              diag::err_attribute_invalid_implicit_this_argument) | 
 |         << Attr.getName() << IdxExpr->getSourceRange(); | 
 |       return false; | 
 |     } | 
 |     --Idx; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal. | 
 | /// If not emit an error and return false. If the argument is an identifier it | 
 | /// will emit an error with a fixit hint and treat it as if it was a string | 
 | /// literal. | 
 | bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr, | 
 |                                           unsigned ArgNum, StringRef &Str, | 
 |                                           SourceLocation *ArgLocation) { | 
 |   // Look for identifiers. If we have one emit a hint to fix it to a literal. | 
 |   if (Attr.isArgIdent(ArgNum)) { | 
 |     IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum); | 
 |     Diag(Loc->Loc, diag::err_attribute_argument_type) | 
 |         << Attr.getName() << AANT_ArgumentString | 
 |         << FixItHint::CreateInsertion(Loc->Loc, "\"") | 
 |         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\""); | 
 |     Str = Loc->Ident->getName(); | 
 |     if (ArgLocation) | 
 |       *ArgLocation = Loc->Loc; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Now check for an actual string literal. | 
 |   Expr *ArgExpr = Attr.getArgAsExpr(ArgNum); | 
 |   StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); | 
 |   if (ArgLocation) | 
 |     *ArgLocation = ArgExpr->getLocStart(); | 
 |  | 
 |   if (!Literal || !Literal->isAscii()) { | 
 |     Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type) | 
 |         << Attr.getName() << AANT_ArgumentString; | 
 |     return false; | 
 |   } | 
 |  | 
 |   Str = Literal->getString(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Applies the given attribute to the Decl without performing any | 
 | /// additional semantic checking. | 
 | template <typename AttrType> | 
 | static void handleSimpleAttribute(Sema &S, Decl *D, | 
 |                                   const AttributeList &Attr) { | 
 |   D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | /// \brief Check if the passed-in expression is of type int or bool. | 
 | static bool isIntOrBool(Expr *Exp) { | 
 |   QualType QT = Exp->getType(); | 
 |   return QT->isBooleanType() || QT->isIntegerType(); | 
 | } | 
 |  | 
 |  | 
 | // Check to see if the type is a smart pointer of some kind.  We assume | 
 | // it's a smart pointer if it defines both operator-> and operator*. | 
 | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { | 
 |   DeclContextLookupConstResult Res1 = RT->getDecl()->lookup( | 
 |     S.Context.DeclarationNames.getCXXOperatorName(OO_Star)); | 
 |   if (Res1.empty()) | 
 |     return false; | 
 |  | 
 |   DeclContextLookupConstResult Res2 = RT->getDecl()->lookup( | 
 |     S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow)); | 
 |   if (Res2.empty()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Check if passed in Decl is a pointer type. | 
 | /// Note that this function may produce an error message. | 
 | /// \return true if the Decl is a pointer type; false otherwise | 
 | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, | 
 |                                        const AttributeList &Attr) { | 
 |   const ValueDecl *vd = cast<ValueDecl>(D); | 
 |   QualType QT = vd->getType(); | 
 |   if (QT->isAnyPointerType()) | 
 |     return true; | 
 |  | 
 |   if (const RecordType *RT = QT->getAs<RecordType>()) { | 
 |     // If it's an incomplete type, it could be a smart pointer; skip it. | 
 |     // (We don't want to force template instantiation if we can avoid it, | 
 |     // since that would alter the order in which templates are instantiated.) | 
 |     if (RT->isIncompleteType()) | 
 |       return true; | 
 |  | 
 |     if (threadSafetyCheckIsSmartPointer(S, RT)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer) | 
 |     << Attr.getName() << QT; | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Checks that the passed in QualType either is of RecordType or points | 
 | /// to RecordType. Returns the relevant RecordType, null if it does not exit. | 
 | static const RecordType *getRecordType(QualType QT) { | 
 |   if (const RecordType *RT = QT->getAs<RecordType>()) | 
 |     return RT; | 
 |  | 
 |   // Now check if we point to record type. | 
 |   if (const PointerType *PT = QT->getAs<PointerType>()) | 
 |     return PT->getPointeeType()->getAs<RecordType>(); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { | 
 |   const RecordType *RT = getRecordType(Ty); | 
 |  | 
 |   if (!RT) | 
 |     return false; | 
 |  | 
 |   // Don't check for the capability if the class hasn't been defined yet. | 
 |   if (RT->isIncompleteType()) | 
 |     return true; | 
 |  | 
 |   // Allow smart pointers to be used as capability objects. | 
 |   // FIXME -- Check the type that the smart pointer points to. | 
 |   if (threadSafetyCheckIsSmartPointer(S, RT)) | 
 |     return true; | 
 |  | 
 |   // Check if the record itself has a capability. | 
 |   RecordDecl *RD = RT->getDecl(); | 
 |   if (RD->hasAttr<CapabilityAttr>()) | 
 |     return true; | 
 |  | 
 |   // Else check if any base classes have a capability. | 
 |   if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | 
 |     CXXBasePaths BPaths(false, false); | 
 |     if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P, | 
 |       void *) { | 
 |       return BS->getType()->getAs<RecordType>() | 
 |         ->getDecl()->hasAttr<CapabilityAttr>(); | 
 |     }, nullptr, BPaths)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static bool checkTypedefTypeForCapability(QualType Ty) { | 
 |   const auto *TD = Ty->getAs<TypedefType>(); | 
 |   if (!TD) | 
 |     return false; | 
 |  | 
 |   TypedefNameDecl *TN = TD->getDecl(); | 
 |   if (!TN) | 
 |     return false; | 
 |  | 
 |   return TN->hasAttr<CapabilityAttr>(); | 
 | } | 
 |  | 
 | static bool typeHasCapability(Sema &S, QualType Ty) { | 
 |   if (checkTypedefTypeForCapability(Ty)) | 
 |     return true; | 
 |  | 
 |   if (checkRecordTypeForCapability(S, Ty)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { | 
 |   // Capability expressions are simple expressions involving the boolean logic | 
 |   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once | 
 |   // a DeclRefExpr is found, its type should be checked to determine whether it | 
 |   // is a capability or not. | 
 |  | 
 |   if (const auto *E = dyn_cast<DeclRefExpr>(Ex)) | 
 |     return typeHasCapability(S, E->getType()); | 
 |   else if (const auto *E = dyn_cast<CastExpr>(Ex)) | 
 |     return isCapabilityExpr(S, E->getSubExpr()); | 
 |   else if (const auto *E = dyn_cast<ParenExpr>(Ex)) | 
 |     return isCapabilityExpr(S, E->getSubExpr()); | 
 |   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { | 
 |     if (E->getOpcode() == UO_LNot) | 
 |       return isCapabilityExpr(S, E->getSubExpr()); | 
 |     return false; | 
 |   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { | 
 |     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) | 
 |       return isCapabilityExpr(S, E->getLHS()) && | 
 |              isCapabilityExpr(S, E->getRHS()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Checks that all attribute arguments, starting from Sidx, resolve to | 
 | /// a capability object. | 
 | /// \param Sidx The attribute argument index to start checking with. | 
 | /// \param ParamIdxOk Whether an argument can be indexing into a function | 
 | /// parameter list. | 
 | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, | 
 |                                            const AttributeList &Attr, | 
 |                                            SmallVectorImpl<Expr *> &Args, | 
 |                                            int Sidx = 0, | 
 |                                            bool ParamIdxOk = false) { | 
 |   for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) { | 
 |     Expr *ArgExp = Attr.getArgAsExpr(Idx); | 
 |  | 
 |     if (ArgExp->isTypeDependent()) { | 
 |       // FIXME -- need to check this again on template instantiation | 
 |       Args.push_back(ArgExp); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) { | 
 |       if (StrLit->getLength() == 0 || | 
 |           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { | 
 |         // Pass empty strings to the analyzer without warnings. | 
 |         // Treat "*" as the universal lock. | 
 |         Args.push_back(ArgExp); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // We allow constant strings to be used as a placeholder for expressions | 
 |       // that are not valid C++ syntax, but warn that they are ignored. | 
 |       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) << | 
 |         Attr.getName(); | 
 |       Args.push_back(ArgExp); | 
 |       continue; | 
 |     } | 
 |  | 
 |     QualType ArgTy = ArgExp->getType(); | 
 |  | 
 |     // A pointer to member expression of the form  &MyClass::mu is treated | 
 |     // specially -- we need to look at the type of the member. | 
 |     if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp)) | 
 |       if (UOp->getOpcode() == UO_AddrOf) | 
 |         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) | 
 |           if (DRE->getDecl()->isCXXInstanceMember()) | 
 |             ArgTy = DRE->getDecl()->getType(); | 
 |  | 
 |     // First see if we can just cast to record type, or pointer to record type. | 
 |     const RecordType *RT = getRecordType(ArgTy); | 
 |  | 
 |     // Now check if we index into a record type function param. | 
 |     if(!RT && ParamIdxOk) { | 
 |       FunctionDecl *FD = dyn_cast<FunctionDecl>(D); | 
 |       IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp); | 
 |       if(FD && IL) { | 
 |         unsigned int NumParams = FD->getNumParams(); | 
 |         llvm::APInt ArgValue = IL->getValue(); | 
 |         uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); | 
 |         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; | 
 |         if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { | 
 |           S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range) | 
 |             << Attr.getName() << Idx + 1 << NumParams; | 
 |           continue; | 
 |         } | 
 |         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); | 
 |       } | 
 |     } | 
 |  | 
 |     // If the type does not have a capability, see if the components of the | 
 |     // expression have capabilities. This allows for writing C code where the | 
 |     // capability may be on the type, and the expression is a capability | 
 |     // boolean logic expression. Eg) requires_capability(A || B && !C) | 
 |     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) | 
 |       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable) | 
 |           << Attr.getName() << ArgTy; | 
 |  | 
 |     Args.push_back(ArgExp); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Attribute Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // FIXME: All this manual attribute parsing code is gross. At the | 
 | // least add some helper functions to check most argument patterns (# | 
 | // and types of args). | 
 |  | 
 | static void handlePtGuardedVarAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (!threadSafetyCheckIsPointer(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              PtGuardedVarAttr(Attr.getRange(), S.Context, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr, | 
 |                                      Expr* &Arg) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size != 1) | 
 |     return false; | 
 |  | 
 |   Arg = Args[0]; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   Expr *Arg = nullptr; | 
 |   if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handlePtGuardedByAttr(Sema &S, Decl *D, | 
 |                                   const AttributeList &Attr) { | 
 |   Expr *Arg = nullptr; | 
 |   if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) | 
 |     return; | 
 |  | 
 |   if (!threadSafetyCheckIsPointer(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(), | 
 |                                                S.Context, Arg, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr, | 
 |                                         SmallVectorImpl<Expr *> &Args) { | 
 |   if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) | 
 |     return false; | 
 |  | 
 |   // Check that this attribute only applies to lockable types. | 
 |   QualType QT = cast<ValueDecl>(D)->getType(); | 
 |   if (!QT->isDependentType()) { | 
 |     const RecordType *RT = getRecordType(QT); | 
 |     if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable) | 
 |         << Attr.getName(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check that all arguments are lockable objects. | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); | 
 |   if (Args.empty()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleAcquiredAfterAttr(Sema &S, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   Expr **StartArg = &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |              AcquiredAfterAttr(Attr.getRange(), S.Context, | 
 |                                StartArg, Args.size(), | 
 |                                Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   Expr **StartArg = &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |              AcquiredBeforeAttr(Attr.getRange(), S.Context, | 
 |                                 StartArg, Args.size(), | 
 |                                 Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static bool checkLockFunAttrCommon(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr, | 
 |                                    SmallVectorImpl<Expr *> &Args) { | 
 |   // zero or more arguments ok | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleAssertSharedLockAttr(Sema &S, Decl *D, | 
 |                                        const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   unsigned Size = Args.size(); | 
 |   Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |              AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, | 
 |                                           const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   unsigned Size = Args.size(); | 
 |   Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |              AssertExclusiveLockAttr(Attr.getRange(), S.Context, | 
 |                                      StartArg, Size, | 
 |                                      Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 |  | 
 | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, | 
 |                                       const AttributeList &Attr, | 
 |                                       SmallVectorImpl<Expr *> &Args) { | 
 |   if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) | 
 |     return false; | 
 |  | 
 |   if (!isIntOrBool(Attr.getArgAsExpr(0))) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << 1 << AANT_ArgumentIntOrBool; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, | 
 |                                             const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              SharedTrylockFunctionAttr(Attr.getRange(), S.Context, | 
 |                                        Attr.getArgAsExpr(0), | 
 |                                        Args.data(), Args.size(), | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, | 
 |                                                const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context, | 
 |                                           Attr.getArgAsExpr(0), | 
 |                                           Args.data(), Args.size(), | 
 |                                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleLockReturnedAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   // check that the argument is lockable object | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size == 0) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              LockReturnedAttr(Attr.getRange(), S.Context, Args[0], | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleLocksExcludedAttr(Sema &S, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) | 
 |     return; | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size == 0) | 
 |     return; | 
 |   Expr **StartArg = &Args[0]; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size, | 
 |                                Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   Expr *Cond = Attr.getArgAsExpr(0); | 
 |   if (!Cond->isTypeDependent()) { | 
 |     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); | 
 |     if (Converted.isInvalid()) | 
 |       return; | 
 |     Cond = Converted.get(); | 
 |   } | 
 |  | 
 |   StringRef Msg; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg)) | 
 |     return; | 
 |  | 
 |   SmallVector<PartialDiagnosticAt, 8> Diags; | 
 |   if (!Cond->isValueDependent() && | 
 |       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), | 
 |                                                 Diags)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr); | 
 |     for (int I = 0, N = Diags.size(); I != N; ++I) | 
 |       S.Diag(Diags[I].first, Diags[I].second); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   ConsumableAttr::ConsumedState DefaultState; | 
 |  | 
 |   if (Attr.isArgIdent(0)) { | 
 |     IdentifierLoc *IL = Attr.getArgAsIdent(0); | 
 |     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
 |                                                    DefaultState)) { | 
 |       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << IL->Ident; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | 
 |         << Attr.getName() << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              ConsumableAttr(Attr.getRange(), S.Context, DefaultState, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 |  | 
 | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, | 
 |                                         const AttributeList &Attr) { | 
 |   ASTContext &CurrContext = S.getASTContext(); | 
 |   QualType ThisType = MD->getThisType(CurrContext)->getPointeeType(); | 
 |    | 
 |   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { | 
 |     if (!RD->hasAttr<ConsumableAttr>()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) << | 
 |         RD->getNameAsString(); | 
 |        | 
 |       return false; | 
 |     } | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | static void handleCallableWhenAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) | 
 |     return; | 
 |    | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) | 
 |     return; | 
 |    | 
 |   SmallVector<CallableWhenAttr::ConsumedState, 3> States; | 
 |   for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) { | 
 |     CallableWhenAttr::ConsumedState CallableState; | 
 |      | 
 |     StringRef StateString; | 
 |     SourceLocation Loc; | 
 |     if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc)) | 
 |       return; | 
 |  | 
 |     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, | 
 |                                                      CallableState)) { | 
 |       S.Diag(Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << StateString; | 
 |       return; | 
 |     } | 
 |        | 
 |     States.push_back(CallableState); | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              CallableWhenAttr(Attr.getRange(), S.Context, States.data(), | 
 |                States.size(), Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 |  | 
 | static void handleParamTypestateAttr(Sema &S, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) return; | 
 |      | 
 |   ParamTypestateAttr::ConsumedState ParamState; | 
 |    | 
 |   if (Attr.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = Attr.getArgAsIdent(0); | 
 |     StringRef StateString = Ident->Ident->getName(); | 
 |  | 
 |     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, | 
 |                                                        ParamState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << StateString; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << | 
 |       Attr.getName() << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   // FIXME: This check is currently being done in the analysis.  It can be | 
 |   //        enabled here only after the parser propagates attributes at | 
 |   //        template specialization definition, not declaration. | 
 |   //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); | 
 |   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
 |   // | 
 |   //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
 |   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
 |   //      ReturnType.getAsString(); | 
 |   //    return; | 
 |   //} | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              ParamTypestateAttr(Attr.getRange(), S.Context, ParamState, | 
 |                                 Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 |  | 
 | static void handleReturnTypestateAttr(Sema &S, Decl *D, | 
 |                                       const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) return; | 
 |    | 
 |   ReturnTypestateAttr::ConsumedState ReturnState; | 
 |    | 
 |   if (Attr.isArgIdent(0)) { | 
 |     IdentifierLoc *IL = Attr.getArgAsIdent(0); | 
 |     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
 |                                                         ReturnState)) { | 
 |       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << IL->Ident; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << | 
 |       Attr.getName() << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   // FIXME: This check is currently being done in the analysis.  It can be | 
 |   //        enabled here only after the parser propagates attributes at | 
 |   //        template specialization definition, not declaration. | 
 |   //QualType ReturnType; | 
 |   // | 
 |   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { | 
 |   //  ReturnType = Param->getType(); | 
 |   // | 
 |   //} else if (const CXXConstructorDecl *Constructor = | 
 |   //             dyn_cast<CXXConstructorDecl>(D)) { | 
 |   //  ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType(); | 
 |   //   | 
 |   //} else { | 
 |   //   | 
 |   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType(); | 
 |   //} | 
 |   // | 
 |   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
 |   // | 
 |   //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
 |   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
 |   //      ReturnType.getAsString(); | 
 |   //    return; | 
 |   //} | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState, | 
 |                                  Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 |  | 
 | static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) | 
 |     return; | 
 |    | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) | 
 |     return; | 
 |    | 
 |   SetTypestateAttr::ConsumedState NewState; | 
 |   if (Attr.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = Attr.getArgAsIdent(0); | 
 |     StringRef Param = Ident->Ident->getName(); | 
 |     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << Param; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << | 
 |       Attr.getName() << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              SetTypestateAttr(Attr.getRange(), S.Context, NewState, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleTestTypestateAttr(Sema &S, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) | 
 |     return; | 
 |    | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) | 
 |     return; | 
 |    | 
 |   TestTypestateAttr::ConsumedState TestState;   | 
 |   if (Attr.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = Attr.getArgAsIdent(0); | 
 |     StringRef Param = Ident->Ident->getName(); | 
 |     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) | 
 |         << Attr.getName() << Param; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << | 
 |       Attr.getName() << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              TestTypestateAttr(Attr.getRange(), S.Context, TestState, | 
 |                                 Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   // Remember this typedef decl, we will need it later for diagnostics. | 
 |   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); | 
 | } | 
 |  | 
 | static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (TagDecl *TD = dyn_cast<TagDecl>(D)) | 
 |     TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 |   else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { | 
 |     // If the alignment is less than or equal to 8 bits, the packed attribute | 
 |     // has no effect. | 
 |     if (!FD->getType()->isDependentType() && | 
 |         !FD->getType()->isIncompleteType() && | 
 |         S.Context.getTypeAlign(FD->getType()) <= 8) | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) | 
 |         << Attr.getName() << FD->getType(); | 
 |     else | 
 |       FD->addAttr(::new (S.Context) | 
 |                   PackedAttr(Attr.getRange(), S.Context, | 
 |                              Attr.getAttributeSpellingListIndex())); | 
 |   } else | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); | 
 | } | 
 |  | 
 | static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // The IBOutlet/IBOutletCollection attributes only apply to instance | 
 |   // variables or properties of Objective-C classes.  The outlet must also | 
 |   // have an object reference type. | 
 |   if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) { | 
 |     if (!VD->getType()->getAs<ObjCObjectPointerType>()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) | 
 |         << Attr.getName() << VD->getType() << 0; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
 |     if (!PD->getType()->getAs<ObjCObjectPointerType>()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) | 
 |         << Attr.getName() << PD->getType() << 1; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   else { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!checkIBOutletCommon(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              IBOutletAttr(Attr.getRange(), S.Context, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleIBOutletCollection(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr) { | 
 |  | 
 |   // The iboutletcollection attribute can have zero or one arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!checkIBOutletCommon(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   ParsedType PT; | 
 |  | 
 |   if (Attr.hasParsedType()) | 
 |     PT = Attr.getTypeArg(); | 
 |   else { | 
 |     PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(), | 
 |                        S.getScopeForContext(D->getDeclContext()->getParent())); | 
 |     if (!PT) { | 
 |       S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   TypeSourceInfo *QTLoc = nullptr; | 
 |   QualType QT = S.GetTypeFromParser(PT, &QTLoc); | 
 |   if (!QTLoc) | 
 |     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc()); | 
 |  | 
 |   // Diagnose use of non-object type in iboutletcollection attribute. | 
 |   // FIXME. Gnu attribute extension ignores use of builtin types in | 
 |   // attributes. So, __attribute__((iboutletcollection(char))) will be | 
 |   // treated as __attribute__((iboutletcollection())). | 
 |   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { | 
 |     S.Diag(Attr.getLoc(), | 
 |            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype | 
 |                                : diag::err_iboutletcollection_type) << QT; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc, | 
 |                                     Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void possibleTransparentUnionPointerType(QualType &T) { | 
 |   if (const RecordType *UT = T->getAsUnionType()) | 
 |     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { | 
 |       RecordDecl *UD = UT->getDecl(); | 
 |       for (const auto *I : UD->fields()) { | 
 |         QualType QT = I->getType(); | 
 |         if (QT->isAnyPointerType() || QT->isBlockPointerType()) { | 
 |           T = QT; | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 | } | 
 |  | 
 | static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr, | 
 |                                 SourceRange R, bool isReturnValue = false) { | 
 |   T = T.getNonReferenceType(); | 
 |   possibleTransparentUnionPointerType(T); | 
 |  | 
 |   if (!T->isAnyPointerType() && !T->isBlockPointerType()) { | 
 |     S.Diag(Attr.getLoc(), | 
 |            isReturnValue ? diag::warn_attribute_return_pointers_only | 
 |                          : diag::warn_attribute_pointers_only) | 
 |       << Attr.getName() << R; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   SmallVector<unsigned, 8> NonNullArgs; | 
 |   for (unsigned i = 0; i < Attr.getNumArgs(); ++i) { | 
 |     Expr *Ex = Attr.getArgAsExpr(i); | 
 |     uint64_t Idx; | 
 |     if (!checkFunctionOrMethodParameterIndex(S, D, Attr, i + 1, Ex, Idx)) | 
 |       return; | 
 |  | 
 |     // Is the function argument a pointer type? | 
 |     // FIXME: Should also highlight argument in decl in the diagnostic. | 
 |     if (!attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr, | 
 |                              Ex->getSourceRange())) | 
 |       continue; | 
 |  | 
 |     NonNullArgs.push_back(Idx); | 
 |   } | 
 |  | 
 |   // If no arguments were specified to __attribute__((nonnull)) then all pointer | 
 |   // arguments have a nonnull attribute. | 
 |   if (NonNullArgs.empty()) { | 
 |     for (unsigned i = 0, e = getFunctionOrMethodNumParams(D); i != e; ++i) { | 
 |       QualType T = getFunctionOrMethodParamType(D, i).getNonReferenceType(); | 
 |       possibleTransparentUnionPointerType(T); | 
 |       if (T->isAnyPointerType() || T->isBlockPointerType()) | 
 |         NonNullArgs.push_back(i); | 
 |     } | 
 |  | 
 |     // No pointer arguments? | 
 |     if (NonNullArgs.empty()) { | 
 |       // Warn the trivial case only if attribute is not coming from a | 
 |       // macro instantiation. | 
 |       if (Attr.getLoc().isFileID()) | 
 |         S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned *start = &NonNullArgs[0]; | 
 |   unsigned size = NonNullArgs.size(); | 
 |   llvm::array_pod_sort(start, start + size); | 
 |   D->addAttr(::new (S.Context) | 
 |              NonNullAttr(Attr.getRange(), S.Context, start, size, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, | 
 |                                        const AttributeList &Attr) { | 
 |   if (Attr.getNumArgs() > 0) { | 
 |     if (D->getFunctionType()) { | 
 |       handleNonNullAttr(S, D, Attr); | 
 |     } else { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args) | 
 |         << D->getSourceRange(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Is the argument a pointer type? | 
 |   if (!attrNonNullArgCheck(S, D->getType(), Attr, D->getSourceRange())) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              NonNullAttr(Attr.getRange(), S.Context, nullptr, 0, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleReturnsNonNullAttr(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr) { | 
 |   QualType ResultType = getFunctionOrMethodResultType(D); | 
 |   if (!attrNonNullArgCheck(S, ResultType, Attr, Attr.getRange(), | 
 |                            /* isReturnValue */ true)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |             ReturnsNonNullAttr(Attr.getRange(), S.Context, | 
 |                                Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) { | 
 |   // This attribute must be applied to a function declaration. The first | 
 |   // argument to the attribute must be an identifier, the name of the resource, | 
 |   // for example: malloc. The following arguments must be argument indexes, the | 
 |   // arguments must be of integer type for Returns, otherwise of pointer type. | 
 |   // The difference between Holds and Takes is that a pointer may still be used | 
 |   // after being held. free() should be __attribute((ownership_takes)), whereas | 
 |   // a list append function may well be __attribute((ownership_holds)). | 
 |  | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << AL.getName() << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Figure out our Kind. | 
 |   OwnershipAttr::OwnershipKind K = | 
 |       OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0, | 
 |                     AL.getAttributeSpellingListIndex()).getOwnKind(); | 
 |  | 
 |   // Check arguments. | 
 |   switch (K) { | 
 |   case OwnershipAttr::Takes: | 
 |   case OwnershipAttr::Holds: | 
 |     if (AL.getNumArgs() < 2) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) | 
 |         << AL.getName() << 2; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   case OwnershipAttr::Returns: | 
 |     if (AL.getNumArgs() > 2) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) | 
 |         << AL.getName() << 1; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; | 
 |  | 
 |   // Normalize the argument, __foo__ becomes foo. | 
 |   StringRef ModuleName = Module->getName(); | 
 |   if (ModuleName.startswith("__") && ModuleName.endswith("__") && | 
 |       ModuleName.size() > 4) { | 
 |     ModuleName = ModuleName.drop_front(2).drop_back(2); | 
 |     Module = &S.PP.getIdentifierTable().get(ModuleName); | 
 |   } | 
 |  | 
 |   SmallVector<unsigned, 8> OwnershipArgs; | 
 |   for (unsigned i = 1; i < AL.getNumArgs(); ++i) { | 
 |     Expr *Ex = AL.getArgAsExpr(i); | 
 |     uint64_t Idx; | 
 |     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) | 
 |       return; | 
 |  | 
 |     // Is the function argument a pointer type? | 
 |     QualType T = getFunctionOrMethodParamType(D, Idx); | 
 |     int Err = -1;  // No error | 
 |     switch (K) { | 
 |       case OwnershipAttr::Takes: | 
 |       case OwnershipAttr::Holds: | 
 |         if (!T->isAnyPointerType() && !T->isBlockPointerType()) | 
 |           Err = 0; | 
 |         break; | 
 |       case OwnershipAttr::Returns: | 
 |         if (!T->isIntegerType()) | 
 |           Err = 1; | 
 |         break; | 
 |     } | 
 |     if (-1 != Err) { | 
 |       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err | 
 |         << Ex->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Check we don't have a conflict with another ownership attribute. | 
 |     for (const auto *I : D->specific_attrs<OwnershipAttr>()) { | 
 |       // FIXME: A returns attribute should conflict with any returns attribute | 
 |       // with a different index too. | 
 |       if (I->getOwnKind() != K && I->args_end() != | 
 |           std::find(I->args_begin(), I->args_end(), Idx)) { | 
 |         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) | 
 |           << AL.getName() << I; | 
 |         return; | 
 |       } | 
 |     } | 
 |     OwnershipArgs.push_back(Idx); | 
 |   } | 
 |  | 
 |   unsigned* start = OwnershipArgs.data(); | 
 |   unsigned size = OwnershipArgs.size(); | 
 |   llvm::array_pod_sort(start, start + size); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              OwnershipAttr(AL.getLoc(), S.Context, Module, start, size, | 
 |                            AL.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // Check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   NamedDecl *nd = cast<NamedDecl>(D); | 
 |  | 
 |   // gcc rejects | 
 |   // class c { | 
 |   //   static int a __attribute__((weakref ("v2"))); | 
 |   //   static int b() __attribute__((weakref ("f3"))); | 
 |   // }; | 
 |   // and ignores the attributes of | 
 |   // void f(void) { | 
 |   //   static int a __attribute__((weakref ("v2"))); | 
 |   // } | 
 |   // we reject them | 
 |   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); | 
 |   if (!Ctx->isFileContext()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) | 
 |       << nd; | 
 |     return; | 
 |   } | 
 |  | 
 |   // The GCC manual says | 
 |   // | 
 |   // At present, a declaration to which `weakref' is attached can only | 
 |   // be `static'. | 
 |   // | 
 |   // It also says | 
 |   // | 
 |   // Without a TARGET, | 
 |   // given as an argument to `weakref' or to `alias', `weakref' is | 
 |   // equivalent to `weak'. | 
 |   // | 
 |   // gcc 4.4.1 will accept | 
 |   // int a7 __attribute__((weakref)); | 
 |   // as | 
 |   // int a7 __attribute__((weak)); | 
 |   // This looks like a bug in gcc. We reject that for now. We should revisit | 
 |   // it if this behaviour is actually used. | 
 |  | 
 |   // GCC rejects | 
 |   // static ((alias ("y"), weakref)). | 
 |   // Should we? How to check that weakref is before or after alias? | 
 |  | 
 |   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead | 
 |   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the | 
 |   // StringRef parameter it was given anyway. | 
 |   StringRef Str; | 
 |   if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str)) | 
 |     // GCC will accept anything as the argument of weakref. Should we | 
 |     // check for an existing decl? | 
 |     D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              WeakRefAttr(Attr.getRange(), S.Context, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) | 
 |     return; | 
 |  | 
 |   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: check if target symbol exists in current file | 
 |  | 
 |   D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, | 
 |                                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<HotAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context, | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleTLSModelAttr(Sema &S, Decl *D, | 
 |                                const AttributeList &Attr) { | 
 |   StringRef Model; | 
 |   SourceLocation LiteralLoc; | 
 |   // Check that it is a string. | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // Check that the value. | 
 |   if (Model != "global-dynamic" && Model != "local-dynamic" | 
 |       && Model != "initial-exec" && Model != "local-exec") { | 
 |     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              TLSModelAttr(Attr.getRange(), S.Context, Model, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     QualType RetTy = FD->getReturnType(); | 
 |     if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) { | 
 |       D->addAttr(::new (S.Context) | 
 |                  MallocAttr(Attr.getRange(), S.Context, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only); | 
 | } | 
 |  | 
 | static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (S.LangOpts.CPlusPlus) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |       << Attr.getName() << AttributeLangSupport::Cpp; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   if (S.CheckNoReturnAttr(attr)) return; | 
 |  | 
 |   if (!isa<ObjCMethodDecl>(D)) { | 
 |     S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << attr.getName() << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              NoReturnAttr(attr.getRange(), S.Context, | 
 |                           attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | bool Sema::CheckNoReturnAttr(const AttributeList &attr) { | 
 |   if (!checkAttributeNumArgs(*this, attr, 0)) { | 
 |     attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, | 
 |                                        const AttributeList &Attr) { | 
 |    | 
 |   // The checking path for 'noreturn' and 'analyzer_noreturn' are different | 
 |   // because 'analyzer_noreturn' does not impact the type. | 
 |   if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) { | 
 |     ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
 |     if (!VD || (!VD->getType()->isBlockPointerType() && | 
 |                 !VD->getType()->isFunctionPointerType())) { | 
 |       S.Diag(Attr.getLoc(), | 
 |              Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type | 
 |              : diag::warn_attribute_wrong_decl_type) | 
 |         << Attr.getName() << ExpectedFunctionMethodOrBlock; | 
 |       return; | 
 |     } | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              AnalyzerNoReturnAttr(Attr.getRange(), S.Context, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | // PS3 PPU-specific. | 
 | static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 | /* | 
 |   Returning a Vector Class in Registers | 
 |    | 
 |   According to the PPU ABI specifications, a class with a single member of  | 
 |   vector type is returned in memory when used as the return value of a function. | 
 |   This results in inefficient code when implementing vector classes. To return | 
 |   the value in a single vector register, add the vecreturn attribute to the | 
 |   class definition. This attribute is also applicable to struct types. | 
 |    | 
 |   Example: | 
 |    | 
 |   struct Vector | 
 |   { | 
 |     __vector float xyzw; | 
 |   } __attribute__((vecreturn)); | 
 |    | 
 |   Vector Add(Vector lhs, Vector rhs) | 
 |   { | 
 |     Vector result; | 
 |     result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); | 
 |     return result; // This will be returned in a register | 
 |   } | 
 | */ | 
 |   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A; | 
 |     return; | 
 |   } | 
 |  | 
 |   RecordDecl *record = cast<RecordDecl>(D); | 
 |   int count = 0; | 
 |  | 
 |   if (!isa<CXXRecordDecl>(record)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!cast<CXXRecordDecl>(record)->isPOD()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record); | 
 |     return; | 
 |   } | 
 |  | 
 |   for (const auto *I : record->fields()) { | 
 |     if ((count == 1) || !I->getType()->isVectorType()) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
 |       return; | 
 |     } | 
 |     count++; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              VecReturnAttr(Attr.getRange(), S.Context, | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, | 
 |                                  const AttributeList &Attr) { | 
 |   if (isa<ParmVarDecl>(D)) { | 
 |     // [[carries_dependency]] can only be applied to a parameter if it is a | 
 |     // parameter of a function declaration or lambda. | 
 |     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { | 
 |       S.Diag(Attr.getLoc(), | 
 |              diag::err_carries_dependency_param_not_function_decl); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CarriesDependencyAttr( | 
 |                                    Attr.getRange(), S.Context, | 
 |                                    Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->hasLocalStorage()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); | 
 |       return; | 
 |     } | 
 |   } else if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedVariableOrFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              UsedAttr(Attr.getRange(), S.Context, | 
 |                       Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint32_t priority = ConstructorAttr::DefaultPriority; | 
 |   if (Attr.getNumArgs() > 0 && | 
 |       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              ConstructorAttr(Attr.getRange(), S.Context, priority, | 
 |                              Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint32_t priority = DestructorAttr::DefaultPriority; | 
 |   if (Attr.getNumArgs() > 0 && | 
 |       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              DestructorAttr(Attr.getRange(), S.Context, priority, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | template <typename AttrTy> | 
 | static void handleAttrWithMessage(Sema &S, Decl *D, | 
 |                                   const AttributeList &Attr) { | 
 |   unsigned NumArgs = Attr.getNumArgs(); | 
 |   if (NumArgs > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle the case where the attribute has a text message. | 
 |   StringRef Str; | 
 |   if (NumArgs == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str, | 
 |                                       Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, | 
 |                                           const AttributeList &Attr) { | 
 |   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition) | 
 |       << Attr.getName() << Attr.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |           ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context, | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, | 
 |                                   IdentifierInfo *Platform, | 
 |                                   VersionTuple Introduced, | 
 |                                   VersionTuple Deprecated, | 
 |                                   VersionTuple Obsoleted) { | 
 |   StringRef PlatformName | 
 |     = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); | 
 |   if (PlatformName.empty()) | 
 |     PlatformName = Platform->getName(); | 
 |  | 
 |   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all | 
 |   // of these steps are needed). | 
 |   if (!Introduced.empty() && !Deprecated.empty() && | 
 |       !(Introduced <= Deprecated)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 1 << PlatformName << Deprecated.getAsString() | 
 |       << 0 << Introduced.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!Introduced.empty() && !Obsoleted.empty() && | 
 |       !(Introduced <= Obsoleted)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 2 << PlatformName << Obsoleted.getAsString() | 
 |       << 0 << Introduced.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!Deprecated.empty() && !Obsoleted.empty() && | 
 |       !(Deprecated <= Obsoleted)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 2 << PlatformName << Obsoleted.getAsString() | 
 |       << 1 << Deprecated.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Check whether the two versions match. | 
 | /// | 
 | /// If either version tuple is empty, then they are assumed to match. If | 
 | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. | 
 | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, | 
 |                           bool BeforeIsOkay) { | 
 |   if (X.empty() || Y.empty()) | 
 |     return true; | 
 |  | 
 |   if (X == Y) | 
 |     return true; | 
 |  | 
 |   if (BeforeIsOkay && X < Y) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range, | 
 |                                               IdentifierInfo *Platform, | 
 |                                               VersionTuple Introduced, | 
 |                                               VersionTuple Deprecated, | 
 |                                               VersionTuple Obsoleted, | 
 |                                               bool IsUnavailable, | 
 |                                               StringRef Message, | 
 |                                               bool Override, | 
 |                                               unsigned AttrSpellingListIndex) { | 
 |   VersionTuple MergedIntroduced = Introduced; | 
 |   VersionTuple MergedDeprecated = Deprecated; | 
 |   VersionTuple MergedObsoleted = Obsoleted; | 
 |   bool FoundAny = false; | 
 |  | 
 |   if (D->hasAttrs()) { | 
 |     AttrVec &Attrs = D->getAttrs(); | 
 |     for (unsigned i = 0, e = Attrs.size(); i != e;) { | 
 |       const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); | 
 |       if (!OldAA) { | 
 |         ++i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       IdentifierInfo *OldPlatform = OldAA->getPlatform(); | 
 |       if (OldPlatform != Platform) { | 
 |         ++i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       FoundAny = true; | 
 |       VersionTuple OldIntroduced = OldAA->getIntroduced(); | 
 |       VersionTuple OldDeprecated = OldAA->getDeprecated(); | 
 |       VersionTuple OldObsoleted = OldAA->getObsoleted(); | 
 |       bool OldIsUnavailable = OldAA->getUnavailable(); | 
 |  | 
 |       if (!versionsMatch(OldIntroduced, Introduced, Override) || | 
 |           !versionsMatch(Deprecated, OldDeprecated, Override) || | 
 |           !versionsMatch(Obsoleted, OldObsoleted, Override) || | 
 |           !(OldIsUnavailable == IsUnavailable || | 
 |             (Override && !OldIsUnavailable && IsUnavailable))) { | 
 |         if (Override) { | 
 |           int Which = -1; | 
 |           VersionTuple FirstVersion; | 
 |           VersionTuple SecondVersion; | 
 |           if (!versionsMatch(OldIntroduced, Introduced, Override)) { | 
 |             Which = 0; | 
 |             FirstVersion = OldIntroduced; | 
 |             SecondVersion = Introduced; | 
 |           } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) { | 
 |             Which = 1; | 
 |             FirstVersion = Deprecated; | 
 |             SecondVersion = OldDeprecated; | 
 |           } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) { | 
 |             Which = 2; | 
 |             FirstVersion = Obsoleted; | 
 |             SecondVersion = OldObsoleted; | 
 |           } | 
 |  | 
 |           if (Which == -1) { | 
 |             Diag(OldAA->getLocation(), | 
 |                  diag::warn_mismatched_availability_override_unavail) | 
 |               << AvailabilityAttr::getPrettyPlatformName(Platform->getName()); | 
 |           } else { | 
 |             Diag(OldAA->getLocation(), | 
 |                  diag::warn_mismatched_availability_override) | 
 |               << Which | 
 |               << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) | 
 |               << FirstVersion.getAsString() << SecondVersion.getAsString(); | 
 |           } | 
 |           Diag(Range.getBegin(), diag::note_overridden_method); | 
 |         } else { | 
 |           Diag(OldAA->getLocation(), diag::warn_mismatched_availability); | 
 |           Diag(Range.getBegin(), diag::note_previous_attribute); | 
 |         } | 
 |  | 
 |         Attrs.erase(Attrs.begin() + i); | 
 |         --e; | 
 |         continue; | 
 |       } | 
 |  | 
 |       VersionTuple MergedIntroduced2 = MergedIntroduced; | 
 |       VersionTuple MergedDeprecated2 = MergedDeprecated; | 
 |       VersionTuple MergedObsoleted2 = MergedObsoleted; | 
 |  | 
 |       if (MergedIntroduced2.empty()) | 
 |         MergedIntroduced2 = OldIntroduced; | 
 |       if (MergedDeprecated2.empty()) | 
 |         MergedDeprecated2 = OldDeprecated; | 
 |       if (MergedObsoleted2.empty()) | 
 |         MergedObsoleted2 = OldObsoleted; | 
 |  | 
 |       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, | 
 |                                 MergedIntroduced2, MergedDeprecated2, | 
 |                                 MergedObsoleted2)) { | 
 |         Attrs.erase(Attrs.begin() + i); | 
 |         --e; | 
 |         continue; | 
 |       } | 
 |  | 
 |       MergedIntroduced = MergedIntroduced2; | 
 |       MergedDeprecated = MergedDeprecated2; | 
 |       MergedObsoleted = MergedObsoleted2; | 
 |       ++i; | 
 |     } | 
 |   } | 
 |  | 
 |   if (FoundAny && | 
 |       MergedIntroduced == Introduced && | 
 |       MergedDeprecated == Deprecated && | 
 |       MergedObsoleted == Obsoleted) | 
 |     return nullptr; | 
 |  | 
 |   // Only create a new attribute if !Override, but we want to do | 
 |   // the checking. | 
 |   if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced, | 
 |                              MergedDeprecated, MergedObsoleted) && | 
 |       !Override) { | 
 |     return ::new (Context) AvailabilityAttr(Range, Context, Platform, | 
 |                                             Introduced, Deprecated, | 
 |                                             Obsoleted, IsUnavailable, Message, | 
 |                                             AttrSpellingListIndex); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static void handleAvailabilityAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) | 
 |     return; | 
 |   IdentifierLoc *Platform = Attr.getArgAsIdent(0); | 
 |   unsigned Index = Attr.getAttributeSpellingListIndex(); | 
 |    | 
 |   IdentifierInfo *II = Platform->Ident; | 
 |   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) | 
 |     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) | 
 |       << Platform->Ident; | 
 |  | 
 |   NamedDecl *ND = dyn_cast<NamedDecl>(D); | 
 |   if (!ND) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   AvailabilityChange Introduced = Attr.getAvailabilityIntroduced(); | 
 |   AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated(); | 
 |   AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted(); | 
 |   bool IsUnavailable = Attr.getUnavailableLoc().isValid(); | 
 |   StringRef Str; | 
 |   if (const StringLiteral *SE = | 
 |           dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr())) | 
 |     Str = SE->getString(); | 
 |  | 
 |   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II, | 
 |                                                       Introduced.Version, | 
 |                                                       Deprecated.Version, | 
 |                                                       Obsoleted.Version, | 
 |                                                       IsUnavailable, Str, | 
 |                                                       /*Override=*/false, | 
 |                                                       Index); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | template <class T> | 
 | static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range, | 
 |                               typename T::VisibilityType value, | 
 |                               unsigned attrSpellingListIndex) { | 
 |   T *existingAttr = D->getAttr<T>(); | 
 |   if (existingAttr) { | 
 |     typename T::VisibilityType existingValue = existingAttr->getVisibility(); | 
 |     if (existingValue == value) | 
 |       return nullptr; | 
 |     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); | 
 |     S.Diag(range.getBegin(), diag::note_previous_attribute); | 
 |     D->dropAttr<T>(); | 
 |   } | 
 |   return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex); | 
 | } | 
 |  | 
 | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range, | 
 |                                           VisibilityAttr::VisibilityType Vis, | 
 |                                           unsigned AttrSpellingListIndex) { | 
 |   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis, | 
 |                                                AttrSpellingListIndex); | 
 | } | 
 |  | 
 | TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range, | 
 |                                       TypeVisibilityAttr::VisibilityType Vis, | 
 |                                       unsigned AttrSpellingListIndex) { | 
 |   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis, | 
 |                                                    AttrSpellingListIndex); | 
 | } | 
 |  | 
 | static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr, | 
 |                                  bool isTypeVisibility) { | 
 |   // Visibility attributes don't mean anything on a typedef. | 
 |   if (isa<TypedefNameDecl>(D)) { | 
 |     S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored) | 
 |       << Attr.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // 'type_visibility' can only go on a type or namespace. | 
 |   if (isTypeVisibility && | 
 |       !(isa<TagDecl>(D) || | 
 |         isa<ObjCInterfaceDecl>(D) || | 
 |         isa<NamespaceDecl>(D))) { | 
 |     S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedTypeOrNamespace; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check that the argument is a string literal. | 
 |   StringRef TypeStr; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   VisibilityAttr::VisibilityType type; | 
 |   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { | 
 |     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) | 
 |       << Attr.getName() << TypeStr; | 
 |     return; | 
 |   } | 
 |    | 
 |   // Complain about attempts to use protected visibility on targets | 
 |   // (like Darwin) that don't support it. | 
 |   if (type == VisibilityAttr::Protected && | 
 |       !S.Context.getTargetInfo().hasProtectedVisibility()) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility); | 
 |     type = VisibilityAttr::Default; | 
 |   } | 
 |  | 
 |   unsigned Index = Attr.getAttributeSpellingListIndex(); | 
 |   clang::Attr *newAttr; | 
 |   if (isTypeVisibility) { | 
 |     newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(), | 
 |                                     (TypeVisibilityAttr::VisibilityType) type, | 
 |                                         Index); | 
 |   } else { | 
 |     newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index); | 
 |   } | 
 |   if (newAttr) | 
 |     D->addAttr(newAttr); | 
 | } | 
 |  | 
 | static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl, | 
 |                                        const AttributeList &Attr) { | 
 |   ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl); | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierLoc *IL = Attr.getArgAsIdent(0); | 
 |   ObjCMethodFamilyAttr::FamilyKind F; | 
 |   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { | 
 |     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() | 
 |       << IL->Ident; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (F == ObjCMethodFamilyAttr::OMF_init && | 
 |       !method->getReturnType()->isObjCObjectPointerType()) { | 
 |     S.Diag(method->getLocation(), diag::err_init_method_bad_return_type) | 
 |         << method->getReturnType(); | 
 |     // Ignore the attribute. | 
 |     return; | 
 |   } | 
 |  | 
 |   method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(), | 
 |                                                        S.Context, F, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |     QualType T = TD->getUnderlyingType(); | 
 |     if (!T->isCARCBridgableType()) { | 
 |       S.Diag(TD->getLocation(), diag::err_nsobject_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
 |     QualType T = PD->getType(); | 
 |     if (!T->isCARCBridgableType()) { | 
 |       S.Diag(PD->getLocation(), diag::err_nsobject_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |   else { | 
 |     // It is okay to include this attribute on properties, e.g.: | 
 |     // | 
 |     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); | 
 |     // | 
 |     // In this case it follows tradition and suppresses an error in the above | 
 |     // case.     | 
 |     S.Diag(D->getLocation(), diag::warn_nsobject_attribute); | 
 |   } | 
 |   D->addAttr(::new (S.Context) | 
 |              ObjCNSObjectAttr(Attr.getRange(), S.Context, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; | 
 |   BlocksAttr::BlockType type; | 
 |   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) | 
 |       << Attr.getName() << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              BlocksAttr(Attr.getRange(), S.Context, type, | 
 |                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 2) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 2; | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; | 
 |   if (Attr.getNumArgs() > 0) { | 
 |     Expr *E = Attr.getArgAsExpr(0); | 
 |     llvm::APSInt Idx(32); | 
 |     if (E->isTypeDependent() || E->isValueDependent() || | 
 |         !E->isIntegerConstantExpr(Idx, S.Context)) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << Attr.getName() << 1 << AANT_ArgumentIntegerConstant | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (Idx.isSigned() && Idx.isNegative()) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     sentinel = Idx.getZExtValue(); | 
 |   } | 
 |  | 
 |   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     Expr *E = Attr.getArgAsExpr(1); | 
 |     llvm::APSInt Idx(32); | 
 |     if (E->isTypeDependent() || E->isValueDependent() || | 
 |         !E->isIntegerConstantExpr(Idx, S.Context)) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << Attr.getName() << 2 << AANT_ArgumentIntegerConstant | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |     nullPos = Idx.getZExtValue(); | 
 |  | 
 |     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { | 
 |       // FIXME: This error message could be improved, it would be nice | 
 |       // to say what the bounds actually are. | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     const FunctionType *FT = FD->getType()->castAs<FunctionType>(); | 
 |     if (isa<FunctionNoProtoType>(FT)) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
 |       return; | 
 |     } | 
 |   } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
 |     if (!MD->isVariadic()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
 |       return; | 
 |     } | 
 |   } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) { | 
 |     if (!BD->isVariadic()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; | 
 |       return; | 
 |     } | 
 |   } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { | 
 |     QualType Ty = V->getType(); | 
 |     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { | 
 |       const FunctionType *FT = Ty->isFunctionPointerType() | 
 |        ? D->getFunctionType() | 
 |        : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); | 
 |       if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
 |         int m = Ty->isFunctionPointerType() ? 0 : 1; | 
 |         S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << Attr.getName() << ExpectedFunctionMethodOrBlock; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedFunctionMethodOrBlock; | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) | 
 |              SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (D->getFunctionType() && | 
 |       D->getFunctionType()->getReturnType()->isVoidType()) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) | 
 |       << Attr.getName() << 0; | 
 |     return; | 
 |   } | 
 |   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) | 
 |     if (MD->getReturnType()->isVoidType()) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) | 
 |       << Attr.getName() << 1; | 
 |       return; | 
 |     } | 
 |    | 
 |   D->addAttr(::new (S.Context)  | 
 |              WarnUnusedResultAttr(Attr.getRange(), S.Context, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // weak_import only applies to variable & function declarations. | 
 |   bool isDef = false; | 
 |   if (!D->canBeWeakImported(isDef)) { | 
 |     if (isDef) | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition) | 
 |         << "weak_import"; | 
 |     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || | 
 |              (S.Context.getTargetInfo().getTriple().isOSDarwin() && | 
 |               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { | 
 |       // Nothing to warn about here. | 
 |     } else | 
 |       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << Attr.getName() << ExpectedVariableOrFunction; | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              WeakImportAttr(Attr.getRange(), S.Context, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | // Handles reqd_work_group_size and work_group_size_hint. | 
 | template <typename WorkGroupAttr> | 
 | static void handleWorkGroupSize(Sema &S, Decl *D, | 
 |                                 const AttributeList &Attr) { | 
 |   uint32_t WGSize[3]; | 
 |   for (unsigned i = 0; i < 3; ++i) { | 
 |     const Expr *E = Attr.getArgAsExpr(i); | 
 |     if (!checkUInt32Argument(S, Attr, E, WGSize[i], i)) | 
 |       return; | 
 |     if (WGSize[i] == 0) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero) | 
 |         << Attr.getName() << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); | 
 |   if (Existing && !(Existing->getXDim() == WGSize[0] && | 
 |                     Existing->getYDim() == WGSize[1] && | 
 |                     Existing->getZDim() == WGSize[2])) | 
 |     S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); | 
 |  | 
 |   D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context, | 
 |                                              WGSize[0], WGSize[1], WGSize[2], | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!Attr.hasParsedType()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   TypeSourceInfo *ParmTSI = nullptr; | 
 |   QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI); | 
 |   assert(ParmTSI && "no type source info for attribute argument"); | 
 |  | 
 |   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && | 
 |       (ParmType->isBooleanType() || | 
 |        !ParmType->isIntegralType(S.getASTContext()))) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint) | 
 |         << ParmType; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { | 
 |     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { | 
 |       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context, | 
 |                                                ParmTSI, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range, | 
 |                                     StringRef Name, | 
 |                                     unsigned AttrSpellingListIndex) { | 
 |   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { | 
 |     if (ExistingAttr->getName() == Name) | 
 |       return nullptr; | 
 |     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section); | 
 |     Diag(Range.getBegin(), diag::note_previous_attribute); | 
 |     return nullptr; | 
 |   } | 
 |   return ::new (Context) SectionAttr(Range, Context, Name, | 
 |                                      AttrSpellingListIndex); | 
 | } | 
 |  | 
 | static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // Make sure that there is a string literal as the sections's single | 
 |   // argument. | 
 |   StringRef Str; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // If the target wants to validate the section specifier, make it happen. | 
 |   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); | 
 |   if (!Error.empty()) { | 
 |     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) | 
 |     << Error; | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned Index = Attr.getAttributeSpellingListIndex(); | 
 |   SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 |  | 
 | static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   VarDecl *VD = cast<VarDecl>(D); | 
 |   if (!VD->hasLocalStorage()) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = Attr.getArgAsExpr(0); | 
 |   SourceLocation Loc = E->getExprLoc(); | 
 |   FunctionDecl *FD = nullptr; | 
 |   DeclarationNameInfo NI; | 
 |  | 
 |   // gcc only allows for simple identifiers. Since we support more than gcc, we | 
 |   // will warn the user. | 
 |   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | 
 |     if (DRE->hasQualifier()) | 
 |       S.Diag(Loc, diag::warn_cleanup_ext); | 
 |     FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
 |     NI = DRE->getNameInfo(); | 
 |     if (!FD) { | 
 |       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 | 
 |         << NI.getName(); | 
 |       return; | 
 |     } | 
 |   } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
 |     if (ULE->hasExplicitTemplateArgs()) | 
 |       S.Diag(Loc, diag::warn_cleanup_ext); | 
 |     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); | 
 |     NI = ULE->getNameInfo(); | 
 |     if (!FD) { | 
 |       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 | 
 |         << NI.getName(); | 
 |       if (ULE->getType() == S.Context.OverloadTy) | 
 |         S.NoteAllOverloadCandidates(ULE); | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (FD->getNumParams() != 1) { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) | 
 |       << NI.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We're currently more strict than GCC about what function types we accept. | 
 |   // If this ever proves to be a problem it should be easy to fix. | 
 |   QualType Ty = S.Context.getPointerType(VD->getType()); | 
 |   QualType ParamTy = FD->getParamDecl(0)->getType(); | 
 |   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), | 
 |                                    ParamTy, Ty) != Sema::Compatible) { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) | 
 |       << NI.getName() << ParamTy << Ty; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              CleanupAttr(Attr.getRange(), S.Context, FD, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | /// Handle __attribute__((format_arg((idx)))) attribute based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
 | static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   Expr *IdxExpr = Attr.getArgAsExpr(0); | 
 |   uint64_t Idx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx)) | 
 |     return; | 
 |  | 
 |   // make sure the format string is really a string | 
 |   QualType Ty = getFunctionOrMethodParamType(D, Idx); | 
 |  | 
 |   bool not_nsstring_type = !isNSStringType(Ty, S.Context); | 
 |   if (not_nsstring_type && | 
 |       !isCFStringType(Ty, S.Context) && | 
 |       (!Ty->isPointerType() || | 
 |        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { | 
 |     // FIXME: Should highlight the actual expression that has the wrong type. | 
 |     S.Diag(Attr.getLoc(), diag::err_format_attribute_not) | 
 |     << (not_nsstring_type ? "a string type" : "an NSString") | 
 |        << IdxExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |   Ty = getFunctionOrMethodResultType(D); | 
 |   if (!isNSStringType(Ty, S.Context) && | 
 |       !isCFStringType(Ty, S.Context) && | 
 |       (!Ty->isPointerType() || | 
 |        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { | 
 |     // FIXME: Should highlight the actual expression that has the wrong type. | 
 |     S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) | 
 |     << (not_nsstring_type ? "string type" : "NSString") | 
 |        << IdxExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex | 
 |   // because that has corrected for the implicit this parameter, and is zero- | 
 |   // based.  The attribute expects what the user wrote explicitly. | 
 |   llvm::APSInt Val; | 
 |   IdxExpr->EvaluateAsInt(Val, S.Context); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(), | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | enum FormatAttrKind { | 
 |   CFStringFormat, | 
 |   NSStringFormat, | 
 |   StrftimeFormat, | 
 |   SupportedFormat, | 
 |   IgnoredFormat, | 
 |   InvalidFormat | 
 | }; | 
 |  | 
 | /// getFormatAttrKind - Map from format attribute names to supported format | 
 | /// types. | 
 | static FormatAttrKind getFormatAttrKind(StringRef Format) { | 
 |   return llvm::StringSwitch<FormatAttrKind>(Format) | 
 |     // Check for formats that get handled specially. | 
 |     .Case("NSString", NSStringFormat) | 
 |     .Case("CFString", CFStringFormat) | 
 |     .Case("strftime", StrftimeFormat) | 
 |  | 
 |     // Otherwise, check for supported formats. | 
 |     .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) | 
 |     .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) | 
 |     .Case("kprintf", SupportedFormat) // OpenBSD. | 
 |  | 
 |     .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) | 
 |     .Default(InvalidFormat); | 
 | } | 
 |  | 
 | /// Handle __attribute__((init_priority(priority))) attributes based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html | 
 | static void handleInitPriorityAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (!S.getLangOpts().CPlusPlus) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); | 
 |     return; | 
 |   } | 
 |    | 
 |   if (S.getCurFunctionOrMethodDecl()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); | 
 |     Attr.setInvalid(); | 
 |     return; | 
 |   } | 
 |   QualType T = cast<VarDecl>(D)->getType(); | 
 |   if (S.Context.getAsArrayType(T)) | 
 |     T = S.Context.getBaseElementType(T); | 
 |   if (!T->getAs<RecordType>()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); | 
 |     Attr.setInvalid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = Attr.getArgAsExpr(0); | 
 |   uint32_t prioritynum; | 
 |   if (!checkUInt32Argument(S, Attr, E, prioritynum)) { | 
 |     Attr.setInvalid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (prioritynum < 101 || prioritynum > 65535) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range) | 
 |       << E->getSourceRange(); | 
 |     Attr.setInvalid(); | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) | 
 |              InitPriorityAttr(Attr.getRange(), S.Context, prioritynum, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, | 
 |                                   IdentifierInfo *Format, int FormatIdx, | 
 |                                   int FirstArg, | 
 |                                   unsigned AttrSpellingListIndex) { | 
 |   // Check whether we already have an equivalent format attribute. | 
 |   for (auto *F : D->specific_attrs<FormatAttr>()) { | 
 |     if (F->getType() == Format && | 
 |         F->getFormatIdx() == FormatIdx && | 
 |         F->getFirstArg() == FirstArg) { | 
 |       // If we don't have a valid location for this attribute, adopt the | 
 |       // location. | 
 |       if (F->getLocation().isInvalid()) | 
 |         F->setRange(Range); | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, | 
 |                                     FirstArg, AttrSpellingListIndex); | 
 | } | 
 |  | 
 | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
 | static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // In C++ the implicit 'this' function parameter also counts, and they are | 
 |   // counted from one. | 
 |   bool HasImplicitThisParam = isInstanceMethod(D); | 
 |   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; | 
 |  | 
 |   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; | 
 |   StringRef Format = II->getName(); | 
 |  | 
 |   // Normalize the argument, __foo__ becomes foo. | 
 |   if (Format.startswith("__") && Format.endswith("__")) { | 
 |     Format = Format.substr(2, Format.size() - 4); | 
 |     // If we've modified the string name, we need a new identifier for it. | 
 |     II = &S.Context.Idents.get(Format); | 
 |   } | 
 |  | 
 |   // Check for supported formats. | 
 |   FormatAttrKind Kind = getFormatAttrKind(Format); | 
 |    | 
 |   if (Kind == IgnoredFormat) | 
 |     return; | 
 |    | 
 |   if (Kind == InvalidFormat) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) | 
 |       << Attr.getName() << II->getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // checks for the 2nd argument | 
 |   Expr *IdxExpr = Attr.getArgAsExpr(1); | 
 |   uint32_t Idx; | 
 |   if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2)) | 
 |     return; | 
 |  | 
 |   if (Idx < 1 || Idx > NumArgs) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |       << Attr.getName() << 2 << IdxExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Do we need to bounds check? | 
 |   unsigned ArgIdx = Idx - 1; | 
 |  | 
 |   if (HasImplicitThisParam) { | 
 |     if (ArgIdx == 0) { | 
 |       S.Diag(Attr.getLoc(), | 
 |              diag::err_format_attribute_implicit_this_format_string) | 
 |         << IdxExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |     ArgIdx--; | 
 |   } | 
 |  | 
 |   // make sure the format string is really a string | 
 |   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); | 
 |  | 
 |   if (Kind == CFStringFormat) { | 
 |     if (!isCFStringType(Ty, S.Context)) { | 
 |       S.Diag(Attr.getLoc(), diag::err_format_attribute_not) | 
 |         << "a CFString" << IdxExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } else if (Kind == NSStringFormat) { | 
 |     // FIXME: do we need to check if the type is NSString*?  What are the | 
 |     // semantics? | 
 |     if (!isNSStringType(Ty, S.Context)) { | 
 |       // FIXME: Should highlight the actual expression that has the wrong type. | 
 |       S.Diag(Attr.getLoc(), diag::err_format_attribute_not) | 
 |         << "an NSString" << IdxExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } else if (!Ty->isPointerType() || | 
 |              !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) { | 
 |     // FIXME: Should highlight the actual expression that has the wrong type. | 
 |     S.Diag(Attr.getLoc(), diag::err_format_attribute_not) | 
 |       << "a string type" << IdxExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // check the 3rd argument | 
 |   Expr *FirstArgExpr = Attr.getArgAsExpr(2); | 
 |   uint32_t FirstArg; | 
 |   if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3)) | 
 |     return; | 
 |  | 
 |   // check if the function is variadic if the 3rd argument non-zero | 
 |   if (FirstArg != 0) { | 
 |     if (isFunctionOrMethodVariadic(D)) { | 
 |       ++NumArgs; // +1 for ... | 
 |     } else { | 
 |       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // strftime requires FirstArg to be 0 because it doesn't read from any | 
 |   // variable the input is just the current time + the format string. | 
 |   if (Kind == StrftimeFormat) { | 
 |     if (FirstArg != 0) { | 
 |       S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) | 
 |         << FirstArgExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   // if 0 it disables parameter checking (to use with e.g. va_list) | 
 |   } else if (FirstArg != 0 && FirstArg != NumArgs) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |       << Attr.getName() << 3 << FirstArgExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II, | 
 |                                           Idx, FirstArg, | 
 |                                           Attr.getAttributeSpellingListIndex()); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | static void handleTransparentUnionAttr(Sema &S, Decl *D, | 
 |                                        const AttributeList &Attr) { | 
 |   // Try to find the underlying union declaration. | 
 |   RecordDecl *RD = nullptr; | 
 |   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); | 
 |   if (TD && TD->getUnderlyingType()->isUnionType()) | 
 |     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); | 
 |   else | 
 |     RD = dyn_cast<RecordDecl>(D); | 
 |  | 
 |   if (!RD || !RD->isUnion()) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedUnion; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!RD->isCompleteDefinition()) { | 
 |     S.Diag(Attr.getLoc(), | 
 |         diag::warn_transparent_union_attribute_not_definition); | 
 |     return; | 
 |   } | 
 |  | 
 |   RecordDecl::field_iterator Field = RD->field_begin(), | 
 |                           FieldEnd = RD->field_end(); | 
 |   if (Field == FieldEnd) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); | 
 |     return; | 
 |   } | 
 |  | 
 |   FieldDecl *FirstField = *Field; | 
 |   QualType FirstType = FirstField->getType(); | 
 |   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { | 
 |     S.Diag(FirstField->getLocation(), | 
 |            diag::warn_transparent_union_attribute_floating) | 
 |       << FirstType->isVectorType() << FirstType; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint64_t FirstSize = S.Context.getTypeSize(FirstType); | 
 |   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); | 
 |   for (; Field != FieldEnd; ++Field) { | 
 |     QualType FieldType = Field->getType(); | 
 |     // FIXME: this isn't fully correct; we also need to test whether the | 
 |     // members of the union would all have the same calling convention as the | 
 |     // first member of the union. Checking just the size and alignment isn't | 
 |     // sufficient (consider structs passed on the stack instead of in registers | 
 |     // as an example). | 
 |     if (S.Context.getTypeSize(FieldType) != FirstSize || | 
 |         S.Context.getTypeAlign(FieldType) > FirstAlign) { | 
 |       // Warn if we drop the attribute. | 
 |       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; | 
 |       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) | 
 |                                  : S.Context.getTypeAlign(FieldType); | 
 |       S.Diag(Field->getLocation(), | 
 |           diag::warn_transparent_union_attribute_field_size_align) | 
 |         << isSize << Field->getDeclName() << FieldBits; | 
 |       unsigned FirstBits = isSize? FirstSize : FirstAlign; | 
 |       S.Diag(FirstField->getLocation(), | 
 |              diag::note_transparent_union_first_field_size_align) | 
 |         << isSize << FirstBits; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   RD->addAttr(::new (S.Context) | 
 |               TransparentUnionAttr(Attr.getRange(), S.Context, | 
 |                                    Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // Make sure that there is a string literal as the annotation's single | 
 |   // argument. | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) | 
 |     return; | 
 |  | 
 |   // Don't duplicate annotations that are already set. | 
 |   for (const auto *I : D->specific_attrs<AnnotateAttr>()) { | 
 |     if (I->getAnnotation() == Str) | 
 |       return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              AnnotateAttr(Attr.getRange(), S.Context, Str, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Attr.getNumArgs() == 0) { | 
 |     D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, | 
 |                true, nullptr, Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = Attr.getArgAsExpr(0); | 
 |   if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) { | 
 |     S.Diag(Attr.getEllipsisLoc(), | 
 |            diag::err_pack_expansion_without_parameter_packs); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) | 
 |     return; | 
 |  | 
 |   S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(), | 
 |                    Attr.isPackExpansion()); | 
 | } | 
 |  | 
 | void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, | 
 |                           unsigned SpellingListIndex, bool IsPackExpansion) { | 
 |   AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex); | 
 |   SourceLocation AttrLoc = AttrRange.getBegin(); | 
 |  | 
 |   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. | 
 |   if (TmpAttr.isAlignas()) { | 
 |     // C++11 [dcl.align]p1: | 
 |     //   An alignment-specifier may be applied to a variable or to a class | 
 |     //   data member, but it shall not be applied to a bit-field, a function | 
 |     //   parameter, the formal parameter of a catch clause, or a variable | 
 |     //   declared with the register storage class specifier. An | 
 |     //   alignment-specifier may also be applied to the declaration of a class | 
 |     //   or enumeration type. | 
 |     // C11 6.7.5/2: | 
 |     //   An alignment attribute shall not be specified in a declaration of | 
 |     //   a typedef, or a bit-field, or a function, or a parameter, or an | 
 |     //   object declared with the register storage-class specifier. | 
 |     int DiagKind = -1; | 
 |     if (isa<ParmVarDecl>(D)) { | 
 |       DiagKind = 0; | 
 |     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |       if (VD->getStorageClass() == SC_Register) | 
 |         DiagKind = 1; | 
 |       if (VD->isExceptionVariable()) | 
 |         DiagKind = 2; | 
 |     } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { | 
 |       if (FD->isBitField()) | 
 |         DiagKind = 3; | 
 |     } else if (!isa<TagDecl>(D)) { | 
 |       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr | 
 |         << (TmpAttr.isC11() ? ExpectedVariableOrField | 
 |                             : ExpectedVariableFieldOrTag); | 
 |       return; | 
 |     } | 
 |     if (DiagKind != -1) { | 
 |       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) | 
 |         << &TmpAttr << DiagKind; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (E->isTypeDependent() || E->isValueDependent()) { | 
 |     // Save dependent expressions in the AST to be instantiated. | 
 |     AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr); | 
 |     AA->setPackExpansion(IsPackExpansion); | 
 |     D->addAttr(AA); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Cache the number on the Attr object? | 
 |   llvm::APSInt Alignment(32); | 
 |   ExprResult ICE | 
 |     = VerifyIntegerConstantExpression(E, &Alignment, | 
 |         diag::err_aligned_attribute_argument_not_int, | 
 |         /*AllowFold*/ false); | 
 |   if (ICE.isInvalid()) | 
 |     return; | 
 |  | 
 |   // C++11 [dcl.align]p2: | 
 |   //   -- if the constant expression evaluates to zero, the alignment | 
 |   //      specifier shall have no effect | 
 |   // C11 6.7.5p6: | 
 |   //   An alignment specification of zero has no effect. | 
 |   if (!(TmpAttr.isAlignas() && !Alignment) && | 
 |       !llvm::isPowerOf2_64(Alignment.getZExtValue())) { | 
 |     Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two) | 
 |       << E->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Alignment calculations can wrap around if it's greater than 2**28. | 
 |   unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456; | 
 |   if (Alignment.getZExtValue() > MaxValidAlignment) { | 
 |     Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment | 
 |                                                          << E->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true, | 
 |                                                 ICE.get(), SpellingListIndex); | 
 |   AA->setPackExpansion(IsPackExpansion); | 
 |   D->addAttr(AA); | 
 | } | 
 |  | 
 | void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS, | 
 |                           unsigned SpellingListIndex, bool IsPackExpansion) { | 
 |   // FIXME: Cache the number on the Attr object if non-dependent? | 
 |   // FIXME: Perform checking of type validity | 
 |   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS, | 
 |                                                 SpellingListIndex); | 
 |   AA->setPackExpansion(IsPackExpansion); | 
 |   D->addAttr(AA); | 
 | } | 
 |  | 
 | void Sema::CheckAlignasUnderalignment(Decl *D) { | 
 |   assert(D->hasAttrs() && "no attributes on decl"); | 
 |  | 
 |   QualType Ty; | 
 |   if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) | 
 |     Ty = VD->getType(); | 
 |   else | 
 |     Ty = Context.getTagDeclType(cast<TagDecl>(D)); | 
 |   if (Ty->isDependentType() || Ty->isIncompleteType()) | 
 |     return; | 
 |  | 
 |   // C++11 [dcl.align]p5, C11 6.7.5/4: | 
 |   //   The combined effect of all alignment attributes in a declaration shall | 
 |   //   not specify an alignment that is less strict than the alignment that | 
 |   //   would otherwise be required for the entity being declared. | 
 |   AlignedAttr *AlignasAttr = nullptr; | 
 |   unsigned Align = 0; | 
 |   for (auto *I : D->specific_attrs<AlignedAttr>()) { | 
 |     if (I->isAlignmentDependent()) | 
 |       return; | 
 |     if (I->isAlignas()) | 
 |       AlignasAttr = I; | 
 |     Align = std::max(Align, I->getAlignment(Context)); | 
 |   } | 
 |  | 
 |   if (AlignasAttr && Align) { | 
 |     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); | 
 |     CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty); | 
 |     if (NaturalAlign > RequestedAlign) | 
 |       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) | 
 |         << Ty << (unsigned)NaturalAlign.getQuantity(); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::checkMSInheritanceAttrOnDefinition( | 
 |     CXXRecordDecl *RD, SourceRange Range, bool BestCase, | 
 |     MSInheritanceAttr::Spelling SemanticSpelling) { | 
 |   assert(RD->hasDefinition() && "RD has no definition!"); | 
 |  | 
 |   // We may not have seen base specifiers or any virtual methods yet.  We will | 
 |   // have to wait until the record is defined to catch any mismatches. | 
 |   if (!RD->getDefinition()->isCompleteDefinition()) | 
 |     return false; | 
 |  | 
 |   // The unspecified model never matches what a definition could need. | 
 |   if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance) | 
 |     return false; | 
 |  | 
 |   if (BestCase) { | 
 |     if (RD->calculateInheritanceModel() == SemanticSpelling) | 
 |       return false; | 
 |   } else { | 
 |     if (RD->calculateInheritanceModel() <= SemanticSpelling) | 
 |       return false; | 
 |   } | 
 |  | 
 |   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) | 
 |       << 0 /*definition*/; | 
 |   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) | 
 |       << RD->getNameAsString(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// handleModeAttr - This attribute modifies the width of a decl with primitive | 
 | /// type. | 
 | /// | 
 | /// Despite what would be logical, the mode attribute is a decl attribute, not a | 
 | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be | 
 | /// HImode, not an intermediate pointer. | 
 | static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // This attribute isn't documented, but glibc uses it.  It changes | 
 |   // the width of an int or unsigned int to the specified size. | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() | 
 |       << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident; | 
 |   StringRef Str = Name->getName(); | 
 |  | 
 |   // Normalize the attribute name, __foo__ becomes foo. | 
 |   if (Str.startswith("__") && Str.endswith("__")) | 
 |     Str = Str.substr(2, Str.size() - 4); | 
 |  | 
 |   unsigned DestWidth = 0; | 
 |   bool IntegerMode = true; | 
 |   bool ComplexMode = false; | 
 |   switch (Str.size()) { | 
 |   case 2: | 
 |     switch (Str[0]) { | 
 |     case 'Q': DestWidth = 8; break; | 
 |     case 'H': DestWidth = 16; break; | 
 |     case 'S': DestWidth = 32; break; | 
 |     case 'D': DestWidth = 64; break; | 
 |     case 'X': DestWidth = 96; break; | 
 |     case 'T': DestWidth = 128; break; | 
 |     } | 
 |     if (Str[1] == 'F') { | 
 |       IntegerMode = false; | 
 |     } else if (Str[1] == 'C') { | 
 |       IntegerMode = false; | 
 |       ComplexMode = true; | 
 |     } else if (Str[1] != 'I') { | 
 |       DestWidth = 0; | 
 |     } | 
 |     break; | 
 |   case 4: | 
 |     // FIXME: glibc uses 'word' to define register_t; this is narrower than a | 
 |     // pointer on PIC16 and other embedded platforms. | 
 |     if (Str == "word") | 
 |       DestWidth = S.Context.getTargetInfo().getPointerWidth(0); | 
 |     else if (Str == "byte") | 
 |       DestWidth = S.Context.getTargetInfo().getCharWidth(); | 
 |     break; | 
 |   case 7: | 
 |     if (Str == "pointer") | 
 |       DestWidth = S.Context.getTargetInfo().getPointerWidth(0); | 
 |     break; | 
 |   case 11: | 
 |     if (Str == "unwind_word") | 
 |       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); | 
 |     break; | 
 |   } | 
 |  | 
 |   QualType OldTy; | 
 |   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) | 
 |     OldTy = TD->getUnderlyingType(); | 
 |   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) | 
 |     OldTy = VD->getType(); | 
 |   else { | 
 |     S.Diag(D->getLocation(), diag::err_attr_wrong_decl) | 
 |       << Attr.getName() << Attr.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType()) | 
 |     S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); | 
 |   else if (IntegerMode) { | 
 |     if (!OldTy->isIntegralOrEnumerationType()) | 
 |       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); | 
 |   } else if (ComplexMode) { | 
 |     if (!OldTy->isComplexType()) | 
 |       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); | 
 |   } else { | 
 |     if (!OldTy->isFloatingType()) | 
 |       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); | 
 |   } | 
 |  | 
 |   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t | 
 |   // and friends, at least with glibc. | 
 |   // FIXME: Make sure floating-point mappings are accurate | 
 |   // FIXME: Support XF and TF types | 
 |   if (!DestWidth) { | 
 |     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name; | 
 |     return; | 
 |   } | 
 |  | 
 |   QualType NewTy; | 
 |  | 
 |   if (IntegerMode) | 
 |     NewTy = S.Context.getIntTypeForBitwidth(DestWidth, | 
 |                                             OldTy->isSignedIntegerType()); | 
 |   else | 
 |     NewTy = S.Context.getRealTypeForBitwidth(DestWidth); | 
 |  | 
 |   if (NewTy.isNull()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ComplexMode) { | 
 |     NewTy = S.Context.getComplexType(NewTy); | 
 |   } | 
 |  | 
 |   // Install the new type. | 
 |   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) | 
 |     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); | 
 |   else | 
 |     cast<ValueDecl>(D)->setType(NewTy); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              ModeAttr(Attr.getRange(), S.Context, Name, | 
 |                       Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (!VD->hasGlobalStorage()) | 
 |       S.Diag(Attr.getLoc(), | 
 |              diag::warn_attribute_requires_functions_or_static_globals) | 
 |         << Attr.getName(); | 
 |   } else if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(Attr.getLoc(), | 
 |            diag::warn_attribute_requires_functions_or_static_globals) | 
 |       << Attr.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              NoDebugAttr(Attr.getRange(), S.Context, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAlwaysInlineAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<OptimizeNoneAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              AlwaysInlineAttr(Attr.getRange(), S.Context, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleOptimizeNoneAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<AlwaysInlineAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              OptimizeNoneAttr(Attr.getRange(), S.Context, | 
 |                               Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   FunctionDecl *FD = cast<FunctionDecl>(D); | 
 |   if (!FD->getReturnType()->isVoidType()) { | 
 |     TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); | 
 |     if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) { | 
 |       S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) | 
 |         << FD->getType() | 
 |         << FixItHint::CreateReplacement(FTL.getReturnLoc().getSourceRange(), | 
 |                                         "void"); | 
 |     } else { | 
 |       S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) | 
 |         << FD->getType(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |               CUDAGlobalAttr(Attr.getRange(), S.Context, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   FunctionDecl *Fn = cast<FunctionDecl>(D); | 
 |   if (!Fn->isInlineSpecified()) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              GNUInlineAttr(Attr.getRange(), S.Context, | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); | 
 |   // Diagnostic is emitted elsewhere: here we store the (valid) Attr | 
 |   // in the Decl node for syntactic reasoning, e.g., pretty-printing. | 
 |   CallingConv CC; | 
 |   if (S.CheckCallingConvAttr(Attr, CC, FD)) | 
 |     return; | 
 |  | 
 |   if (!isa<ObjCMethodDecl>(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Attr.getKind()) { | 
 |   case AttributeList::AT_FastCall: | 
 |     D->addAttr(::new (S.Context) | 
 |                FastCallAttr(Attr.getRange(), S.Context, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_StdCall: | 
 |     D->addAttr(::new (S.Context) | 
 |                StdCallAttr(Attr.getRange(), S.Context, | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_ThisCall: | 
 |     D->addAttr(::new (S.Context) | 
 |                ThisCallAttr(Attr.getRange(), S.Context, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_CDecl: | 
 |     D->addAttr(::new (S.Context) | 
 |                CDeclAttr(Attr.getRange(), S.Context, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_Pascal: | 
 |     D->addAttr(::new (S.Context) | 
 |                PascalAttr(Attr.getRange(), S.Context, | 
 |                           Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_MSABI: | 
 |     D->addAttr(::new (S.Context) | 
 |                MSABIAttr(Attr.getRange(), S.Context, | 
 |                          Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_SysVABI: | 
 |     D->addAttr(::new (S.Context) | 
 |                SysVABIAttr(Attr.getRange(), S.Context, | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_Pcs: { | 
 |     PcsAttr::PCSType PCS; | 
 |     switch (CC) { | 
 |     case CC_AAPCS: | 
 |       PCS = PcsAttr::AAPCS; | 
 |       break; | 
 |     case CC_AAPCS_VFP: | 
 |       PCS = PcsAttr::AAPCS_VFP; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("unexpected calling convention in pcs attribute"); | 
 |     } | 
 |  | 
 |     D->addAttr(::new (S.Context) | 
 |                PcsAttr(Attr.getRange(), S.Context, PCS, | 
 |                        Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   } | 
 |   case AttributeList::AT_PnaclCall: | 
 |     D->addAttr(::new (S.Context) | 
 |                PnaclCallAttr(Attr.getRange(), S.Context, | 
 |                              Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |   case AttributeList::AT_IntelOclBicc: | 
 |     D->addAttr(::new (S.Context) | 
 |                IntelOclBiccAttr(Attr.getRange(), S.Context, | 
 |                                 Attr.getAttributeSpellingListIndex())); | 
 |     return; | 
 |  | 
 |   default: | 
 |     llvm_unreachable("unexpected attribute kind"); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,  | 
 |                                 const FunctionDecl *FD) { | 
 |   if (attr.isInvalid()) | 
 |     return true; | 
 |  | 
 |   unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0; | 
 |   if (!checkAttributeNumArgs(*this, attr, ReqArgs)) { | 
 |     attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // TODO: diagnose uses of these conventions on the wrong target. | 
 |   switch (attr.getKind()) { | 
 |   case AttributeList::AT_CDecl: CC = CC_C; break; | 
 |   case AttributeList::AT_FastCall: CC = CC_X86FastCall; break; | 
 |   case AttributeList::AT_StdCall: CC = CC_X86StdCall; break; | 
 |   case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break; | 
 |   case AttributeList::AT_Pascal: CC = CC_X86Pascal; break; | 
 |   case AttributeList::AT_MSABI: | 
 |     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : | 
 |                                                              CC_X86_64Win64; | 
 |     break; | 
 |   case AttributeList::AT_SysVABI: | 
 |     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : | 
 |                                                              CC_C; | 
 |     break; | 
 |   case AttributeList::AT_Pcs: { | 
 |     StringRef StrRef; | 
 |     if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) { | 
 |       attr.setInvalid(); | 
 |       return true; | 
 |     } | 
 |     if (StrRef == "aapcs") { | 
 |       CC = CC_AAPCS; | 
 |       break; | 
 |     } else if (StrRef == "aapcs-vfp") { | 
 |       CC = CC_AAPCS_VFP; | 
 |       break; | 
 |     } | 
 |  | 
 |     attr.setInvalid(); | 
 |     Diag(attr.getLoc(), diag::err_invalid_pcs); | 
 |     return true; | 
 |   } | 
 |   case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break; | 
 |   case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break; | 
 |   default: llvm_unreachable("unexpected attribute kind"); | 
 |   } | 
 |  | 
 |   const TargetInfo &TI = Context.getTargetInfo(); | 
 |   TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC); | 
 |   if (A == TargetInfo::CCCR_Warning) { | 
 |     Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName(); | 
 |  | 
 |     TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown; | 
 |     if (FD) | 
 |       MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :  | 
 |                                     TargetInfo::CCMT_NonMember; | 
 |     CC = TI.getDefaultCallingConv(MT); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Checks a regparm attribute, returning true if it is ill-formed and | 
 | /// otherwise setting numParams to the appropriate value. | 
 | bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) { | 
 |   if (Attr.isInvalid()) | 
 |     return true; | 
 |  | 
 |   if (!checkAttributeNumArgs(*this, Attr, 1)) { | 
 |     Attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   uint32_t NP; | 
 |   Expr *NumParamsExpr = Attr.getArgAsExpr(0); | 
 |   if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) { | 
 |     Attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Context.getTargetInfo().getRegParmMax() == 0) { | 
 |     Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) | 
 |       << NumParamsExpr->getSourceRange(); | 
 |     Attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   numParams = NP; | 
 |   if (numParams > Context.getTargetInfo().getRegParmMax()) { | 
 |     Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) | 
 |       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); | 
 |     Attr.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleLaunchBoundsAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   // check the attribute arguments. | 
 |   if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) { | 
 |     // FIXME: 0 is not okay. | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 2; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint32_t MaxThreads, MinBlocks = 0; | 
 |   if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1)) | 
 |     return; | 
 |   if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr, | 
 |                                                     Attr.getArgAsExpr(1), | 
 |                                                     MinBlocks, 2)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |               CUDALaunchBoundsAttr(Attr.getRange(), S.Context, | 
 |                                   MaxThreads, MinBlocks, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, | 
 |                                           const AttributeList &Attr) { | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (!checkAttributeNumArgs(S, Attr, 3)) | 
 |     return; | 
 |  | 
 |   IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident; | 
 |  | 
 |   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint64_t ArgumentIdx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1), | 
 |                                            ArgumentIdx)) | 
 |     return; | 
 |  | 
 |   uint64_t TypeTagIdx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2), | 
 |                                            TypeTagIdx)) | 
 |     return; | 
 |  | 
 |   bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag"); | 
 |   if (IsPointer) { | 
 |     // Ensure that buffer has a pointer type. | 
 |     QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx); | 
 |     if (!BufferTy->isPointerType()) { | 
 |       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only) | 
 |         << Attr.getName(); | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind, | 
 |                                      ArgumentIdx, TypeTagIdx, IsPointer, | 
 |                                      Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, | 
 |                                          const AttributeList &Attr) { | 
 |   if (!Attr.isArgIdent(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) | 
 |       << Attr.getName() << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) | 
 |     return; | 
 |  | 
 |   if (!isa<VarDecl>(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedVariable; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident; | 
 |   TypeSourceInfo *MatchingCTypeLoc = nullptr; | 
 |   S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc); | 
 |   assert(MatchingCTypeLoc && "no type source info for attribute argument"); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind, | 
 |                                     MatchingCTypeLoc, | 
 |                                     Attr.getLayoutCompatible(), | 
 |                                     Attr.getMustBeNull(), | 
 |                                     Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Checker-specific attribute handlers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) { | 
 |   return type->isDependentType() || | 
 |          type->isObjCRetainableType(); | 
 | } | 
 |  | 
 | static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) { | 
 |   return type->isDependentType() ||  | 
 |          type->isObjCObjectPointerType() ||  | 
 |          S.Context.isObjCNSObjectType(type); | 
 | } | 
 | static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) { | 
 |   return type->isDependentType() ||  | 
 |          type->isPointerType() ||  | 
 |          isValidSubjectOfNSAttribute(S, type); | 
 | } | 
 |  | 
 | static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   ParmVarDecl *param = cast<ParmVarDecl>(D); | 
 |   bool typeOK, cf; | 
 |  | 
 |   if (Attr.getKind() == AttributeList::AT_NSConsumed) { | 
 |     typeOK = isValidSubjectOfNSAttribute(S, param->getType()); | 
 |     cf = false; | 
 |   } else { | 
 |     typeOK = isValidSubjectOfCFAttribute(S, param->getType()); | 
 |     cf = true; | 
 |   } | 
 |  | 
 |   if (!typeOK) { | 
 |     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type) | 
 |       << Attr.getRange() << Attr.getName() << cf; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (cf) | 
 |     param->addAttr(::new (S.Context) | 
 |                    CFConsumedAttr(Attr.getRange(), S.Context, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 |   else | 
 |     param->addAttr(::new (S.Context) | 
 |                    NSConsumedAttr(Attr.getRange(), S.Context, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |  | 
 |   QualType returnType; | 
 |  | 
 |   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) | 
 |     returnType = MD->getReturnType(); | 
 |   else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && | 
 |            (Attr.getKind() == AttributeList::AT_NSReturnsRetained)) | 
 |     return; // ignore: was handled as a type attribute | 
 |   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) | 
 |     returnType = PD->getType(); | 
 |   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
 |     returnType = FD->getReturnType(); | 
 |   else { | 
 |     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) | 
 |         << Attr.getRange() << Attr.getName() | 
 |         << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   bool typeOK; | 
 |   bool cf; | 
 |   switch (Attr.getKind()) { | 
 |   default: llvm_unreachable("invalid ownership attribute"); | 
 |   case AttributeList::AT_NSReturnsRetained: | 
 |     typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType); | 
 |     cf = false; | 
 |     break; | 
 |        | 
 |   case AttributeList::AT_NSReturnsAutoreleased: | 
 |   case AttributeList::AT_NSReturnsNotRetained: | 
 |     typeOK = isValidSubjectOfNSAttribute(S, returnType); | 
 |     cf = false; | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_CFReturnsRetained: | 
 |   case AttributeList::AT_CFReturnsNotRetained: | 
 |     typeOK = isValidSubjectOfCFAttribute(S, returnType); | 
 |     cf = true; | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!typeOK) { | 
 |     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) | 
 |       << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf; | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Attr.getKind()) { | 
 |     default: | 
 |       llvm_unreachable("invalid ownership attribute"); | 
 |     case AttributeList::AT_NSReturnsAutoreleased: | 
 |       D->addAttr(::new (S.Context) | 
 |                  NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context, | 
 |                                            Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |     case AttributeList::AT_CFReturnsNotRetained: | 
 |       D->addAttr(::new (S.Context) | 
 |                  CFReturnsNotRetainedAttr(Attr.getRange(), S.Context, | 
 |                                           Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |     case AttributeList::AT_NSReturnsNotRetained: | 
 |       D->addAttr(::new (S.Context) | 
 |                  NSReturnsNotRetainedAttr(Attr.getRange(), S.Context, | 
 |                                           Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |     case AttributeList::AT_CFReturnsRetained: | 
 |       D->addAttr(::new (S.Context) | 
 |                  CFReturnsRetainedAttr(Attr.getRange(), S.Context, | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |     case AttributeList::AT_NSReturnsRetained: | 
 |       D->addAttr(::new (S.Context) | 
 |                  NSReturnsRetainedAttr(Attr.getRange(), S.Context, | 
 |                                        Attr.getAttributeSpellingListIndex())); | 
 |       return; | 
 |   }; | 
 | } | 
 |  | 
 | static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, | 
 |                                               const AttributeList &attr) { | 
 |   const int EP_ObjCMethod = 1; | 
 |   const int EP_ObjCProperty = 2; | 
 |    | 
 |   SourceLocation loc = attr.getLoc(); | 
 |   QualType resultType; | 
 |   if (isa<ObjCMethodDecl>(D)) | 
 |     resultType = cast<ObjCMethodDecl>(D)->getReturnType(); | 
 |   else | 
 |     resultType = cast<ObjCPropertyDecl>(D)->getType(); | 
 |  | 
 |   if (!resultType->isReferenceType() && | 
 |       (!resultType->isPointerType() || resultType->isObjCRetainableType())) { | 
 |     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) | 
 |       << SourceRange(loc) | 
 |     << attr.getName() | 
 |     << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) | 
 |     << /*non-retainable pointer*/ 2; | 
 |  | 
 |     // Drop the attribute. | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                   ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context, | 
 |                                               attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &attr) { | 
 |   ObjCMethodDecl *method = cast<ObjCMethodDecl>(D); | 
 |    | 
 |   DeclContext *DC = method->getDeclContext(); | 
 |   if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { | 
 |     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) | 
 |     << attr.getName() << 0; | 
 |     S.Diag(PDecl->getLocation(), diag::note_protocol_decl); | 
 |     return; | 
 |   } | 
 |   if (method->getMethodFamily() == OMF_dealloc) { | 
 |     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) | 
 |     << attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |    | 
 |   method->addAttr(::new (S.Context) | 
 |                   ObjCRequiresSuperAttr(attr.getRange(), S.Context, | 
 |                                         attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleCFAuditedTransferAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              CFAuditedTransferAttr(Attr.getRange(), S.Context, | 
 |                                    Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleCFUnknownTransferAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |   if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              CFUnknownTransferAttr(Attr.getRange(), S.Context, | 
 |              Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D, | 
 |                                 const AttributeList &Attr) { | 
 |   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr; | 
 |  | 
 |   if (!Parm) { | 
 |     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; | 
 |     return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident, | 
 |                            Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr; | 
 |  | 
 |   if (!Parm) { | 
 |     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; | 
 |     return; | 
 |   } | 
 |    | 
 |   D->addAttr(::new (S.Context) | 
 |              ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident, | 
 |                             Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D, | 
 |                                  const AttributeList &Attr) { | 
 |   IdentifierInfo *RelatedClass = | 
 |     Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr; | 
 |   if (!RelatedClass) { | 
 |     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; | 
 |     return; | 
 |   } | 
 |   IdentifierInfo *ClassMethod = | 
 |     Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr; | 
 |   IdentifierInfo *InstanceMethod = | 
 |     Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr; | 
 |   D->addAttr(::new (S.Context) | 
 |              ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass, | 
 |                                    ClassMethod, InstanceMethod, | 
 |                                    Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCDesignatedInitializer(Sema &S, Decl *D, | 
 |                                             const AttributeList &Attr) { | 
 |   ObjCInterfaceDecl *IFace; | 
 |   if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(D->getDeclContext())) | 
 |     IFace = CatDecl->getClassInterface(); | 
 |   else | 
 |     IFace = cast<ObjCInterfaceDecl>(D->getDeclContext()); | 
 |   IFace->setHasDesignatedInitializers(); | 
 |   D->addAttr(::new (S.Context) | 
 |                   ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context, | 
 |                                          Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleObjCOwnershipAttr(Sema &S, Decl *D, | 
 |                                     const AttributeList &Attr) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) | 
 |     << Attr.getRange() << Attr.getName() << ExpectedVariable; | 
 | } | 
 |  | 
 | static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, | 
 |                                           const AttributeList &Attr) { | 
 |   ValueDecl *vd = cast<ValueDecl>(D); | 
 |   QualType type = vd->getType(); | 
 |  | 
 |   if (!type->isDependentType() && | 
 |       !type->isObjCLifetimeType()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type) | 
 |       << type; | 
 |     return; | 
 |   } | 
 |  | 
 |   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); | 
 |  | 
 |   // If we have no lifetime yet, check the lifetime we're presumably | 
 |   // going to infer. | 
 |   if (lifetime == Qualifiers::OCL_None && !type->isDependentType()) | 
 |     lifetime = type->getObjCARCImplicitLifetime(); | 
 |  | 
 |   switch (lifetime) { | 
 |   case Qualifiers::OCL_None: | 
 |     assert(type->isDependentType() && | 
 |            "didn't infer lifetime for non-dependent type?"); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_Weak:   // meaningful | 
 |   case Qualifiers::OCL_Strong: // meaningful | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_ExplicitNone: | 
 |   case Qualifiers::OCL_Autoreleasing: | 
 |     S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless) | 
 |       << (lifetime == Qualifiers::OCL_Autoreleasing); | 
 |     break; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |              ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context, | 
 |                                      Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Microsoft specific attribute handlers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!S.LangOpts.CPlusPlus) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |       << Attr.getName() << AttributeLangSupport::C; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!isa<CXXRecordDecl>(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << ExpectedClass; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef StrRef; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or | 
 |   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. | 
 |   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') | 
 |     StrRef = StrRef.drop_front().drop_back(); | 
 |  | 
 |   // Validate GUID length. | 
 |   if (StrRef.size() != 36) { | 
 |     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |     return; | 
 |   } | 
 |  | 
 |   for (unsigned i = 0; i < 36; ++i) { | 
 |     if (i == 8 || i == 13 || i == 18 || i == 23) { | 
 |       if (StrRef[i] != '-') { | 
 |         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |         return; | 
 |       } | 
 |     } else if (!isHexDigit(StrRef[i])) { | 
 |       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   if (!S.LangOpts.CPlusPlus) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |       << Attr.getName() << AttributeLangSupport::C; | 
 |     return; | 
 |   } | 
 |   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( | 
 |       D, Attr.getRange(), /*BestCase=*/true, | 
 |       Attr.getAttributeSpellingListIndex(), | 
 |       (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling()); | 
 |   if (IA) | 
 |     D->addAttr(IA); | 
 | } | 
 |  | 
 | static void handleDeclspecThreadAttr(Sema &S, Decl *D, | 
 |                                      const AttributeList &Attr) { | 
 |   VarDecl *VD = cast<VarDecl>(D); | 
 |   if (!S.Context.getTargetInfo().isTLSSupported()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_thread_unsupported); | 
 |     return; | 
 |   } | 
 |   if (VD->getTSCSpec() != TSCS_unspecified) { | 
 |     S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable); | 
 |     return; | 
 |   } | 
 |   if (VD->hasLocalStorage()) { | 
 |     S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; | 
 |     return; | 
 |   } | 
 |   VD->addAttr(::new (S.Context) ThreadAttr( | 
 |       Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleARMInterruptAttr(Sema &S, Decl *D, | 
 |                                    const AttributeList &Attr) { | 
 |   // Check the attribute arguments. | 
 |   if (Attr.getNumArgs() > 1) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) | 
 |       << Attr.getName() << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |  | 
 |   if (Attr.getNumArgs() == 0) | 
 |     Str = ""; | 
 |   else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc)) | 
 |     return; | 
 |  | 
 |   ARMInterruptAttr::InterruptType Kind; | 
 |   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) | 
 |       << Attr.getName() << Str << ArgLoc; | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned Index = Attr.getAttributeSpellingListIndex(); | 
 |   D->addAttr(::new (S.Context) | 
 |              ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index)); | 
 | } | 
 |  | 
 | static void handleMSP430InterruptAttr(Sema &S, Decl *D, | 
 |                                       const AttributeList &Attr) { | 
 |   if (!checkAttributeNumArgs(S, Attr, 1)) | 
 |     return; | 
 |  | 
 |   if (!Attr.isArgExpr(0)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() | 
 |       << AANT_ArgumentIntegerConstant; | 
 |     return;     | 
 |   } | 
 |  | 
 |   // FIXME: Check for decl - it should be void ()(void). | 
 |  | 
 |   Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); | 
 |   llvm::APSInt NumParams(32); | 
 |   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | 
 |       << Attr.getName() << AANT_ArgumentIntegerConstant | 
 |       << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned Num = NumParams.getLimitedValue(255); | 
 |   if ((Num & 1) || Num > 30) { | 
 |     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |       << Attr.getName() << (int)NumParams.getSExtValue() | 
 |       << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |               MSP430InterruptAttr(Attr.getLoc(), S.Context, Num, | 
 |                                   Attr.getAttributeSpellingListIndex())); | 
 |   D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // Dispatch the interrupt attribute based on the current target. | 
 |   if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430) | 
 |     handleMSP430InterruptAttr(S, D, Attr); | 
 |   else | 
 |     handleARMInterruptAttr(S, D, Attr); | 
 | } | 
 |  | 
 | static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, | 
 |                                               const AttributeList& Attr) { | 
 |   // If we try to apply it to a function pointer, don't warn, but don't | 
 |   // do anything, either. It doesn't matter anyway, because there's nothing | 
 |   // special about calling a force_align_arg_pointer function. | 
 |   ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
 |   if (VD && VD->getType()->isFunctionPointerType()) | 
 |     return; | 
 |   // Also don't warn on function pointer typedefs. | 
 |   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); | 
 |   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || | 
 |     TD->getUnderlyingType()->isFunctionType())) | 
 |     return; | 
 |   // Attribute can only be applied to function types. | 
 |   if (!isa<FunctionDecl>(D)) { | 
 |     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |       << Attr.getName() << /* function */0; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |               X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range, | 
 |                                         unsigned AttrSpellingListIndex) { | 
 |   if (D->hasAttr<DLLExportAttr>()) { | 
 |     Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'"; | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (D->hasAttr<DLLImportAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex); | 
 | } | 
 |  | 
 | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range, | 
 |                                         unsigned AttrSpellingListIndex) { | 
 |   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { | 
 |     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; | 
 |     D->dropAttr<DLLImportAttr>(); | 
 |   } | 
 |  | 
 |   if (D->hasAttr<DLLExportAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex); | 
 | } | 
 |  | 
 | static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) { | 
 |   if (isa<ClassTemplatePartialSpecializationDecl>(D) && | 
 |       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
 |     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) | 
 |         << A.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned Index = A.getAttributeSpellingListIndex(); | 
 |   Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport | 
 |                       ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index) | 
 |                       : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | MSInheritanceAttr * | 
 | Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase, | 
 |                              unsigned AttrSpellingListIndex, | 
 |                              MSInheritanceAttr::Spelling SemanticSpelling) { | 
 |   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { | 
 |     if (IA->getSemanticSpelling() == SemanticSpelling) | 
 |       return nullptr; | 
 |     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) | 
 |         << 1 /*previous declaration*/; | 
 |     Diag(Range.getBegin(), diag::note_previous_ms_inheritance); | 
 |     D->dropAttr<MSInheritanceAttr>(); | 
 |   } | 
 |  | 
 |   CXXRecordDecl *RD = cast<CXXRecordDecl>(D); | 
 |   if (RD->hasDefinition()) { | 
 |     if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase, | 
 |                                            SemanticSpelling)) { | 
 |       return nullptr; | 
 |     } | 
 |   } else { | 
 |     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { | 
 |       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) | 
 |           << 1 /*partial specialization*/; | 
 |       return nullptr; | 
 |     } | 
 |     if (RD->getDescribedClassTemplate()) { | 
 |       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) | 
 |           << 0 /*primary template*/; | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) | 
 |       MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex); | 
 | } | 
 |  | 
 | static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { | 
 |   // The capability attributes take a single string parameter for the name of | 
 |   // the capability they represent. The lockable attribute does not take any | 
 |   // parameters. However, semantically, both attributes represent the same | 
 |   // concept, and so they use the same semantic attribute. Eventually, the | 
 |   // lockable attribute will be removed. | 
 |   // | 
 |   // For backwards compatibility, any capability which has no specified string | 
 |   // literal will be considered a "mutex." | 
 |   StringRef N("mutex"); | 
 |   SourceLocation LiteralLoc; | 
 |   if (Attr.getKind() == AttributeList::AT_Capability && | 
 |       !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // Currently, there are only two names allowed for a capability: role and | 
 |   // mutex (case insensitive). Diagnose other capability names. | 
 |   if (!N.equals_lower("mutex") && !N.equals_lower("role")) | 
 |     S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N; | 
 |  | 
 |   D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N, | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAssertCapabilityAttr(Sema &S, Decl *D, | 
 |                                        const AttributeList &Attr) { | 
 |   D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context, | 
 |                                                     Attr.getArgAsExpr(0), | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(), | 
 |                                                      S.Context, | 
 |                                                      Args.data(), Args.size(), | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, | 
 |                                            const AttributeList &Attr) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(), | 
 |                                                         S.Context, | 
 |                                                         Attr.getArgAsExpr(0), | 
 |                                                         Args.data(), | 
 |                                                         Args.size(), | 
 |                                         Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, | 
 |                                         const AttributeList &Attr) { | 
 |   // Check that all arguments are lockable objects. | 
 |   SmallVector<Expr *, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true); | 
 |  | 
 |   D->addAttr(::new (S.Context) ReleaseCapabilityAttr( | 
 |       Attr.getRange(), S.Context, Args.data(), Args.size(), | 
 |       Attr.getAttributeSpellingListIndex())); | 
 | } | 
 |  | 
 | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, | 
 |                                          const AttributeList &Attr) { | 
 |   if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) | 
 |     return; | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); | 
 |   if (Args.empty()) | 
 |     return; | 
 |  | 
 |   RequiresCapabilityAttr *RCA = ::new (S.Context) | 
 |     RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(), | 
 |                            Args.size(), Attr.getAttributeSpellingListIndex()); | 
 |  | 
 |   D->addAttr(RCA); | 
 | } | 
 |  | 
 | /// Handles semantic checking for features that are common to all attributes, | 
 | /// such as checking whether a parameter was properly specified, or the correct | 
 | /// number of arguments were passed, etc. | 
 | static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D, | 
 |                                           const AttributeList &Attr) { | 
 |   // Several attributes carry different semantics than the parsing requires, so | 
 |   // those are opted out of the common handling. | 
 |   // | 
 |   // We also bail on unknown and ignored attributes because those are handled | 
 |   // as part of the target-specific handling logic. | 
 |   if (Attr.hasCustomParsing() || | 
 |       Attr.getKind() == AttributeList::UnknownAttribute) | 
 |     return false; | 
 |  | 
 |   // Check whether the attribute requires specific language extensions to be | 
 |   // enabled. | 
 |   if (!Attr.diagnoseLangOpts(S)) | 
 |     return true; | 
 |  | 
 |   // If there are no optional arguments, then checking for the argument count | 
 |   // is trivial. | 
 |   if (Attr.getMinArgs() == Attr.getMaxArgs() && | 
 |       !checkAttributeNumArgs(S, Attr, Attr.getMinArgs())) | 
 |     return true; | 
 |  | 
 |   // Check whether the attribute appertains to the given subject. | 
 |   if (!Attr.diagnoseAppertainsTo(S, D)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top Level Sema Entry Points | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if | 
 | /// the attribute applies to decls.  If the attribute is a type attribute, just | 
 | /// silently ignore it if a GNU attribute. | 
 | static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, | 
 |                                  const AttributeList &Attr, | 
 |                                  bool IncludeCXX11Attributes) { | 
 |   if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute) | 
 |     return; | 
 |  | 
 |   // Ignore C++11 attributes on declarator chunks: they appertain to the type | 
 |   // instead. | 
 |   if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes) | 
 |     return; | 
 |  | 
 |   // Unknown attributes are automatically warned on. Target-specific attributes | 
 |   // which do not apply to the current target architecture are treated as | 
 |   // though they were unknown attributes. | 
 |   if (Attr.getKind() == AttributeList::UnknownAttribute || | 
 |       !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) { | 
 |     S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() | 
 |                               ? diag::warn_unhandled_ms_attribute_ignored | 
 |                               : diag::warn_unknown_attribute_ignored) | 
 |         << Attr.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (handleCommonAttributeFeatures(S, scope, D, Attr)) | 
 |     return; | 
 |  | 
 |   switch (Attr.getKind()) { | 
 |   default: | 
 |     // Type attributes are handled elsewhere; silently move on. | 
 |     assert(Attr.isTypeAttr() && "Non-type attribute not handled"); | 
 |     break; | 
 |   case AttributeList::AT_Interrupt: | 
 |     handleInterruptAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_X86ForceAlignArgPointer: | 
 |     handleX86ForceAlignArgPointerAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_DLLExport: | 
 |   case AttributeList::AT_DLLImport: | 
 |     handleDLLAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Mips16: | 
 |     handleSimpleAttribute<Mips16Attr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoMips16: | 
 |     handleSimpleAttribute<NoMips16Attr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_IBAction: | 
 |     handleSimpleAttribute<IBActionAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_IBOutlet: | 
 |     handleIBOutlet(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_IBOutletCollection: | 
 |     handleIBOutletCollection(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Alias: | 
 |     handleAliasAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Aligned: | 
 |     handleAlignedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AlwaysInline: | 
 |     handleAlwaysInlineAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AnalyzerNoReturn: | 
 |     handleAnalyzerNoReturnAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_TLSModel: | 
 |     handleTLSModelAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Annotate: | 
 |     handleAnnotateAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Availability: | 
 |     handleAvailabilityAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CarriesDependency: | 
 |     handleDependencyAttr(S, scope, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Common: | 
 |     handleCommonAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDAConstant: | 
 |     handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Constructor: | 
 |     handleConstructorAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CXX11NoReturn: | 
 |     handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Deprecated: | 
 |     handleAttrWithMessage<DeprecatedAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Destructor: | 
 |     handleDestructorAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_EnableIf: | 
 |     handleEnableIfAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ExtVectorType: | 
 |     handleExtVectorTypeAttr(S, scope, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_MinSize: | 
 |     handleSimpleAttribute<MinSizeAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_OptimizeNone: | 
 |     handleOptimizeNoneAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Flatten: | 
 |     handleSimpleAttribute<FlattenAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Format: | 
 |     handleFormatAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_FormatArg: | 
 |     handleFormatArgAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDAGlobal: | 
 |     handleGlobalAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDADevice: | 
 |     handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDAHost: | 
 |     handleSimpleAttribute<CUDAHostAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_GNUInline: | 
 |     handleGNUInlineAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDALaunchBounds: | 
 |     handleLaunchBoundsAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Malloc: | 
 |     handleMallocAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_MayAlias: | 
 |     handleSimpleAttribute<MayAliasAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Mode: | 
 |     handleModeAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoCommon: | 
 |     handleSimpleAttribute<NoCommonAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoSplitStack: | 
 |     handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NonNull: | 
 |     if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D)) | 
 |       handleNonNullAttrParameter(S, PVD, Attr); | 
 |     else | 
 |       handleNonNullAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ReturnsNonNull: | 
 |     handleReturnsNonNullAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Overloadable: | 
 |     handleSimpleAttribute<OverloadableAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Ownership: | 
 |     handleOwnershipAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Cold: | 
 |     handleColdAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Hot: | 
 |     handleHotAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Naked: | 
 |     handleSimpleAttribute<NakedAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoReturn: | 
 |     handleNoReturnAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoThrow: | 
 |     handleSimpleAttribute<NoThrowAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CUDAShared: | 
 |     handleSimpleAttribute<CUDASharedAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_VecReturn: | 
 |     handleVecReturnAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCOwnership: | 
 |     handleObjCOwnershipAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCPreciseLifetime: | 
 |     handleObjCPreciseLifetimeAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCReturnsInnerPointer: | 
 |     handleObjCReturnsInnerPointerAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCRequiresSuper: | 
 |     handleObjCRequiresSuperAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCBridge: | 
 |     handleObjCBridgeAttr(S, scope, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCBridgeMutable: | 
 |     handleObjCBridgeMutableAttr(S, scope, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCBridgeRelated: | 
 |     handleObjCBridgeRelatedAttr(S, scope, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_ObjCDesignatedInitializer: | 
 |     handleObjCDesignatedInitializer(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_CFAuditedTransfer: | 
 |     handleCFAuditedTransferAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CFUnknownTransfer: | 
 |     handleCFUnknownTransferAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_CFConsumed: | 
 |   case AttributeList::AT_NSConsumed: | 
 |     handleNSConsumedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NSConsumesSelf: | 
 |     handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_NSReturnsAutoreleased: | 
 |   case AttributeList::AT_NSReturnsNotRetained: | 
 |   case AttributeList::AT_CFReturnsNotRetained: | 
 |   case AttributeList::AT_NSReturnsRetained: | 
 |   case AttributeList::AT_CFReturnsRetained: | 
 |     handleNSReturnsRetainedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_WorkGroupSizeHint: | 
 |     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ReqdWorkGroupSize: | 
 |     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_VecTypeHint: | 
 |     handleVecTypeHint(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_InitPriority: | 
 |     handleInitPriorityAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_Packed: | 
 |     handlePackedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Section: | 
 |     handleSectionAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Unavailable: | 
 |     handleAttrWithMessage<UnavailableAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ArcWeakrefUnavailable: | 
 |     handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCRootClass: | 
 |     handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCExplicitProtocolImpl: | 
 |     handleObjCSuppresProtocolAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCRequiresPropertyDefs: | 
 |     handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Unused: | 
 |     handleSimpleAttribute<UnusedAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ReturnsTwice: | 
 |     handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Used: | 
 |     handleUsedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Visibility: | 
 |     handleVisibilityAttr(S, D, Attr, false); | 
 |     break; | 
 |   case AttributeList::AT_TypeVisibility: | 
 |     handleVisibilityAttr(S, D, Attr, true); | 
 |     break; | 
 |   case AttributeList::AT_WarnUnused: | 
 |     handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_WarnUnusedResult: | 
 |     handleWarnUnusedResult(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Weak: | 
 |     handleSimpleAttribute<WeakAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_WeakRef: | 
 |     handleWeakRefAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_WeakImport: | 
 |     handleWeakImportAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_TransparentUnion: | 
 |     handleTransparentUnionAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCException: | 
 |     handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCMethodFamily: | 
 |     handleObjCMethodFamilyAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ObjCNSObject: | 
 |     handleObjCNSObject(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Blocks: | 
 |     handleBlocksAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Sentinel: | 
 |     handleSentinelAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Const: | 
 |     handleSimpleAttribute<ConstAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Pure: | 
 |     handleSimpleAttribute<PureAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Cleanup: | 
 |     handleCleanupAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoDebug: | 
 |     handleNoDebugAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoDuplicate: | 
 |     handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoInline: | 
 |     handleSimpleAttribute<NoInlineAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg. | 
 |     handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_StdCall: | 
 |   case AttributeList::AT_CDecl: | 
 |   case AttributeList::AT_FastCall: | 
 |   case AttributeList::AT_ThisCall: | 
 |   case AttributeList::AT_Pascal: | 
 |   case AttributeList::AT_MSABI: | 
 |   case AttributeList::AT_SysVABI: | 
 |   case AttributeList::AT_Pcs: | 
 |   case AttributeList::AT_PnaclCall: | 
 |   case AttributeList::AT_IntelOclBicc: | 
 |     handleCallConvAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_OpenCLKernel: | 
 |     handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_OpenCLImageAccess: | 
 |     handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr); | 
 |     break; | 
 |  | 
 |   // Microsoft attributes: | 
 |   case AttributeList::AT_MsStruct: | 
 |     handleSimpleAttribute<MsStructAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Uuid: | 
 |     handleUuidAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_MSInheritance: | 
 |     handleMSInheritanceAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_SelectAny: | 
 |     handleSimpleAttribute<SelectAnyAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_Thread: | 
 |     handleDeclspecThreadAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   // Thread safety attributes: | 
 |   case AttributeList::AT_AssertExclusiveLock: | 
 |     handleAssertExclusiveLockAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AssertSharedLock: | 
 |     handleAssertSharedLockAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_GuardedVar: | 
 |     handleSimpleAttribute<GuardedVarAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_PtGuardedVar: | 
 |     handlePtGuardedVarAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ScopedLockable: | 
 |     handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoSanitizeAddress: | 
 |     handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoThreadSafetyAnalysis: | 
 |     handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoSanitizeThread: | 
 |     handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_NoSanitizeMemory: | 
 |     handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_GuardedBy: | 
 |     handleGuardedByAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_PtGuardedBy: | 
 |     handlePtGuardedByAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ExclusiveTrylockFunction: | 
 |     handleExclusiveTrylockFunctionAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_LockReturned: | 
 |     handleLockReturnedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_LocksExcluded: | 
 |     handleLocksExcludedAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_SharedTrylockFunction: | 
 |     handleSharedTrylockFunctionAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AcquiredBefore: | 
 |     handleAcquiredBeforeAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AcquiredAfter: | 
 |     handleAcquiredAfterAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   // Capability analysis attributes. | 
 |   case AttributeList::AT_Capability: | 
 |   case AttributeList::AT_Lockable: | 
 |     handleCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_RequiresCapability: | 
 |     handleRequiresCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   case AttributeList::AT_AssertCapability: | 
 |     handleAssertCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_AcquireCapability: | 
 |     handleAcquireCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ReleaseCapability: | 
 |     handleReleaseCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_TryAcquireCapability: | 
 |     handleTryAcquireCapabilityAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   // Consumed analysis attributes. | 
 |   case AttributeList::AT_Consumable: | 
 |     handleConsumableAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ConsumableAutoCast: | 
 |     handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ConsumableSetOnRead: | 
 |     handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_CallableWhen: | 
 |     handleCallableWhenAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ParamTypestate: | 
 |     handleParamTypestateAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_ReturnTypestate: | 
 |     handleReturnTypestateAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_SetTypestate: | 
 |     handleSetTypestateAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_TestTypestate: | 
 |     handleTestTypestateAttr(S, D, Attr); | 
 |     break; | 
 |  | 
 |   // Type safety attributes. | 
 |   case AttributeList::AT_ArgumentWithTypeTag: | 
 |     handleArgumentWithTypeTagAttr(S, D, Attr); | 
 |     break; | 
 |   case AttributeList::AT_TypeTagForDatatype: | 
 |     handleTypeTagForDatatypeAttr(S, D, Attr); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | /// ProcessDeclAttributeList - Apply all the decl attributes in the specified | 
 | /// attribute list to the specified decl, ignoring any type attributes. | 
 | void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, | 
 |                                     const AttributeList *AttrList, | 
 |                                     bool IncludeCXX11Attributes) { | 
 |   for (const AttributeList* l = AttrList; l; l = l->getNext()) | 
 |     ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes); | 
 |  | 
 |   // FIXME: We should be able to handle these cases in TableGen. | 
 |   // GCC accepts | 
 |   // static int a9 __attribute__((weakref)); | 
 |   // but that looks really pointless. We reject it. | 
 |   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { | 
 |     Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) | 
 |       << cast<NamedDecl>(D); | 
 |     D->dropAttr<WeakRefAttr>(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!D->hasAttr<OpenCLKernelAttr>()) { | 
 |     // These attributes cannot be applied to a non-kernel function. | 
 |     if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } | 
 |     if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } | 
 |     if (Attr *A = D->getAttr<VecTypeHintAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Annotation attributes are the only attributes allowed after an access | 
 | // specifier. | 
 | bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, | 
 |                                           const AttributeList *AttrList) { | 
 |   for (const AttributeList* l = AttrList; l; l = l->getNext()) { | 
 |     if (l->getKind() == AttributeList::AT_Annotate) { | 
 |       handleAnnotateAttr(*this, ASDecl, *l); | 
 |     } else { | 
 |       Diag(l->getLoc(), diag::err_only_annotate_after_access_spec); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// checkUnusedDeclAttributes - Check a list of attributes to see if it | 
 | /// contains any decl attributes that we should warn about. | 
 | static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) { | 
 |   for ( ; A; A = A->getNext()) { | 
 |     // Only warn if the attribute is an unignored, non-type attribute. | 
 |     if (A->isUsedAsTypeAttr() || A->isInvalid()) continue; | 
 |     if (A->getKind() == AttributeList::IgnoredAttribute) continue; | 
 |  | 
 |     if (A->getKind() == AttributeList::UnknownAttribute) { | 
 |       S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored) | 
 |         << A->getName() << A->getRange(); | 
 |     } else { | 
 |       S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl) | 
 |         << A->getName() << A->getRange(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// checkUnusedDeclAttributes - Given a declarator which is not being | 
 | /// used to build a declaration, complain about any decl attributes | 
 | /// which might be lying around on it. | 
 | void Sema::checkUnusedDeclAttributes(Declarator &D) { | 
 |   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList()); | 
 |   ::checkUnusedDeclAttributes(*this, D.getAttributes()); | 
 |   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) | 
 |     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); | 
 | } | 
 |  | 
 | /// DeclClonePragmaWeak - clone existing decl (maybe definition), | 
 | /// \#pragma weak needs a non-definition decl and source may not have one. | 
 | NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, | 
 |                                       SourceLocation Loc) { | 
 |   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); | 
 |   NamedDecl *NewD = nullptr; | 
 |   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { | 
 |     FunctionDecl *NewFD; | 
 |     // FIXME: Missing call to CheckFunctionDeclaration(). | 
 |     // FIXME: Mangling? | 
 |     // FIXME: Is the qualifier info correct? | 
 |     // FIXME: Is the DeclContext correct? | 
 |     NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), | 
 |                                  Loc, Loc, DeclarationName(II), | 
 |                                  FD->getType(), FD->getTypeSourceInfo(), | 
 |                                  SC_None, false/*isInlineSpecified*/, | 
 |                                  FD->hasPrototype(), | 
 |                                  false/*isConstexprSpecified*/); | 
 |     NewD = NewFD; | 
 |  | 
 |     if (FD->getQualifier()) | 
 |       NewFD->setQualifierInfo(FD->getQualifierLoc()); | 
 |  | 
 |     // Fake up parameter variables; they are declared as if this were | 
 |     // a typedef. | 
 |     QualType FDTy = FD->getType(); | 
 |     if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) { | 
 |       SmallVector<ParmVarDecl*, 16> Params; | 
 |       for (const auto &AI : FT->param_types()) { | 
 |         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); | 
 |         Param->setScopeInfo(0, Params.size()); | 
 |         Params.push_back(Param); | 
 |       } | 
 |       NewFD->setParams(Params); | 
 |     } | 
 |   } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) { | 
 |     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), | 
 |                            VD->getInnerLocStart(), VD->getLocation(), II, | 
 |                            VD->getType(), VD->getTypeSourceInfo(), | 
 |                            VD->getStorageClass()); | 
 |     if (VD->getQualifier()) { | 
 |       VarDecl *NewVD = cast<VarDecl>(NewD); | 
 |       NewVD->setQualifierInfo(VD->getQualifierLoc()); | 
 |     } | 
 |   } | 
 |   return NewD; | 
 | } | 
 |  | 
 | /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak | 
 | /// applied to it, possibly with an alias. | 
 | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { | 
 |   if (W.getUsed()) return; // only do this once | 
 |   W.setUsed(true); | 
 |   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) | 
 |     IdentifierInfo *NDId = ND->getIdentifier(); | 
 |     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); | 
 |     NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(), | 
 |                                             W.getLocation())); | 
 |     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); | 
 |     WeakTopLevelDecl.push_back(NewD); | 
 |     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin | 
 |     // to insert Decl at TU scope, sorry. | 
 |     DeclContext *SavedContext = CurContext; | 
 |     CurContext = Context.getTranslationUnitDecl(); | 
 |     NewD->setDeclContext(CurContext); | 
 |     NewD->setLexicalDeclContext(CurContext); | 
 |     PushOnScopeChains(NewD, S); | 
 |     CurContext = SavedContext; | 
 |   } else { // just add weak to existing | 
 |     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { | 
 |   // It's valid to "forward-declare" #pragma weak, in which case we | 
 |   // have to do this. | 
 |   LoadExternalWeakUndeclaredIdentifiers(); | 
 |   if (!WeakUndeclaredIdentifiers.empty()) { | 
 |     NamedDecl *ND = nullptr; | 
 |     if (VarDecl *VD = dyn_cast<VarDecl>(D)) | 
 |       if (VD->isExternC()) | 
 |         ND = VD; | 
 |     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
 |       if (FD->isExternC()) | 
 |         ND = FD; | 
 |     if (ND) { | 
 |       if (IdentifierInfo *Id = ND->getIdentifier()) { | 
 |         llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I | 
 |           = WeakUndeclaredIdentifiers.find(Id); | 
 |         if (I != WeakUndeclaredIdentifiers.end()) { | 
 |           WeakInfo W = I->second; | 
 |           DeclApplyPragmaWeak(S, ND, W); | 
 |           WeakUndeclaredIdentifiers[Id] = W; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in | 
 | /// it, apply them to D.  This is a bit tricky because PD can have attributes | 
 | /// specified in many different places, and we need to find and apply them all. | 
 | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { | 
 |   // Apply decl attributes from the DeclSpec if present. | 
 |   if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList()) | 
 |     ProcessDeclAttributeList(S, D, Attrs); | 
 |  | 
 |   // Walk the declarator structure, applying decl attributes that were in a type | 
 |   // position to the decl itself.  This handles cases like: | 
 |   //   int *__attr__(x)** D; | 
 |   // when X is a decl attribute. | 
 |   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) | 
 |     if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) | 
 |       ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false); | 
 |  | 
 |   // Finally, apply any attributes on the decl itself. | 
 |   if (const AttributeList *Attrs = PD.getAttributes()) | 
 |     ProcessDeclAttributeList(S, D, Attrs); | 
 | } | 
 |  | 
 | /// Is the given declaration allowed to use a forbidden type? | 
 | static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) { | 
 |   // Private ivars are always okay.  Unfortunately, people don't | 
 |   // always properly make their ivars private, even in system headers. | 
 |   // Plus we need to make fields okay, too. | 
 |   // Function declarations in sys headers will be marked unavailable. | 
 |   if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) && | 
 |       !isa<FunctionDecl>(decl)) | 
 |     return false; | 
 |  | 
 |   // Require it to be declared in a system header. | 
 |   return S.Context.getSourceManager().isInSystemHeader(decl->getLocation()); | 
 | } | 
 |  | 
 | /// Handle a delayed forbidden-type diagnostic. | 
 | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag, | 
 |                                        Decl *decl) { | 
 |   if (decl && isForbiddenTypeAllowed(S, decl)) { | 
 |     decl->addAttr(UnavailableAttr::CreateImplicit(S.Context, | 
 |                         "this system declaration uses an unsupported type", | 
 |                         diag.Loc)); | 
 |     return; | 
 |   } | 
 |   if (S.getLangOpts().ObjCAutoRefCount) | 
 |     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) { | 
 |       // FIXME: we may want to suppress diagnostics for all | 
 |       // kind of forbidden type messages on unavailable functions.  | 
 |       if (FD->hasAttr<UnavailableAttr>() && | 
 |           diag.getForbiddenTypeDiagnostic() ==  | 
 |           diag::err_arc_array_param_no_ownership) { | 
 |         diag.Triggered = true; | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |   S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic()) | 
 |     << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument(); | 
 |   diag.Triggered = true; | 
 | } | 
 |  | 
 | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { | 
 |   assert(DelayedDiagnostics.getCurrentPool()); | 
 |   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); | 
 |   DelayedDiagnostics.popWithoutEmitting(state); | 
 |  | 
 |   // When delaying diagnostics to run in the context of a parsed | 
 |   // declaration, we only want to actually emit anything if parsing | 
 |   // succeeds. | 
 |   if (!decl) return; | 
 |  | 
 |   // We emit all the active diagnostics in this pool or any of its | 
 |   // parents.  In general, we'll get one pool for the decl spec | 
 |   // and a child pool for each declarator; in a decl group like: | 
 |   //   deprecated_typedef foo, *bar, baz(); | 
 |   // only the declarator pops will be passed decls.  This is correct; | 
 |   // we really do need to consider delayed diagnostics from the decl spec | 
 |   // for each of the different declarations. | 
 |   const DelayedDiagnosticPool *pool = &poppedPool; | 
 |   do { | 
 |     for (DelayedDiagnosticPool::pool_iterator | 
 |            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { | 
 |       // This const_cast is a bit lame.  Really, Triggered should be mutable. | 
 |       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); | 
 |       if (diag.Triggered) | 
 |         continue; | 
 |  | 
 |       switch (diag.Kind) { | 
 |       case DelayedDiagnostic::Deprecation: | 
 |       case DelayedDiagnostic::Unavailable: | 
 |         // Don't bother giving deprecation/unavailable diagnostics if | 
 |         // the decl is invalid. | 
 |         if (!decl->isInvalidDecl()) | 
 |           HandleDelayedAvailabilityCheck(diag, decl); | 
 |         break; | 
 |  | 
 |       case DelayedDiagnostic::Access: | 
 |         HandleDelayedAccessCheck(diag, decl); | 
 |         break; | 
 |  | 
 |       case DelayedDiagnostic::ForbiddenType: | 
 |         handleDelayedForbiddenType(*this, diag, decl); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } while ((pool = pool->getParent())); | 
 | } | 
 |  | 
 | /// Given a set of delayed diagnostics, re-emit them as if they had | 
 | /// been delayed in the current context instead of in the given pool. | 
 | /// Essentially, this just moves them to the current pool. | 
 | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { | 
 |   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); | 
 |   assert(curPool && "re-emitting in undelayed context not supported"); | 
 |   curPool->steal(pool); | 
 | } | 
 |  | 
 | static bool isDeclDeprecated(Decl *D) { | 
 |   do { | 
 |     if (D->isDeprecated()) | 
 |       return true; | 
 |     // A category implicitly has the availability of the interface. | 
 |     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) | 
 |       return CatD->getClassInterface()->isDeprecated(); | 
 |   } while ((D = cast_or_null<Decl>(D->getDeclContext()))); | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isDeclUnavailable(Decl *D) { | 
 |   do { | 
 |     if (D->isUnavailable()) | 
 |       return true; | 
 |     // A category implicitly has the availability of the interface. | 
 |     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) | 
 |       return CatD->getClassInterface()->isUnavailable(); | 
 |   } while ((D = cast_or_null<Decl>(D->getDeclContext()))); | 
 |   return false; | 
 | } | 
 |  | 
 | static void | 
 | DoEmitAvailabilityWarning(Sema &S, | 
 |                           DelayedDiagnostic::DDKind K, | 
 |                           Decl *Ctx, | 
 |                           const NamedDecl *D, | 
 |                           StringRef Message, | 
 |                           SourceLocation Loc, | 
 |                           const ObjCInterfaceDecl *UnknownObjCClass, | 
 |                           const ObjCPropertyDecl *ObjCProperty, | 
 |                           bool ObjCPropertyAccess) { | 
 |  | 
 |   // Diagnostics for deprecated or unavailable. | 
 |   unsigned diag, diag_message, diag_fwdclass_message; | 
 |  | 
 |   // Matches 'diag::note_property_attribute' options. | 
 |   unsigned property_note_select; | 
 |  | 
 |   // Matches diag::note_availability_specified_here. | 
 |   unsigned available_here_select_kind; | 
 |  | 
 |   // Don't warn if our current context is deprecated or unavailable. | 
 |   switch (K) { | 
 |     case DelayedDiagnostic::Deprecation: | 
 |       if (isDeclDeprecated(Ctx)) | 
 |         return; | 
 |       diag = !ObjCPropertyAccess ? diag::warn_deprecated | 
 |                                  : diag::warn_property_method_deprecated; | 
 |       diag_message = diag::warn_deprecated_message; | 
 |       diag_fwdclass_message = diag::warn_deprecated_fwdclass_message; | 
 |       property_note_select = /* deprecated */ 0; | 
 |       available_here_select_kind = /* deprecated */ 2; | 
 |       break; | 
 |  | 
 |     case DelayedDiagnostic::Unavailable: | 
 |       if (isDeclUnavailable(Ctx)) | 
 |         return; | 
 |       diag = !ObjCPropertyAccess ? diag::err_unavailable | 
 |                                  : diag::err_property_method_unavailable; | 
 |       diag_message = diag::err_unavailable_message; | 
 |       diag_fwdclass_message = diag::warn_unavailable_fwdclass_message; | 
 |       property_note_select = /* unavailable */ 1; | 
 |       available_here_select_kind = /* unavailable */ 0; | 
 |       break; | 
 |  | 
 |     default: | 
 |       llvm_unreachable("Neither a deprecation or unavailable kind"); | 
 |   } | 
 |  | 
 |   DeclarationName Name = D->getDeclName(); | 
 |   if (!Message.empty()) { | 
 |     S.Diag(Loc, diag_message) << Name << Message; | 
 |     if (ObjCProperty) | 
 |       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) | 
 |         << ObjCProperty->getDeclName() << property_note_select; | 
 |   } else if (!UnknownObjCClass) { | 
 |     S.Diag(Loc, diag) << Name; | 
 |     if (ObjCProperty) | 
 |       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) | 
 |         << ObjCProperty->getDeclName() << property_note_select; | 
 |   } else { | 
 |     S.Diag(Loc, diag_fwdclass_message) << Name; | 
 |     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); | 
 |   } | 
 |  | 
 |   S.Diag(D->getLocation(), diag::note_availability_specified_here) | 
 |     << D << available_here_select_kind; | 
 | } | 
 |  | 
 | void Sema::HandleDelayedAvailabilityCheck(DelayedDiagnostic &DD, | 
 |                                           Decl *Ctx) { | 
 |   DD.Triggered = true; | 
 |   DoEmitAvailabilityWarning(*this, | 
 |                             (DelayedDiagnostic::DDKind) DD.Kind, | 
 |                             Ctx, | 
 |                             DD.getDeprecationDecl(), | 
 |                             DD.getDeprecationMessage(), | 
 |                             DD.Loc, | 
 |                             DD.getUnknownObjCClass(), | 
 |                             DD.getObjCProperty(), false); | 
 | } | 
 |  | 
 | void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD, | 
 |                                    NamedDecl *D, StringRef Message, | 
 |                                    SourceLocation Loc, | 
 |                                    const ObjCInterfaceDecl *UnknownObjCClass, | 
 |                                    const ObjCPropertyDecl  *ObjCProperty, | 
 |                                    bool ObjCPropertyAccess) { | 
 |   // Delay if we're currently parsing a declaration. | 
 |   if (DelayedDiagnostics.shouldDelayDiagnostics()) { | 
 |     DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(AD, Loc, D, | 
 |                                                                UnknownObjCClass, | 
 |                                                                ObjCProperty, | 
 |                                                                Message, | 
 |                                                                ObjCPropertyAccess)); | 
 |     return; | 
 |   } | 
 |  | 
 |   Decl *Ctx = cast<Decl>(getCurLexicalContext()); | 
 |   DelayedDiagnostic::DDKind K; | 
 |   switch (AD) { | 
 |     case AD_Deprecation: | 
 |       K = DelayedDiagnostic::Deprecation; | 
 |       break; | 
 |     case AD_Unavailable: | 
 |       K = DelayedDiagnostic::Unavailable; | 
 |       break; | 
 |   } | 
 |  | 
 |   DoEmitAvailabilityWarning(*this, K, Ctx, D, Message, Loc, | 
 |                             UnknownObjCClass, ObjCProperty, ObjCPropertyAccess); | 
 | } |