| /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---=== |
| * |
| * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| * See https://llvm.org/LICENSE.txt for license information. |
| * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| * |
| *===-----------------------------------------------------------------------=== |
| */ |
| #ifndef __CLANG_CUDA_INTRINSICS_H__ |
| #define __CLANG_CUDA_INTRINSICS_H__ |
| #ifndef __CUDA__ |
| #error "This file is for CUDA compilation only." |
| #endif |
| |
| // sm_30 intrinsics: __shfl_{up,down,xor}. |
| |
| #define __SM_30_INTRINSICS_H__ |
| #define __SM_30_INTRINSICS_HPP__ |
| |
| #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 |
| |
| #pragma push_macro("__MAKE_SHUFFLES") |
| #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \ |
| __Type) \ |
| inline __device__ int __FnName(int __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return __IntIntrinsic(__val, __offset, \ |
| ((warpSize - __width) << 8) | (__Mask)); \ |
| } \ |
| inline __device__ float __FnName(float __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return __FloatIntrinsic(__val, __offset, \ |
| ((warpSize - __width) << 8) | (__Mask)); \ |
| } \ |
| inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return static_cast<unsigned int>( \ |
| ::__FnName(static_cast<int>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ long long __FnName(long long __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| struct __Bits { \ |
| int __a, __b; \ |
| }; \ |
| _Static_assert(sizeof(__val) == sizeof(__Bits)); \ |
| _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ |
| __Bits __tmp; \ |
| memcpy(&__val, &__tmp, sizeof(__val)); \ |
| __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \ |
| __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \ |
| long long __ret; \ |
| memcpy(&__ret, &__tmp, sizeof(__tmp)); \ |
| return __ret; \ |
| } \ |
| inline __device__ long __FnName(long __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| _Static_assert(sizeof(long) == sizeof(long long) || \ |
| sizeof(long) == sizeof(int)); \ |
| if (sizeof(long) == sizeof(long long)) { \ |
| return static_cast<long>( \ |
| ::__FnName(static_cast<long long>(__val), __offset, __width)); \ |
| } else if (sizeof(long) == sizeof(int)) { \ |
| return static_cast<long>( \ |
| ::__FnName(static_cast<int>(__val), __offset, __width)); \ |
| } \ |
| } \ |
| inline __device__ unsigned long __FnName( \ |
| unsigned long __val, __Type __offset, int __width = warpSize) { \ |
| return static_cast<unsigned long>( \ |
| ::__FnName(static_cast<long>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ unsigned long long __FnName( \ |
| unsigned long long __val, __Type __offset, int __width = warpSize) { \ |
| return static_cast<unsigned long long>(::__FnName( \ |
| static_cast<unsigned long long>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ double __FnName(double __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| long long __tmp; \ |
| _Static_assert(sizeof(__tmp) == sizeof(__val)); \ |
| memcpy(&__tmp, &__val, sizeof(__val)); \ |
| __tmp = ::__FnName(__tmp, __offset, __width); \ |
| double __ret; \ |
| memcpy(&__ret, &__tmp, sizeof(__ret)); \ |
| return __ret; \ |
| } |
| |
| __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int); |
| // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= |
| // maxLane. |
| __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0, |
| unsigned int); |
| __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f, |
| unsigned int); |
| __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f, |
| int); |
| #pragma pop_macro("__MAKE_SHUFFLES") |
| |
| #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 |
| |
| #if CUDA_VERSION >= 9000 |
| #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300) |
| // __shfl_sync_* variants available in CUDA-9 |
| #pragma push_macro("__MAKE_SYNC_SHUFFLES") |
| #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \ |
| __Mask, __Type) \ |
| inline __device__ int __FnName(unsigned int __mask, int __val, \ |
| __Type __offset, int __width = warpSize) { \ |
| return __IntIntrinsic(__mask, __val, __offset, \ |
| ((warpSize - __width) << 8) | (__Mask)); \ |
| } \ |
| inline __device__ float __FnName(unsigned int __mask, float __val, \ |
| __Type __offset, int __width = warpSize) { \ |
| return __FloatIntrinsic(__mask, __val, __offset, \ |
| ((warpSize - __width) << 8) | (__Mask)); \ |
| } \ |
| inline __device__ unsigned int __FnName(unsigned int __mask, \ |
| unsigned int __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return static_cast<unsigned int>( \ |
| ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ long long __FnName(unsigned int __mask, long long __val, \ |
| __Type __offset, \ |
| int __width = warpSize) { \ |
| struct __Bits { \ |
| int __a, __b; \ |
| }; \ |
| _Static_assert(sizeof(__val) == sizeof(__Bits)); \ |
| _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ |
| __Bits __tmp; \ |
| memcpy(&__val, &__tmp, sizeof(__val)); \ |
| __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \ |
| __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \ |
| long long __ret; \ |
| memcpy(&__ret, &__tmp, sizeof(__tmp)); \ |
| return __ret; \ |
| } \ |
| inline __device__ unsigned long long __FnName( \ |
| unsigned int __mask, unsigned long long __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return static_cast<unsigned long long>(::__FnName( \ |
| __mask, static_cast<unsigned long long>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ long __FnName(unsigned int __mask, long __val, \ |
| __Type __offset, int __width = warpSize) { \ |
| _Static_assert(sizeof(long) == sizeof(long long) || \ |
| sizeof(long) == sizeof(int)); \ |
| if (sizeof(long) == sizeof(long long)) { \ |
| return static_cast<long>(::__FnName( \ |
| __mask, static_cast<long long>(__val), __offset, __width)); \ |
| } else if (sizeof(long) == sizeof(int)) { \ |
| return static_cast<long>( \ |
| ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ |
| } \ |
| } \ |
| inline __device__ unsigned long __FnName( \ |
| unsigned int __mask, unsigned long __val, __Type __offset, \ |
| int __width = warpSize) { \ |
| return static_cast<unsigned long>( \ |
| ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \ |
| } \ |
| inline __device__ double __FnName(unsigned int __mask, double __val, \ |
| __Type __offset, int __width = warpSize) { \ |
| long long __tmp; \ |
| _Static_assert(sizeof(__tmp) == sizeof(__val)); \ |
| memcpy(&__tmp, &__val, sizeof(__val)); \ |
| __tmp = ::__FnName(__mask, __tmp, __offset, __width); \ |
| double __ret; \ |
| memcpy(&__ret, &__tmp, sizeof(__ret)); \ |
| return __ret; \ |
| } |
| __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32, |
| __nvvm_shfl_sync_idx_f32, 0x1f, int); |
| // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= |
| // maxLane. |
| __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32, |
| __nvvm_shfl_sync_up_f32, 0, unsigned int); |
| __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32, |
| __nvvm_shfl_sync_down_f32, 0x1f, unsigned int); |
| __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32, |
| __nvvm_shfl_sync_bfly_f32, 0x1f, int); |
| #pragma pop_macro("__MAKE_SYNC_SHUFFLES") |
| |
| inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) { |
| return __nvvm_bar_warp_sync(mask); |
| } |
| |
| inline __device__ void __barrier_sync(unsigned int id) { |
| __nvvm_barrier_sync(id); |
| } |
| |
| inline __device__ void __barrier_sync_count(unsigned int id, |
| unsigned int count) { |
| __nvvm_barrier_sync_cnt(id, count); |
| } |
| |
| inline __device__ int __all_sync(unsigned int mask, int pred) { |
| return __nvvm_vote_all_sync(mask, pred); |
| } |
| |
| inline __device__ int __any_sync(unsigned int mask, int pred) { |
| return __nvvm_vote_any_sync(mask, pred); |
| } |
| |
| inline __device__ int __uni_sync(unsigned int mask, int pred) { |
| return __nvvm_vote_uni_sync(mask, pred); |
| } |
| |
| inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) { |
| return __nvvm_vote_ballot_sync(mask, pred); |
| } |
| |
| inline __device__ unsigned int __activemask() { |
| #if CUDA_VERSION < 9020 |
| return __nvvm_vote_ballot(1); |
| #else |
| unsigned int mask; |
| asm volatile("activemask.b32 %0;" : "=r"(mask)); |
| return mask; |
| #endif |
| } |
| |
| inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) { |
| return __nvvm_fns(mask, base, offset); |
| } |
| |
| #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 |
| |
| // Define __match* builtins CUDA-9 headers expect to see. |
| #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 |
| inline __device__ unsigned int __match32_any_sync(unsigned int mask, |
| unsigned int value) { |
| return __nvvm_match_any_sync_i32(mask, value); |
| } |
| |
| inline __device__ unsigned long long |
| __match64_any_sync(unsigned int mask, unsigned long long value) { |
| return __nvvm_match_any_sync_i64(mask, value); |
| } |
| |
| inline __device__ unsigned int |
| __match32_all_sync(unsigned int mask, unsigned int value, int *pred) { |
| return __nvvm_match_all_sync_i32p(mask, value, pred); |
| } |
| |
| inline __device__ unsigned long long |
| __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) { |
| return __nvvm_match_all_sync_i64p(mask, value, pred); |
| } |
| #include "crt/sm_70_rt.hpp" |
| |
| #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 |
| #endif // __CUDA_VERSION >= 9000 |
| |
| // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}. |
| |
| // Prevent the vanilla sm_32 intrinsics header from being included. |
| #define __SM_32_INTRINSICS_H__ |
| #define __SM_32_INTRINSICS_HPP__ |
| |
| #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 |
| |
| inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); } |
| inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); } |
| inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); } |
| inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); } |
| inline __device__ long long __ldg(const long long *ptr) { |
| return __nvvm_ldg_ll(ptr); |
| } |
| inline __device__ unsigned char __ldg(const unsigned char *ptr) { |
| return __nvvm_ldg_uc(ptr); |
| } |
| inline __device__ signed char __ldg(const signed char *ptr) { |
| return __nvvm_ldg_uc((const unsigned char *)ptr); |
| } |
| inline __device__ unsigned short __ldg(const unsigned short *ptr) { |
| return __nvvm_ldg_us(ptr); |
| } |
| inline __device__ unsigned int __ldg(const unsigned int *ptr) { |
| return __nvvm_ldg_ui(ptr); |
| } |
| inline __device__ unsigned long __ldg(const unsigned long *ptr) { |
| return __nvvm_ldg_ul(ptr); |
| } |
| inline __device__ unsigned long long __ldg(const unsigned long long *ptr) { |
| return __nvvm_ldg_ull(ptr); |
| } |
| inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); } |
| inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); } |
| |
| inline __device__ char2 __ldg(const char2 *ptr) { |
| typedef char c2 __attribute__((ext_vector_type(2))); |
| // We can assume that ptr is aligned at least to char2's alignment, but the |
| // load will assume that ptr is aligned to char2's alignment. This is only |
| // safe if alignof(c2) <= alignof(char2). |
| c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr)); |
| char2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ char4 __ldg(const char4 *ptr) { |
| typedef char c4 __attribute__((ext_vector_type(4))); |
| c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr)); |
| char4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ short2 __ldg(const short2 *ptr) { |
| typedef short s2 __attribute__((ext_vector_type(2))); |
| s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr)); |
| short2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ short4 __ldg(const short4 *ptr) { |
| typedef short s4 __attribute__((ext_vector_type(4))); |
| s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr)); |
| short4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ int2 __ldg(const int2 *ptr) { |
| typedef int i2 __attribute__((ext_vector_type(2))); |
| i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr)); |
| int2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ int4 __ldg(const int4 *ptr) { |
| typedef int i4 __attribute__((ext_vector_type(4))); |
| i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr)); |
| int4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ longlong2 __ldg(const longlong2 *ptr) { |
| typedef long long ll2 __attribute__((ext_vector_type(2))); |
| ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr)); |
| longlong2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| |
| inline __device__ uchar2 __ldg(const uchar2 *ptr) { |
| typedef unsigned char uc2 __attribute__((ext_vector_type(2))); |
| uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr)); |
| uchar2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ uchar4 __ldg(const uchar4 *ptr) { |
| typedef unsigned char uc4 __attribute__((ext_vector_type(4))); |
| uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr)); |
| uchar4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ ushort2 __ldg(const ushort2 *ptr) { |
| typedef unsigned short us2 __attribute__((ext_vector_type(2))); |
| us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr)); |
| ushort2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ ushort4 __ldg(const ushort4 *ptr) { |
| typedef unsigned short us4 __attribute__((ext_vector_type(4))); |
| us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr)); |
| ushort4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ uint2 __ldg(const uint2 *ptr) { |
| typedef unsigned int ui2 __attribute__((ext_vector_type(2))); |
| ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr)); |
| uint2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ uint4 __ldg(const uint4 *ptr) { |
| typedef unsigned int ui4 __attribute__((ext_vector_type(4))); |
| ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr)); |
| uint4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) { |
| typedef unsigned long long ull2 __attribute__((ext_vector_type(2))); |
| ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr)); |
| ulonglong2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| |
| inline __device__ float2 __ldg(const float2 *ptr) { |
| typedef float f2 __attribute__((ext_vector_type(2))); |
| f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr)); |
| float2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| inline __device__ float4 __ldg(const float4 *ptr) { |
| typedef float f4 __attribute__((ext_vector_type(4))); |
| f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr)); |
| float4 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| ret.z = rv[2]; |
| ret.w = rv[3]; |
| return ret; |
| } |
| inline __device__ double2 __ldg(const double2 *ptr) { |
| typedef double d2 __attribute__((ext_vector_type(2))); |
| d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr)); |
| double2 ret; |
| ret.x = rv[0]; |
| ret.y = rv[1]; |
| return ret; |
| } |
| |
| // TODO: Implement these as intrinsics, so the backend can work its magic on |
| // these. Alternatively, we could implement these as plain C and try to get |
| // llvm to recognize the relevant patterns. |
| inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32, |
| unsigned shiftWidth) { |
| unsigned result; |
| asm("shf.l.wrap.b32 %0, %1, %2, %3;" |
| : "=r"(result) |
| : "r"(low32), "r"(high32), "r"(shiftWidth)); |
| return result; |
| } |
| inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32, |
| unsigned shiftWidth) { |
| unsigned result; |
| asm("shf.l.clamp.b32 %0, %1, %2, %3;" |
| : "=r"(result) |
| : "r"(low32), "r"(high32), "r"(shiftWidth)); |
| return result; |
| } |
| inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32, |
| unsigned shiftWidth) { |
| unsigned result; |
| asm("shf.r.wrap.b32 %0, %1, %2, %3;" |
| : "=r"(result) |
| : "r"(low32), "r"(high32), "r"(shiftWidth)); |
| return result; |
| } |
| inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32, |
| unsigned shiftWidth) { |
| unsigned ret; |
| asm("shf.r.clamp.b32 %0, %1, %2, %3;" |
| : "=r"(ret) |
| : "r"(low32), "r"(high32), "r"(shiftWidth)); |
| return ret; |
| } |
| |
| #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 |
| |
| #endif // defined(__CLANG_CUDA_INTRINSICS_H__) |