blob: c55a90137578717126f22c322cda6f34a27635c0 [file] [log] [blame]
//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace {
/// Retrieve the declaration context that should be used when mangling the given
/// declaration.
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
// The ABI assumes that lambda closure types that occur within
// default arguments live in the context of the function. However, due to
// the way in which Clang parses and creates function declarations, this is
// not the case: the lambda closure type ends up living in the context
// where the function itself resides, because the function declaration itself
// had not yet been created. Fix the context here.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (RD->isLambda())
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
return ContextParam->getDeclContext();
}
// Perform the same check for block literals.
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
return ContextParam->getDeclContext();
}
const DeclContext *DC = D->getDeclContext();
if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
isa<OMPDeclareMapperDecl>(DC)) {
return getEffectiveDeclContext(cast<Decl>(DC));
}
if (const auto *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
return VD->getASTContext().getTranslationUnitDecl();
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
return FD->getASTContext().getTranslationUnitDecl();
return DC->getRedeclContext();
}
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
return getEffectiveDeclContext(cast<Decl>(DC));
}
static bool isLocalContainerContext(const DeclContext *DC) {
return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
}
static const RecordDecl *GetLocalClassDecl(const Decl *D) {
const DeclContext *DC = getEffectiveDeclContext(D);
while (!DC->isNamespace() && !DC->isTranslationUnit()) {
if (isLocalContainerContext(DC))
return dyn_cast<RecordDecl>(D);
D = cast<Decl>(DC);
DC = getEffectiveDeclContext(D);
}
return nullptr;
}
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
return ftd->getTemplatedDecl();
return fn;
}
static const NamedDecl *getStructor(const NamedDecl *decl) {
const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
return (fn ? getStructor(fn) : decl);
}
static bool isLambda(const NamedDecl *ND) {
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
if (!Record)
return false;
return Record->isLambda();
}
static const unsigned UnknownArity = ~0U;
class ItaniumMangleContextImpl : public ItaniumMangleContext {
typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
public:
explicit ItaniumMangleContextImpl(ASTContext &Context,
DiagnosticsEngine &Diags)
: ItaniumMangleContext(Context, Diags) {}
/// @name Mangler Entry Points
/// @{
bool shouldMangleCXXName(const NamedDecl *D) override;
bool shouldMangleStringLiteral(const StringLiteral *) override {
return false;
}
void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
raw_ostream &) override;
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &) override;
void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
raw_ostream &) override;
void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type, raw_ostream &) override;
void mangleCXXRTTI(QualType T, raw_ostream &) override;
void mangleCXXRTTIName(QualType T, raw_ostream &) override;
void mangleTypeName(QualType T, raw_ostream &) override;
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &) override;
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &) override;
void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
void mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) override;
void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
raw_ostream &Out) override;
void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
raw_ostream &Out) override;
void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
void mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &) override;
void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
// Lambda closure types are already numbered.
if (isLambda(ND))
return false;
// Anonymous tags are already numbered.
if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
return false;
}
// Use the canonical number for externally visible decls.
if (ND->isExternallyVisible()) {
unsigned discriminator = getASTContext().getManglingNumber(ND);
if (discriminator == 1)
return false;
disc = discriminator - 2;
return true;
}
// Make up a reasonable number for internal decls.
unsigned &discriminator = Uniquifier[ND];
if (!discriminator) {
const DeclContext *DC = getEffectiveDeclContext(ND);
discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
}
if (discriminator == 1)
return false;
disc = discriminator-2;
return true;
}
/// @}
};
/// Manage the mangling of a single name.
class CXXNameMangler {
ItaniumMangleContextImpl &Context;
raw_ostream &Out;
bool NullOut = false;
/// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
/// This mode is used when mangler creates another mangler recursively to
/// calculate ABI tags for the function return value or the variable type.
/// Also it is required to avoid infinite recursion in some cases.
bool DisableDerivedAbiTags = false;
/// The "structor" is the top-level declaration being mangled, if
/// that's not a template specialization; otherwise it's the pattern
/// for that specialization.
const NamedDecl *Structor;
unsigned StructorType;
/// The next substitution sequence number.
unsigned SeqID;
class FunctionTypeDepthState {
unsigned Bits;
enum { InResultTypeMask = 1 };
public:
FunctionTypeDepthState() : Bits(0) {}
/// The number of function types we're inside.
unsigned getDepth() const {
return Bits >> 1;
}
/// True if we're in the return type of the innermost function type.
bool isInResultType() const {
return Bits & InResultTypeMask;
}
FunctionTypeDepthState push() {
FunctionTypeDepthState tmp = *this;
Bits = (Bits & ~InResultTypeMask) + 2;
return tmp;
}
void enterResultType() {
Bits |= InResultTypeMask;
}
void leaveResultType() {
Bits &= ~InResultTypeMask;
}
void pop(FunctionTypeDepthState saved) {
assert(getDepth() == saved.getDepth() + 1);
Bits = saved.Bits;
}
} FunctionTypeDepth;
// abi_tag is a gcc attribute, taking one or more strings called "tags".
// The goal is to annotate against which version of a library an object was
// built and to be able to provide backwards compatibility ("dual abi").
// For more information see docs/ItaniumMangleAbiTags.rst.
typedef SmallVector<StringRef, 4> AbiTagList;
// State to gather all implicit and explicit tags used in a mangled name.
// Must always have an instance of this while emitting any name to keep
// track.
class AbiTagState final {
public:
explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
Parent = LinkHead;
LinkHead = this;
}
// No copy, no move.
AbiTagState(const AbiTagState &) = delete;
AbiTagState &operator=(const AbiTagState &) = delete;
~AbiTagState() { pop(); }
void write(raw_ostream &Out, const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags) {
ND = cast<NamedDecl>(ND->getCanonicalDecl());
if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
assert(
!AdditionalAbiTags &&
"only function and variables need a list of additional abi tags");
if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
AbiTag->tags().end());
}
// Don't emit abi tags for namespaces.
return;
}
}
AbiTagList TagList;
if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
AbiTag->tags().end());
TagList.insert(TagList.end(), AbiTag->tags().begin(),
AbiTag->tags().end());
}
if (AdditionalAbiTags) {
UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
AdditionalAbiTags->end());
TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
AdditionalAbiTags->end());
}
llvm::sort(TagList);
TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
writeSortedUniqueAbiTags(Out, TagList);
}
const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
void setUsedAbiTags(const AbiTagList &AbiTags) {
UsedAbiTags = AbiTags;
}
const AbiTagList &getEmittedAbiTags() const {
return EmittedAbiTags;
}
const AbiTagList &getSortedUniqueUsedAbiTags() {
llvm::sort(UsedAbiTags);
UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
UsedAbiTags.end());
return UsedAbiTags;
}
private:
//! All abi tags used implicitly or explicitly.
AbiTagList UsedAbiTags;
//! All explicit abi tags (i.e. not from namespace).
AbiTagList EmittedAbiTags;
AbiTagState *&LinkHead;
AbiTagState *Parent = nullptr;
void pop() {
assert(LinkHead == this &&
"abi tag link head must point to us on destruction");
if (Parent) {
Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
UsedAbiTags.begin(), UsedAbiTags.end());
Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
EmittedAbiTags.begin(),
EmittedAbiTags.end());
}
LinkHead = Parent;
}
void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
for (const auto &Tag : AbiTags) {
EmittedAbiTags.push_back(Tag);
Out << "B";
Out << Tag.size();
Out << Tag;
}
}
};
AbiTagState *AbiTags = nullptr;
AbiTagState AbiTagsRoot;
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
ASTContext &getASTContext() const { return Context.getASTContext(); }
public:
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const NamedDecl *D = nullptr, bool NullOut_ = false)
: Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
// These can't be mangled without a ctor type or dtor type.
assert(!D || (!isa<CXXDestructorDecl>(D) &&
!isa<CXXConstructorDecl>(D)));
}
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXConstructorDecl *D, CXXCtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0), AbiTagsRoot(AbiTags) { }
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXDestructorDecl *D, CXXDtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0), AbiTagsRoot(AbiTags) { }
CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
: Context(Outer.Context), Out(Out_), NullOut(false),
Structor(Outer.Structor), StructorType(Outer.StructorType),
SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
: Context(Outer.Context), Out(Out_), NullOut(true),
Structor(Outer.Structor), StructorType(Outer.StructorType),
SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
raw_ostream &getStream() { return Out; }
void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
void mangle(const NamedDecl *D);
void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
void mangleNumber(const llvm::APSInt &I);
void mangleNumber(int64_t Number);
void mangleFloat(const llvm::APFloat &F);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleSeqID(unsigned SeqID);
void mangleName(const NamedDecl *ND);
void mangleType(QualType T);
void mangleNameOrStandardSubstitution(const NamedDecl *ND);
void mangleLambdaSig(const CXXRecordDecl *Lambda);
private:
bool mangleSubstitution(const NamedDecl *ND);
bool mangleSubstitution(QualType T);
bool mangleSubstitution(TemplateName Template);
bool mangleSubstitution(uintptr_t Ptr);
void mangleExistingSubstitution(TemplateName name);
bool mangleStandardSubstitution(const NamedDecl *ND);
void addSubstitution(const NamedDecl *ND) {
ND = cast<NamedDecl>(ND->getCanonicalDecl());
addSubstitution(reinterpret_cast<uintptr_t>(ND));
}
void addSubstitution(QualType T);
void addSubstitution(TemplateName Template);
void addSubstitution(uintptr_t Ptr);
// Destructive copy substitutions from other mangler.
void extendSubstitutions(CXXNameMangler* Other);
void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
bool recursive = false);
void mangleUnresolvedName(NestedNameSpecifier *qualifier,
DeclarationName name,
const TemplateArgumentLoc *TemplateArgs,
unsigned NumTemplateArgs,
unsigned KnownArity = UnknownArity);
void mangleFunctionEncodingBareType(const FunctionDecl *FD);
void mangleNameWithAbiTags(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags);
void mangleModuleName(const Module *M);
void mangleModuleNamePrefix(StringRef Name);
void mangleTemplateName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleUnqualifiedName(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags) {
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
AdditionalAbiTags);
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
unsigned KnownArity,
const AbiTagList *AdditionalAbiTags);
void mangleUnscopedName(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags);
void mangleUnscopedTemplateName(const TemplateDecl *ND,
const AbiTagList *AdditionalAbiTags);
void mangleUnscopedTemplateName(TemplateName,
const AbiTagList *AdditionalAbiTags);
void mangleSourceName(const IdentifierInfo *II);
void mangleRegCallName(const IdentifierInfo *II);
void mangleSourceNameWithAbiTags(
const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
void mangleLocalName(const Decl *D,
const AbiTagList *AdditionalAbiTags);
void mangleBlockForPrefix(const BlockDecl *Block);
void mangleUnqualifiedBlock(const BlockDecl *Block);
void mangleTemplateParamDecl(const NamedDecl *Decl);
void mangleLambda(const CXXRecordDecl *Lambda);
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
const AbiTagList *AdditionalAbiTags,
bool NoFunction=false);
void mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void manglePrefix(NestedNameSpecifier *qualifier);
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
void manglePrefix(QualType type);
void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
void mangleTemplatePrefix(TemplateName Template);
bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
StringRef Prefix = "");
void mangleOperatorName(DeclarationName Name, unsigned Arity);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleVendorQualifier(StringRef qualifier);
void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
void mangleRefQualifier(RefQualifierKind RefQualifier);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
#include "clang/AST/TypeNodes.inc"
void mangleType(const TagType*);
void mangleType(TemplateName);
static StringRef getCallingConvQualifierName(CallingConv CC);
void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
void mangleExtFunctionInfo(const FunctionType *T);
void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
const FunctionDecl *FD = nullptr);
void mangleNeonVectorType(const VectorType *T);
void mangleNeonVectorType(const DependentVectorType *T);
void mangleAArch64NeonVectorType(const VectorType *T);
void mangleAArch64NeonVectorType(const DependentVectorType *T);
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
void mangleMemberExprBase(const Expr *base, bool isArrow);
void mangleMemberExpr(const Expr *base, bool isArrow,
NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName name,
const TemplateArgumentLoc *TemplateArgs,
unsigned NumTemplateArgs,
unsigned knownArity);
void mangleCastExpression(const Expr *E, StringRef CastEncoding);
void mangleInitListElements(const InitListExpr *InitList);
void mangleDeclRefExpr(const NamedDecl *D);
void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgs(const TemplateArgumentList &AL);
void mangleTemplateArg(TemplateArgument A);
void mangleTemplateParameter(unsigned Depth, unsigned Index);
void mangleFunctionParam(const ParmVarDecl *parm);
void writeAbiTags(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags);
// Returns sorted unique list of ABI tags.
AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
// Returns sorted unique list of ABI tags.
AbiTagList makeVariableTypeTags(const VarDecl *VD);
};
}
bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (FD) {
LanguageLinkage L = FD->getLanguageLinkage();
// Overloadable functions need mangling.
if (FD->hasAttr<OverloadableAttr>())
return true;
// "main" is not mangled.
if (FD->isMain())
return false;
// The Windows ABI expects that we would never mangle "typical"
// user-defined entry points regardless of visibility or freestanding-ness.
//
// N.B. This is distinct from asking about "main". "main" has a lot of
// special rules associated with it in the standard while these
// user-defined entry points are outside of the purview of the standard.
// For example, there can be only one definition for "main" in a standards
// compliant program; however nothing forbids the existence of wmain and
// WinMain in the same translation unit.
if (FD->isMSVCRTEntryPoint())
return false;
// C++ functions and those whose names are not a simple identifier need
// mangling.
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
return true;
// C functions are not mangled.
if (L == CLanguageLinkage)
return false;
}
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOpts().CPlusPlus)
return false;
const VarDecl *VD = dyn_cast<VarDecl>(D);
if (VD && !isa<DecompositionDecl>(D)) {
// C variables are not mangled.
if (VD->isExternC())
return false;
// Variables at global scope with non-internal linkage are not mangled
const DeclContext *DC = getEffectiveDeclContext(D);
// Check for extern variable declared locally.
if (DC->isFunctionOrMethod() && D->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
!CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
!isa<VarTemplateSpecializationDecl>(D))
return false;
}
return true;
}
void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags) {
assert(AbiTags && "require AbiTagState");
AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
}
void CXXNameMangler::mangleSourceNameWithAbiTags(
const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
mangleSourceName(ND->getIdentifier());
writeAbiTags(ND, AdditionalAbiTags);
}
void CXXNameMangler::mangle(const NamedDecl *D) {
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
Out << "_Z";
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
mangleName(VD);
else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
mangleName(IFD->getAnonField());
else
mangleName(cast<FieldDecl>(D));
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
// Don't mangle in the type if this isn't a decl we should typically mangle.
if (!Context.shouldMangleDeclName(FD)) {
mangleName(FD);
return;
}
AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
if (ReturnTypeAbiTags.empty()) {
// There are no tags for return type, the simplest case.
mangleName(FD);
mangleFunctionEncodingBareType(FD);
return;
}
// Mangle function name and encoding to temporary buffer.
// We have to output name and encoding to the same mangler to get the same
// substitution as it will be in final mangling.
SmallString<256> FunctionEncodingBuf;
llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
// Output name of the function.
FunctionEncodingMangler.disableDerivedAbiTags();
FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
// Remember length of the function name in the buffer.
size_t EncodingPositionStart = FunctionEncodingStream.str().size();
FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
// Get tags from return type that are not present in function name or
// encoding.
const AbiTagList &UsedAbiTags =
FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
AdditionalAbiTags.erase(
std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
UsedAbiTags.begin(), UsedAbiTags.end(),
AdditionalAbiTags.begin()),
AdditionalAbiTags.end());
// Output name with implicit tags and function encoding from temporary buffer.
mangleNameWithAbiTags(FD, &AdditionalAbiTags);
Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
// Function encoding could create new substitutions so we have to add
// temp mangled substitutions to main mangler.
extendSubstitutions(&FunctionEncodingMangler);
}
void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
if (FD->hasAttr<EnableIfAttr>()) {
FunctionTypeDepthState Saved = FunctionTypeDepth.push();
Out << "Ua9enable_ifI";
for (AttrVec::const_iterator I = FD->getAttrs().begin(),
E = FD->getAttrs().end();
I != E; ++I) {
EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
if (!EIA)
continue;
Out << 'X';
mangleExpression(EIA->getCond());
Out << 'E';
}
Out << 'E';
FunctionTypeDepth.pop(Saved);
}
// When mangling an inheriting constructor, the bare function type used is
// that of the inherited constructor.
if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
if (auto Inherited = CD->getInheritedConstructor())
FD = Inherited.getConstructor();
// Whether the mangling of a function type includes the return type depends on
// the context and the nature of the function. The rules for deciding whether
// the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return type is
// never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
// Mangle the type of the primary template.
FD = PrimaryTemplate->getTemplatedDecl();
}
mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
MangleReturnType, FD);
}
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC)) {
DC = getEffectiveParentContext(DC);
}
return DC;
}
/// Return whether a given namespace is the 'std' namespace.
static bool isStd(const NamespaceDecl *NS) {
if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
->isTranslationUnit())
return false;
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
return II && II->isStr("std");
}
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
// namespace.
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace())
return false;
return isStd(cast<NamespaceDecl>(DC));
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
// Check if we have a variable template.
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return nullptr;
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
// Variables should have implicit tags from its type.
AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
if (VariableTypeAbiTags.empty()) {
// Simple case no variable type tags.
mangleNameWithAbiTags(VD, nullptr);
return;
}
// Mangle variable name to null stream to collect tags.
llvm::raw_null_ostream NullOutStream;
CXXNameMangler VariableNameMangler(*this, NullOutStream);
VariableNameMangler.disableDerivedAbiTags();
VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
// Get tags from variable type that are not present in its name.
const AbiTagList &UsedAbiTags =
VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
AdditionalAbiTags.erase(
std::set_difference(VariableTypeAbiTags.begin(),
VariableTypeAbiTags.end(), UsedAbiTags.begin(),
UsedAbiTags.end(), AdditionalAbiTags.begin()),
AdditionalAbiTags.end());
// Output name with implicit tags.
mangleNameWithAbiTags(VD, &AdditionalAbiTags);
} else {
mangleNameWithAbiTags(ND, nullptr);
}
}
void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags) {
// <name> ::= [<module-name>] <nested-name>
// ::= [<module-name>] <unscoped-name>
// ::= [<module-name>] <unscoped-template-name> <template-args>
// ::= <local-name>
//
const DeclContext *DC = getEffectiveDeclContext(ND);
// If this is an extern variable declared locally, the relevant DeclContext
// is that of the containing namespace, or the translation unit.
// FIXME: This is a hack; extern variables declared locally should have
// a proper semantic declaration context!
if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
else if (GetLocalClassDecl(ND)) {
mangleLocalName(ND, AdditionalAbiTags);
return;
}
DC = IgnoreLinkageSpecDecls(DC);
if (isLocalContainerContext(DC)) {
mangleLocalName(ND, AdditionalAbiTags);
return;
}
// Do not mangle the owning module for an external linkage declaration.
// This enables backwards-compatibility with non-modular code, and is
// a valid choice since conflicts are not permitted by C++ Modules TS
// [basic.def.odr]/6.2.
if (!ND->hasExternalFormalLinkage())
if (Module *M = ND->getOwningModuleForLinkage())
mangleModuleName(M);
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleUnscopedTemplateName(TD, AdditionalAbiTags);
mangleTemplateArgs(*TemplateArgs);
return;
}
mangleUnscopedName(ND, AdditionalAbiTags);
return;
}
mangleNestedName(ND, DC, AdditionalAbiTags);
}
void CXXNameMangler::mangleModuleName(const Module *M) {
// Implement the C++ Modules TS name mangling proposal; see
// https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
//
// <module-name> ::= W <unscoped-name>+ E
// ::= W <module-subst> <unscoped-name>* E
Out << 'W';
mangleModuleNamePrefix(M->Name);
Out << 'E';
}
void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
// <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
// ::= W <seq-id - 10> _ # otherwise
auto It = ModuleSubstitutions.find(Name);
if (It != ModuleSubstitutions.end()) {
if (It->second < 10)
Out << '_' << static_cast<char>('0' + It->second);
else
Out << 'W' << (It->second - 10) << '_';
return;
}
// FIXME: Preserve hierarchy in module names rather than flattening
// them to strings; use Module*s as substitution keys.
auto Parts = Name.rsplit('.');
if (Parts.second.empty())
Parts.second = Parts.first;
else
mangleModuleNamePrefix(Parts.first);
Out << Parts.second.size() << Parts.second;
ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
}
void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
mangleUnscopedTemplateName(TD, nullptr);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
} else {
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
}
}
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
const AbiTagList *AdditionalAbiTags) {
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
Out << "St";
mangleUnqualifiedName(ND, AdditionalAbiTags);
}
void CXXNameMangler::mangleUnscopedTemplateName(
const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
assert(!AdditionalAbiTags &&
"template template param cannot have abi tags");
mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
} else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
mangleUnscopedName(ND, AdditionalAbiTags);
} else {
mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
}
addSubstitution(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(
TemplateName Template, const AbiTagList *AdditionalAbiTags) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
if (mangleSubstitution(Template))
return;
assert(!AdditionalAbiTags &&
"dependent template name cannot have abi tags");
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Not a dependent template name?");
if (const IdentifierInfo *Id = Dependent->getIdentifier())
mangleSourceName(Id);
else
mangleOperatorName(Dependent->getOperator(), UnknownArity);
addSubstitution(Template);
}
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
// ABI:
// Floating-point literals are encoded using a fixed-length
// lowercase hexadecimal string corresponding to the internal
// representation (IEEE on Itanium), high-order bytes first,
// without leading zeroes. For example: "Lf bf800000 E" is -1.0f
// on Itanium.
// The 'without leading zeroes' thing seems to be an editorial
// mistake; see the discussion on cxx-abi-dev beginning on
// 2012-01-16.
// Our requirements here are just barely weird enough to justify
// using a custom algorithm instead of post-processing APInt::toString().
llvm::APInt valueBits = f.bitcastToAPInt();
unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
assert(numCharacters != 0);
// Allocate a buffer of the right number of characters.
SmallVector<char, 20> buffer(numCharacters);
// Fill the buffer left-to-right.
for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
// The bit-index of the next hex digit.
unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
// Project out 4 bits starting at 'digitIndex'.
uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
hexDigit >>= (digitBitIndex % 64);
hexDigit &= 0xF;
// Map that over to a lowercase hex digit.
static const char charForHex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
buffer[stringIndex] = charForHex[hexDigit];
}
Out.write(buffer.data(), numCharacters);
}
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
if (Value.isSigned() && Value.isNegative()) {
Out << 'n';
Value.abs().print(Out, /*signed*/ false);
} else {
Value.print(Out, /*signed*/ false);
}
}
void CXXNameMangler::mangleNumber(int64_t Number) {
// <number> ::= [n] <non-negative decimal integer>
if (Number < 0) {
Out << 'n';
Number = -Number;
}
Out << Number;
}
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
// <nv-offset> ::= <offset number> # non-virtual base override
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
if (!Virtual) {
Out << 'h';
mangleNumber(NonVirtual);
Out << '_';
return;
}
Out << 'v';
mangleNumber(NonVirtual);
Out << '_';
mangleNumber(Virtual);
Out << '_';
}
void CXXNameMangler::manglePrefix(QualType type) {
if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
if (!mangleSubstitution(QualType(TST, 0))) {
mangleTemplatePrefix(TST->getTemplateName());
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
addSubstitution(QualType(TST, 0));
}
} else if (const auto *DTST =
type->getAs<DependentTemplateSpecializationType>()) {
if (!mangleSubstitution(QualType(DTST, 0))) {
TemplateName Template = getASTContext().getDependentTemplateName(
DTST->getQualifier(), DTST->getIdentifier());
mangleTemplatePrefix(Template);
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
addSubstitution(QualType(DTST, 0));
}
} else {
// We use the QualType mangle type variant here because it handles
// substitutions.
mangleType(type);
}
}
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
///
/// \param recursive - true if this is being called recursively,
/// i.e. if there is more prefix "to the right".
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
bool recursive) {
// x, ::x
// <unresolved-name> ::= [gs] <base-unresolved-name>
// T::x / decltype(p)::x
// <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
// T::N::x /decltype(p)::N::x
// <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
// <base-unresolved-name>
// A::x, N::y, A<T>::z; "gs" means leading "::"
// <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
// <base-unresolved-name>
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
Out << "gs";
// We want an 'sr' unless this is the entire NNS.
if (recursive)
Out << "sr";
// We never want an 'E' here.
return;
case NestedNameSpecifier::Super:
llvm_unreachable("Can't mangle __super specifier");
case NestedNameSpecifier::Namespace:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
break;
case NestedNameSpecifier::NamespaceAlias:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *type = qualifier->getAsType();
// We only want to use an unresolved-type encoding if this is one of:
// - a decltype
// - a template type parameter
// - a template template parameter with arguments
// In all of these cases, we should have no prefix.
if (qualifier->getPrefix()) {
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
} else {
// Otherwise, all the cases want this.
Out << "sr";
}
if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
return;
break;
}
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes.
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsIdentifier());
// An Identifier has no type information, so we can't emit abi tags for it.
break;
}
// If this was the innermost part of the NNS, and we fell out to
// here, append an 'E'.
if (!recursive)
Out << 'E';
}
/// Mangle an unresolved-name, which is generally used for names which
/// weren't resolved to specific entities.
void CXXNameMangler::mangleUnresolvedName(
NestedNameSpecifier *qualifier, DeclarationName name,
const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
unsigned knownArity) {
if (qualifier) mangleUnresolvedPrefix(qualifier);
switch (name.getNameKind()) {
// <base-unresolved-name> ::= <simple-id>
case DeclarationName::Identifier:
mangleSourceName(name.getAsIdentifierInfo());
break;
// <base-unresolved-name> ::= dn <destructor-name>
case DeclarationName::CXXDestructorName:
Out << "dn";
mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
break;
// <base-unresolved-name> ::= on <operator-name>
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXOperatorName:
Out << "on";
mangleOperatorName(name, knownArity);
break;
case DeclarationName::CXXConstructorName:
llvm_unreachable("Can't mangle a constructor name!");
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
case DeclarationName::CXXDeductionGuideName:
llvm_unreachable("Can't mangle a deduction guide name!");
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCZeroArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
}
// The <simple-id> and on <operator-name> productions end in an optional
// <template-args>.
if (TemplateArgs)
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name,
unsigned KnownArity,
const AbiTagList *AdditionalAbiTags) {
unsigned Arity = KnownArity;
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
const IdentifierInfo *II = Name.getAsIdentifierInfo();
// We mangle decomposition declarations as the names of their bindings.
if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
// FIXME: Non-standard mangling for decomposition declarations:
//
// <unqualified-name> ::= DC <source-name>* E
//
// These can never be referenced across translation units, so we do
// not need a cross-vendor mangling for anything other than demanglers.
// Proposed on cxx-abi-dev on 2016-08-12
Out << "DC";
for (auto *BD : DD->bindings())
mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
Out << 'E';
writeAbiTags(ND, AdditionalAbiTags);
break;
}
if (II) {
// Match GCC's naming convention for internal linkage symbols, for
// symbols that are not actually visible outside of this TU. GCC
// distinguishes between internal and external linkage symbols in
// its mangling, to support cases like this that were valid C++ prior
// to DR426:
//
// void test() { extern void foo(); }
// static void foo();
//
// Don't bother with the L marker for names in anonymous namespaces; the
// 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
// matches GCC anyway, because GCC does not treat anonymous namespaces as
// implying internal linkage.
if (ND && ND->getFormalLinkage() == InternalLinkage &&
!ND->isExternallyVisible() &&
getEffectiveDeclContext(ND)->isFileContext() &&
!ND->isInAnonymousNamespace())
Out << 'L';
auto *FD = dyn_cast<FunctionDecl>(ND);
bool IsRegCall = FD &&
FD->getType()->castAs<FunctionType>()->getCallConv() ==
clang::CC_X86RegCall;
if (IsRegCall)
mangleRegCallName(II);
else
mangleSourceName(II);
writeAbiTags(ND, AdditionalAbiTags);
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
// This is how gcc mangles these names.
Out << "12_GLOBAL__N_1";
break;
}
}
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
// We must have an anonymous union or struct declaration.
const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
// Itanium C++ ABI 5.1.2:
//
// For the purposes of mangling, the name of an anonymous union is
// considered to be the name of the first named data member found by a
// pre-order, depth-first, declaration-order walk of the data members of
// the anonymous union. If there is no such data member (i.e., if all of
// the data members in the union are unnamed), then there is no way for
// a program to refer to the anonymous union, and there is therefore no
// need to mangle its name.
assert(RD->isAnonymousStructOrUnion()
&& "Expected anonymous struct or union!");
const FieldDecl *FD = RD->findFirstNamedDataMember();
// It's actually possible for various reasons for us to get here
// with an empty anonymous struct / union. Fortunately, it
// doesn't really matter what name we generate.
if (!FD) break;
assert(FD->getIdentifier() && "Data member name isn't an identifier!");
mangleSourceName(FD->getIdentifier());
// Not emitting abi tags: internal name anyway.
break;
}
// Class extensions have no name as a category, and it's possible
// for them to be the semantic parent of certain declarations
// (primarily, tag decls defined within declarations). Such
// declarations will always have internal linkage, so the name
// doesn't really matter, but we shouldn't crash on them. For
// safety, just handle all ObjC containers here.
if (isa<ObjCContainerDecl>(ND))
break;
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
// Explicit abi tags are still possible; take from underlying type, not
// from typedef.
writeAbiTags(TD, nullptr);
break;
}
// <unnamed-type-name> ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
// <lambda-sig> ::= <template-param-decl>* <parameter-type>+
// # Parameter types or 'v' for 'void'.
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
if (Record->isLambda() && Record->getLambdaManglingNumber()) {
assert(!AdditionalAbiTags &&
"Lambda type cannot have additional abi tags");
mangleLambda(Record);
break;
}
}
if (TD->isExternallyVisible()) {
unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Out << "Ut";
if (UnnamedMangle > 1)
Out << UnnamedMangle - 2;
Out << '_';
writeAbiTags(TD, AdditionalAbiTags);
break;
}
// Get a unique id for the anonymous struct. If it is not a real output
// ID doesn't matter so use fake one.
unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
// Mangle it as a source name in the form
// [n] $_<id>
// where n is the length of the string.
SmallString<8> Str;
Str += "$_";
Str += llvm::utostr(AnonStructId);
Out << Str.size();
Out << Str;
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
case DeclarationName::CXXConstructorName: {
const CXXRecordDecl *InheritedFrom = nullptr;
const TemplateArgumentList *InheritedTemplateArgs = nullptr;
if (auto Inherited =
cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
InheritedFrom = Inherited.getConstructor()->getParent();
InheritedTemplateArgs =
Inherited.getConstructor()->getTemplateSpecializationArgs();
}
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the type
// we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete, InheritedFrom);
// FIXME: The template arguments are part of the enclosing prefix or
// nested-name, but it's more convenient to mangle them here.
if (InheritedTemplateArgs)
mangleTemplateArgs(*InheritedTemplateArgs);
writeAbiTags(ND, AdditionalAbiTags);
break;
}
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the type we
// were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
writeAbiTags(ND, AdditionalAbiTags);
break;
case DeclarationName::CXXOperatorName:
if (ND && Arity == UnknownArity) {
Arity = cast<FunctionDecl>(ND)->getNumParams();
// If we have a member function, we need to include the 'this' pointer.
if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
if (!MD->isStatic())
Arity++;
}
LLVM_FALLTHROUGH;
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXLiteralOperatorName:
mangleOperatorName(Name, Arity);
writeAbiTags(ND, AdditionalAbiTags);
break;
case DeclarationName::CXXDeductionGuideName:
llvm_unreachable("Can't mangle a deduction guide name!");
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
}
}
void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> __regcall3__ <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
<< II->getName();
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
const DeclContext *DC,
const AbiTagList *AdditionalAbiTags,
bool NoFunction) {
// <nested-name>
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
// <template-args> E
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
Qualifiers MethodQuals = Method->getMethodQualifiers();
// We do not consider restrict a distinguishing attribute for overloading
// purposes so we must not mangle it.
MethodQuals.removeRestrict();
mangleQualifiers(MethodQuals);
mangleRefQualifier(Method->getRefQualifier());
}
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD, NoFunction);
mangleTemplateArgs(*TemplateArgs);
}
else {
manglePrefix(DC, NoFunction);
mangleUnqualifiedName(ND, AdditionalAbiTags);
}
Out << 'E';
}
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
mangleTemplatePrefix(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const Decl *D,
const AbiTagList *AdditionalAbiTags) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <local-name> := Z <function encoding> E d [ <parameter number> ]
// _ <entity name>
// <discriminator> := _ <non-negative number>
assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
const RecordDecl *RD = GetLocalClassDecl(D);
const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Out << 'Z';
{
AbiTagState LocalAbiTags(AbiTags);
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
mangleObjCMethodName(MD);
else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
mangleBlockForPrefix(BD);
else
mangleFunctionEncoding(cast<FunctionDecl>(DC));
// Implicit ABI tags (from namespace) are not available in the following
// entity; reset to actually emitted tags, which are available.
LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
}
Out << 'E';
// GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
// be a bug that is fixed in trunk.
if (RD) {
// The parameter number is omitted for the last parameter, 0 for the
// second-to-last parameter, 1 for the third-to-last parameter, etc. The
// <entity name> will of course contain a <closure-type-name>: Its
// numbering will be local to the particular argument in which it appears
// -- other default arguments do not affect its encoding.
const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (CXXRD && CXXRD->isLambda()) {
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
}
// Mangle the name relative to the closest enclosing function.
// equality ok because RD derived from ND above
if (D == RD) {
mangleUnqualifiedName(RD, AdditionalAbiTags);
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
mangleUnqualifiedBlock(BD);
} else {
const NamedDecl *ND = cast<NamedDecl>(D);
mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
true /*NoFunction*/);
}
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
// Mangle a block in a default parameter; see above explanation for
// lambdas.
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
mangleUnqualifiedBlock(BD);
} else {
mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
}
if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
unsigned disc;
if (Context.getNextDiscriminator(ND, disc)) {
if (disc < 10)
Out << '_' << disc;
else
Out << "__" << disc << '_';
}
}
}
void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
if (GetLocalClassDecl(Block)) {
mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
return;
}
const DeclContext *DC = getEffectiveDeclContext(Block);
if (isLocalContainerContext(DC)) {
mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
return;
}
manglePrefix(getEffectiveDeclContext(Block));
mangleUnqualifiedBlock(Block);
}
void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
if (Decl *Context = Block->getBlockManglingContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
Context->getDeclContext()->isRecord()) {
const auto *ND = cast<NamedDecl>(Context);
if (ND->getIdentifier()) {
mangleSourceNameWithAbiTags(ND);
Out << 'M';
}
}
}
// If we have a block mangling number, use it.
unsigned Number = Block->getBlockManglingNumber();
// Otherwise, just make up a number. It doesn't matter what it is because
// the symbol in question isn't externally visible.
if (!Number)
Number = Context.getBlockId(Block, false);
else {
// Stored mangling numbers are 1-based.
--Number;
}
Out << "Ub";
if (Number > 0)
Out << Number - 1;
Out << '_';
}
// <template-param-decl>
// ::= Ty # template type parameter
// ::= Tn <type> # template non-type parameter
// ::= Tt <template-param-decl>* E # template template parameter
// ::= Tp <template-param-decl> # template parameter pack
void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
if (Ty->isParameterPack())
Out << "Tp";
Out << "Ty";
} else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
if (Tn->isExpandedParameterPack()) {
for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
Out << "Tn";
mangleType(Tn->getExpansionType(I));
}
} else {
QualType T = Tn->getType();
if (Tn->isParameterPack()) {
Out << "Tp";
if (auto *PackExpansion = T->getAs<PackExpansionType>())
T = PackExpansion->getPattern();
}
Out << "Tn";
mangleType(T);
}
} else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
if (Tt->isExpandedParameterPack()) {
for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
++I) {
Out << "Tt";
for (auto *Param : *Tt->getExpansionTemplateParameters(I))
mangleTemplateParamDecl(Param);
Out << "E";
}
} else {
if (Tt->isParameterPack())
Out << "Tp";
Out << "Tt";
for (auto *Param : *Tt->getTemplateParameters())
mangleTemplateParamDecl(Param);
Out << "E";
}
}
}
void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
// If the context of a closure type is an initializer for a class member
// (static or nonstatic), it is encoded in a qualified name with a final
// <prefix> of the form:
//
// <data-member-prefix> := <member source-name> M
//
// Technically, the data-member-prefix is part of the <prefix>. However,
// since a closure type will always be mangled with a prefix, it's easier
// to emit that last part of the prefix here.
if (Decl *Context = Lambda->getLambdaContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
!isa<ParmVarDecl>(Context)) {
// FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
// reasonable mangling here.
if (const IdentifierInfo *Name
= cast<NamedDecl>(Context)->getIdentifier()) {
mangleSourceName(Name);
const TemplateArgumentList *TemplateArgs = nullptr;
if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
mangleTemplateArgs(*TemplateArgs);
Out << 'M';
}
}
}
Out << "Ul";
mangleLambdaSig(Lambda);
Out << "E";
// The number is omitted for the first closure type with a given
// <lambda-sig> in a given context; it is n-2 for the nth closure type
// (in lexical order) with that same <lambda-sig> and context.
//
// The AST keeps track of the number for us.
unsigned Number = Lambda->getLambdaManglingNumber();
assert(Number > 0 && "Lambda should be mangled as an unnamed class");
if (Number > 1)
mangleNumber(Number - 2);
Out << '_';
}
void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
mangleTemplateParamDecl(D);
const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
getAs<FunctionProtoType>();
mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
Lambda->getLambdaStaticInvoker());
}
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
// nothing
return;
case NestedNameSpecifier::Super:
llvm_unreachable("Can't mangle __super specifier");
case NestedNameSpecifier::Namespace:
mangleName(qualifier->getAsNamespace());
return;
case NestedNameSpecifier::NamespaceAlias:
mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
return;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
manglePrefix(QualType(qualifier->getAsType(), 0));
return;
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes, but that
// should end up in mangleUnresolvedPrefix instead.
assert(qualifier->getPrefix());
manglePrefix(qualifier->getPrefix());
mangleSourceName(qualifier->getAsIdentifier());
return;
}
llvm_unreachable("unexpected nested name specifier");
}
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
DC = IgnoreLinkageSpecDecls(DC);
if (DC->isTranslationUnit())
return;
if (NoFunction && isLocalContainerContext(DC))
return;
assert(!isLocalContainerContext(DC));
const NamedDecl *ND = cast<NamedDecl>(DC);
if (mangleSubstitution(ND))
return;
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgs(*TemplateArgs);
} else {
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
mangleUnqualifiedName(ND, nullptr);
}
addSubstitution(ND);
}
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleTemplatePrefix(TD);
if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
manglePrefix(Qualified->getQualifier());
if (OverloadedTemplateStorage *Overloaded
= Template.getAsOverloadedTemplate()) {
mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
UnknownArity, nullptr);
return;
}
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Unknown template name kind?");
if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
manglePrefix(Qualifier);
mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
}
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
bool NoFunction) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
// <template-template-param> ::= <template-param>
// <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
} else {
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
mangleUnqualifiedName(ND, nullptr);
else
mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
}
addSubstitution(ND);
}
/// Mangles a template name under the production <type>. Required for
/// template template arguments.
/// <type> ::= <class-enum-type>
/// ::= <template-param>
/// ::= <substitution>
void CXXNameMangler::mangleType(TemplateName TN) {
if (mangleSubstitution(TN))
return;
TemplateDecl *TD = nullptr;
switch (TN.getKind()) {
case TemplateName::QualifiedTemplate:
TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
goto HaveDecl;
case TemplateName::Template:
TD = TN.getAsTemplateDecl();
goto HaveDecl;
HaveDecl:
if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
else
mangleName(TD);
break;
case TemplateName::OverloadedTemplate:
case TemplateName::AssumedTemplate:
llvm_unreachable("can't mangle an overloaded template name as a <type>");
case TemplateName::DependentTemplate: {
const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
assert(Dependent->isIdentifier());
// <class-enum-type> ::= <name>
// <name> ::= <nested-name>
mangleUnresolvedPrefix(Dependent->getQualifier());
mangleSourceName(Dependent->getIdentifier());
break;
}
case TemplateName::SubstTemplateTemplateParm: {
// Substituted template parameters are mangled as the substituted
// template. This will check for the substitution twice, which is
// fine, but we have to return early so that we don't try to *add*
// the substitution twice.
SubstTemplateTemplateParmStorage *subst
= TN.getAsSubstTemplateTemplateParm();
mangleType(subst->getReplacement());
return;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class> class T...> class A {
// template <template <class> class U...> void foo(B<T,U> x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
addSubstitution(TN);
}
bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
StringRef Prefix) {
// Only certain other types are valid as prefixes; enumerate them.
switch (Ty->getTypeClass()) {
case Type::Builtin:
case Type::Complex:
case Type::Adjusted:
case Type::Decayed:
case Type::Pointer:
case Type::BlockPointer:
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
case Type::DependentAddressSpace:
case Type::DependentVector:
case Type::DependentSizedExtVector:
case Type::Vector:
case Type::ExtVector:
case Type::FunctionProto:
case Type::FunctionNoProto:
case Type::Paren:
case Type::Attributed:
case Type::Auto:
case Type::DeducedTemplateSpecialization:
case Type::PackExpansion:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
case Type::ObjCTypeParam:
case Type::Atomic:
case Type::Pipe:
case Type::MacroQualified:
llvm_unreachable("type is illegal as a nested name specifier");
case Type::SubstTemplateTypeParmPack:
// FIXME: not clear how to mangle this!
// template <class T...> class A {
// template <class U...> void foo(decltype(T::foo(U())) x...);
// };
Out << "_SUBSTPACK_";
break;
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <template-template-param> <template-args>
// (this last is not official yet)
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::TemplateTypeParm:
case Type::UnaryTransform:
case Type::SubstTemplateTypeParm:
unresolvedType:
// Some callers want a prefix before the mangled type.
Out << Prefix;
// This seems to do everything we want. It's not really
// sanctioned for a substituted template parameter, though.
mangleType(Ty);
// We never want to print 'E' directly after an unresolved-type,
// so we return directly.
return true;
case Type::Typedef:
mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
break;
case Type::UnresolvedUsing:
mangleSourceNameWithAbiTags(
cast<UnresolvedUsingType>(Ty)->getDecl());
break;
case Type::Enum:
case Type::Record:
mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
break;
case Type::TemplateSpecialization: {
const TemplateSpecializationType *TST =
cast<TemplateSpecializationType>(Ty);
TemplateName TN = TST->getTemplateName();
switch (TN.getKind()) {
case TemplateName::Template:
case TemplateName::QualifiedTemplate: {
TemplateDecl *TD = TN.getAsTemplateDecl();
// If the base is a template template parameter, this is an
// unresolved type.
assert(TD && "no template for template specialization type");
if (isa<TemplateTemplateParmDecl>(TD))
goto unresolvedType;
mangleSourceNameWithAbiTags(TD);
break;
}
case TemplateName::OverloadedTemplate:
case TemplateName::AssumedTemplate:
case TemplateName::DependentTemplate:
llvm_unreachable("invalid base for a template specialization type");
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst =
TN.getAsSubstTemplateTemplateParm();
mangleExistingSubstitution(subst->getReplacement());
break;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class U> class T...> class A {
// template <class U...> void foo(decltype(T<U>::foo) x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
break;
}
case Type::InjectedClassName:
mangleSourceNameWithAbiTags(
cast<InjectedClassNameType>(Ty)->getDecl());
break;
case Type::DependentName:
mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
break;
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *DTST =
cast<DependentTemplateSpecializationType>(Ty);
mangleSourceName(DTST->getIdentifier());
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
break;
}
case Type::Elaborated:
return mangleUnresolvedTypeOrSimpleId(
cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
}
return false;
}
void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXDeductionGuideName:
case DeclarationName::CXXUsingDirective:
case DeclarationName::Identifier:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCZeroArgSelector:
llvm_unreachable("Not an operator name");
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Name.getCXXNameType());
break;
case DeclarationName::CXXLiteralOperatorName:
Out << "li";
mangleSourceName(Name.getCXXLiteralIdentifier());
return;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
break;
}
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # + (binary or unknown)
case OO_Plus:
Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # - (binary or unknown)
case OO_Minus:
Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # & (binary or unknown)
case OO_Amp:
Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # * (binary or unknown)
case OO_Star:
// Use binary when unknown.
Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// ::= qu # ?
// The conditional operator can't be overloaded, but we still handle it when
// mangling expressions.
case OO_Conditional: Out << "qu"; break;
// Proposal on cxx-abi-dev, 2015-10-21.
// ::= aw # co_await
case OO_Coawait: Out << "aw"; break;
// Proposed in cxx-abi github issue 43.
// ::= ss # <=>
case OO_Spaceship: Out << "ss"; break;
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Not an overloaded operator");
}
}
void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
// Vendor qualifiers come first and if they are order-insensitive they must
// be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
// <type> ::= U <addrspace-expr>
if (DAST) {
Out << "U2ASI";
mangleExpression(DAST->getAddrSpaceExpr());
Out << "E";
}
// Address space qualifiers start with an ordinary letter.
if (Quals.hasAddressSpace()) {
// Address space extension:
//
// <type> ::= U <target-addrspace>
// <type> ::= U <OpenCL-addrspace>
// <type> ::= U <CUDA-addrspace>
SmallString<64> ASString;
LangAS AS = Quals.getAddressSpace();
if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
// <target-addrspace> ::= "AS" <address-space-number>
unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
if (TargetAS != 0)
ASString = "AS" + llvm::utostr(TargetAS);
} else {
switch (AS) {
default: llvm_unreachable("Not a language specific address space");
// <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
// "private"| "generic" ]
case LangAS::opencl_global: ASString = "CLglobal"; break;
case LangAS::opencl_local: ASString = "CLlocal"; break;
case LangAS::opencl_constant: ASString = "CLconstant"; break;
case LangAS::opencl_private: ASString = "CLprivate"; break;
case LangAS::opencl_generic: ASString = "CLgeneric"; break;
// <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
case LangAS::cuda_device: ASString = "CUdevice"; break;
case LangAS::cuda_constant: ASString = "CUconstant"; break;
case LangAS::cuda_shared: ASString = "CUshared"; break;
}
}
if (!ASString.empty())
mangleVendorQualifier(ASString);
}
// The ARC ownership qualifiers start with underscores.
// Objective-C ARC Extension:
//
// <type> ::= U "__strong"
// <type> ::= U "__weak"
// <type> ::= U "__autoreleasing"
//
// Note: we emit __weak first to preserve the order as
// required by the Itanium ABI.
if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
mangleVendorQualifier("__weak");
// __unaligned (from -fms-extensions)
if (Quals.hasUnaligned())
mangleVendorQualifier("__unaligned");
// Remaining ARC ownership qualifiers.
switch (Quals.getObjCLifetime()) {
case Qualifiers::OCL_None:
break;
case Qualifiers::OCL_Weak:
// Do nothing as we already handled this case above.
break;
case Qualifiers::OCL_Strong:
mangleVendorQualifier("__strong");
break;
case Qualifiers::OCL_Autoreleasing:
mangleVendorQualifier("__autoreleasing");
break;
case Qualifiers::OCL_ExplicitNone:
// The __unsafe_unretained qualifier is *not* mangled, so that
// __unsafe_unretained types in ARC produce the same manglings as the
// equivalent (but, naturally, unqualified) types in non-ARC, providing
// better ABI compatibility.
//
// It's safe to do this because unqualified 'id' won't show up
// in any type signatures that need to be mangled.
break;
}
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals.hasRestrict())
Out << 'r';
if (Quals.hasVolatile())
Out << 'V';
if (Quals.hasConst())
Out << 'K';
}
void CXXNameMangler::mangleVendorQualifier(StringRef name) {
Out << 'U' << name.size() << name;
}
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
// <ref-qualifier> ::= R # lvalue reference
// ::= O # rvalue-reference
switch (RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
Out << 'R';
break;
case RQ_RValue:
Out << 'O';
break;
}
}
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
Context.mangleObjCMethodName(MD, Out);
}
static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
ASTContext &Ctx) {
if (Quals)
return true;
if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
return true;
if (Ty->isOpenCLSpecificType())
return true;
if (Ty->isBuiltinType())
return false;
// Through to Clang 6.0, we accidentally treated undeduced auto types as
// substitution candidates.
if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
isa<AutoType>(Ty))
return false;
return true;
}
void CXXNameMangler::mangleType(QualType T) {
// If our type is instantiation-dependent but not dependent, we mangle
// it as it was written in the source, removing any top-level sugar.
// Otherwise, use the canonical type.
//
// FIXME: This is an approximation of the instantiation-dependent name
// mangling rules, since we should really be using the type as written and
// augmented via semantic analysis (i.e., with implicit conversions and
// default template arguments) for any instantiation-dependent type.
// Unfortunately, that requires several changes to our AST:
// - Instantiation-dependent TemplateSpecializationTypes will need to be
// uniqued, so that we can handle substitutions properly
// - Default template arguments will need to be represented in the
// TemplateSpecializationType, since they need to be mangled even though
// they aren't written.
// - Conversions on non-type template arguments need to be expressed, since
// they can affect the mangling of sizeof/alignof.
//
// FIXME: This is wrong when mapping to the canonical type for a dependent
// type discards instantiation-dependent portions of the type, such as for:
//
// template<typename T, int N> void f(T (&)[sizeof(N)]);
// template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
//
// It's also wrong in the opposite direction when instantiation-dependent,
// canonically-equivalent types differ in some irrelevant portion of inner
// type sugar. In such cases, we fail to form correct substitutions, eg:
//
// template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
//
// We should instead canonicalize the non-instantiation-dependent parts,
// regardless of whether the type as a whole is dependent or instantiation
// dependent.
if (!T->isInstantiationDependentType() || T->isDependentType())
T = T.getCanonicalType();
else {
// Desugar any types that are purely sugar.
do {
// Don't desugar through template specialization types that aren't
// type aliases. We need to mangle the template arguments as written.
if (const TemplateSpecializationType *TST
= dyn_cast<TemplateSpecializationType>(T))
if (!TST->isTypeAlias())
break;
QualType Desugared
= T.getSingleStepDesugaredType(Context.getASTContext());
if (Desugared == T)
break;
T = Desugared;
} while (true);
}
SplitQualType split = T.split();
Qualifiers quals = split.Quals;
const Type *ty = split.Ty;
bool isSubstitutable =
isTypeSubstitutable(quals, ty, Context.getASTContext());
if (isSubstitutable && mangleSubstitution(T))
return;
// If we're mangling a qualified array type, push the qualifiers to
// the element type.
if (quals && isa<ArrayType>(T)) {
ty = Context.getASTContext().getAsArrayType(T);
quals = Qualifiers();
// Note that we don't update T: we want to add the
// substitution at the original type.
}
if (quals || ty->isDependentAddressSpaceType()) {
if (const DependentAddressSpaceType *DAST =
dyn_cast<DependentAddressSpaceType>(ty)) {
SplitQualType splitDAST = DAST->getPointeeType().split();
mangleQualifiers(splitDAST.Quals, DAST);
mangleType(QualType(splitDAST.Ty, 0));
} else {
mangleQualifiers(quals);
// Recurse: even if the qualified type isn't yet substitutable,
// the unqualified type might be.
mangleType(QualType(ty, 0));
}
} else {
switch (ty->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(ty)); \
break;
#include "clang/AST/TypeNodes.inc"
}
}
// Add the substitution.
if (isSubstitutable)
addSubstitution(T);
}
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
if (!mangleStandardSubstitution(ND))
mangleName(ND);
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <type> ::= <builtin-type>
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
// ::= u <source-name> # vendor extended type
std::string type_name;
switch (T->getKind()) {
case BuiltinType::Void:
Out << 'v';
break;
case BuiltinType::Bool:
Out << 'b';
break;
case BuiltinType::Char_U:
case BuiltinType::Char_S:
Out << 'c';
break;
case BuiltinType::UChar:
Out << 'h';
break;
case BuiltinType::UShort:
Out << 't';
break;
case BuiltinType::UInt:
Out << 'j';
break;
case BuiltinType::ULong:
Out << 'm';
break;
case BuiltinType::ULongLong:
Out << 'y';
break;
case BuiltinType::UInt128:
Out << 'o';
break;
case BuiltinType::SChar:
Out << 'a';
break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
Out << 'w';
break;
case BuiltinType::Char8:
Out << "Du";
break;
case BuiltinType::Char16:
Out << "Ds";
break;
case BuiltinType::Char32:
Out << "Di";
break;
case BuiltinType::Short:
Out << 's';
break;
case BuiltinType::Int:
Out << 'i';
break;
case BuiltinType::Long:
Out << 'l';
break;
case BuiltinType::LongLong:
Out << 'x';
break;
case BuiltinType::Int128:
Out << 'n';
break;
case BuiltinType::Float16:
Out << "DF16_";
break;
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
llvm_unreachable("Fixed point types are disabled for c++");
case BuiltinType::Half:
Out << "Dh";
break;
case BuiltinType::Float:
Out << 'f';
break;
case BuiltinType::Double:
Out << 'd';
break;
case BuiltinType::LongDouble: {
const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
getASTContext().getLangOpts().OpenMPIsDevice
? getASTContext().getAuxTargetInfo()
: &getASTContext().getTargetInfo();
Out << TI->getLongDoubleMangling();
break;
}
case BuiltinType::Float128: {
const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
getASTContext().getLangOpts().OpenMPIsDevice
? getASTContext().getAuxTargetInfo()
: &getASTContext().getTargetInfo();
Out << TI->getFloat128Mangling();
break;
}
case BuiltinType::NullPtr:
Out << "Dn";
break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
if (!NullOut)
llvm_unreachable("mangling a placeholder type");
break;
case BuiltinType::ObjCId:
Out << "11objc_object";
break;
case BuiltinType::ObjCClass:
Out << "10objc_class";
break;
case BuiltinType::ObjCSel:
Out << "13objc_selector";
break;
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
type_name = "ocl_" #ImgType "_" #Suffix; \
Out << type_name.size() << type_name; \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
Out << "11ocl_sampler";
break;
case BuiltinType::OCLEvent:
Out << "9ocl_event";
break;
case BuiltinType::OCLClkEvent:
Out << "12ocl_clkevent";
break;
case BuiltinType::OCLQueue:
Out << "9ocl_queue";
break;
case BuiltinType::OCLReserveID:
Out << "13ocl_reserveid";
break;
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id: \
type_name = "ocl_" #ExtType; \
Out << type_name.size() << type_name; \
break;
#include "clang/Basic/OpenCLExtensionTypes.def"
// The SVE types are effectively target-specific. The mangling scheme
// is defined in the appendices to the Procedure Call Standard for the
// Arm Architecture.
#define SVE_TYPE(Name, Id, SingletonId) \
case BuiltinType::Id: \
type_name = Name; \
Out << 'u' << type_name.size() << type_name; \
break;
#include "clang/Basic/AArch64SVEACLETypes.def"
}
}
StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
switch (CC) {
case CC_C:
return "";
case CC_X86VectorCall:
case CC_X86Pascal:
case CC_X86RegCall:
case CC_AAPCS:
case CC_AAPCS_VFP:
case CC_AArch64VectorCall:
case CC_IntelOclBicc:
case CC_SpirFunction:
case CC_OpenCLKernel:
case CC_PreserveMost:
case CC_PreserveAll:
// FIXME: we should be mangling all of the above.
return "";
case CC_X86ThisCall:
// FIXME: To match mingw GCC, thiscall should only be mangled in when it is
// used explicitly. At this point, we don't have that much information in
// the AST, since clang tends to bake the convention into the canonical
// function type. thiscall only rarely used explicitly, so don't mangle it
// for now.
return "";
case CC_X86StdCall:
return "stdcall";
case CC_X86FastCall:
return "fastcall";
case CC_X86_64SysV:
return "sysv_abi";
case CC_Win64:
return "ms_abi";
case CC_Swift:
return "swiftcall";
}
llvm_unreachable("bad calling convention");
}
void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
// Fast path.
if (T->getExtInfo() == FunctionType::ExtInfo())
return;
// Vendor-specific qualifiers are emitted in reverse alphabetical order.
// This will get more complicated in the future if we mangle other
// things here; but for now, since we mangle ns_returns_retained as
// a qualifier on the result type, we can get away with this:
StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
if (!CCQualifier.empty())
mangleVendorQualifier(CCQualifier);
// FIXME: regparm
// FIXME: noreturn
}
void
CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
// Vendor-specific qualifiers are emitted in reverse alphabetical order.
// Note that these are *not* substitution candidates. Demanglers might
// have trouble with this if the parameter type is fully substituted.
switch (PI.getABI()) {
case ParameterABI::Ordinary:
break;
// All of these start with "swift", so they come before "ns_consumed".
case ParameterABI::SwiftContext:
case ParameterABI::SwiftErrorResult:
case ParameterABI::SwiftIndirectResult:
mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
break;
}
if (PI.isConsumed())
mangleVendorQualifier("ns_consumed");
if (PI.isNoEscape())
mangleVendorQualifier("noescape");
}
// <type> ::= <function-type>
// <function-type> ::= [<CV-qualifiers>] F [Y]
// <bare-function-type> [<ref-qualifier>] E
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
mangleExtFunctionInfo(T);
// Mangle CV-qualifiers, if present. These are 'this' qualifiers,
// e.g. "const" in "int (A::*)() const".
mangleQualifiers(T->getMethodQuals());
// Mangle instantiation-dependent exception-specification, if present,
// per cxx-abi-dev proposal on 2016-10-11.
if (T->hasInstantiationDependentExceptionSpec()) {
if (isComputedNoexcept(T->getExceptionSpecType())) {
Out << "DO";
mangleExpression(T->getNoexceptExpr());
Out << "E";
} else {
assert(T->getExceptionSpecType() == EST_Dynamic);
Out << "Dw";
for (auto ExceptTy : T->exceptions())
mangleType(ExceptTy);
Out << "E";
}
} else if (T->isNothrow()) {
Out << "Do";
}
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
// Mangle the ref-qualifier, if present.
mangleRefQualifier(T->getRefQualifier());
Out << 'E';
}
void