blob: 3438c3aadc6b8a1e2b5cc6a0e334b9be2017eab9 [file] [log] [blame]
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Expr.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
using namespace clang;
const Expr *Expr::getBestDynamicClassTypeExpr() const {
const Expr *E = this;
while (true) {
E = E->ignoreParenBaseCasts();
// Follow the RHS of a comma operator.
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma) {
E = BO->getRHS();
continue;
}
}
// Step into initializer for materialized temporaries.
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
E = MTE->GetTemporaryExpr();
continue;
}
break;
}
return E;
}
const CXXRecordDecl *Expr::getBestDynamicClassType() const {
const Expr *E = getBestDynamicClassTypeExpr();
QualType DerivedType = E->getType();
if (const PointerType *PTy = DerivedType->getAs<PointerType>())
DerivedType = PTy->getPointeeType();
if (DerivedType->isDependentType())
return nullptr;
const RecordType *Ty = DerivedType->castAs<RecordType>();
Decl *D = Ty->getDecl();
return cast<CXXRecordDecl>(D);
}
const Expr *Expr::skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHSs,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
const Expr *E = this;
while (true) {
E = E->IgnoreParens();
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
if ((CE->getCastKind() == CK_DerivedToBase ||
CE->getCastKind() == CK_UncheckedDerivedToBase) &&
E->getType()->isRecordType()) {
E = CE->getSubExpr();
auto *Derived =
cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
Adjustments.push_back(SubobjectAdjustment(CE, Derived));
continue;
}
if (CE->getCastKind() == CK_NoOp) {
E = CE->getSubExpr();
continue;
}
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (!ME->isArrow()) {
assert(ME->getBase()->getType()->isRecordType());
if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
E = ME->getBase();
Adjustments.push_back(SubobjectAdjustment(Field));
continue;
}
}
}
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_PtrMemD) {
assert(BO->getRHS()->isRValue());
E = BO->getLHS();
const MemberPointerType *MPT =
BO->getRHS()->getType()->getAs<MemberPointerType>();
Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
continue;
} else if (BO->getOpcode() == BO_Comma) {
CommaLHSs.push_back(BO->getLHS());
E = BO->getRHS();
continue;
}
}
// Nothing changed.
break;
}
return E;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool Expr::isKnownToHaveBooleanValue() const {
const Expr *E = IgnoreParens();
// If this value has _Bool type, it is obvious 0/1.
if (E->getType()->isBooleanType()) return true;
// If this is a non-scalar-integer type, we don't care enough to try.
if (!E->getType()->isIntegralOrEnumerationType()) return false;
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
switch (UO->getOpcode()) {
case UO_Plus:
return UO->getSubExpr()->isKnownToHaveBooleanValue();
case UO_LNot:
return true;
default:
return false;
}
}
// Only look through implicit casts. If the user writes
// '(int) (a && b)' treat it as an arbitrary int.
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return CE->getSubExpr()->isKnownToHaveBooleanValue();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
switch (BO->getOpcode()) {
default: return false;
case BO_LT: // Relational operators.
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ: // Equality operators.
case BO_NE:
case BO_LAnd: // AND operator.
case BO_LOr: // Logical OR operator.
return true;
case BO_And: // Bitwise AND operator.
case BO_Xor: // Bitwise XOR operator.
case BO_Or: // Bitwise OR operator.
// Handle things like (x==2)|(y==12).
return BO->getLHS()->isKnownToHaveBooleanValue() &&
BO->getRHS()->isKnownToHaveBooleanValue();
case BO_Comma:
case BO_Assign:
return BO->getRHS()->isKnownToHaveBooleanValue();
}
}
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
CO->getFalseExpr()->isKnownToHaveBooleanValue();
if (isa<ObjCBoolLiteralExpr>(E))
return true;
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
return OVE->getSourceExpr()->isKnownToHaveBooleanValue();
return false;
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getExprLoc().
//
// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getExprLoc.
template <class E, class T>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (T::*v)() const) {
return static_cast<const E*>(expr)->getExprLoc();
}
/// This implementation is used when a class doesn't provide
/// a custom implementation of getExprLoc. Overload resolution
/// should pick it over the implementation above because it's
/// more specialized according to function template partial ordering.
template <class E>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (Expr::*v)() const) {
return static_cast<const E *>(expr)->getBeginLoc();
}
}
SourceLocation Expr::getExprLoc() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: break;
#define EXPR(type, base) \
case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown expression kind");
}
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
assert((Kind == ConstantExpr::RSK_APValue ||
Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
"Invalid StorageKind Value");
}
ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const APValue &Value) {
switch (Value.getKind()) {
case APValue::None:
case APValue::Indeterminate:
return ConstantExpr::RSK_None;
case APValue::Int:
if (!Value.getInt().needsCleanup())
return ConstantExpr::RSK_Int64;
LLVM_FALLTHROUGH;
default:
return ConstantExpr::RSK_APValue;
}
}
ConstantExpr::ResultStorageKind
ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
return ConstantExpr::RSK_Int64;
return ConstantExpr::RSK_APValue;
}
void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
ConstantExprBits.ResultKind = StorageKind;
ConstantExprBits.APValueKind = APValue::None;
ConstantExprBits.HasCleanup = false;
if (StorageKind == ConstantExpr::RSK_APValue)
::new (getTrailingObjects<APValue>()) APValue();
}
ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
: FullExpr(ConstantExprClass, subexpr) {
DefaultInit(StorageKind);
}
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
ResultStorageKind StorageKind) {
assert(!isa<ConstantExpr>(E));
AssertResultStorageKind(StorageKind);
unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
StorageKind == ConstantExpr::RSK_APValue,
StorageKind == ConstantExpr::RSK_Int64);
void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
return Self;
}
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
const APValue &Result) {
ResultStorageKind StorageKind = getStorageKind(Result);
ConstantExpr *Self = Create(Context, E, StorageKind);
Self->SetResult(Result, Context);
return Self;
}
ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
: FullExpr(ConstantExprClass, Empty) {
DefaultInit(StorageKind);
}
ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
ResultStorageKind StorageKind,
EmptyShell Empty) {
AssertResultStorageKind(StorageKind);
unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
StorageKind == ConstantExpr::RSK_APValue,
StorageKind == ConstantExpr::RSK_Int64);
void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
return Self;
}
void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
"Invalid storage for this value kind");
ConstantExprBits.APValueKind = Value.getKind();
switch (ConstantExprBits.ResultKind) {
case RSK_None:
return;
case RSK_Int64:
Int64Result() = *Value.getInt().getRawData();
ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
return;
case RSK_APValue:
if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
ConstantExprBits.HasCleanup = true;
Context.addDestruction(&APValueResult());
}
APValueResult() = std::move(Value);
return;
}
llvm_unreachable("Invalid ResultKind Bits");
}
llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
switch (ConstantExprBits.ResultKind) {
case ConstantExpr::RSK_APValue:
return APValueResult().getInt();
case ConstantExpr::RSK_Int64:
return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
ConstantExprBits.IsUnsigned);
default:
llvm_unreachable("invalid Accessor");
}
}
APValue ConstantExpr::getAPValueResult() const {
switch (ConstantExprBits.ResultKind) {
case ConstantExpr::RSK_APValue:
return APValueResult();
case ConstantExpr::RSK_Int64:
return APValue(
llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
ConstantExprBits.IsUnsigned));
case ConstantExpr::RSK_None:
return APValue();
}
llvm_unreachable("invalid ResultKind");
}
/// Compute the type-, value-, and instantiation-dependence of a
/// declaration reference
/// based on the declaration being referenced.
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
QualType T, bool &TypeDependent,
bool &ValueDependent,
bool &InstantiationDependent) {
TypeDependent = false;
ValueDependent = false;
InstantiationDependent = false;
// (TD) C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
//
// and
//
// (VD) C++ [temp.dep.constexpr]p2:
// An identifier is value-dependent if it is:
// (TD) - an identifier that was declared with dependent type
// (VD) - a name declared with a dependent type,
if (T->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
InstantiationDependent = true;
return;
} else if (T->isInstantiationDependentType()) {
InstantiationDependent = true;
}
// (TD) - a conversion-function-id that specifies a dependent type
if (D->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName) {
QualType T = D->getDeclName().getCXXNameType();
if (T->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
InstantiationDependent = true;
return;
}
if (T->isInstantiationDependentType())
InstantiationDependent = true;
}
// (VD) - the name of a non-type template parameter,
if (isa<NonTypeTemplateParmDecl>(D)) {
ValueDependent = true;
InstantiationDependent = true;
return;
}
// (VD) - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent.
// (VD) - a constant with literal type and is initialized with an
// expression that is value-dependent [C++11].
// (VD) - FIXME: Missing from the standard:
// - an entity with reference type and is initialized with an
// expression that is value-dependent [C++11]
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
if ((Ctx.getLangOpts().CPlusPlus11 ?
Var->getType()->isLiteralType(Ctx) :
Var->getType()->isIntegralOrEnumerationType()) &&
(Var->getType().isConstQualified() ||
Var->getType()->isReferenceType())) {
if (const Expr *Init = Var->getAnyInitializer())
if (Init->isValueDependent()) {
ValueDependent = true;
InstantiationDependent = true;
}
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
if (Var->isStaticDataMember() &&
Var->getDeclContext()->isDependentContext()) {
ValueDependent = true;
InstantiationDependent = true;
TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
if (TInfo->getType()->isIncompleteArrayType())
TypeDependent = true;
}
return;
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
ValueDependent = true;
InstantiationDependent = true;
}
}
void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
bool TypeDependent = false;
bool ValueDependent = false;
bool InstantiationDependent = false;
computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
ValueDependent, InstantiationDependent);
ExprBits.TypeDependent |= TypeDependent;
ExprBits.ValueDependent |= ValueDependent;
ExprBits.InstantiationDependent |= InstantiationDependent;
// Is the declaration a parameter pack?
if (getDecl()->isParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo,
NonOdrUseReason NOUR)
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
D(D), DNLoc(LocInfo) {
DeclRefExprBits.HasQualifier = false;
DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
DeclRefExprBits.HasFoundDecl = false;
DeclRefExprBits.HadMultipleCandidates = false;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
DeclRefExprBits.NonOdrUseReason = NOUR;
DeclRefExprBits.Loc = L;
computeDependence(Ctx);
}
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
D(D), DNLoc(NameInfo.getInfo()) {
DeclRefExprBits.Loc = NameInfo.getLoc();
DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
if (QualifierLoc) {
new (getTrailingObjects<NestedNameSpecifierLoc>())
NestedNameSpecifierLoc(QualifierLoc);
auto *NNS = QualifierLoc.getNestedNameSpecifier();
if (NNS->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (NNS->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
if (FoundD)
*getTrailingObjects<NamedDecl *>() = FoundD;
DeclRefExprBits.HasTemplateKWAndArgsInfo
= (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
DeclRefExprBits.NonOdrUseReason = NOUR;
if (TemplateArgs) {
bool Dependent = false;
bool InstantiationDependent = false;
bool ContainsUnexpandedParameterPack = false;
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
assert(!Dependent && "built a DeclRefExpr with dependent template args");
ExprBits.InstantiationDependent |= InstantiationDependent;
ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
} else if (TemplateKWLoc.isValid()) {
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
DeclRefExprBits.HadMultipleCandidates = 0;
computeDependence(Ctx);
}
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
SourceLocation NameLoc, QualType T,
ExprValueKind VK, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
NonOdrUseReason NOUR) {
return Create(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingVariableOrCapture,
DeclarationNameInfo(D->getDeclName(), NameLoc),
T, VK, FoundD, TemplateArgs, NOUR);
}
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo,
QualType T, ExprValueKind VK,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
NonOdrUseReason NOUR) {
// Filter out cases where the found Decl is the same as the value refenenced.
if (D == FoundD)
FoundD = nullptr;
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
std::size_t Size =
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
HasTemplateKWAndArgsInfo ? 1 : 0,
TemplateArgs ? TemplateArgs->size() : 0);
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingVariableOrCapture, NameInfo,
FoundD, TemplateArgs, T, VK, NOUR);
}
DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
std::size_t Size =
totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
return new (Mem) DeclRefExpr(EmptyShell());
}
SourceLocation DeclRefExpr::getBeginLoc() const {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return getNameInfo().getBeginLoc();
}
SourceLocation DeclRefExpr::getEndLoc() const {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getNameInfo().getEndLoc();
}
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
StringLiteral *SL)
: Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
FNTy->isDependentType(), FNTy->isDependentType(),
FNTy->isInstantiationDependentType(),
/*ContainsUnexpandedParameterPack=*/false) {
PredefinedExprBits.Kind = IK;
assert((getIdentKind() == IK) &&
"IdentKind do not fit in PredefinedExprBitfields!");
bool HasFunctionName = SL != nullptr;
PredefinedExprBits.HasFunctionName = HasFunctionName;
PredefinedExprBits.Loc = L;
if (HasFunctionName)
setFunctionName(SL);
}
PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
: Expr(PredefinedExprClass, Empty) {
PredefinedExprBits.HasFunctionName = HasFunctionName;
}
PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK,
StringLiteral *SL) {
bool HasFunctionName = SL != nullptr;
void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
alignof(PredefinedExpr));
return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
}
PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
bool HasFunctionName) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
alignof(PredefinedExpr));
return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
}
StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
switch (IK) {
case Func:
return "__func__";
case Function:
return "__FUNCTION__";
case FuncDName:
return "__FUNCDNAME__";
case LFunction:
return "L__FUNCTION__";
case PrettyFunction:
return "__PRETTY_FUNCTION__";
case FuncSig:
return "__FUNCSIG__";
case LFuncSig:
return "L__FUNCSIG__";
case PrettyFunctionNoVirtual:
break;
}
llvm_unreachable("Unknown ident kind for PredefinedExpr");
}
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
ASTContext &Context = CurrentDecl->getASTContext();
if (IK == PredefinedExpr::FuncDName) {
if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
std::unique_ptr<MangleContext> MC;
MC.reset(Context.createMangleContext());
if (MC->shouldMangleDeclName(ND)) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
MC->mangleCXXCtor(CD, Ctor_Base, Out);
else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
MC->mangleCXXDtor(DD, Dtor_Base, Out);
else
MC->mangleName(ND, Out);
if (!Buffer.empty() && Buffer.front() == '\01')
return Buffer.substr(1);
return Buffer.str();
} else
return ND->getIdentifier()->getName();
}
return "";
}
if (isa<BlockDecl>(CurrentDecl)) {
// For blocks we only emit something if it is enclosed in a function
// For top-level block we'd like to include the name of variable, but we
// don't have it at this point.
auto DC = CurrentDecl->getDeclContext();
if (DC->isFileContext())
return "";
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
// For nested blocks, propagate up to the parent.
Out << ComputeName(IK, DCBlock);
else if (auto *DCDecl = dyn_cast<Decl>(DC))
Out << ComputeName(IK, DCDecl) << "_block_invoke";
return Out.str();
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
IK != FuncSig && IK != LFuncSig)
return FD->getNameAsString();
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
Out << "virtual ";
if (MD->isStatic())
Out << "static ";
}
PrintingPolicy Policy(Context.getLangOpts());
std::string Proto;
llvm::raw_string_ostream POut(Proto);
const FunctionDecl *Decl = FD;
if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
Decl = Pattern;
const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = nullptr;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(AFT);
if (IK == FuncSig || IK == LFuncSig) {
switch (AFT->getCallConv()) {
case CC_C: POut << "__cdecl "; break;
case CC_X86StdCall: POut << "__stdcall "; break;
case CC_X86FastCall: POut << "__fastcall "; break;
case CC_X86ThisCall: POut << "__thiscall "; break;
case CC_X86VectorCall: POut << "__vectorcall "; break;
case CC_X86RegCall: POut << "__regcall "; break;
// Only bother printing the conventions that MSVC knows about.
default: break;
}
}
FD->printQualifiedName(POut, Policy);
POut << "(";
if (FT) {
for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
if (i) POut << ", ";
POut << Decl->getParamDecl(i)->getType().stream(Policy);
}
if (FT->isVariadic()) {
if (FD->getNumParams()) POut << ", ";
POut << "...";
} else if ((IK == FuncSig || IK == LFuncSig ||
!Context.getLangOpts().CPlusPlus) &&
!Decl->getNumParams()) {
POut << "void";
}
}
POut << ")";
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
assert(FT && "We must have a written prototype in this case.");
if (FT->isConst())
POut << " const";
if (FT->isVolatile())
POut << " volatile";
RefQualifierKind Ref = MD->getRefQualifier();
if (Ref == RQ_LValue)
POut << " &";
else if (Ref == RQ_RValue)
POut << " &&";
}
typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
SpecsTy Specs;
const DeclContext *Ctx = FD->getDeclContext();
while (Ctx && isa<NamedDecl>(Ctx)) {
const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
if (Spec && !Spec->isExplicitSpecialization())
Specs.push_back(Spec);
Ctx = Ctx->getParent();
}
std::string TemplateParams;
llvm::raw_string_ostream TOut(TemplateParams);
for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
I != E; ++I) {
const TemplateParameterList *Params
= (*I)->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &Args = (*I)->getTemplateArgs();
assert(Params->size() == Args.size());
for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args.get(i).print(Policy, TOut);
TOut << ", ";
}
}
FunctionTemplateSpecializationInfo *FSI
= FD->getTemplateSpecializationInfo();
if (FSI && !FSI->isExplicitSpecialization()) {
const TemplateParameterList* Params
= FSI->getTemplate()->getTemplateParameters();
const TemplateArgumentList* Args = FSI->TemplateArguments;
assert(Params->size() == Args->size());
for (unsigned i = 0, e = Params->size(); i != e; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args->get(i).print(Policy, TOut);
TOut << ", ";
}
}
TOut.flush();
if (!TemplateParams.empty()) {
// remove the trailing comma and space
TemplateParams.resize(TemplateParams.size() - 2);
POut << " [" << TemplateParams << "]";
}
POut.flush();
// Print "auto" for all deduced return types. This includes C++1y return
// type deduction and lambdas. For trailing return types resolve the
// decltype expression. Otherwise print the real type when this is
// not a constructor or destructor.
if (isa<CXXMethodDecl>(FD) &&
cast<CXXMethodDecl>(FD)->getParent()->isLambda())
Proto = "auto " + Proto;
else if (FT && FT->getReturnType()->getAs<DecltypeType>())
FT->getReturnType()
->getAs<DecltypeType>()
->getUnderlyingType()
.getAsStringInternal(Proto, Policy);
else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
AFT->getReturnType().getAsStringInternal(Proto, Policy);
Out << Proto;
return Name.str().str();
}
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
// Skip to its enclosing function or method, but not its enclosing
// CapturedDecl.
if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
const Decl *D = Decl::castFromDeclContext(DC);
return ComputeName(IK, D);
}
llvm_unreachable("CapturedDecl not inside a function or method");
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
Out << (MD->isInstanceMethod() ? '-' : '+');
Out << '[';
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
// a null check to avoid a crash.
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
Out << *ID;
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
Out << '(' << *CID << ')';
Out << ' ';
MD->getSelector().print(Out);
Out << ']';
return Name.str().str();
}
if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
return "top level";
}
return "";
}
void APNumericStorage::setIntValue(const ASTContext &C,
const llvm::APInt &Val) {
if (hasAllocation())
C.Deallocate(pVal);
BitWidth = Val.getBitWidth();
unsigned NumWords = Val.getNumWords();
const uint64_t* Words = Val.getRawData();
if (NumWords > 1) {
pVal = new (C) uint64_t[NumWords];
std::copy(Words, Words + NumWords, pVal);
} else if (NumWords == 1)
VAL = Words[0];
else
VAL = 0;
}
IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l)
: Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
false, false),
Loc(l) {
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
assert(V.getBitWidth() == C.getIntWidth(type) &&
"Integer type is not the correct size for constant.");
setValue(C, V);
}
IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l) {
return new (C) IntegerLiteral(C, V, type, l);
}
IntegerLiteral *
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
return new (C) IntegerLiteral(Empty);
}
FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l,
unsigned Scale)
: Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
false, false),
Loc(l), Scale(Scale) {
assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
"Fixed point type is not the correct size for constant.");
setValue(C, V);
}
FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
const llvm::APInt &V,
QualType type,
SourceLocation l,
unsigned Scale) {
return new (C) FixedPointLiteral(C, V, type, l, Scale);
}
std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
// Currently the longest decimal number that can be printed is the max for an
// unsigned long _Accum: 4294967295.99999999976716935634613037109375
// which is 43 characters.
SmallString<64> S;
FixedPointValueToString(
S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
return S.str();
}
FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L)
: Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
false, false), Loc(L) {
setSemantics(V.getSemantics());
FloatingLiteralBits.IsExact = isexact;
setValue(C, V);
}
FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
: Expr(FloatingLiteralClass, Empty) {
setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
FloatingLiteralBits.IsExact = false;
}
FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L) {
return new (C) FloatingLiteral(C, V, isexact, Type, L);
}
FloatingLiteral *
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
return new (C) FloatingLiteral(C, Empty);
}
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
llvm::APFloat V = getValue();
bool ignored;
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
StringKind SK) {
unsigned CharByteWidth = 0;
switch (SK) {
case Ascii:
case UTF8:
CharByteWidth = Target.getCharWidth();
break;
case Wide:
CharByteWidth = Target.getWCharWidth();
break;
case UTF16:
CharByteWidth = Target.getChar16Width();
break;
case UTF32:
CharByteWidth = Target.getChar32Width();
break;
}
assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
CharByteWidth /= 8;
assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
"The only supported character byte widths are 1,2 and 4!");
return CharByteWidth;
}
StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated)
: Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
false) {
assert(Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!");
unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
unsigned ByteLength = Str.size();
assert((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!");
// Avoid the expensive division. The compiler should be able to figure it
// out by itself. However as of clang 7, even with the appropriate
// llvm_unreachable added just here, it is not able to do so.
unsigned Length;
switch (CharByteWidth) {
case 1:
Length = ByteLength;
break;
case 2:
Length = ByteLength / 2;
break;
case 4:
Length = ByteLength / 4;
break;
default:
llvm_unreachable("Unsupported character width!");
}
StringLiteralBits.Kind = Kind;
StringLiteralBits.CharByteWidth = CharByteWidth;
StringLiteralBits.IsPascal = Pascal;
StringLiteralBits.NumConcatenated = NumConcatenated;
*getTrailingObjects<unsigned>() = Length;
// Initialize the trailing array of SourceLocation.
// This is safe since SourceLocation is POD-like.
std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
NumConcatenated * sizeof(SourceLocation));
// Initialize the trailing array of char holding the string data.
std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
}
StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
unsigned Length, unsigned CharByteWidth)
: Expr(StringLiteralClass, Empty) {
StringLiteralBits.CharByteWidth = CharByteWidth;
StringLiteralBits.NumConcatenated = NumConcatenated;
*getTrailingObjects<unsigned>() = Length;
}
StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1, NumConcatenated, Str.size()),
alignof(StringLiteral));
return new (Mem)
StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
}
StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
unsigned NumConcatenated,
unsigned Length,
unsigned CharByteWidth) {
void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1, NumConcatenated, Length * CharByteWidth),
alignof(StringLiteral));
return new (Mem)
StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
}
void StringLiteral::outputString(raw_ostream &OS) const {
switch (getKind()) {
case Ascii: break; // no prefix.
case Wide: OS << 'L'; break;
case UTF8: OS << "u8"; break;
case UTF16: OS << 'u'; break;
case UTF32: OS << 'U'; break;
}
OS << '"';
static const char Hex[] = "0123456789ABCDEF";
unsigned LastSlashX = getLength();
for (unsigned I = 0, N = getLength(); I != N; ++I) {
switch (uint32_t Char = getCodeUnit(I)) {
default:
// FIXME: Convert UTF-8 back to codepoints before rendering.
// Convert UTF-16 surrogate pairs back to codepoints before rendering.
// Leave invalid surrogates alone; we'll use \x for those.
if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
Char <= 0xdbff) {
uint32_t Trail = getCodeUnit(I + 1);
if (Trail >= 0xdc00 && Trail <= 0xdfff) {
Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
++I;
}
}
if (Char > 0xff) {
// If this is a wide string, output characters over 0xff using \x
// escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
// codepoint: use \x escapes for invalid codepoints.
if (getKind() == Wide ||
(Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
// FIXME: Is this the best way to print wchar_t?
OS << "\\x";
int Shift = 28;
while ((Char >> Shift) == 0)
Shift -= 4;
for (/**/; Shift >= 0; Shift -= 4)
OS << Hex[(Char >> Shift) & 15];
LastSlashX = I;
break;
}
if (Char > 0xffff)
OS << "\\U00"
<< Hex[(Char >> 20) & 15]
<< Hex[(Char >> 16) & 15];
else
OS << "\\u";
OS << Hex[(Char >> 12) & 15]
<< Hex[(Char >> 8) & 15]
<< Hex[(Char >> 4) & 15]
<< Hex[(Char >> 0) & 15];
break;
}
// If we used \x... for the previous character, and this character is a
// hexadecimal digit, prevent it being slurped as part of the \x.
if (LastSlashX + 1 == I) {
switch (Char) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
OS << "\"\"";
}
}
assert(Char <= 0xff &&
"Characters above 0xff should already have been handled.");
if (isPrintable(Char))
OS << (char)Char;
else // Output anything hard as an octal escape.
OS << '\\'
<< (char)('0' + ((Char >> 6) & 7))
<< (char)('0' + ((Char >> 3) & 7))
<< (char)('0' + ((Char >> 0) & 7));
break;
// Handle some common non-printable cases to make dumps prettier.
case '\\': OS << "\\\\"; break;
case '"': OS << "\\\""; break;
case '\a': OS << "\\a"; break;
case '\b': OS << "\\b"; break;
case '\f': OS << "\\f"; break;
case '\n': OS << "\\n"; break;
case '\r': OS << "\\r"; break;
case '\t': OS << "\\t"; break;
case '\v': OS << "\\v"; break;
}
}
OS << '"';
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business. This routine handles this complexity.
///
/// The *StartToken sets the first token to be searched in this function and
/// the *StartTokenByteOffset is the byte offset of the first token. Before
/// returning, it updates the *StartToken to the TokNo of the token being found
/// and sets *StartTokenByteOffset to the byte offset of the token in the
/// string.
/// Using these two parameters can reduce the time complexity from O(n^2) to
/// O(n) if one wants to get the location of byte for all the tokens in a
/// string.
///
SourceLocation
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features,
const TargetInfo &Target, unsigned *StartToken,
unsigned *StartTokenByteOffset) const {
assert((getKind() == StringLiteral::Ascii ||
getKind() == StringLiteral::UTF8) &&
"Only narrow string literals are currently supported");
// Loop over all of the tokens in this string until we find the one that
// contains the byte we're looking for.
unsigned TokNo = 0;
unsigned StringOffset = 0;
if (StartToken)
TokNo = *StartToken;
if (StartTokenByteOffset) {
StringOffset = *StartTokenByteOffset;
ByteNo -= StringOffset;
}
while (1) {
assert(TokNo < getNumConcatenated() && "Invalid byte number!");
SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
// Get the spelling of the string so that we can get the data that makes up
// the string literal, not the identifier for the macro it is potentially
// expanded through.
SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
// Re-lex the token to get its length and original spelling.
std::pair<FileID, unsigned> LocInfo =
SM.getDecomposedLoc(StrTokSpellingLoc);
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid) {
if (StartTokenByteOffset != nullptr)
*StartTokenByteOffset = StringOffset;
if (StartToken != nullptr)
*StartToken = TokNo;
return StrTokSpellingLoc;
}
const char *StrData = Buffer.data()+LocInfo.second;
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
Buffer.begin(), StrData, Buffer.end());
Token TheTok;
TheLexer.LexFromRawLexer(TheTok);
// Use the StringLiteralParser to compute the length of the string in bytes.
StringLiteralParser SLP(TheTok, SM, Features, Target);
unsigned TokNumBytes = SLP.GetStringLength();
// If the byte is in this token, return the location of the byte.
if (ByteNo < TokNumBytes ||
(ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
// Now that we know the offset of the token in the spelling, use the
// preprocessor to get the offset in the original source.
if (StartTokenByteOffset != nullptr)
*StartTokenByteOffset = StringOffset;
if (StartToken != nullptr)
*StartToken = TokNo;
return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
}
// Move to the next string token.
StringOffset += TokNumBytes;
++TokNo;
ByteNo -= TokNumBytes;
}
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Unknown unary operator");
}
UnaryOperatorKind
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
switch (OO) {
default: llvm_unreachable("No unary operator for overloaded function");
case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
case OO_Amp: return UO_AddrOf;
case OO_Star: return UO_Deref;
case OO_Plus: return UO_Plus;
case OO_Minus: return UO_Minus;
case OO_Tilde: return UO_Not;
case OO_Exclaim: return UO_LNot;
case OO_Coawait: return UO_Coawait;
}
}
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
switch (Opc) {
case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
case UO_AddrOf: return OO_Amp;
case UO_Deref: return OO_Star;
case UO_Plus: return OO_Plus;
case UO_Minus: return OO_Minus;
case UO_Not: return OO_Tilde;
case UO_LNot: return OO_Exclaim;
case UO_Coawait: return OO_Coawait;
default: return OO_None;
}
}
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, unsigned MinNumArgs,
ADLCallKind UsesADL)
: Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
Fn->isValueDependent(), Fn->isInstantiationDependent(),
Fn->containsUnexpandedParameterPack()),
RParenLoc(RParenLoc) {
NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned NumPreArgs = PreArgs.size();
CallExprBits.NumPreArgs = NumPreArgs;
assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
"OffsetToTrailingObjects overflow!");
CallExprBits.UsesADL = static_cast<bool>(UsesADL);
setCallee(Fn);
for (unsigned I = 0; I != NumPreArgs; ++I) {
updateDependenciesFromArg(PreArgs[I]);
setPreArg(I, PreArgs[I]);
}
for (unsigned I = 0; I != Args.size(); ++I) {
updateDependenciesFromArg(Args[I]);
setArg(I, Args[I]);
}
for (unsigned I = Args.size(); I != NumArgs; ++I) {
setArg(I, nullptr);
}
}
CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
EmptyShell Empty)
: Expr(SC, Empty), NumArgs(NumArgs) {
CallExprBits.NumPreArgs = NumPreArgs;
assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
"OffsetToTrailingObjects overflow!");
}
CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, unsigned MinNumArgs,
ADLCallKind UsesADL) {
unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
void *Mem =
Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
RParenLoc, MinNumArgs, UsesADL);
}
CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
ExprValueKind VK, SourceLocation RParenLoc,
ADLCallKind UsesADL) {
assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
"Misaligned memory in CallExpr::CreateTemporary!");
return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
}
CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
EmptyShell Empty) {
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
void *Mem =
Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
}
unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
switch (SC) {
case CallExprClass:
return sizeof(CallExpr);
case CXXOperatorCallExprClass:
return sizeof(CXXOperatorCallExpr);
case CXXMemberCallExprClass:
return sizeof(CXXMemberCallExpr);
case UserDefinedLiteralClass:
return sizeof(UserDefinedLiteral);
case CUDAKernelCallExprClass:
return sizeof(CUDAKernelCallExpr);
default:
llvm_unreachable("unexpected class deriving from CallExpr!");
}
}
void CallExpr::updateDependenciesFromArg(Expr *Arg) {
if (Arg->isTypeDependent())
ExprBits.TypeDependent = true;
if (Arg->isValueDependent())
ExprBits.ValueDependent = true;
if (Arg->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (Arg->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
Decl *Expr::getReferencedDeclOfCallee() {
Expr *CEE = IgnoreParenImpCasts();
while (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
CEE = NTTP->getReplacement()->IgnoreParenCasts();
}
// If we're calling a dereference, look at the pointer instead.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
if (BO->isPtrMemOp())
CEE = BO->getRHS()->IgnoreParenCasts();
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
if (UO->getOpcode() == UO_Deref)
CEE = UO->getSubExpr()->IgnoreParenCasts();
}
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
return DRE->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
return ME->getMemberDecl();
if (auto *BE = dyn_cast<BlockExpr>(CEE))
return BE->getBlockDecl();
return nullptr;
}
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned CallExpr::getBuiltinCallee() const {
// All simple function calls (e.g. func()) are implicitly cast to pointer to
// function. As a result, we try and obtain the DeclRefExpr from the
// ImplicitCastExpr.
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
return 0;
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
if (!DRE)
return 0;
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
if (!FDecl)
return 0;
if (!FDecl->getIdentifier())
return 0;
return FDecl->getBuiltinID();
}
bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
if (unsigned BI = getBuiltinCallee())
return Ctx.BuiltinInfo.isUnevaluated(BI);
return false;
}
QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
const Expr *Callee = getCallee();
QualType CalleeType = Callee->getType();
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
CalleeType = FnTypePtr->getPointeeType();
} else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
CalleeType = BPT->getPointeeType();
} else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
return Ctx.VoidTy;
// This should never be overloaded and so should never return null.
CalleeType = Expr::findBoundMemberType(Callee);
}
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
return FnType->getReturnType();
}
const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
// If the return type is a struct, union, or enum that is marked nodiscard,
// then return the return type attribute.
if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
return A;
// Otherwise, see if the callee is marked nodiscard and return that attribute
// instead.
const Decl *D = getCalleeDecl();
return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
}
SourceLocation CallExpr::getBeginLoc() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
SourceLocation begin = getCallee()->getBeginLoc();
if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
begin = getArg(0)->getBeginLoc();
return begin;
}
SourceLocation CallExpr::getEndLoc() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getEndLoc();
SourceLocation end = getRParenLoc();
if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
end = getArg(getNumArgs() - 1)->getEndLoc();
return end;
}
OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc,
TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(
totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
RParenLoc);
}
OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
unsigned numComps, unsigned numExprs) {
void *Mem =
C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
return new (Mem) OffsetOfExpr(numComps, numExprs);
}
OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc)
: Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false,
/*ValueDependent=*/tsi->getType()->isDependentType(),
tsi->getType()->isInstantiationDependentType(),
tsi->getType()->containsUnexpandedParameterPack()),
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
NumComps(comps.size()), NumExprs(exprs.size())
{
for (unsigned i = 0; i != comps.size(); ++i) {
setComponent(i, comps[i]);
}
for (unsigned i = 0; i != exprs.size(); ++i) {
if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (exprs[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
setIndexExpr(i, exprs[i]);
}
}
IdentifierInfo *OffsetOfNode::getFieldName() const {
assert(getKind() == Field || getKind() == Identifier);
if (getKind() == Field)
return getField()->getIdentifier();
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}
UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
SourceLocation op, SourceLocation rp)
: Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
false, // Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
E->isTypeDependent(), E->isInstantiationDependent(),
E->containsUnexpandedParameterPack()),
OpLoc(op), RParenLoc(rp) {
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
UnaryExprOrTypeTraitExprBits.IsType = false;
Argument.Ex = E;
// Check to see if we are in the situation where alignof(decl) should be
// dependent because decl's alignment is dependent.
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
if (!isValueDependent() || !isInstantiationDependent()) {
E = E->IgnoreParens();
const ValueDecl *D = nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
D = DRE->getDecl();
else if (const auto *ME = dyn_cast<MemberExpr>(E))
D = ME->getMemberDecl();
if (D) {
for (const auto *I : D->specific_attrs<AlignedAttr>()) {
if (I->isAlignmentDependent()) {
setValueDependent(true);
setInstantiationDependent(true);
break;
}
}
}
}
}
}
MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
ValueDecl *MemberDecl,
const DeclarationNameInfo &NameInfo, QualType T,
ExprValueKind VK, ExprObjectKind OK,
NonOdrUseReason NOUR)
: Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
Base->isValueDependent(), Base->isInstantiationDependent(),
Base->containsUnexpandedParameterPack()),
Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
MemberLoc(NameInfo.getLoc()) {
assert(!NameInfo.getName() ||
MemberDecl->getDeclName() == NameInfo.getName());
MemberExprBits.IsArrow = IsArrow;
MemberExprBits.HasQualifierOrFoundDecl = false;
MemberExprBits.HasTemplateKWAndArgsInfo = false;
MemberExprBits.HadMultipleCandidates = false;
MemberExprBits.NonOdrUseReason = NOUR;
MemberExprBits.OperatorLoc = OperatorLoc;
}
MemberExpr *MemberExpr::Create(
const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
FoundDecl.getAccess() != MemberDecl->getAccess();
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
std::size_t Size =
totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(
HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
TemplateArgs ? TemplateArgs->size() : 0);
void *Mem = C.Allocate(Size, alignof(MemberExpr));
MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
NameInfo, T, VK, OK, NOUR);
if (HasQualOrFound) {
// FIXME: Wrong. We should be looking at the member declaration we found.
if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
E->setValueDependent(true);
E->setTypeDependent(true);
E->setInstantiationDependent(true);
}
else if (QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
E->setInstantiationDependent(true);
E->MemberExprBits.HasQualifierOrFoundDecl = true;
MemberExprNameQualifier *NQ =
E->getTrailingObjects<MemberExprNameQualifier>();
NQ->QualifierLoc = QualifierLoc;
NQ->FoundDecl = FoundDecl;
}
E->MemberExprBits.HasTemplateKWAndArgsInfo =
TemplateArgs || TemplateKWLoc.isValid();
if (TemplateArgs) {
bool Dependent = false;
bool InstantiationDependent = false;
bool ContainsUnexpandedParameterPack = false;
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *TemplateArgs,
E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
InstantiationDependent, ContainsUnexpandedParameterPack);
if (InstantiationDependent)
E->setInstantiationDependent(true);
} else if (TemplateKWLoc.isValid()) {
E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
return E;
}
MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
bool HasQualifier, bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
"template args but no template arg info?");
bool HasQualOrFound = HasQualifier || HasFoundDecl;
std::size_t Size =
totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
HasTemplateKWAndArgsInfo ? 1 : 0,
NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(MemberExpr));
return new (Mem) MemberExpr(EmptyShell());
}
SourceLocation MemberExpr::getBeginLoc() const {
if (isImplicitAccess()) {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return MemberLoc;
}
// FIXME: We don't want this to happen. Rather, we should be able to
// detect all kinds of implicit accesses more cleanly.
SourceLocation BaseStartLoc = getBase()->getBeginLoc();
if (BaseStartLoc.isValid())
return BaseStartLoc;
return MemberLoc;
}
SourceLocation MemberExpr::getEndLoc() const {
SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
if (hasExplicitTemplateArgs())
EndLoc = getRAngleLoc();
else if (EndLoc.isInvalid())
EndLoc = getBase()->getEndLoc();
return EndLoc;
}
bool CastExpr::CastConsistency() const {
switch (getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_DerivedToBaseMemberPointer:
case CK_BaseToDerived:
case CK_BaseToDerivedMemberPointer:
assert(!path_empty() && "Cast kind should have a base path!");
break;
case CK_CPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isPointerType());
goto CheckNoBasePath;
case CK_BlockPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_ReinterpretMemberPointer:
assert(getType()->isMemberPointerType());
assert(getSubExpr()->getType()->isMemberPointerType());
goto CheckNoBasePath;
case CK_BitCast:
// Arbitrary casts to C pointer types count as bitcasts.
// Otherwise, we should only have block and ObjC pointer casts
// here if they stay within the type kind.
if (!getType()->isPointerType()) {
assert(getType()->isObjCObjectPointerType() ==
getSubExpr()->getType()->isObjCObjectPointerType());
assert(getType()->isBlockPointerType() ==
getSubExpr()->getType()->isBlockPointerType());
}
goto CheckNoBasePath;
case CK_AnyPointerToBlockPointerCast:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isAnyPointerType() &&
!getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_CopyAndAutoreleaseBlockObject:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_FunctionToPointerDecay:
assert(getType()->isPointerType());
assert(getSubExpr()->getType()->isFunctionType());
goto CheckNoBasePath;
case CK_AddressSpaceConversion: {
auto Ty = getType();
auto SETy = getSubExpr()->getType();
assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
Ty = Ty->getPointeeType();
SETy = SETy->getPointeeType();
}
assert(!Ty.isNull() && !SETy.isNull() &&
Ty.getAddressSpace() != SETy.getAddressSpace());
goto CheckNoBasePath;
}
// These should not have an inheritance path.
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_NullToMemberPointer:
case CK_NullToPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_BooleanToSignedIntegral:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
case CK_ZeroToOCLOpaqueType:
case CK_IntToOCLSampler:
case CK_FixedPointCast:
case CK_FixedPointToIntegral:
case CK_IntegralToFixedPoint:
assert(!getType()->isBooleanType() && "unheralded conversion to bool");
goto CheckNoBasePath;
case CK_Dependent:
case CK_LValueToRValue:
case CK_NoOp:
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_FloatingToBoolean:
case CK_MemberPointerToBoolean:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToBoolean:
case CK_LValueBitCast: // -> bool&
case CK_LValueToRValueBitCast:
case CK_UserDefinedConversion: // operator bool()
case CK_BuiltinFnToFnPtr:
case CK_FixedPointToBoolean:
CheckNoBasePath:
assert(path_empty() && "Cast kind should not have a base path!");
break;
}
return true;
}
const char *CastExpr::getCastKindName(CastKind CK) {
switch (CK) {
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Unhandled cast kind!");
}
namespace {
const Expr *skipImplicitTemporary(const Expr *E) {
// Skip through reference binding to temporary.
if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
E = Materialize->GetTemporaryExpr();
// Skip any temporary bindings; they're implicit.
if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
E = Binder->getSubExpr();
return E;
}
}
Expr *CastExpr::getSubExprAsWritten() {
const Expr *SubExpr = nullptr;
const CastExpr *E = this;
do {
SubExpr = skipImplicitTemporary(E->getSubExpr());
// Conversions by constructor and conversion functions have a
// subexpression describing the call; strip it off.
if (E->getCastKind() == CK_ConstructorConversion)
SubExpr =
skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
else if (E->getCastKind() == CK_UserDefinedConversion) {
assert((isa<CXXMemberCallExpr>(SubExpr) ||
isa<BlockExpr>(SubExpr)) &&
"Unexpected SubExpr for CK_UserDefinedConversion.");
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
SubExpr = MCE->getImplicitObjectArgument();
}
// If the subexpression we're left with is an implicit cast, look
// through that, too.
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
return const_cast<Expr*>(SubExpr);
}
NamedDecl *CastExpr::getConversionFunction() const {
const Expr *SubExpr = nullptr;
for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
SubExpr = skipImplicitTemporary(E->getSubExpr());
if (E->getCastKind() == CK_ConstructorConversion)
return cast<CXXConstructExpr>(SubExpr)->getConstructor();
if (E->getCastKind() == CK_UserDefinedConversion) {
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
return MCE->getMethodDecl();
}
}
return nullptr;
}
CXXBaseSpecifier **CastExpr::path_buffer() {
switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base) \
case Stmt::Type##Class: \
return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
default:
llvm_unreachable("non-cast expressions not possible here");
}
}
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
QualType opType) {
auto RD = unionType->castAs<RecordType>()->getDecl();
return getTargetFieldForToUnionCast(RD, opType);
}
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
QualType OpType) {
auto &Ctx = RD->getASTContext();
RecordDecl::field_iterator Field, FieldEnd;
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
!Field->isUnnamedBitfield()) {
return *Field;
}
}
return nullptr;
}
ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind VK) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
// Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
// std::nullptr_t have special semantics not captured by CK_LValueToRValue.
assert((Kind != CK_LValueToRValue ||
!(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
"invalid type for lvalue-to-rvalue conversion");
ImplicitCastExpr *E =
new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
}
CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L, SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
CStyleCastExpr *E =
new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
#include "clang/AST/OperationKinds.def"
}
llvm_unreachable("Invalid OpCode!");
}
BinaryOperatorKind
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
switch (OO) {
default: llvm_unreachable("Not an overloadable binary operator");
case OO_Plus: return BO_Add;
case OO_Minus: return BO_Sub;
case OO_Star: return BO_Mul;
case OO_Slash: return BO_Div;
case OO_Percent: return BO_Rem;
case OO_Caret: return BO_Xor;
case OO_Amp: return BO_And;
case OO_Pipe: return BO_Or;
case OO_Equal: return BO_Assign;
case OO_Spaceship: return BO_Cmp;
case OO_Less: return BO_LT;
case OO_Greater: return BO_GT;
case OO_PlusEqual: return BO_AddAssign;
case OO_MinusEqual: return BO_SubAssign;
case OO_StarEqual: return BO_MulAssign;
case OO_SlashEqual: return BO_DivAssign;
case OO_PercentEqual: return BO_RemAssign;
case OO_CaretEqual: return BO_XorAssign;
case OO_AmpEqual: return BO_AndAssign;
case OO_PipeEqual: return BO_OrAssign;
case OO_LessLess: return BO_Shl;
case OO_GreaterGreater: return BO_Shr;
case OO_LessLessEqual: return BO_ShlAssign;
case OO_GreaterGreaterEqual: return BO_ShrAssign;
case OO_EqualEqual: return BO_EQ;
case OO_ExclaimEqual: return BO_NE;
case OO_LessEqual: return BO_LE;
case OO_GreaterEqual: return BO_GE;
case OO_AmpAmp: return BO_LAnd;
case OO_PipePipe: return BO_LOr;
case OO_Comma: return BO_Comma;
case OO_ArrowStar: return BO_PtrMemI;
}
}
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
static const OverloadedOperatorKind OverOps[] = {
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
OO_Star, OO_Slash, OO_Percent,
OO_Plus, OO_Minus,
OO_LessLess, OO_GreaterGreater,
OO_Spaceship,
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
OO_EqualEqual, OO_ExclaimEqual,
OO_Amp,
OO_Caret,
OO_Pipe,
OO_AmpAmp,
OO_PipePipe,
OO_Equal, OO_StarEqual,
OO_SlashEqual, OO_PercentEqual,
OO_PlusEqual, OO_MinusEqual,
OO_LessLessEqual, OO_GreaterGreaterEqual,
OO_AmpEqual, OO_CaretEqual,
OO_PipeEqual,
OO_Comma
};
return OverOps[Opc];
}
bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
Opcode Opc,
Expr *LHS, Expr *RHS) {
if (Opc != BO_Add)
return false;
// Check that we have one pointer and one integer operand.
Expr *PExp;
if (LHS->getType()->isPointerType()) {
if (!RHS->getType()->isIntegerType())
return false;
PExp = LHS;
} else if (RHS->getType()->isPointerType()) {
if (!LHS->getType()->isIntegerType())
return false;
PExp = RHS;
} else {
return false;
}
// Check that the pointer is a nullptr.
if (!PExp->IgnoreParenCasts()
->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
return false;
// Check that the pointee type is char-sized.
const PointerType *PTy = PExp->getType()->getAs<PointerType>();
if (!PTy || !PTy->getPointeeType()->isCharType())
return false;
return true;
}
static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
SourceLocExpr::IdentKind Kind) {
switch (Kind) {
case SourceLocExpr::File:
case SourceLocExpr::Function: {
QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
}
case SourceLocExpr::Line:
case SourceLocExpr::Column:
return Ctx.UnsignedIntTy;
}
llvm_unreachable("unhandled case");
}
SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
SourceLocation BLoc, SourceLocation RParenLoc,
DeclContext *ParentContext)
: Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
VK_RValue, OK_Ordinary, false, false, false, false),
BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
SourceLocExprBits.Kind = Kind;
}
StringRef SourceLocExpr::getBuiltinStr() const {
switch (getIdentKind()) {
case File:
return "__builtin_FILE";
case Function:
return "__builtin_FUNCTION";
case Line:
return "__builtin_LINE";
case Column:
return "__builtin_COLUMN";
}
llvm_unreachable("unexpected IdentKind!");
}
APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
const Expr *DefaultExpr) const {
SourceLocation Loc;
const DeclContext *Context;
std::tie(Loc,
Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
return {DIE->getUsedLocation(), DIE->getUsedContext()};
if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
return {DAE->getUsedLocation(), DAE->getUsedContext()};
return {this->getLocation(), this->getParentContext()};
}();
PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
auto MakeStringLiteral = [&](StringRef Tmp) {
using LValuePathEntry = APValue::LValuePathEntry;
StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
// Decay the string to a pointer to the first character.
LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
};
switch (getIdentKind()) {
case SourceLocExpr::File:
return MakeStringLiteral(PLoc.getFilename());
case SourceLocExpr::Function: {
const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
return MakeStringLiteral(
CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
: std::string(""));
}
case SourceLocExpr::Line:
case SourceLocExpr::Column: {
llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
/*isUnsigned=*/true);
IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
: PLoc.getColumn();
return APValue(IntVal);
}
}
llvm_unreachable("unhandled case");
}
InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
false, false),
InitExprs(C, initExprs.size()),
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
{
sawArrayRangeDesignator(false);
for (unsigned I = 0; I != initExprs.size(); ++I) {
if (initExprs[I]->isTypeDependent())
ExprBits.TypeDependent = true;
if (initExprs[I]->isValueDependent())
ExprBits.ValueDependent = true;
if (initExprs[I]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (initExprs[I]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
}
void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
if (NumInits > InitExprs.size())
InitExprs.reserve(C, NumInits);
}
void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
InitExprs.resize(C, NumInits, nullptr);
}
Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
if (Init >= InitExprs.size()) {
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
setInit(Init, expr);
return nullptr;
}
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
setInit(Init, expr);
return Result;
}
void InitListExpr::setArrayFiller(Expr *filler) {
assert(!hasArrayFiller() && "Filler already set!");
ArrayFillerOrUnionFieldInit = filler;
// Fill out any "holes" in the array due to designated initializers.
Expr **inits = getInits();
for (unsigned i = 0, e = getNumInits(); i != e; ++i)
if (inits[i] == nullptr)
inits[i] = filler;
}
bool InitListExpr::isStringLiteralInit() const {
if (getNumInits() != 1)
return false;
const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
if (!AT || !AT->getElementType()->isIntegerType())
return false;
// It is possible for getInit() to return null.
const Expr *Init = getInit(0);
if (!Init)
return false;
Init = Init->IgnoreParens();
return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
}
bool InitListExpr::isTransparent() const {
assert(isSemanticForm() && "syntactic form never semantically transparent");
// A glvalue InitListExpr is always just sugar.
if (isGLValue()) {
assert(getNumInits() == 1 && "multiple inits in glvalue init list");
return true;
}
// Otherwise, we're sugar if and only if we have exactly one initializer that
// is of the same type.
if (getNumInits() != 1 || !getInit(0))
return false;
// Don't confuse aggregate initialization of a struct X { X &x; }; with a
// transparent struct copy.
if (!getInit(0)->isRValue() && getType()->isRecordType())
return false;
return getType().getCanonicalType() ==
getInit(0)->getType().getCanonicalType();
}
bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
assert(isSyntacticForm() && "only test syntactic form as zero initializer");
if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
return false;
}
const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
return Lit && Lit->getValue() == 0;
}
SourceLocation InitListExpr::getBeginLoc() const {
if (InitListExpr *SyntacticForm = getSyntacticForm())
return SyntacticForm->getBeginLoc();
SourceLocation Beg = LBraceLoc;
if (Beg.isInvalid()) {
// Find the first non-null initializer.
for (InitExprsTy::const_iterator I = InitExprs.begin(),
E = InitExprs.end();
I != E; ++I) {
if (Stmt *S = *I) {
Beg = S->getBeginLoc();
break;
}
}
}
return Beg;
}
SourceLocation InitListExpr::getEndLoc() const {
if (InitListExpr *SyntacticForm = getSyntacticForm())
return SyntacticForm->getEndLoc();
SourceLocation End = RBraceLoc;
if (End.isInvalid()) {
// Find the first non-null initializer from the end.
for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
E = InitExprs.rend();
I != E; ++I) {
if (Stmt *S = *I) {
End = S->getEndLoc();
break;
}
}
}
return End;
}
/// getFunctionType - Return the underlying function type for this block.
///
const FunctionProtoType *BlockExpr::getFunctionType() const {
// The block pointer is never sugared, but the function type might be.
return cast<BlockPointerType>(getType())
->getPointeeType()->castAs<FunctionProtoType>();
}
SourceLocation BlockExpr::getCaretLocation() const {
return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
return TheBlock->getBody();
}
//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const {
// Don't warn if the expr is type dependent. The type could end up
// instantiating to void.
if (isTypeDependent())
return false;
switch (getStmtClass()) {
default:
if (getType()->isVoidType())
return false;
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case CoawaitExprClass:
case CoyieldExprClass:
return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case ChooseExprClass:
return cast<ChooseExpr>(this)->getChosenSubExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(this);
switch (UO->getOpcode()) {
case UO_Plus:
case UO_Minus:
case UO_AddrOf:
case UO_Not:
case UO_LNot:
case UO_Deref:
break;
case UO_Coawait:
// This is just the 'operator co_await' call inside the guts of a
// dependent co_await call.
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec: // ++/--
return false; // Not a warning.
case UO_Real:
case UO_Imag:
// accessing a piece of a volatile complex is a side-effect.
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
.isVolatileQualified())
return false;
break;
case UO_Extension:
return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
WarnE = this;
Loc = UO->getOperatorLoc();
R1 = UO->getSubExpr()->getSourceRange();
return true;
}
case BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(this);
switch (BO->getOpcode()) {
default:
break;
// Consider the RHS of comma for side effects. LHS was checked by
// Sema::CheckCommaOperands.
case BO_Comma:
// ((foo = <blah>), 0) is an idiom for hiding the result (and
// lvalue-ness) of an assignment written in a macro.
if (IntegerLiteral *IE =
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
if (IE->getValue() == 0)
return false;
return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
// Consider '||', '&&' to have side effects if the LHS or RHS does.
case BO_LAnd:
case BO_LOr:
if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
!BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
return false;
break;
}
if (BO->isAssignmentOp())
return false;
WarnE = this;
Loc = BO->getOperatorLoc();
R1 = BO->getLHS()->getSourceRange();
R2 = BO->getRHS()->getSourceRange();
return true;
}
case CompoundAssignOperatorClass:
case VAArgExprClass:
case AtomicExprClass:
return false;
case ConditionalOperatorClass: {
// If only one of the LHS or RHS is a warning, the operator might
// be being used for control flow. Only warn if both the LHS and
// RHS are warnings.
const auto *Exp = cast<ConditionalOperator>(this);
return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case BinaryConditionalOperatorClass: {
const auto *Exp = cast<BinaryConditionalOperator>(this);
return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case MemberExprClass:
WarnE = this;
Loc = cast<MemberExpr>(this)->getMemberLoc();
R1 = SourceRange(Loc, Loc);
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
return true;
case ArraySubscriptExprClass:
WarnE = this;
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
return true;
case CXXOperatorCallExprClass: {
// Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
// overloads as there is no reasonable way to define these such that they
// have non-trivial, desirable side-effects. See the -Wunused-comparison
// warning: operators == and != are commonly typo'ed, and so warning on them
// provides additional value as well. If this list is updated,
// DiagnoseUnusedComparison should be as well.
const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
switch (Op->getOperator()) {
default:
break;
case OO_EqualEqual:
case OO_ExclaimEqual:
case OO_Less:
case OO_Greater:
case OO_GreaterEqual:
case OO_LessEqual:
if (Op->getCallReturnType(Ctx)->isReferenceType() ||
Op->getCallReturnType(Ctx)->isVoidType())
break;
WarnE = this;
Loc = Op->getOperatorLoc();
R1 = Op->getSourceRange();
return true;
}
// Fallthrough for generic call handling.
LLVM_FALLTHROUGH;
}
case CallExprClass:
case CXXMemberCallExprClass:
case UserDefinedLiteralClass: {
// If this is a direct call, get the callee.
const CallExpr *CE = cast<CallExpr>(this);
if (const Decl *FD = CE->getCalleeDecl()) {
// If the callee has attribute pure, const, or warn_unused_result, warn
// about it. void foo() { strlen("bar"); } should warn.
//
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
// updated to match for QoI.
if (CE->hasUnusedResultAttr(Ctx) ||
FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
WarnE = this;
Loc = CE->getCallee()->getBeginLoc();
R1 = CE->getCallee()->getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
CE->getArg(NumArgs - 1)->getEndLoc());
return true;
}
}
return false;
}
// If we don't know precisely what we're looking at, let's not warn.
case UnresolvedLookupExprClass:
case CXXUnresolvedConstructExprClass:
return false;
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass: {
if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
if (Type->hasAttr<WarnUnusedAttr>() ||
(WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
WarnE = this;
Loc = getBeginLoc();
R1 = getSourceRange();
return true;
}
}
const auto *CE = cast<CXXConstructExpr>(this);
if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
WarnE = this;
Loc = getBeginLoc();
R1 = getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
CE->getArg(NumArgs - 1)->getEndLoc());
return true;
}
}
return false;
}
case ObjCMessageExprClass: {
const ObjCMessageExpr *