|  | //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements extra semantic analysis beyond what is enforced | 
|  | //  by the C type system. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/AttrIterator.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclarationName.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/ExprOpenMP.h" | 
|  | #include "clang/AST/FormatString.h" | 
|  | #include "clang/AST/NSAPI.h" | 
|  | #include "clang/AST/NonTrivialTypeVisitor.h" | 
|  | #include "clang/AST/OperationKinds.h" | 
|  | #include "clang/AST/Stmt.h" | 
|  | #include "clang/AST/TemplateBase.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/UnresolvedSet.h" | 
|  | #include "clang/Basic/AddressSpaces.h" | 
|  | #include "clang/Basic/CharInfo.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/OpenCLOptions.h" | 
|  | #include "clang/Basic/OperatorKinds.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "clang/Basic/SyncScope.h" | 
|  | #include "clang/Basic/TargetBuiltins.h" | 
|  | #include "clang/Basic/TargetCXXABI.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Basic/TypeTraits.h" | 
|  | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Ownership.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/Sema.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ConvertUTF.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/Locale.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <limits> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, | 
|  | unsigned ByteNo) const { | 
|  | return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, | 
|  | Context.getTargetInfo()); | 
|  | } | 
|  |  | 
|  | /// Checks that a call expression's argument count is the desired number. | 
|  | /// This is useful when doing custom type-checking.  Returns true on error. | 
|  | static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { | 
|  | unsigned argCount = call->getNumArgs(); | 
|  | if (argCount == desiredArgCount) return false; | 
|  |  | 
|  | if (argCount < desiredArgCount) | 
|  | return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) | 
|  | << 0 /*function call*/ << desiredArgCount << argCount | 
|  | << call->getSourceRange(); | 
|  |  | 
|  | // Highlight all the excess arguments. | 
|  | SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), | 
|  | call->getArg(argCount - 1)->getEndLoc()); | 
|  |  | 
|  | return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) | 
|  | << 0 /*function call*/ << desiredArgCount << argCount | 
|  | << call->getArg(1)->getSourceRange(); | 
|  | } | 
|  |  | 
|  | /// Check that the first argument to __builtin_annotation is an integer | 
|  | /// and the second argument is a non-wide string literal. | 
|  | static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 2)) | 
|  | return true; | 
|  |  | 
|  | // First argument should be an integer. | 
|  | Expr *ValArg = TheCall->getArg(0); | 
|  | QualType Ty = ValArg->getType(); | 
|  | if (!Ty->isIntegerType()) { | 
|  | S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) | 
|  | << ValArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Second argument should be a constant string. | 
|  | Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); | 
|  | StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); | 
|  | if (!Literal || !Literal->isAscii()) { | 
|  | S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) | 
|  | << StrArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TheCall->setType(Ty); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { | 
|  | // We need at least one argument. | 
|  | if (TheCall->getNumArgs() < 1) { | 
|  | S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 << 1 << TheCall->getNumArgs() | 
|  | << TheCall->getCallee()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // All arguments should be wide string literals. | 
|  | for (Expr *Arg : TheCall->arguments()) { | 
|  | auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); | 
|  | if (!Literal || !Literal->isWide()) { | 
|  | S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) | 
|  | << Arg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check that the argument to __builtin_addressof is a glvalue, and set the | 
|  | /// result type to the corresponding pointer type. | 
|  | static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 1)) | 
|  | return true; | 
|  |  | 
|  | ExprResult Arg(TheCall->getArg(0)); | 
|  | QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); | 
|  | if (ResultType.isNull()) | 
|  | return true; | 
|  |  | 
|  | TheCall->setArg(0, Arg.get()); | 
|  | TheCall->setType(ResultType); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 3)) | 
|  | return true; | 
|  |  | 
|  | // First two arguments should be integers. | 
|  | for (unsigned I = 0; I < 2; ++I) { | 
|  | ExprResult Arg = TheCall->getArg(I); | 
|  | QualType Ty = Arg.get()->getType(); | 
|  | if (!Ty->isIntegerType()) { | 
|  | S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) | 
|  | << Ty << Arg.get()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | S.getASTContext(), Ty, /*consume*/ false); | 
|  | Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(I, Arg.get()); | 
|  | } | 
|  |  | 
|  | // Third argument should be a pointer to a non-const integer. | 
|  | // IRGen correctly handles volatile, restrict, and address spaces, and | 
|  | // the other qualifiers aren't possible. | 
|  | { | 
|  | ExprResult Arg = TheCall->getArg(2); | 
|  | QualType Ty = Arg.get()->getType(); | 
|  | const auto *PtrTy = Ty->getAs<PointerType>(); | 
|  | if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() && | 
|  | !PtrTy->getPointeeType().isConstQualified())) { | 
|  | S.Diag(Arg.get()->getBeginLoc(), | 
|  | diag::err_overflow_builtin_must_be_ptr_int) | 
|  | << Ty << Arg.get()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | S.getASTContext(), Ty, /*consume*/ false); | 
|  | Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(2, Arg.get()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { | 
|  | if (checkArgCount(S, BuiltinCall, 2)) | 
|  | return true; | 
|  |  | 
|  | SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); | 
|  | Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); | 
|  | Expr *Call = BuiltinCall->getArg(0); | 
|  | Expr *Chain = BuiltinCall->getArg(1); | 
|  |  | 
|  | if (Call->getStmtClass() != Stmt::CallExprClass) { | 
|  | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) | 
|  | << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto CE = cast<CallExpr>(Call); | 
|  | if (CE->getCallee()->getType()->isBlockPointerType()) { | 
|  | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) | 
|  | << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Decl *TargetDecl = CE->getCalleeDecl(); | 
|  | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) | 
|  | if (FD->getBuiltinID()) { | 
|  | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) | 
|  | << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { | 
|  | S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) | 
|  | << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ExprResult ChainResult = S.UsualUnaryConversions(Chain); | 
|  | if (ChainResult.isInvalid()) | 
|  | return true; | 
|  | if (!ChainResult.get()->getType()->isPointerType()) { | 
|  | S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) | 
|  | << Chain->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QualType ReturnTy = CE->getCallReturnType(S.Context); | 
|  | QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; | 
|  | QualType BuiltinTy = S.Context.getFunctionType( | 
|  | ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); | 
|  | QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); | 
|  |  | 
|  | Builtin = | 
|  | S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); | 
|  |  | 
|  | BuiltinCall->setType(CE->getType()); | 
|  | BuiltinCall->setValueKind(CE->getValueKind()); | 
|  | BuiltinCall->setObjectKind(CE->getObjectKind()); | 
|  | BuiltinCall->setCallee(Builtin); | 
|  | BuiltinCall->setArg(1, ChainResult.get()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a | 
|  | /// __builtin_*_chk function, then use the object size argument specified in the | 
|  | /// source. Otherwise, infer the object size using __builtin_object_size. | 
|  | void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, | 
|  | CallExpr *TheCall) { | 
|  | // FIXME: There are some more useful checks we could be doing here: | 
|  | //  - Analyze the format string of sprintf to see how much of buffer is used. | 
|  | //  - Evaluate strlen of strcpy arguments, use as object size. | 
|  |  | 
|  | if (TheCall->isValueDependent() || TheCall->isTypeDependent()) | 
|  | return; | 
|  |  | 
|  | unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); | 
|  | if (!BuiltinID) | 
|  | return; | 
|  |  | 
|  | unsigned DiagID = 0; | 
|  | bool IsChkVariant = false; | 
|  | unsigned SizeIndex, ObjectIndex; | 
|  | switch (BuiltinID) { | 
|  | default: | 
|  | return; | 
|  | case Builtin::BI__builtin___memcpy_chk: | 
|  | case Builtin::BI__builtin___memmove_chk: | 
|  | case Builtin::BI__builtin___memset_chk: | 
|  | case Builtin::BI__builtin___strlcat_chk: | 
|  | case Builtin::BI__builtin___strlcpy_chk: | 
|  | case Builtin::BI__builtin___strncat_chk: | 
|  | case Builtin::BI__builtin___strncpy_chk: | 
|  | case Builtin::BI__builtin___stpncpy_chk: | 
|  | case Builtin::BI__builtin___memccpy_chk: { | 
|  | DiagID = diag::warn_builtin_chk_overflow; | 
|  | IsChkVariant = true; | 
|  | SizeIndex = TheCall->getNumArgs() - 2; | 
|  | ObjectIndex = TheCall->getNumArgs() - 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Builtin::BI__builtin___snprintf_chk: | 
|  | case Builtin::BI__builtin___vsnprintf_chk: { | 
|  | DiagID = diag::warn_builtin_chk_overflow; | 
|  | IsChkVariant = true; | 
|  | SizeIndex = 1; | 
|  | ObjectIndex = 3; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Builtin::BIstrncat: | 
|  | case Builtin::BI__builtin_strncat: | 
|  | case Builtin::BIstrncpy: | 
|  | case Builtin::BI__builtin_strncpy: | 
|  | case Builtin::BIstpncpy: | 
|  | case Builtin::BI__builtin_stpncpy: { | 
|  | // Whether these functions overflow depends on the runtime strlen of the | 
|  | // string, not just the buffer size, so emitting the "always overflow" | 
|  | // diagnostic isn't quite right. We should still diagnose passing a buffer | 
|  | // size larger than the destination buffer though; this is a runtime abort | 
|  | // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. | 
|  | DiagID = diag::warn_fortify_source_size_mismatch; | 
|  | SizeIndex = TheCall->getNumArgs() - 1; | 
|  | ObjectIndex = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Builtin::BImemcpy: | 
|  | case Builtin::BI__builtin_memcpy: | 
|  | case Builtin::BImemmove: | 
|  | case Builtin::BI__builtin_memmove: | 
|  | case Builtin::BImemset: | 
|  | case Builtin::BI__builtin_memset: { | 
|  | DiagID = diag::warn_fortify_source_overflow; | 
|  | SizeIndex = TheCall->getNumArgs() - 1; | 
|  | ObjectIndex = 0; | 
|  | break; | 
|  | } | 
|  | case Builtin::BIsnprintf: | 
|  | case Builtin::BI__builtin_snprintf: | 
|  | case Builtin::BIvsnprintf: | 
|  | case Builtin::BI__builtin_vsnprintf: { | 
|  | DiagID = diag::warn_fortify_source_size_mismatch; | 
|  | SizeIndex = 1; | 
|  | ObjectIndex = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::APSInt ObjectSize; | 
|  | // For __builtin___*_chk, the object size is explicitly provided by the caller | 
|  | // (usually using __builtin_object_size). Use that value to check this call. | 
|  | if (IsChkVariant) { | 
|  | Expr::EvalResult Result; | 
|  | Expr *SizeArg = TheCall->getArg(ObjectIndex); | 
|  | if (!SizeArg->EvaluateAsInt(Result, getASTContext())) | 
|  | return; | 
|  | ObjectSize = Result.Val.getInt(); | 
|  |  | 
|  | // Otherwise, try to evaluate an imaginary call to __builtin_object_size. | 
|  | } else { | 
|  | // If the parameter has a pass_object_size attribute, then we should use its | 
|  | // (potentially) more strict checking mode. Otherwise, conservatively assume | 
|  | // type 0. | 
|  | int BOSType = 0; | 
|  | if (const auto *POS = | 
|  | FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) | 
|  | BOSType = POS->getType(); | 
|  |  | 
|  | Expr *ObjArg = TheCall->getArg(ObjectIndex); | 
|  | uint64_t Result; | 
|  | if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) | 
|  | return; | 
|  | // Get the object size in the target's size_t width. | 
|  | const TargetInfo &TI = getASTContext().getTargetInfo(); | 
|  | unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); | 
|  | ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); | 
|  | } | 
|  |  | 
|  | // Evaluate the number of bytes of the object that this call will use. | 
|  | Expr::EvalResult Result; | 
|  | Expr *UsedSizeArg = TheCall->getArg(SizeIndex); | 
|  | if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) | 
|  | return; | 
|  | llvm::APSInt UsedSize = Result.Val.getInt(); | 
|  |  | 
|  | if (UsedSize.ule(ObjectSize)) | 
|  | return; | 
|  |  | 
|  | StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); | 
|  | // Skim off the details of whichever builtin was called to produce a better | 
|  | // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. | 
|  | if (IsChkVariant) { | 
|  | FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); | 
|  | FunctionName = FunctionName.drop_back(std::strlen("_chk")); | 
|  | } else if (FunctionName.startswith("__builtin_")) { | 
|  | FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); | 
|  | } | 
|  |  | 
|  | DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, | 
|  | PDiag(DiagID) | 
|  | << FunctionName << ObjectSize.toString(/*Radix=*/10) | 
|  | << UsedSize.toString(/*Radix=*/10)); | 
|  | } | 
|  |  | 
|  | static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, | 
|  | Scope::ScopeFlags NeededScopeFlags, | 
|  | unsigned DiagID) { | 
|  | // Scopes aren't available during instantiation. Fortunately, builtin | 
|  | // functions cannot be template args so they cannot be formed through template | 
|  | // instantiation. Therefore checking once during the parse is sufficient. | 
|  | if (SemaRef.inTemplateInstantiation()) | 
|  | return false; | 
|  |  | 
|  | Scope *S = SemaRef.getCurScope(); | 
|  | while (S && !S->isSEHExceptScope()) | 
|  | S = S->getParent(); | 
|  | if (!S || !(S->getFlags() & NeededScopeFlags)) { | 
|  | auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); | 
|  | SemaRef.Diag(TheCall->getExprLoc(), DiagID) | 
|  | << DRE->getDecl()->getIdentifier(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool isBlockPointer(Expr *Arg) { | 
|  | return Arg->getType()->isBlockPointerType(); | 
|  | } | 
|  |  | 
|  | /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local | 
|  | /// void*, which is a requirement of device side enqueue. | 
|  | static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { | 
|  | const BlockPointerType *BPT = | 
|  | cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); | 
|  | ArrayRef<QualType> Params = | 
|  | BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes(); | 
|  | unsigned ArgCounter = 0; | 
|  | bool IllegalParams = false; | 
|  | // Iterate through the block parameters until either one is found that is not | 
|  | // a local void*, or the block is valid. | 
|  | for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); | 
|  | I != E; ++I, ++ArgCounter) { | 
|  | if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || | 
|  | (*I)->getPointeeType().getQualifiers().getAddressSpace() != | 
|  | LangAS::opencl_local) { | 
|  | // Get the location of the error. If a block literal has been passed | 
|  | // (BlockExpr) then we can point straight to the offending argument, | 
|  | // else we just point to the variable reference. | 
|  | SourceLocation ErrorLoc; | 
|  | if (isa<BlockExpr>(BlockArg)) { | 
|  | BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); | 
|  | ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); | 
|  | } else if (isa<DeclRefExpr>(BlockArg)) { | 
|  | ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); | 
|  | } | 
|  | S.Diag(ErrorLoc, | 
|  | diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); | 
|  | IllegalParams = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return IllegalParams; | 
|  | } | 
|  |  | 
|  | static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { | 
|  | if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) | 
|  | << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 2)) | 
|  | return true; | 
|  |  | 
|  | if (checkOpenCLSubgroupExt(S, TheCall)) | 
|  | return true; | 
|  |  | 
|  | // First argument is an ndrange_t type. | 
|  | Expr *NDRangeArg = TheCall->getArg(0); | 
|  | if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { | 
|  | S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "'ndrange_t'"; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Expr *BlockArg = TheCall->getArg(1); | 
|  | if (!isBlockPointer(BlockArg)) { | 
|  | S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "block"; | 
|  | return true; | 
|  | } | 
|  | return checkOpenCLBlockArgs(S, BlockArg); | 
|  | } | 
|  |  | 
|  | /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the | 
|  | /// get_kernel_work_group_size | 
|  | /// and get_kernel_preferred_work_group_size_multiple builtin functions. | 
|  | static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 1)) | 
|  | return true; | 
|  |  | 
|  | Expr *BlockArg = TheCall->getArg(0); | 
|  | if (!isBlockPointer(BlockArg)) { | 
|  | S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "block"; | 
|  | return true; | 
|  | } | 
|  | return checkOpenCLBlockArgs(S, BlockArg); | 
|  | } | 
|  |  | 
|  | /// Diagnose integer type and any valid implicit conversion to it. | 
|  | static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, | 
|  | const QualType &IntType); | 
|  |  | 
|  | static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, | 
|  | unsigned Start, unsigned End) { | 
|  | bool IllegalParams = false; | 
|  | for (unsigned I = Start; I <= End; ++I) | 
|  | IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), | 
|  | S.Context.getSizeType()); | 
|  | return IllegalParams; | 
|  | } | 
|  |  | 
|  | /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all | 
|  | /// 'local void*' parameter of passed block. | 
|  | static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, | 
|  | Expr *BlockArg, | 
|  | unsigned NumNonVarArgs) { | 
|  | const BlockPointerType *BPT = | 
|  | cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); | 
|  | unsigned NumBlockParams = | 
|  | BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams(); | 
|  | unsigned TotalNumArgs = TheCall->getNumArgs(); | 
|  |  | 
|  | // For each argument passed to the block, a corresponding uint needs to | 
|  | // be passed to describe the size of the local memory. | 
|  | if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { | 
|  | S.Diag(TheCall->getBeginLoc(), | 
|  | diag::err_opencl_enqueue_kernel_local_size_args); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check that the sizes of the local memory are specified by integers. | 
|  | return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, | 
|  | TotalNumArgs - 1); | 
|  | } | 
|  |  | 
|  | /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different | 
|  | /// overload formats specified in Table 6.13.17.1. | 
|  | /// int enqueue_kernel(queue_t queue, | 
|  | ///                    kernel_enqueue_flags_t flags, | 
|  | ///                    const ndrange_t ndrange, | 
|  | ///                    void (^block)(void)) | 
|  | /// int enqueue_kernel(queue_t queue, | 
|  | ///                    kernel_enqueue_flags_t flags, | 
|  | ///                    const ndrange_t ndrange, | 
|  | ///                    uint num_events_in_wait_list, | 
|  | ///                    clk_event_t *event_wait_list, | 
|  | ///                    clk_event_t *event_ret, | 
|  | ///                    void (^block)(void)) | 
|  | /// int enqueue_kernel(queue_t queue, | 
|  | ///                    kernel_enqueue_flags_t flags, | 
|  | ///                    const ndrange_t ndrange, | 
|  | ///                    void (^block)(local void*, ...), | 
|  | ///                    uint size0, ...) | 
|  | /// int enqueue_kernel(queue_t queue, | 
|  | ///                    kernel_enqueue_flags_t flags, | 
|  | ///                    const ndrange_t ndrange, | 
|  | ///                    uint num_events_in_wait_list, | 
|  | ///                    clk_event_t *event_wait_list, | 
|  | ///                    clk_event_t *event_ret, | 
|  | ///                    void (^block)(local void*, ...), | 
|  | ///                    uint size0, ...) | 
|  | static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  |  | 
|  | if (NumArgs < 4) { | 
|  | S.Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_few_args); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Expr *Arg0 = TheCall->getArg(0); | 
|  | Expr *Arg1 = TheCall->getArg(1); | 
|  | Expr *Arg2 = TheCall->getArg(2); | 
|  | Expr *Arg3 = TheCall->getArg(3); | 
|  |  | 
|  | // First argument always needs to be a queue_t type. | 
|  | if (!Arg0->getType()->isQueueT()) { | 
|  | S.Diag(TheCall->getArg(0)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << S.Context.OCLQueueTy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Second argument always needs to be a kernel_enqueue_flags_t enum value. | 
|  | if (!Arg1->getType()->isIntegerType()) { | 
|  | S.Diag(TheCall->getArg(1)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Third argument is always an ndrange_t type. | 
|  | if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { | 
|  | S.Diag(TheCall->getArg(2)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "'ndrange_t'"; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // With four arguments, there is only one form that the function could be | 
|  | // called in: no events and no variable arguments. | 
|  | if (NumArgs == 4) { | 
|  | // check that the last argument is the right block type. | 
|  | if (!isBlockPointer(Arg3)) { | 
|  | S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "block"; | 
|  | return true; | 
|  | } | 
|  | // we have a block type, check the prototype | 
|  | const BlockPointerType *BPT = | 
|  | cast<BlockPointerType>(Arg3->getType().getCanonicalType()); | 
|  | if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) { | 
|  | S.Diag(Arg3->getBeginLoc(), | 
|  | diag::err_opencl_enqueue_kernel_blocks_no_args); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // we can have block + varargs. | 
|  | if (isBlockPointer(Arg3)) | 
|  | return (checkOpenCLBlockArgs(S, Arg3) || | 
|  | checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); | 
|  | // last two cases with either exactly 7 args or 7 args and varargs. | 
|  | if (NumArgs >= 7) { | 
|  | // check common block argument. | 
|  | Expr *Arg6 = TheCall->getArg(6); | 
|  | if (!isBlockPointer(Arg6)) { | 
|  | S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "block"; | 
|  | return true; | 
|  | } | 
|  | if (checkOpenCLBlockArgs(S, Arg6)) | 
|  | return true; | 
|  |  | 
|  | // Forth argument has to be any integer type. | 
|  | if (!Arg3->getType()->isIntegerType()) { | 
|  | S.Diag(TheCall->getArg(3)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() << "integer"; | 
|  | return true; | 
|  | } | 
|  | // check remaining common arguments. | 
|  | Expr *Arg4 = TheCall->getArg(4); | 
|  | Expr *Arg5 = TheCall->getArg(5); | 
|  |  | 
|  | // Fifth argument is always passed as a pointer to clk_event_t. | 
|  | if (!Arg4->isNullPointerConstant(S.Context, | 
|  | Expr::NPC_ValueDependentIsNotNull) && | 
|  | !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { | 
|  | S.Diag(TheCall->getArg(4)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() | 
|  | << S.Context.getPointerType(S.Context.OCLClkEventTy); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Sixth argument is always passed as a pointer to clk_event_t. | 
|  | if (!Arg5->isNullPointerConstant(S.Context, | 
|  | Expr::NPC_ValueDependentIsNotNull) && | 
|  | !(Arg5->getType()->isPointerType() && | 
|  | Arg5->getType()->getPointeeType()->isClkEventT())) { | 
|  | S.Diag(TheCall->getArg(5)->getBeginLoc(), | 
|  | diag::err_opencl_builtin_expected_type) | 
|  | << TheCall->getDirectCallee() | 
|  | << S.Context.getPointerType(S.Context.OCLClkEventTy); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (NumArgs == 7) | 
|  | return false; | 
|  |  | 
|  | return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); | 
|  | } | 
|  |  | 
|  | // None of the specific case has been detected, give generic error | 
|  | S.Diag(TheCall->getBeginLoc(), | 
|  | diag::err_opencl_enqueue_kernel_incorrect_args); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns OpenCL access qual. | 
|  | static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { | 
|  | return D->getAttr<OpenCLAccessAttr>(); | 
|  | } | 
|  |  | 
|  | /// Returns true if pipe element type is different from the pointer. | 
|  | static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { | 
|  | const Expr *Arg0 = Call->getArg(0); | 
|  | // First argument type should always be pipe. | 
|  | if (!Arg0->getType()->isPipeType()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) | 
|  | << Call->getDirectCallee() << Arg0->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | OpenCLAccessAttr *AccessQual = | 
|  | getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); | 
|  | // Validates the access qualifier is compatible with the call. | 
|  | // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be | 
|  | // read_only and write_only, and assumed to be read_only if no qualifier is | 
|  | // specified. | 
|  | switch (Call->getDirectCallee()->getBuiltinID()) { | 
|  | case Builtin::BIread_pipe: | 
|  | case Builtin::BIreserve_read_pipe: | 
|  | case Builtin::BIcommit_read_pipe: | 
|  | case Builtin::BIwork_group_reserve_read_pipe: | 
|  | case Builtin::BIsub_group_reserve_read_pipe: | 
|  | case Builtin::BIwork_group_commit_read_pipe: | 
|  | case Builtin::BIsub_group_commit_read_pipe: | 
|  | if (!(!AccessQual || AccessQual->isReadOnly())) { | 
|  | S.Diag(Arg0->getBeginLoc(), | 
|  | diag::err_opencl_builtin_pipe_invalid_access_modifier) | 
|  | << "read_only" << Arg0->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case Builtin::BIwrite_pipe: | 
|  | case Builtin::BIreserve_write_pipe: | 
|  | case Builtin::BIcommit_write_pipe: | 
|  | case Builtin::BIwork_group_reserve_write_pipe: | 
|  | case Builtin::BIsub_group_reserve_write_pipe: | 
|  | case Builtin::BIwork_group_commit_write_pipe: | 
|  | case Builtin::BIsub_group_commit_write_pipe: | 
|  | if (!(AccessQual && AccessQual->isWriteOnly())) { | 
|  | S.Diag(Arg0->getBeginLoc(), | 
|  | diag::err_opencl_builtin_pipe_invalid_access_modifier) | 
|  | << "write_only" << Arg0->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if pipe element type is different from the pointer. | 
|  | static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { | 
|  | const Expr *Arg0 = Call->getArg(0); | 
|  | const Expr *ArgIdx = Call->getArg(Idx); | 
|  | const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); | 
|  | const QualType EltTy = PipeTy->getElementType(); | 
|  | const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); | 
|  | // The Idx argument should be a pointer and the type of the pointer and | 
|  | // the type of pipe element should also be the same. | 
|  | if (!ArgTy || | 
|  | !S.Context.hasSameType( | 
|  | EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) | 
|  | << Call->getDirectCallee() << S.Context.getPointerType(EltTy) | 
|  | << ArgIdx->getType() << ArgIdx->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Performs semantic analysis for the read/write_pipe call. | 
|  | // \param S Reference to the semantic analyzer. | 
|  | // \param Call A pointer to the builtin call. | 
|  | // \return True if a semantic error has been found, false otherwise. | 
|  | static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { | 
|  | // OpenCL v2.0 s6.13.16.2 - The built-in read/write | 
|  | // functions have two forms. | 
|  | switch (Call->getNumArgs()) { | 
|  | case 2: | 
|  | if (checkOpenCLPipeArg(S, Call)) | 
|  | return true; | 
|  | // The call with 2 arguments should be | 
|  | // read/write_pipe(pipe T, T*). | 
|  | // Check packet type T. | 
|  | if (checkOpenCLPipePacketType(S, Call, 1)) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case 4: { | 
|  | if (checkOpenCLPipeArg(S, Call)) | 
|  | return true; | 
|  | // The call with 4 arguments should be | 
|  | // read/write_pipe(pipe T, reserve_id_t, uint, T*). | 
|  | // Check reserve_id_t. | 
|  | if (!Call->getArg(1)->getType()->isReserveIDT()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) | 
|  | << Call->getDirectCallee() << S.Context.OCLReserveIDTy | 
|  | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check the index. | 
|  | const Expr *Arg2 = Call->getArg(2); | 
|  | if (!Arg2->getType()->isIntegerType() && | 
|  | !Arg2->getType()->isUnsignedIntegerType()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) | 
|  | << Call->getDirectCallee() << S.Context.UnsignedIntTy | 
|  | << Arg2->getType() << Arg2->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check packet type T. | 
|  | if (checkOpenCLPipePacketType(S, Call, 3)) | 
|  | return true; | 
|  | } break; | 
|  | default: | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) | 
|  | << Call->getDirectCallee() << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Performs a semantic analysis on the {work_group_/sub_group_ | 
|  | //        /_}reserve_{read/write}_pipe | 
|  | // \param S Reference to the semantic analyzer. | 
|  | // \param Call The call to the builtin function to be analyzed. | 
|  | // \return True if a semantic error was found, false otherwise. | 
|  | static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { | 
|  | if (checkArgCount(S, Call, 2)) | 
|  | return true; | 
|  |  | 
|  | if (checkOpenCLPipeArg(S, Call)) | 
|  | return true; | 
|  |  | 
|  | // Check the reserve size. | 
|  | if (!Call->getArg(1)->getType()->isIntegerType() && | 
|  | !Call->getArg(1)->getType()->isUnsignedIntegerType()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) | 
|  | << Call->getDirectCallee() << S.Context.UnsignedIntTy | 
|  | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Since return type of reserve_read/write_pipe built-in function is | 
|  | // reserve_id_t, which is not defined in the builtin def file , we used int | 
|  | // as return type and need to override the return type of these functions. | 
|  | Call->setType(S.Context.OCLReserveIDTy); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Performs a semantic analysis on {work_group_/sub_group_ | 
|  | //        /_}commit_{read/write}_pipe | 
|  | // \param S Reference to the semantic analyzer. | 
|  | // \param Call The call to the builtin function to be analyzed. | 
|  | // \return True if a semantic error was found, false otherwise. | 
|  | static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { | 
|  | if (checkArgCount(S, Call, 2)) | 
|  | return true; | 
|  |  | 
|  | if (checkOpenCLPipeArg(S, Call)) | 
|  | return true; | 
|  |  | 
|  | // Check reserve_id_t. | 
|  | if (!Call->getArg(1)->getType()->isReserveIDT()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) | 
|  | << Call->getDirectCallee() << S.Context.OCLReserveIDTy | 
|  | << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Performs a semantic analysis on the call to built-in Pipe | 
|  | //        Query Functions. | 
|  | // \param S Reference to the semantic analyzer. | 
|  | // \param Call The call to the builtin function to be analyzed. | 
|  | // \return True if a semantic error was found, false otherwise. | 
|  | static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { | 
|  | if (checkArgCount(S, Call, 1)) | 
|  | return true; | 
|  |  | 
|  | if (!Call->getArg(0)->getType()->isPipeType()) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) | 
|  | << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // OpenCL v2.0 s6.13.9 - Address space qualifier functions. | 
|  | // Performs semantic analysis for the to_global/local/private call. | 
|  | // \param S Reference to the semantic analyzer. | 
|  | // \param BuiltinID ID of the builtin function. | 
|  | // \param Call A pointer to the builtin call. | 
|  | // \return True if a semantic error has been found, false otherwise. | 
|  | static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, | 
|  | CallExpr *Call) { | 
|  | if (Call->getNumArgs() != 1) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) | 
|  | << Call->getDirectCallee() << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto RT = Call->getArg(0)->getType(); | 
|  | if (!RT->isPointerType() || RT->getPointeeType() | 
|  | .getAddressSpace() == LangAS::opencl_constant) { | 
|  | S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) | 
|  | << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { | 
|  | S.Diag(Call->getArg(0)->getBeginLoc(), | 
|  | diag::warn_opencl_generic_address_space_arg) | 
|  | << Call->getDirectCallee()->getNameInfo().getAsString() | 
|  | << Call->getArg(0)->getSourceRange(); | 
|  | } | 
|  |  | 
|  | RT = RT->getPointeeType(); | 
|  | auto Qual = RT.getQualifiers(); | 
|  | switch (BuiltinID) { | 
|  | case Builtin::BIto_global: | 
|  | Qual.setAddressSpace(LangAS::opencl_global); | 
|  | break; | 
|  | case Builtin::BIto_local: | 
|  | Qual.setAddressSpace(LangAS::opencl_local); | 
|  | break; | 
|  | case Builtin::BIto_private: | 
|  | Qual.setAddressSpace(LangAS::opencl_private); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid builtin function"); | 
|  | } | 
|  | Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( | 
|  | RT.getUnqualifiedType(), Qual))); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { | 
|  | if (checkArgCount(S, TheCall, 1)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Compute __builtin_launder's parameter type from the argument. | 
|  | // The parameter type is: | 
|  | //  * The type of the argument if it's not an array or function type, | 
|  | //  Otherwise, | 
|  | //  * The decayed argument type. | 
|  | QualType ParamTy = [&]() { | 
|  | QualType ArgTy = TheCall->getArg(0)->getType(); | 
|  | if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) | 
|  | return S.Context.getPointerType(Ty->getElementType()); | 
|  | if (ArgTy->isFunctionType()) { | 
|  | return S.Context.getPointerType(ArgTy); | 
|  | } | 
|  | return ArgTy; | 
|  | }(); | 
|  |  | 
|  | TheCall->setType(ParamTy); | 
|  |  | 
|  | auto DiagSelect = [&]() -> llvm::Optional<unsigned> { | 
|  | if (!ParamTy->isPointerType()) | 
|  | return 0; | 
|  | if (ParamTy->isFunctionPointerType()) | 
|  | return 1; | 
|  | if (ParamTy->isVoidPointerType()) | 
|  | return 2; | 
|  | return llvm::Optional<unsigned>{}; | 
|  | }(); | 
|  | if (DiagSelect.hasValue()) { | 
|  | S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) | 
|  | << DiagSelect.getValue() << TheCall->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // We either have an incomplete class type, or we have a class template | 
|  | // whose instantiation has not been forced. Example: | 
|  | // | 
|  | //   template <class T> struct Foo { T value; }; | 
|  | //   Foo<int> *p = nullptr; | 
|  | //   auto *d = __builtin_launder(p); | 
|  | if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), | 
|  | diag::err_incomplete_type)) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(ParamTy->getPointeeType()->isObjectType() && | 
|  | "Unhandled non-object pointer case"); | 
|  |  | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, ParamTy, false); | 
|  | ExprResult Arg = | 
|  | S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); | 
|  | if (Arg.isInvalid()) | 
|  | return ExprError(); | 
|  | TheCall->setArg(0, Arg.get()); | 
|  |  | 
|  | return TheCall; | 
|  | } | 
|  |  | 
|  | // Emit an error and return true if the current architecture is not in the list | 
|  | // of supported architectures. | 
|  | static bool | 
|  | CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, | 
|  | ArrayRef<llvm::Triple::ArchType> SupportedArchs) { | 
|  | llvm::Triple::ArchType CurArch = | 
|  | S.getASTContext().getTargetInfo().getTriple().getArch(); | 
|  | if (llvm::is_contained(SupportedArchs, CurArch)) | 
|  | return false; | 
|  | S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) | 
|  | << TheCall->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, | 
|  | CallExpr *TheCall) { | 
|  | ExprResult TheCallResult(TheCall); | 
|  |  | 
|  | // Find out if any arguments are required to be integer constant expressions. | 
|  | unsigned ICEArguments = 0; | 
|  | ASTContext::GetBuiltinTypeError Error; | 
|  | Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); | 
|  | if (Error != ASTContext::GE_None) | 
|  | ICEArguments = 0;  // Don't diagnose previously diagnosed errors. | 
|  |  | 
|  | // If any arguments are required to be ICE's, check and diagnose. | 
|  | for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { | 
|  | // Skip arguments not required to be ICE's. | 
|  | if ((ICEArguments & (1 << ArgNo)) == 0) continue; | 
|  |  | 
|  | llvm::APSInt Result; | 
|  | if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) | 
|  | return true; | 
|  | ICEArguments &= ~(1 << ArgNo); | 
|  | } | 
|  |  | 
|  | switch (BuiltinID) { | 
|  | case Builtin::BI__builtin___CFStringMakeConstantString: | 
|  | assert(TheCall->getNumArgs() == 1 && | 
|  | "Wrong # arguments to builtin CFStringMakeConstantString"); | 
|  | if (CheckObjCString(TheCall->getArg(0))) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_ms_va_start: | 
|  | case Builtin::BI__builtin_stdarg_start: | 
|  | case Builtin::BI__builtin_va_start: | 
|  | if (SemaBuiltinVAStart(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__va_start: { | 
|  | switch (Context.getTargetInfo().getTriple().getArch()) { | 
|  | case llvm::Triple::aarch64: | 
|  | case llvm::Triple::arm: | 
|  | case llvm::Triple::thumb: | 
|  | if (SemaBuiltinVAStartARMMicrosoft(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | default: | 
|  | if (SemaBuiltinVAStart(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The acquire, release, and no fence variants are ARM and AArch64 only. | 
|  | case Builtin::BI_interlockedbittestandset_acq: | 
|  | case Builtin::BI_interlockedbittestandset_rel: | 
|  | case Builtin::BI_interlockedbittestandset_nf: | 
|  | case Builtin::BI_interlockedbittestandreset_acq: | 
|  | case Builtin::BI_interlockedbittestandreset_rel: | 
|  | case Builtin::BI_interlockedbittestandreset_nf: | 
|  | if (CheckBuiltinTargetSupport( | 
|  | *this, BuiltinID, TheCall, | 
|  | {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) | 
|  | return ExprError(); | 
|  | break; | 
|  |  | 
|  | // The 64-bit bittest variants are x64, ARM, and AArch64 only. | 
|  | case Builtin::BI_bittest64: | 
|  | case Builtin::BI_bittestandcomplement64: | 
|  | case Builtin::BI_bittestandreset64: | 
|  | case Builtin::BI_bittestandset64: | 
|  | case Builtin::BI_interlockedbittestandreset64: | 
|  | case Builtin::BI_interlockedbittestandset64: | 
|  | if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, | 
|  | {llvm::Triple::x86_64, llvm::Triple::arm, | 
|  | llvm::Triple::thumb, llvm::Triple::aarch64})) | 
|  | return ExprError(); | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__builtin_isgreater: | 
|  | case Builtin::BI__builtin_isgreaterequal: | 
|  | case Builtin::BI__builtin_isless: | 
|  | case Builtin::BI__builtin_islessequal: | 
|  | case Builtin::BI__builtin_islessgreater: | 
|  | case Builtin::BI__builtin_isunordered: | 
|  | if (SemaBuiltinUnorderedCompare(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_fpclassify: | 
|  | if (SemaBuiltinFPClassification(TheCall, 6)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_isfinite: | 
|  | case Builtin::BI__builtin_isinf: | 
|  | case Builtin::BI__builtin_isinf_sign: | 
|  | case Builtin::BI__builtin_isnan: | 
|  | case Builtin::BI__builtin_isnormal: | 
|  | case Builtin::BI__builtin_signbit: | 
|  | case Builtin::BI__builtin_signbitf: | 
|  | case Builtin::BI__builtin_signbitl: | 
|  | if (SemaBuiltinFPClassification(TheCall, 1)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_shufflevector: | 
|  | return SemaBuiltinShuffleVector(TheCall); | 
|  | // TheCall will be freed by the smart pointer here, but that's fine, since | 
|  | // SemaBuiltinShuffleVector guts it, but then doesn't release it. | 
|  | case Builtin::BI__builtin_prefetch: | 
|  | if (SemaBuiltinPrefetch(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_alloca_with_align: | 
|  | if (SemaBuiltinAllocaWithAlign(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__assume: | 
|  | case Builtin::BI__builtin_assume: | 
|  | if (SemaBuiltinAssume(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_assume_aligned: | 
|  | if (SemaBuiltinAssumeAligned(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_dynamic_object_size: | 
|  | case Builtin::BI__builtin_object_size: | 
|  | if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_longjmp: | 
|  | if (SemaBuiltinLongjmp(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_setjmp: | 
|  | if (SemaBuiltinSetjmp(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI_setjmp: | 
|  | case Builtin::BI_setjmpex: | 
|  | if (checkArgCount(*this, TheCall, 1)) | 
|  | return true; | 
|  | break; | 
|  | case Builtin::BI__builtin_classify_type: | 
|  | if (checkArgCount(*this, TheCall, 1)) return true; | 
|  | TheCall->setType(Context.IntTy); | 
|  | break; | 
|  | case Builtin::BI__builtin_constant_p: | 
|  | if (checkArgCount(*this, TheCall, 1)) return true; | 
|  | TheCall->setType(Context.IntTy); | 
|  | break; | 
|  | case Builtin::BI__builtin_launder: | 
|  | return SemaBuiltinLaunder(*this, TheCall); | 
|  | case Builtin::BI__sync_fetch_and_add: | 
|  | case Builtin::BI__sync_fetch_and_add_1: | 
|  | case Builtin::BI__sync_fetch_and_add_2: | 
|  | case Builtin::BI__sync_fetch_and_add_4: | 
|  | case Builtin::BI__sync_fetch_and_add_8: | 
|  | case Builtin::BI__sync_fetch_and_add_16: | 
|  | case Builtin::BI__sync_fetch_and_sub: | 
|  | case Builtin::BI__sync_fetch_and_sub_1: | 
|  | case Builtin::BI__sync_fetch_and_sub_2: | 
|  | case Builtin::BI__sync_fetch_and_sub_4: | 
|  | case Builtin::BI__sync_fetch_and_sub_8: | 
|  | case Builtin::BI__sync_fetch_and_sub_16: | 
|  | case Builtin::BI__sync_fetch_and_or: | 
|  | case Builtin::BI__sync_fetch_and_or_1: | 
|  | case Builtin::BI__sync_fetch_and_or_2: | 
|  | case Builtin::BI__sync_fetch_and_or_4: | 
|  | case Builtin::BI__sync_fetch_and_or_8: | 
|  | case Builtin::BI__sync_fetch_and_or_16: | 
|  | case Builtin::BI__sync_fetch_and_and: | 
|  | case Builtin::BI__sync_fetch_and_and_1: | 
|  | case Builtin::BI__sync_fetch_and_and_2: | 
|  | case Builtin::BI__sync_fetch_and_and_4: | 
|  | case Builtin::BI__sync_fetch_and_and_8: | 
|  | case Builtin::BI__sync_fetch_and_and_16: | 
|  | case Builtin::BI__sync_fetch_and_xor: | 
|  | case Builtin::BI__sync_fetch_and_xor_1: | 
|  | case Builtin::BI__sync_fetch_and_xor_2: | 
|  | case Builtin::BI__sync_fetch_and_xor_4: | 
|  | case Builtin::BI__sync_fetch_and_xor_8: | 
|  | case Builtin::BI__sync_fetch_and_xor_16: | 
|  | case Builtin::BI__sync_fetch_and_nand: | 
|  | case Builtin::BI__sync_fetch_and_nand_1: | 
|  | case Builtin::BI__sync_fetch_and_nand_2: | 
|  | case Builtin::BI__sync_fetch_and_nand_4: | 
|  | case Builtin::BI__sync_fetch_and_nand_8: | 
|  | case Builtin::BI__sync_fetch_and_nand_16: | 
|  | case Builtin::BI__sync_add_and_fetch: | 
|  | case Builtin::BI__sync_add_and_fetch_1: | 
|  | case Builtin::BI__sync_add_and_fetch_2: | 
|  | case Builtin::BI__sync_add_and_fetch_4: | 
|  | case Builtin::BI__sync_add_and_fetch_8: | 
|  | case Builtin::BI__sync_add_and_fetch_16: | 
|  | case Builtin::BI__sync_sub_and_fetch: | 
|  | case Builtin::BI__sync_sub_and_fetch_1: | 
|  | case Builtin::BI__sync_sub_and_fetch_2: | 
|  | case Builtin::BI__sync_sub_and_fetch_4: | 
|  | case Builtin::BI__sync_sub_and_fetch_8: | 
|  | case Builtin::BI__sync_sub_and_fetch_16: | 
|  | case Builtin::BI__sync_and_and_fetch: | 
|  | case Builtin::BI__sync_and_and_fetch_1: | 
|  | case Builtin::BI__sync_and_and_fetch_2: | 
|  | case Builtin::BI__sync_and_and_fetch_4: | 
|  | case Builtin::BI__sync_and_and_fetch_8: | 
|  | case Builtin::BI__sync_and_and_fetch_16: | 
|  | case Builtin::BI__sync_or_and_fetch: | 
|  | case Builtin::BI__sync_or_and_fetch_1: | 
|  | case Builtin::BI__sync_or_and_fetch_2: | 
|  | case Builtin::BI__sync_or_and_fetch_4: | 
|  | case Builtin::BI__sync_or_and_fetch_8: | 
|  | case Builtin::BI__sync_or_and_fetch_16: | 
|  | case Builtin::BI__sync_xor_and_fetch: | 
|  | case Builtin::BI__sync_xor_and_fetch_1: | 
|  | case Builtin::BI__sync_xor_and_fetch_2: | 
|  | case Builtin::BI__sync_xor_and_fetch_4: | 
|  | case Builtin::BI__sync_xor_and_fetch_8: | 
|  | case Builtin::BI__sync_xor_and_fetch_16: | 
|  | case Builtin::BI__sync_nand_and_fetch: | 
|  | case Builtin::BI__sync_nand_and_fetch_1: | 
|  | case Builtin::BI__sync_nand_and_fetch_2: | 
|  | case Builtin::BI__sync_nand_and_fetch_4: | 
|  | case Builtin::BI__sync_nand_and_fetch_8: | 
|  | case Builtin::BI__sync_nand_and_fetch_16: | 
|  | case Builtin::BI__sync_val_compare_and_swap: | 
|  | case Builtin::BI__sync_val_compare_and_swap_1: | 
|  | case Builtin::BI__sync_val_compare_and_swap_2: | 
|  | case Builtin::BI__sync_val_compare_and_swap_4: | 
|  | case Builtin::BI__sync_val_compare_and_swap_8: | 
|  | case Builtin::BI__sync_val_compare_and_swap_16: | 
|  | case Builtin::BI__sync_bool_compare_and_swap: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_1: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_2: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_4: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_8: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_16: | 
|  | case Builtin::BI__sync_lock_test_and_set: | 
|  | case Builtin::BI__sync_lock_test_and_set_1: | 
|  | case Builtin::BI__sync_lock_test_and_set_2: | 
|  | case Builtin::BI__sync_lock_test_and_set_4: | 
|  | case Builtin::BI__sync_lock_test_and_set_8: | 
|  | case Builtin::BI__sync_lock_test_and_set_16: | 
|  | case Builtin::BI__sync_lock_release: | 
|  | case Builtin::BI__sync_lock_release_1: | 
|  | case Builtin::BI__sync_lock_release_2: | 
|  | case Builtin::BI__sync_lock_release_4: | 
|  | case Builtin::BI__sync_lock_release_8: | 
|  | case Builtin::BI__sync_lock_release_16: | 
|  | case Builtin::BI__sync_swap: | 
|  | case Builtin::BI__sync_swap_1: | 
|  | case Builtin::BI__sync_swap_2: | 
|  | case Builtin::BI__sync_swap_4: | 
|  | case Builtin::BI__sync_swap_8: | 
|  | case Builtin::BI__sync_swap_16: | 
|  | return SemaBuiltinAtomicOverloaded(TheCallResult); | 
|  | case Builtin::BI__sync_synchronize: | 
|  | Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) | 
|  | << TheCall->getCallee()->getSourceRange(); | 
|  | break; | 
|  | case Builtin::BI__builtin_nontemporal_load: | 
|  | case Builtin::BI__builtin_nontemporal_store: | 
|  | return SemaBuiltinNontemporalOverloaded(TheCallResult); | 
|  | #define BUILTIN(ID, TYPE, ATTRS) | 
|  | #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ | 
|  | case Builtin::BI##ID: \ | 
|  | return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); | 
|  | #include "clang/Basic/Builtins.def" | 
|  | case Builtin::BI__annotation: | 
|  | if (SemaBuiltinMSVCAnnotation(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_annotation: | 
|  | if (SemaBuiltinAnnotation(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_addressof: | 
|  | if (SemaBuiltinAddressof(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_add_overflow: | 
|  | case Builtin::BI__builtin_sub_overflow: | 
|  | case Builtin::BI__builtin_mul_overflow: | 
|  | if (SemaBuiltinOverflow(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_operator_new: | 
|  | case Builtin::BI__builtin_operator_delete: { | 
|  | bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; | 
|  | ExprResult Res = | 
|  | SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); | 
|  | if (Res.isInvalid()) | 
|  | CorrectDelayedTyposInExpr(TheCallResult.get()); | 
|  | return Res; | 
|  | } | 
|  | case Builtin::BI__builtin_dump_struct: { | 
|  | // We first want to ensure we are called with 2 arguments | 
|  | if (checkArgCount(*this, TheCall, 2)) | 
|  | return ExprError(); | 
|  | // Ensure that the first argument is of type 'struct XX *' | 
|  | const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); | 
|  | const QualType PtrArgType = PtrArg->getType(); | 
|  | if (!PtrArgType->isPointerType() || | 
|  | !PtrArgType->getPointeeType()->isRecordType()) { | 
|  | Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType | 
|  | << "structure pointer"; | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Ensure that the second argument is of type 'FunctionType' | 
|  | const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); | 
|  | const QualType FnPtrArgType = FnPtrArg->getType(); | 
|  | if (!FnPtrArgType->isPointerType()) { | 
|  | Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'"; | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | const auto *FuncType = | 
|  | FnPtrArgType->getPointeeType()->getAs<FunctionType>(); | 
|  |  | 
|  | if (!FuncType) { | 
|  | Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'"; | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { | 
|  | if (!FT->getNumParams()) { | 
|  | Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 | 
|  | << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; | 
|  | return ExprError(); | 
|  | } | 
|  | QualType PT = FT->getParamType(0); | 
|  | if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || | 
|  | !PT->isPointerType() || !PT->getPointeeType()->isCharType() || | 
|  | !PT->getPointeeType().isConstQualified()) { | 
|  | Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 | 
|  | << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TheCall->setType(Context.IntTy); | 
|  | break; | 
|  | } | 
|  | case Builtin::BI__builtin_call_with_static_chain: | 
|  | if (SemaBuiltinCallWithStaticChain(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__exception_code: | 
|  | case Builtin::BI_exception_code: | 
|  | if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, | 
|  | diag::err_seh___except_block)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__exception_info: | 
|  | case Builtin::BI_exception_info: | 
|  | if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, | 
|  | diag::err_seh___except_filter)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__GetExceptionInfo: | 
|  | if (checkArgCount(*this, TheCall, 1)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckCXXThrowOperand( | 
|  | TheCall->getBeginLoc(), | 
|  | Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), | 
|  | TheCall)) | 
|  | return ExprError(); | 
|  |  | 
|  | TheCall->setType(Context.VoidPtrTy); | 
|  | break; | 
|  | // OpenCL v2.0, s6.13.16 - Pipe functions | 
|  | case Builtin::BIread_pipe: | 
|  | case Builtin::BIwrite_pipe: | 
|  | // Since those two functions are declared with var args, we need a semantic | 
|  | // check for the argument. | 
|  | if (SemaBuiltinRWPipe(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIreserve_read_pipe: | 
|  | case Builtin::BIreserve_write_pipe: | 
|  | case Builtin::BIwork_group_reserve_read_pipe: | 
|  | case Builtin::BIwork_group_reserve_write_pipe: | 
|  | if (SemaBuiltinReserveRWPipe(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIsub_group_reserve_read_pipe: | 
|  | case Builtin::BIsub_group_reserve_write_pipe: | 
|  | if (checkOpenCLSubgroupExt(*this, TheCall) || | 
|  | SemaBuiltinReserveRWPipe(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIcommit_read_pipe: | 
|  | case Builtin::BIcommit_write_pipe: | 
|  | case Builtin::BIwork_group_commit_read_pipe: | 
|  | case Builtin::BIwork_group_commit_write_pipe: | 
|  | if (SemaBuiltinCommitRWPipe(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIsub_group_commit_read_pipe: | 
|  | case Builtin::BIsub_group_commit_write_pipe: | 
|  | if (checkOpenCLSubgroupExt(*this, TheCall) || | 
|  | SemaBuiltinCommitRWPipe(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIget_pipe_num_packets: | 
|  | case Builtin::BIget_pipe_max_packets: | 
|  | if (SemaBuiltinPipePackets(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIto_global: | 
|  | case Builtin::BIto_local: | 
|  | case Builtin::BIto_private: | 
|  | if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. | 
|  | case Builtin::BIenqueue_kernel: | 
|  | if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIget_kernel_work_group_size: | 
|  | case Builtin::BIget_kernel_preferred_work_group_size_multiple: | 
|  | if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: | 
|  | case Builtin::BIget_kernel_sub_group_count_for_ndrange: | 
|  | if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case Builtin::BI__builtin_os_log_format: | 
|  | case Builtin::BI__builtin_os_log_format_buffer_size: | 
|  | if (SemaBuiltinOSLogFormat(TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Since the target specific builtins for each arch overlap, only check those | 
|  | // of the arch we are compiling for. | 
|  | if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { | 
|  | switch (Context.getTargetInfo().getTriple().getArch()) { | 
|  | case llvm::Triple::arm: | 
|  | case llvm::Triple::armeb: | 
|  | case llvm::Triple::thumb: | 
|  | case llvm::Triple::thumbeb: | 
|  | if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::aarch64: | 
|  | case llvm::Triple::aarch64_be: | 
|  | if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::hexagon: | 
|  | if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::mips: | 
|  | case llvm::Triple::mipsel: | 
|  | case llvm::Triple::mips64: | 
|  | case llvm::Triple::mips64el: | 
|  | if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::systemz: | 
|  | if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::x86: | 
|  | case llvm::Triple::x86_64: | 
|  | if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | case llvm::Triple::ppc: | 
|  | case llvm::Triple::ppc64: | 
|  | case llvm::Triple::ppc64le: | 
|  | if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return ExprError(); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TheCallResult; | 
|  | } | 
|  |  | 
|  | // Get the valid immediate range for the specified NEON type code. | 
|  | static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { | 
|  | NeonTypeFlags Type(t); | 
|  | int IsQuad = ForceQuad ? true : Type.isQuad(); | 
|  | switch (Type.getEltType()) { | 
|  | case NeonTypeFlags::Int8: | 
|  | case NeonTypeFlags::Poly8: | 
|  | return shift ? 7 : (8 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Int16: | 
|  | case NeonTypeFlags::Poly16: | 
|  | return shift ? 15 : (4 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Int32: | 
|  | return shift ? 31 : (2 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Int64: | 
|  | case NeonTypeFlags::Poly64: | 
|  | return shift ? 63 : (1 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Poly128: | 
|  | return shift ? 127 : (1 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Float16: | 
|  | assert(!shift && "cannot shift float types!"); | 
|  | return (4 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Float32: | 
|  | assert(!shift && "cannot shift float types!"); | 
|  | return (2 << IsQuad) - 1; | 
|  | case NeonTypeFlags::Float64: | 
|  | assert(!shift && "cannot shift float types!"); | 
|  | return (1 << IsQuad) - 1; | 
|  | } | 
|  | llvm_unreachable("Invalid NeonTypeFlag!"); | 
|  | } | 
|  |  | 
|  | /// getNeonEltType - Return the QualType corresponding to the elements of | 
|  | /// the vector type specified by the NeonTypeFlags.  This is used to check | 
|  | /// the pointer arguments for Neon load/store intrinsics. | 
|  | static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, | 
|  | bool IsPolyUnsigned, bool IsInt64Long) { | 
|  | switch (Flags.getEltType()) { | 
|  | case NeonTypeFlags::Int8: | 
|  | return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; | 
|  | case NeonTypeFlags::Int16: | 
|  | return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; | 
|  | case NeonTypeFlags::Int32: | 
|  | return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; | 
|  | case NeonTypeFlags::Int64: | 
|  | if (IsInt64Long) | 
|  | return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; | 
|  | else | 
|  | return Flags.isUnsigned() ? Context.UnsignedLongLongTy | 
|  | : Context.LongLongTy; | 
|  | case NeonTypeFlags::Poly8: | 
|  | return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; | 
|  | case NeonTypeFlags::Poly16: | 
|  | return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; | 
|  | case NeonTypeFlags::Poly64: | 
|  | if (IsInt64Long) | 
|  | return Context.UnsignedLongTy; | 
|  | else | 
|  | return Context.UnsignedLongLongTy; | 
|  | case NeonTypeFlags::Poly128: | 
|  | break; | 
|  | case NeonTypeFlags::Float16: | 
|  | return Context.HalfTy; | 
|  | case NeonTypeFlags::Float32: | 
|  | return Context.FloatTy; | 
|  | case NeonTypeFlags::Float64: | 
|  | return Context.DoubleTy; | 
|  | } | 
|  | llvm_unreachable("Invalid NeonTypeFlag!"); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | llvm::APSInt Result; | 
|  | uint64_t mask = 0; | 
|  | unsigned TV = 0; | 
|  | int PtrArgNum = -1; | 
|  | bool HasConstPtr = false; | 
|  | switch (BuiltinID) { | 
|  | #define GET_NEON_OVERLOAD_CHECK | 
|  | #include "clang/Basic/arm_neon.inc" | 
|  | #include "clang/Basic/arm_fp16.inc" | 
|  | #undef GET_NEON_OVERLOAD_CHECK | 
|  | } | 
|  |  | 
|  | // For NEON intrinsics which are overloaded on vector element type, validate | 
|  | // the immediate which specifies which variant to emit. | 
|  | unsigned ImmArg = TheCall->getNumArgs()-1; | 
|  | if (mask) { | 
|  | if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) | 
|  | return true; | 
|  |  | 
|  | TV = Result.getLimitedValue(64); | 
|  | if ((TV > 63) || (mask & (1ULL << TV)) == 0) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) | 
|  | << TheCall->getArg(ImmArg)->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (PtrArgNum >= 0) { | 
|  | // Check that pointer arguments have the specified type. | 
|  | Expr *Arg = TheCall->getArg(PtrArgNum); | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) | 
|  | Arg = ICE->getSubExpr(); | 
|  | ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); | 
|  | QualType RHSTy = RHS.get()->getType(); | 
|  |  | 
|  | llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); | 
|  | bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || | 
|  | Arch == llvm::Triple::aarch64_be; | 
|  | bool IsInt64Long = | 
|  | Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong; | 
|  | QualType EltTy = | 
|  | getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); | 
|  | if (HasConstPtr) | 
|  | EltTy = EltTy.withConst(); | 
|  | QualType LHSTy = Context.getPointerType(EltTy); | 
|  | AssignConvertType ConvTy; | 
|  | ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); | 
|  | if (RHS.isInvalid()) | 
|  | return true; | 
|  | if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, | 
|  | RHS.get(), AA_Assigning)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For NEON intrinsics which take an immediate value as part of the | 
|  | // instruction, range check them here. | 
|  | unsigned i = 0, l = 0, u = 0; | 
|  | switch (BuiltinID) { | 
|  | default: | 
|  | return false; | 
|  | #define GET_NEON_IMMEDIATE_CHECK | 
|  | #include "clang/Basic/arm_neon.inc" | 
|  | #include "clang/Basic/arm_fp16.inc" | 
|  | #undef GET_NEON_IMMEDIATE_CHECK | 
|  | } | 
|  |  | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, | 
|  | unsigned MaxWidth) { | 
|  | assert((BuiltinID == ARM::BI__builtin_arm_ldrex || | 
|  | BuiltinID == ARM::BI__builtin_arm_ldaex || | 
|  | BuiltinID == ARM::BI__builtin_arm_strex || | 
|  | BuiltinID == ARM::BI__builtin_arm_stlex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_ldrex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_ldaex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_strex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_stlex) && | 
|  | "unexpected ARM builtin"); | 
|  | bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || | 
|  | BuiltinID == ARM::BI__builtin_arm_ldaex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_ldrex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_ldaex; | 
|  |  | 
|  | DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); | 
|  |  | 
|  | // Ensure that we have the proper number of arguments. | 
|  | if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) | 
|  | return true; | 
|  |  | 
|  | // Inspect the pointer argument of the atomic builtin.  This should always be | 
|  | // a pointer type, whose element is an integral scalar or pointer type. | 
|  | // Because it is a pointer type, we don't have to worry about any implicit | 
|  | // casts here. | 
|  | Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); | 
|  | ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); | 
|  | if (PointerArgRes.isInvalid()) | 
|  | return true; | 
|  | PointerArg = PointerArgRes.get(); | 
|  |  | 
|  | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); | 
|  | if (!pointerType) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) | 
|  | << PointerArg->getType() << PointerArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next | 
|  | // task is to insert the appropriate casts into the AST. First work out just | 
|  | // what the appropriate type is. | 
|  | QualType ValType = pointerType->getPointeeType(); | 
|  | QualType AddrType = ValType.getUnqualifiedType().withVolatile(); | 
|  | if (IsLdrex) | 
|  | AddrType.addConst(); | 
|  |  | 
|  | // Issue a warning if the cast is dodgy. | 
|  | CastKind CastNeeded = CK_NoOp; | 
|  | if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { | 
|  | CastNeeded = CK_BitCast; | 
|  | Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) | 
|  | << PointerArg->getType() << Context.getPointerType(AddrType) | 
|  | << AA_Passing << PointerArg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Finally, do the cast and replace the argument with the corrected version. | 
|  | AddrType = Context.getPointerType(AddrType); | 
|  | PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); | 
|  | if (PointerArgRes.isInvalid()) | 
|  | return true; | 
|  | PointerArg = PointerArgRes.get(); | 
|  |  | 
|  | TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); | 
|  |  | 
|  | // In general, we allow ints, floats and pointers to be loaded and stored. | 
|  | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && | 
|  | !ValType->isBlockPointerType() && !ValType->isFloatingType()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) | 
|  | << PointerArg->getType() << PointerArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // But ARM doesn't have instructions to deal with 128-bit versions. | 
|  | if (Context.getTypeSize(ValType) > MaxWidth) { | 
|  | assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) | 
|  | << PointerArg->getType() << PointerArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (ValType.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // okay | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) | 
|  | << ValType << PointerArg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsLdrex) { | 
|  | TheCall->setType(ValType); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Initialize the argument to be stored. | 
|  | ExprResult ValArg = TheCall->getArg(0); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | Context, ValType, /*consume*/ false); | 
|  | ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); | 
|  | if (ValArg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(0, ValArg.get()); | 
|  |  | 
|  | // __builtin_arm_strex always returns an int. It's marked as such in the .def, | 
|  | // but the custom checker bypasses all default analysis. | 
|  | TheCall->setType(Context.IntTy); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | if (BuiltinID == ARM::BI__builtin_arm_ldrex || | 
|  | BuiltinID == ARM::BI__builtin_arm_ldaex || | 
|  | BuiltinID == ARM::BI__builtin_arm_strex || | 
|  | BuiltinID == ARM::BI__builtin_arm_stlex) { | 
|  | return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); | 
|  | } | 
|  |  | 
|  | if (BuiltinID == ARM::BI__builtin_arm_prefetch) { | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); | 
|  | } | 
|  |  | 
|  | if (BuiltinID == ARM::BI__builtin_arm_rsr64 || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsr64) | 
|  | return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); | 
|  |  | 
|  | if (BuiltinID == ARM::BI__builtin_arm_rsr || | 
|  | BuiltinID == ARM::BI__builtin_arm_rsrp || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsr || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsrp) | 
|  | return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); | 
|  |  | 
|  | if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return true; | 
|  |  | 
|  | // For intrinsics which take an immediate value as part of the instruction, | 
|  | // range check them here. | 
|  | // FIXME: VFP Intrinsics should error if VFP not present. | 
|  | switch (BuiltinID) { | 
|  | default: return false; | 
|  | case ARM::BI__builtin_arm_ssat: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); | 
|  | case ARM::BI__builtin_arm_usat: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); | 
|  | case ARM::BI__builtin_arm_ssat16: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); | 
|  | case ARM::BI__builtin_arm_usat16: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); | 
|  | case ARM::BI__builtin_arm_vcvtr_f: | 
|  | case ARM::BI__builtin_arm_vcvtr_d: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); | 
|  | case ARM::BI__builtin_arm_dmb: | 
|  | case ARM::BI__builtin_arm_dsb: | 
|  | case ARM::BI__builtin_arm_isb: | 
|  | case ARM::BI__builtin_arm_dbg: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, | 
|  | CallExpr *TheCall) { | 
|  | if (BuiltinID == AArch64::BI__builtin_arm_ldrex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_ldaex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_strex || | 
|  | BuiltinID == AArch64::BI__builtin_arm_stlex) { | 
|  | return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); | 
|  | } | 
|  |  | 
|  | if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); | 
|  | } | 
|  |  | 
|  | if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsr64) | 
|  | return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); | 
|  |  | 
|  | if (BuiltinID == AArch64::BI__builtin_arm_rsr || | 
|  | BuiltinID == AArch64::BI__builtin_arm_rsrp || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsr || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsrp) | 
|  | return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); | 
|  |  | 
|  | // Only check the valid encoding range. Any constant in this range would be | 
|  | // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw | 
|  | // an exception for incorrect registers. This matches MSVC behavior. | 
|  | if (BuiltinID == AArch64::BI_ReadStatusReg || | 
|  | BuiltinID == AArch64::BI_WriteStatusReg) | 
|  | return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); | 
|  |  | 
|  | if (BuiltinID == AArch64::BI__getReg) | 
|  | return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); | 
|  |  | 
|  | if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) | 
|  | return true; | 
|  |  | 
|  | // For intrinsics which take an immediate value as part of the instruction, | 
|  | // range check them here. | 
|  | unsigned i = 0, l = 0, u = 0; | 
|  | switch (BuiltinID) { | 
|  | default: return false; | 
|  | case AArch64::BI__builtin_arm_dmb: | 
|  | case AArch64::BI__builtin_arm_dsb: | 
|  | case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; | 
|  | } | 
|  |  | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | struct BuiltinAndString { | 
|  | unsigned BuiltinID; | 
|  | const char *Str; | 
|  | }; | 
|  |  | 
|  | static BuiltinAndString ValidCPU[] = { | 
|  | { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" }, | 
|  | }; | 
|  |  | 
|  | static BuiltinAndString ValidHVX[] = { | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" }, | 
|  | }; | 
|  |  | 
|  | // Sort the tables on first execution so we can binary search them. | 
|  | auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) { | 
|  | return LHS.BuiltinID < RHS.BuiltinID; | 
|  | }; | 
|  | static const bool SortOnce = | 
|  | (llvm::sort(ValidCPU, SortCmp), | 
|  | llvm::sort(ValidHVX, SortCmp), true); | 
|  | (void)SortOnce; | 
|  | auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) { | 
|  | return BI.BuiltinID < BuiltinID; | 
|  | }; | 
|  |  | 
|  | const TargetInfo &TI = Context.getTargetInfo(); | 
|  |  | 
|  | const BuiltinAndString *FC = | 
|  | std::lower_bound(std::begin(ValidCPU), std::end(ValidCPU), BuiltinID, | 
|  | LowerBoundCmp); | 
|  | if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) { | 
|  | const TargetOptions &Opts = TI.getTargetOpts(); | 
|  | StringRef CPU = Opts.CPU; | 
|  | if (!CPU.empty()) { | 
|  | assert(CPU.startswith("hexagon") && "Unexpected CPU name"); | 
|  | CPU.consume_front("hexagon"); | 
|  | SmallVector<StringRef, 3> CPUs; | 
|  | StringRef(FC->Str).split(CPUs, ','); | 
|  | if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; })) | 
|  | return Diag(TheCall->getBeginLoc(), | 
|  | diag::err_hexagon_builtin_unsupported_cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | const BuiltinAndString *FH = | 
|  | std::lower_bound(std::begin(ValidHVX), std::end(ValidHVX), BuiltinID, | 
|  | LowerBoundCmp); | 
|  | if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) { | 
|  | if (!TI.hasFeature("hvx")) | 
|  | return Diag(TheCall->getBeginLoc(), | 
|  | diag::err_hexagon_builtin_requires_hvx); | 
|  |  | 
|  | SmallVector<StringRef, 3> HVXs; | 
|  | StringRef(FH->Str).split(HVXs, ','); | 
|  | bool IsValid = llvm::any_of(HVXs, | 
|  | [&TI] (StringRef V) { | 
|  | std::string F = "hvx" + V.str(); | 
|  | return TI.hasFeature(F); | 
|  | }); | 
|  | if (!IsValid) | 
|  | return Diag(TheCall->getBeginLoc(), | 
|  | diag::err_hexagon_builtin_unsupported_hvx); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | struct ArgInfo { | 
|  | uint8_t OpNum; | 
|  | bool IsSigned; | 
|  | uint8_t BitWidth; | 
|  | uint8_t Align; | 
|  | }; | 
|  | struct BuiltinInfo { | 
|  | unsigned BuiltinID; | 
|  | ArgInfo Infos[2]; | 
|  | }; | 
|  |  | 
|  | static BuiltinInfo Infos[] = { | 
|  | { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} }, | 
|  | { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} }, | 
|  | { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} }, | 
|  | { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} }, | 
|  | { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} }, | 
|  |  | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} }, | 
|  |  | 
|  | { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, | 
|  | {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, | 
|  | {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 }, | 
|  | { 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 }, | 
|  | { 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 }, | 
|  | { 3, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 }, | 
|  | { 3, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, | 
|  | {{ 2, false, 4,  0 }, | 
|  | { 3, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, | 
|  | {{ 2, false, 4,  0 }, | 
|  | { 3, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, | 
|  | {{ 2, false, 4,  0 }, | 
|  | { 3, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, | 
|  | {{ 2, false, 4,  0 }, | 
|  | { 3, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 }, | 
|  | { 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 }, | 
|  | { 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, | 
|  | {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, | 
|  | {{ 1, false, 4,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, | 
|  | {{ 3, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, | 
|  | {{ 3, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} }, | 
|  | { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, | 
|  | {{ 3, false, 1,  0 }} }, | 
|  | }; | 
|  |  | 
|  | // Use a dynamically initialized static to sort the table exactly once on | 
|  | // first run. | 
|  | static const bool SortOnce = | 
|  | (llvm::sort(Infos, | 
|  | [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { | 
|  | return LHS.BuiltinID < RHS.BuiltinID; | 
|  | }), | 
|  | true); | 
|  | (void)SortOnce; | 
|  |  | 
|  | const BuiltinInfo *F = | 
|  | std::lower_bound(std::begin(Infos), std::end(Infos), BuiltinID, | 
|  | [](const BuiltinInfo &BI, unsigned BuiltinID) { | 
|  | return BI.BuiltinID < BuiltinID; | 
|  | }); | 
|  | if (F == std::end(Infos) || F->BuiltinID != BuiltinID) | 
|  | return false; | 
|  |  | 
|  | bool Error = false; | 
|  |  | 
|  | for (const ArgInfo &A : F->Infos) { | 
|  | // Ignore empty ArgInfo elements. | 
|  | if (A.BitWidth == 0) | 
|  | continue; | 
|  |  | 
|  | int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; | 
|  | int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; | 
|  | if (!A.Align) { | 
|  | Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); | 
|  | } else { | 
|  | unsigned M = 1 << A.Align; | 
|  | Min *= M; | 
|  | Max *= M; | 
|  | Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | | 
|  | SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); | 
|  | } | 
|  | } | 
|  | return Error; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, | 
|  | CallExpr *TheCall) { | 
|  | return CheckHexagonBuiltinCpu(BuiltinID, TheCall) || | 
|  | CheckHexagonBuiltinArgument(BuiltinID, TheCall); | 
|  | } | 
|  |  | 
|  |  | 
|  | // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the | 
|  | // intrinsic is correct. The switch statement is ordered by DSP, MSA. The | 
|  | // ordering for DSP is unspecified. MSA is ordered by the data format used | 
|  | // by the underlying instruction i.e., df/m, df/n and then by size. | 
|  | // | 
|  | // FIXME: The size tests here should instead be tablegen'd along with the | 
|  | //        definitions from include/clang/Basic/BuiltinsMips.def. | 
|  | // FIXME: GCC is strict on signedness for some of these intrinsics, we should | 
|  | //        be too. | 
|  | bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | unsigned i = 0, l = 0, u = 0, m = 0; | 
|  | switch (BuiltinID) { | 
|  | default: return false; | 
|  | case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; | 
|  | case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; | 
|  | case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; | 
|  | case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; | 
|  | case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; | 
|  | case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; | 
|  | case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; | 
|  | // MSA intrinsics. Instructions (which the intrinsics maps to) which use the | 
|  | // df/m field. | 
|  | // These intrinsics take an unsigned 3 bit immediate. | 
|  | case Mips::BI__builtin_msa_bclri_b: | 
|  | case Mips::BI__builtin_msa_bnegi_b: | 
|  | case Mips::BI__builtin_msa_bseti_b: | 
|  | case Mips::BI__builtin_msa_sat_s_b: | 
|  | case Mips::BI__builtin_msa_sat_u_b: | 
|  | case Mips::BI__builtin_msa_slli_b: | 
|  | case Mips::BI__builtin_msa_srai_b: | 
|  | case Mips::BI__builtin_msa_srari_b: | 
|  | case Mips::BI__builtin_msa_srli_b: | 
|  | case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; | 
|  | case Mips::BI__builtin_msa_binsli_b: | 
|  | case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; | 
|  | // These intrinsics take an unsigned 4 bit immediate. | 
|  | case Mips::BI__builtin_msa_bclri_h: | 
|  | case Mips::BI__builtin_msa_bnegi_h: | 
|  | case Mips::BI__builtin_msa_bseti_h: | 
|  | case Mips::BI__builtin_msa_sat_s_h: | 
|  | case Mips::BI__builtin_msa_sat_u_h: | 
|  | case Mips::BI__builtin_msa_slli_h: | 
|  | case Mips::BI__builtin_msa_srai_h: | 
|  | case Mips::BI__builtin_msa_srari_h: | 
|  | case Mips::BI__builtin_msa_srli_h: | 
|  | case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; | 
|  | case Mips::BI__builtin_msa_binsli_h: | 
|  | case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; | 
|  | // These intrinsics take an unsigned 5 bit immediate. | 
|  | // The first block of intrinsics actually have an unsigned 5 bit field, | 
|  | // not a df/n field. | 
|  | case Mips::BI__builtin_msa_clei_u_b: | 
|  | case Mips::BI__builtin_msa_clei_u_h: | 
|  | case Mips::BI__builtin_msa_clei_u_w: | 
|  | case Mips::BI__builtin_msa_clei_u_d: | 
|  | case Mips::BI__builtin_msa_clti_u_b: | 
|  | case Mips::BI__builtin_msa_clti_u_h: | 
|  | case Mips::BI__builtin_msa_clti_u_w: | 
|  | case Mips::BI__builtin_msa_clti_u_d: | 
|  | case Mips::BI__builtin_msa_maxi_u_b: | 
|  | case Mips::BI__builtin_msa_maxi_u_h: | 
|  | case Mips::BI__builtin_msa_maxi_u_w: | 
|  | case Mips::BI__builtin_msa_maxi_u_d: | 
|  | case Mips::BI__builtin_msa_mini_u_b: | 
|  | case Mips::BI__builtin_msa_mini_u_h: | 
|  | case Mips::BI__builtin_msa_mini_u_w: | 
|  | case Mips::BI__builtin_msa_mini_u_d: | 
|  | case Mips::BI__builtin_msa_addvi_b: | 
|  | case Mips::BI__builtin_msa_addvi_h: | 
|  | case Mips::BI__builtin_msa_addvi_w: | 
|  | case Mips::BI__builtin_msa_addvi_d: | 
|  | case Mips::BI__builtin_msa_bclri_w: | 
|  | case Mips::BI__builtin_msa_bnegi_w: | 
|  | case Mips::BI__builtin_msa_bseti_w: | 
|  | case Mips::BI__builtin_msa_sat_s_w: | 
|  | case Mips::BI__builtin_msa_sat_u_w: | 
|  | case Mips::BI__builtin_msa_slli_w: | 
|  | case Mips::BI__builtin_msa_srai_w: | 
|  | case Mips::BI__builtin_msa_srari_w: | 
|  | case Mips::BI__builtin_msa_srli_w: | 
|  | case Mips::BI__builtin_msa_srlri_w: | 
|  | case Mips::BI__builtin_msa_subvi_b: | 
|  | case Mips::BI__builtin_msa_subvi_h: | 
|  | case Mips::BI__builtin_msa_subvi_w: | 
|  | case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; | 
|  | case Mips::BI__builtin_msa_binsli_w: | 
|  | case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; | 
|  | // These intrinsics take an unsigned 6 bit immediate. | 
|  | case Mips::BI__builtin_msa_bclri_d: | 
|  | case Mips::BI__builtin_msa_bnegi_d: | 
|  | case Mips::BI__builtin_msa_bseti_d: | 
|  | case Mips::BI__builtin_msa_sat_s_d: | 
|  | case Mips::BI__builtin_msa_sat_u_d: | 
|  | case Mips::BI__builtin_msa_slli_d: | 
|  | case Mips::BI__builtin_msa_srai_d: | 
|  | case Mips::BI__builtin_msa_srari_d: | 
|  | case Mips::BI__builtin_msa_srli_d: | 
|  | case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; | 
|  | case Mips::BI__builtin_msa_binsli_d: | 
|  | case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; | 
|  | // These intrinsics take a signed 5 bit immediate. | 
|  | case Mips::BI__builtin_msa_ceqi_b: | 
|  | case Mips::BI__builtin_msa_ceqi_h: | 
|  | case Mips::BI__builtin_msa_ceqi_w: | 
|  | case Mips::BI__builtin_msa_ceqi_d: | 
|  | case Mips::BI__builtin_msa_clti_s_b: | 
|  | case Mips::BI__builtin_msa_clti_s_h: | 
|  | case Mips::BI__builtin_msa_clti_s_w: | 
|  | case Mips::BI__builtin_msa_clti_s_d: | 
|  | case Mips::BI__builtin_msa_clei_s_b: | 
|  | case Mips::BI__builtin_msa_clei_s_h: | 
|  | case Mips::BI__builtin_msa_clei_s_w: | 
|  | case Mips::BI__builtin_msa_clei_s_d: | 
|  | case Mips::BI__builtin_msa_maxi_s_b: | 
|  | case Mips::BI__builtin_msa_maxi_s_h: | 
|  | case Mips::BI__builtin_msa_maxi_s_w: | 
|  | case Mips::BI__builtin_msa_maxi_s_d: | 
|  | case Mips::BI__builtin_msa_mini_s_b: | 
|  | case Mips::BI__builtin_msa_mini_s_h: | 
|  | case Mips::BI__builtin_msa_mini_s_w: | 
|  | case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; | 
|  | // These intrinsics take an unsigned 8 bit immediate. | 
|  | case Mips::BI__builtin_msa_andi_b: | 
|  | case Mips::BI__builtin_msa_nori_b: | 
|  | case Mips::BI__builtin_msa_ori_b: | 
|  | case Mips::BI__builtin_msa_shf_b: | 
|  | case Mips::BI__builtin_msa_shf_h: | 
|  | case Mips::BI__builtin_msa_shf_w: | 
|  | case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; | 
|  | case Mips::BI__builtin_msa_bseli_b: | 
|  | case Mips::BI__builtin_msa_bmnzi_b: | 
|  | case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; | 
|  | // df/n format | 
|  | // These intrinsics take an unsigned 4 bit immediate. | 
|  | case Mips::BI__builtin_msa_copy_s_b: | 
|  | case Mips::BI__builtin_msa_copy_u_b: | 
|  | case Mips::BI__builtin_msa_insve_b: | 
|  | case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; | 
|  | case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; | 
|  | // These intrinsics take an unsigned 3 bit immediate. | 
|  | case Mips::BI__builtin_msa_copy_s_h: | 
|  | case Mips::BI__builtin_msa_copy_u_h: | 
|  | case Mips::BI__builtin_msa_insve_h: | 
|  | case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; | 
|  | case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; | 
|  | // These intrinsics take an unsigned 2 bit immediate. | 
|  | case Mips::BI__builtin_msa_copy_s_w: | 
|  | case Mips::BI__builtin_msa_copy_u_w: | 
|  | case Mips::BI__builtin_msa_insve_w: | 
|  | case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; | 
|  | case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; | 
|  | // These intrinsics take an unsigned 1 bit immediate. | 
|  | case Mips::BI__builtin_msa_copy_s_d: | 
|  | case Mips::BI__builtin_msa_copy_u_d: | 
|  | case Mips::BI__builtin_msa_insve_d: | 
|  | case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; | 
|  | case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; | 
|  | // Memory offsets and immediate loads. | 
|  | // These intrinsics take a signed 10 bit immediate. | 
|  | case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; | 
|  | case Mips::BI__builtin_msa_ldi_h: | 
|  | case Mips::BI__builtin_msa_ldi_w: | 
|  | case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; | 
|  | case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; | 
|  | case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; | 
|  | case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; | 
|  | case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; | 
|  | case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; | 
|  | case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; | 
|  | case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; | 
|  | case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; | 
|  | } | 
|  |  | 
|  | if (!m) | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u); | 
|  |  | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u) || | 
|  | SemaBuiltinConstantArgMultiple(TheCall, i, m); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | unsigned i = 0, l = 0, u = 0; | 
|  | bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || | 
|  | BuiltinID == PPC::BI__builtin_divdeu || | 
|  | BuiltinID == PPC::BI__builtin_bpermd; | 
|  | bool IsTarget64Bit = Context.getTargetInfo() | 
|  | .getTypeWidth(Context | 
|  | .getTargetInfo() | 
|  | .getIntPtrType()) == 64; | 
|  | bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || | 
|  | BuiltinID == PPC::BI__builtin_divweu || | 
|  | BuiltinID == PPC::BI__builtin_divde || | 
|  | BuiltinID == PPC::BI__builtin_divdeu; | 
|  |  | 
|  | if (Is64BitBltin && !IsTarget64Bit) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) | 
|  | << TheCall->getSourceRange(); | 
|  |  | 
|  | if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) || | 
|  | (BuiltinID == PPC::BI__builtin_bpermd && | 
|  | !Context.getTargetInfo().hasFeature("bpermd"))) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) | 
|  | << TheCall->getSourceRange(); | 
|  |  | 
|  | auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { | 
|  | if (!Context.getTargetInfo().hasFeature("vsx")) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) | 
|  | << TheCall->getSourceRange(); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | switch (BuiltinID) { | 
|  | default: return false; | 
|  | case PPC::BI__builtin_altivec_crypto_vshasigmaw: | 
|  | case PPC::BI__builtin_altivec_crypto_vshasigmad: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); | 
|  | case PPC::BI__builtin_tbegin: | 
|  | case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; | 
|  | case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; | 
|  | case PPC::BI__builtin_tabortwc: | 
|  | case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; | 
|  | case PPC::BI__builtin_tabortwci: | 
|  | case PPC::BI__builtin_tabortdci: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); | 
|  | case PPC::BI__builtin_vsx_xxpermdi: | 
|  | case PPC::BI__builtin_vsx_xxsldwi: | 
|  | return SemaBuiltinVSX(TheCall); | 
|  | case PPC::BI__builtin_unpack_vector_int128: | 
|  | return SemaVSXCheck(TheCall) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); | 
|  | case PPC::BI__builtin_pack_vector_int128: | 
|  | return SemaVSXCheck(TheCall); | 
|  | } | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, | 
|  | CallExpr *TheCall) { | 
|  | if (BuiltinID == SystemZ::BI__builtin_tabort) { | 
|  | Expr *Arg = TheCall->getArg(0); | 
|  | llvm::APSInt AbortCode(32); | 
|  | if (Arg->isIntegerConstantExpr(AbortCode, Context) && | 
|  | AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) | 
|  | return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // For intrinsics which take an immediate value as part of the instruction, | 
|  | // range check them here. | 
|  | unsigned i = 0, l = 0, u = 0; | 
|  | switch (BuiltinID) { | 
|  | default: return false; | 
|  | case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_verimb: | 
|  | case SystemZ::BI__builtin_s390_verimh: | 
|  | case SystemZ::BI__builtin_s390_verimf: | 
|  | case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; | 
|  | case SystemZ::BI__builtin_s390_vfaeb: | 
|  | case SystemZ::BI__builtin_s390_vfaeh: | 
|  | case SystemZ::BI__builtin_s390_vfaef: | 
|  | case SystemZ::BI__builtin_s390_vfaebs: | 
|  | case SystemZ::BI__builtin_s390_vfaehs: | 
|  | case SystemZ::BI__builtin_s390_vfaefs: | 
|  | case SystemZ::BI__builtin_s390_vfaezb: | 
|  | case SystemZ::BI__builtin_s390_vfaezh: | 
|  | case SystemZ::BI__builtin_s390_vfaezf: | 
|  | case SystemZ::BI__builtin_s390_vfaezbs: | 
|  | case SystemZ::BI__builtin_s390_vfaezhs: | 
|  | case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vfisb: | 
|  | case SystemZ::BI__builtin_s390_vfidb: | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || | 
|  | SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); | 
|  | case SystemZ::BI__builtin_s390_vftcisb: | 
|  | case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; | 
|  | case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vstrcb: | 
|  | case SystemZ::BI__builtin_s390_vstrch: | 
|  | case SystemZ::BI__builtin_s390_vstrcf: | 
|  | case SystemZ::BI__builtin_s390_vstrczb: | 
|  | case SystemZ::BI__builtin_s390_vstrczh: | 
|  | case SystemZ::BI__builtin_s390_vstrczf: | 
|  | case SystemZ::BI__builtin_s390_vstrcbs: | 
|  | case SystemZ::BI__builtin_s390_vstrchs: | 
|  | case SystemZ::BI__builtin_s390_vstrcfs: | 
|  | case SystemZ::BI__builtin_s390_vstrczbs: | 
|  | case SystemZ::BI__builtin_s390_vstrczhs: | 
|  | case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; | 
|  | case SystemZ::BI__builtin_s390_vfminsb: | 
|  | case SystemZ::BI__builtin_s390_vfmaxsb: | 
|  | case SystemZ::BI__builtin_s390_vfmindb: | 
|  | case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; | 
|  | } | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u); | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). | 
|  | /// This checks that the target supports __builtin_cpu_supports and | 
|  | /// that the string argument is constant and valid. | 
|  | static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) { | 
|  | Expr *Arg = TheCall->getArg(0); | 
|  |  | 
|  | // Check if the argument is a string literal. | 
|  | if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) | 
|  | return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | // Check the contents of the string. | 
|  | StringRef Feature = | 
|  | cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); | 
|  | if (!S.Context.getTargetInfo().validateCpuSupports(Feature)) | 
|  | return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) | 
|  | << Arg->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). | 
|  | /// This checks that the target supports __builtin_cpu_is and | 
|  | /// that the string argument is constant and valid. | 
|  | static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) { | 
|  | Expr *Arg = TheCall->getArg(0); | 
|  |  | 
|  | // Check if the argument is a string literal. | 
|  | if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) | 
|  | return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | // Check the contents of the string. | 
|  | StringRef Feature = | 
|  | cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); | 
|  | if (!S.Context.getTargetInfo().validateCpuIs(Feature)) | 
|  | return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) | 
|  | << Arg->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the rounding mode is legal. | 
|  | bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | // Indicates if this instruction has rounding control or just SAE. | 
|  | bool HasRC = false; | 
|  |  | 
|  | unsigned ArgNum = 0; | 
|  | switch (BuiltinID) { | 
|  | default: | 
|  | return false; | 
|  | case X86::BI__builtin_ia32_vcvttsd2si32: | 
|  | case X86::BI__builtin_ia32_vcvttsd2si64: | 
|  | case X86::BI__builtin_ia32_vcvttsd2usi32: | 
|  | case X86::BI__builtin_ia32_vcvttsd2usi64: | 
|  | case X86::BI__builtin_ia32_vcvttss2si32: | 
|  | case X86::BI__builtin_ia32_vcvttss2si64: | 
|  | case X86::BI__builtin_ia32_vcvttss2usi32: | 
|  | case X86::BI__builtin_ia32_vcvttss2usi64: | 
|  | ArgNum = 1; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_maxpd512: | 
|  | case X86::BI__builtin_ia32_maxps512: | 
|  | case X86::BI__builtin_ia32_minpd512: | 
|  | case X86::BI__builtin_ia32_minps512: | 
|  | ArgNum = 2; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_cvtps2pd512_mask: | 
|  | case X86::BI__builtin_ia32_cvttpd2dq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttpd2qq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttpd2udq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttpd2uqq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttps2dq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttps2qq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttps2udq512_mask: | 
|  | case X86::BI__builtin_ia32_cvttps2uqq512_mask: | 
|  | case X86::BI__builtin_ia32_exp2pd_mask: | 
|  | case X86::BI__builtin_ia32_exp2ps_mask: | 
|  | case X86::BI__builtin_ia32_getexppd512_mask: | 
|  | case X86::BI__builtin_ia32_getexpps512_mask: | 
|  | case X86::BI__builtin_ia32_rcp28pd_mask: | 
|  | case X86::BI__builtin_ia32_rcp28ps_mask: | 
|  | case X86::BI__builtin_ia32_rsqrt28pd_mask: | 
|  | case X86::BI__builtin_ia32_rsqrt28ps_mask: | 
|  | case X86::BI__builtin_ia32_vcomisd: | 
|  | case X86::BI__builtin_ia32_vcomiss: | 
|  | case X86::BI__builtin_ia32_vcvtph2ps512_mask: | 
|  | ArgNum = 3; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_cmppd512_mask: | 
|  | case X86::BI__builtin_ia32_cmpps512_mask: | 
|  | case X86::BI__builtin_ia32_cmpsd_mask: | 
|  | case X86::BI__builtin_ia32_cmpss_mask: | 
|  | case X86::BI__builtin_ia32_cvtss2sd_round_mask: | 
|  | case X86::BI__builtin_ia32_getexpsd128_round_mask: | 
|  | case X86::BI__builtin_ia32_getexpss128_round_mask: | 
|  | case X86::BI__builtin_ia32_maxsd_round_mask: | 
|  | case X86::BI__builtin_ia32_maxss_round_mask: | 
|  | case X86::BI__builtin_ia32_minsd_round_mask: | 
|  | case X86::BI__builtin_ia32_minss_round_mask: | 
|  | case X86::BI__builtin_ia32_rcp28sd_round_mask: | 
|  | case X86::BI__builtin_ia32_rcp28ss_round_mask: | 
|  | case X86::BI__builtin_ia32_reducepd512_mask: | 
|  | case X86::BI__builtin_ia32_reduceps512_mask: | 
|  | case X86::BI__builtin_ia32_rndscalepd_mask: | 
|  | case X86::BI__builtin_ia32_rndscaleps_mask: | 
|  | case X86::BI__builtin_ia32_rsqrt28sd_round_mask: | 
|  | case X86::BI__builtin_ia32_rsqrt28ss_round_mask: | 
|  | ArgNum = 4; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_fixupimmpd512_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmpd512_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmps512_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmps512_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmsd_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmsd_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmss_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmss_maskz: | 
|  | case X86::BI__builtin_ia32_rangepd512_mask: | 
|  | case X86::BI__builtin_ia32_rangeps512_mask: | 
|  | case X86::BI__builtin_ia32_rangesd128_round_mask: | 
|  | case X86::BI__builtin_ia32_rangess128_round_mask: | 
|  | case X86::BI__builtin_ia32_reducesd_mask: | 
|  | case X86::BI__builtin_ia32_reducess_mask: | 
|  | case X86::BI__builtin_ia32_rndscalesd_round_mask: | 
|  | case X86::BI__builtin_ia32_rndscaless_round_mask: | 
|  | ArgNum = 5; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vcvtsd2si64: | 
|  | case X86::BI__builtin_ia32_vcvtsd2si32: | 
|  | case X86::BI__builtin_ia32_vcvtsd2usi32: | 
|  | case X86::BI__builtin_ia32_vcvtsd2usi64: | 
|  | case X86::BI__builtin_ia32_vcvtss2si32: | 
|  | case X86::BI__builtin_ia32_vcvtss2si64: | 
|  | case X86::BI__builtin_ia32_vcvtss2usi32: | 
|  | case X86::BI__builtin_ia32_vcvtss2usi64: | 
|  | case X86::BI__builtin_ia32_sqrtpd512: | 
|  | case X86::BI__builtin_ia32_sqrtps512: | 
|  | ArgNum = 1; | 
|  | HasRC = true; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_addpd512: | 
|  | case X86::BI__builtin_ia32_addps512: | 
|  | case X86::BI__builtin_ia32_divpd512: | 
|  | case X86::BI__builtin_ia32_divps512: | 
|  | case X86::BI__builtin_ia32_mulpd512: | 
|  | case X86::BI__builtin_ia32_mulps512: | 
|  | case X86::BI__builtin_ia32_subpd512: | 
|  | case X86::BI__builtin_ia32_subps512: | 
|  | case X86::BI__builtin_ia32_cvtsi2sd64: | 
|  | case X86::BI__builtin_ia32_cvtsi2ss32: | 
|  | case X86::BI__builtin_ia32_cvtsi2ss64: | 
|  | case X86::BI__builtin_ia32_cvtusi2sd64: | 
|  | case X86::BI__builtin_ia32_cvtusi2ss32: | 
|  | case X86::BI__builtin_ia32_cvtusi2ss64: | 
|  | ArgNum = 2; | 
|  | HasRC = true; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_cvtdq2ps512_mask: | 
|  | case X86::BI__builtin_ia32_cvtudq2ps512_mask: | 
|  | case X86::BI__builtin_ia32_cvtpd2ps512_mask: | 
|  | case X86::BI__builtin_ia32_cvtpd2dq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtpd2qq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtpd2udq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtpd2uqq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtps2dq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtps2qq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtps2udq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtps2uqq512_mask: | 
|  | case X86::BI__builtin_ia32_cvtqq2pd512_mask: | 
|  | case X86::BI__builtin_ia32_cvtqq2ps512_mask: | 
|  | case X86::BI__builtin_ia32_cvtuqq2pd512_mask: | 
|  | case X86::BI__builtin_ia32_cvtuqq2ps512_mask: | 
|  | ArgNum = 3; | 
|  | HasRC = true; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_addss_round_mask: | 
|  | case X86::BI__builtin_ia32_addsd_round_mask: | 
|  | case X86::BI__builtin_ia32_divss_round_mask: | 
|  | case X86::BI__builtin_ia32_divsd_round_mask: | 
|  | case X86::BI__builtin_ia32_mulss_round_mask: | 
|  | case X86::BI__builtin_ia32_mulsd_round_mask: | 
|  | case X86::BI__builtin_ia32_subss_round_mask: | 
|  | case X86::BI__builtin_ia32_subsd_round_mask: | 
|  | case X86::BI__builtin_ia32_scalefpd512_mask: | 
|  | case X86::BI__builtin_ia32_scalefps512_mask: | 
|  | case X86::BI__builtin_ia32_scalefsd_round_mask: | 
|  | case X86::BI__builtin_ia32_scalefss_round_mask: | 
|  | case X86::BI__builtin_ia32_getmantpd512_mask: | 
|  | case X86::BI__builtin_ia32_getmantps512_mask: | 
|  | case X86::BI__builtin_ia32_cvtsd2ss_round_mask: | 
|  | case X86::BI__builtin_ia32_sqrtsd_round_mask: | 
|  | case X86::BI__builtin_ia32_sqrtss_round_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddsd3_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddsd3_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddsd3_mask3: | 
|  | case X86::BI__builtin_ia32_vfmaddss3_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddss3_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddss3_mask3: | 
|  | case X86::BI__builtin_ia32_vfmaddpd512_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddpd512_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddpd512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmsubpd512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmaddps512_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddps512_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddps512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmsubps512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmaddsubpd512_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmaddsubps512_mask: | 
|  | case X86::BI__builtin_ia32_vfmaddsubps512_maskz: | 
|  | case X86::BI__builtin_ia32_vfmaddsubps512_mask3: | 
|  | case X86::BI__builtin_ia32_vfmsubaddps512_mask3: | 
|  | ArgNum = 4; | 
|  | HasRC = true; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_getmantsd_round_mask: | 
|  | case X86::BI__builtin_ia32_getmantss_round_mask: | 
|  | ArgNum = 5; | 
|  | HasRC = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::APSInt Result; | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | // Check constant-ness first. | 
|  | if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) | 
|  | return true; | 
|  |  | 
|  | // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit | 
|  | // is set. If the intrinsic has rounding control(bits 1:0), make sure its only | 
|  | // combined with ROUND_NO_EXC. | 
|  | if (Result == 4/*ROUND_CUR_DIRECTION*/ || | 
|  | Result == 8/*ROUND_NO_EXC*/ || | 
|  | (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) | 
|  | return false; | 
|  |  | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Check if the gather/scatter scale is legal. | 
|  | bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, | 
|  | CallExpr *TheCall) { | 
|  | unsigned ArgNum = 0; | 
|  | switch (BuiltinID) { | 
|  | default: | 
|  | return false; | 
|  | case X86::BI__builtin_ia32_gatherpfdpd: | 
|  | case X86::BI__builtin_ia32_gatherpfdps: | 
|  | case X86::BI__builtin_ia32_gatherpfqpd: | 
|  | case X86::BI__builtin_ia32_gatherpfqps: | 
|  | case X86::BI__builtin_ia32_scatterpfdpd: | 
|  | case X86::BI__builtin_ia32_scatterpfdps: | 
|  | case X86::BI__builtin_ia32_scatterpfqpd: | 
|  | case X86::BI__builtin_ia32_scatterpfqps: | 
|  | ArgNum = 3; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_gatherd_pd: | 
|  | case X86::BI__builtin_ia32_gatherd_pd256: | 
|  | case X86::BI__builtin_ia32_gatherq_pd: | 
|  | case X86::BI__builtin_ia32_gatherq_pd256: | 
|  | case X86::BI__builtin_ia32_gatherd_ps: | 
|  | case X86::BI__builtin_ia32_gatherd_ps256: | 
|  | case X86::BI__builtin_ia32_gatherq_ps: | 
|  | case X86::BI__builtin_ia32_gatherq_ps256: | 
|  | case X86::BI__builtin_ia32_gatherd_q: | 
|  | case X86::BI__builtin_ia32_gatherd_q256: | 
|  | case X86::BI__builtin_ia32_gatherq_q: | 
|  | case X86::BI__builtin_ia32_gatherq_q256: | 
|  | case X86::BI__builtin_ia32_gatherd_d: | 
|  | case X86::BI__builtin_ia32_gatherd_d256: | 
|  | case X86::BI__builtin_ia32_gatherq_d: | 
|  | case X86::BI__builtin_ia32_gatherq_d256: | 
|  | case X86::BI__builtin_ia32_gather3div2df: | 
|  | case X86::BI__builtin_ia32_gather3div2di: | 
|  | case X86::BI__builtin_ia32_gather3div4df: | 
|  | case X86::BI__builtin_ia32_gather3div4di: | 
|  | case X86::BI__builtin_ia32_gather3div4sf: | 
|  | case X86::BI__builtin_ia32_gather3div4si: | 
|  | case X86::BI__builtin_ia32_gather3div8sf: | 
|  | case X86::BI__builtin_ia32_gather3div8si: | 
|  | case X86::BI__builtin_ia32_gather3siv2df: | 
|  | case X86::BI__builtin_ia32_gather3siv2di: | 
|  | case X86::BI__builtin_ia32_gather3siv4df: | 
|  | case X86::BI__builtin_ia32_gather3siv4di: | 
|  | case X86::BI__builtin_ia32_gather3siv4sf: | 
|  | case X86::BI__builtin_ia32_gather3siv4si: | 
|  | case X86::BI__builtin_ia32_gather3siv8sf: | 
|  | case X86::BI__builtin_ia32_gather3siv8si: | 
|  | case X86::BI__builtin_ia32_gathersiv8df: | 
|  | case X86::BI__builtin_ia32_gathersiv16sf: | 
|  | case X86::BI__builtin_ia32_gatherdiv8df: | 
|  | case X86::BI__builtin_ia32_gatherdiv16sf: | 
|  | case X86::BI__builtin_ia32_gathersiv8di: | 
|  | case X86::BI__builtin_ia32_gathersiv16si: | 
|  | case X86::BI__builtin_ia32_gatherdiv8di: | 
|  | case X86::BI__builtin_ia32_gatherdiv16si: | 
|  | case X86::BI__builtin_ia32_scatterdiv2df: | 
|  | case X86::BI__builtin_ia32_scatterdiv2di: | 
|  | case X86::BI__builtin_ia32_scatterdiv4df: | 
|  | case X86::BI__builtin_ia32_scatterdiv4di: | 
|  | case X86::BI__builtin_ia32_scatterdiv4sf: | 
|  | case X86::BI__builtin_ia32_scatterdiv4si: | 
|  | case X86::BI__builtin_ia32_scatterdiv8sf: | 
|  | case X86::BI__builtin_ia32_scatterdiv8si: | 
|  | case X86::BI__builtin_ia32_scattersiv2df: | 
|  | case X86::BI__builtin_ia32_scattersiv2di: | 
|  | case X86::BI__builtin_ia32_scattersiv4df: | 
|  | case X86::BI__builtin_ia32_scattersiv4di: | 
|  | case X86::BI__builtin_ia32_scattersiv4sf: | 
|  | case X86::BI__builtin_ia32_scattersiv4si: | 
|  | case X86::BI__builtin_ia32_scattersiv8sf: | 
|  | case X86::BI__builtin_ia32_scattersiv8si: | 
|  | case X86::BI__builtin_ia32_scattersiv8df: | 
|  | case X86::BI__builtin_ia32_scattersiv16sf: | 
|  | case X86::BI__builtin_ia32_scatterdiv8df: | 
|  | case X86::BI__builtin_ia32_scatterdiv16sf: | 
|  | case X86::BI__builtin_ia32_scattersiv8di: | 
|  | case X86::BI__builtin_ia32_scattersiv16si: | 
|  | case X86::BI__builtin_ia32_scatterdiv8di: | 
|  | case X86::BI__builtin_ia32_scatterdiv16si: | 
|  | ArgNum = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm::APSInt Result; | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | // Check constant-ness first. | 
|  | if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) | 
|  | return true; | 
|  |  | 
|  | if (Result == 1 || Result == 2 || Result == 4 || Result == 8) | 
|  | return false; | 
|  |  | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | static bool isX86_32Builtin(unsigned BuiltinID) { | 
|  | // These builtins only work on x86-32 targets. | 
|  | switch (BuiltinID) { | 
|  | case X86::BI__builtin_ia32_readeflags_u32: | 
|  | case X86::BI__builtin_ia32_writeeflags_u32: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | if (BuiltinID == X86::BI__builtin_cpu_supports) | 
|  | return SemaBuiltinCpuSupports(*this, TheCall); | 
|  |  | 
|  | if (BuiltinID == X86::BI__builtin_cpu_is) | 
|  | return SemaBuiltinCpuIs(*this, TheCall); | 
|  |  | 
|  | // Check for 32-bit only builtins on a 64-bit target. | 
|  | const llvm::Triple &TT = Context.getTargetInfo().getTriple(); | 
|  | if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) | 
|  | return Diag(TheCall->getCallee()->getBeginLoc(), | 
|  | diag::err_32_bit_builtin_64_bit_tgt); | 
|  |  | 
|  | // If the intrinsic has rounding or SAE make sure its valid. | 
|  | if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) | 
|  | return true; | 
|  |  | 
|  | // If the intrinsic has a gather/scatter scale immediate make sure its valid. | 
|  | if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) | 
|  | return true; | 
|  |  | 
|  | // For intrinsics which take an immediate value as part of the instruction, | 
|  | // range check them here. | 
|  | int i = 0, l = 0, u = 0; | 
|  | switch (BuiltinID) { | 
|  | default: | 
|  | return false; | 
|  | case X86::BI__builtin_ia32_vec_ext_v2si: | 
|  | case X86::BI__builtin_ia32_vec_ext_v2di: | 
|  | case X86::BI__builtin_ia32_vextractf128_pd256: | 
|  | case X86::BI__builtin_ia32_vextractf128_ps256: | 
|  | case X86::BI__builtin_ia32_vextractf128_si256: | 
|  | case X86::BI__builtin_ia32_extract128i256: | 
|  | case X86::BI__builtin_ia32_extractf64x4_mask: | 
|  | case X86::BI__builtin_ia32_extracti64x4_mask: | 
|  | case X86::BI__builtin_ia32_extractf32x8_mask: | 
|  | case X86::BI__builtin_ia32_extracti32x8_mask: | 
|  | case X86::BI__builtin_ia32_extractf64x2_256_mask: | 
|  | case X86::BI__builtin_ia32_extracti64x2_256_mask: | 
|  | case X86::BI__builtin_ia32_extractf32x4_256_mask: | 
|  | case X86::BI__builtin_ia32_extracti32x4_256_mask: | 
|  | i = 1; l = 0; u = 1; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vec_set_v2di: | 
|  | case X86::BI__builtin_ia32_vinsertf128_pd256: | 
|  | case X86::BI__builtin_ia32_vinsertf128_ps256: | 
|  | case X86::BI__builtin_ia32_vinsertf128_si256: | 
|  | case X86::BI__builtin_ia32_insert128i256: | 
|  | case X86::BI__builtin_ia32_insertf32x8: | 
|  | case X86::BI__builtin_ia32_inserti32x8: | 
|  | case X86::BI__builtin_ia32_insertf64x4: | 
|  | case X86::BI__builtin_ia32_inserti64x4: | 
|  | case X86::BI__builtin_ia32_insertf64x2_256: | 
|  | case X86::BI__builtin_ia32_inserti64x2_256: | 
|  | case X86::BI__builtin_ia32_insertf32x4_256: | 
|  | case X86::BI__builtin_ia32_inserti32x4_256: | 
|  | i = 2; l = 0; u = 1; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vpermilpd: | 
|  | case X86::BI__builtin_ia32_vec_ext_v4hi: | 
|  | case X86::BI__builtin_ia32_vec_ext_v4si: | 
|  | case X86::BI__builtin_ia32_vec_ext_v4sf: | 
|  | case X86::BI__builtin_ia32_vec_ext_v4di: | 
|  | case X86::BI__builtin_ia32_extractf32x4_mask: | 
|  | case X86::BI__builtin_ia32_extracti32x4_mask: | 
|  | case X86::BI__builtin_ia32_extractf64x2_512_mask: | 
|  | case X86::BI__builtin_ia32_extracti64x2_512_mask: | 
|  | i = 1; l = 0; u = 3; | 
|  | break; | 
|  | case X86::BI_mm_prefetch: | 
|  | case X86::BI__builtin_ia32_vec_ext_v8hi: | 
|  | case X86::BI__builtin_ia32_vec_ext_v8si: | 
|  | i = 1; l = 0; u = 7; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_sha1rnds4: | 
|  | case X86::BI__builtin_ia32_blendpd: | 
|  | case X86::BI__builtin_ia32_shufpd: | 
|  | case X86::BI__builtin_ia32_vec_set_v4hi: | 
|  | case X86::BI__builtin_ia32_vec_set_v4si: | 
|  | case X86::BI__builtin_ia32_vec_set_v4di: | 
|  | case X86::BI__builtin_ia32_shuf_f32x4_256: | 
|  | case X86::BI__builtin_ia32_shuf_f64x2_256: | 
|  | case X86::BI__builtin_ia32_shuf_i32x4_256: | 
|  | case X86::BI__builtin_ia32_shuf_i64x2_256: | 
|  | case X86::BI__builtin_ia32_insertf64x2_512: | 
|  | case X86::BI__builtin_ia32_inserti64x2_512: | 
|  | case X86::BI__builtin_ia32_insertf32x4: | 
|  | case X86::BI__builtin_ia32_inserti32x4: | 
|  | i = 2; l = 0; u = 3; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vpermil2pd: | 
|  | case X86::BI__builtin_ia32_vpermil2pd256: | 
|  | case X86::BI__builtin_ia32_vpermil2ps: | 
|  | case X86::BI__builtin_ia32_vpermil2ps256: | 
|  | i = 3; l = 0; u = 3; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_cmpb128_mask: | 
|  | case X86::BI__builtin_ia32_cmpw128_mask: | 
|  | case X86::BI__builtin_ia32_cmpd128_mask: | 
|  | case X86::BI__builtin_ia32_cmpq128_mask: | 
|  | case X86::BI__builtin_ia32_cmpb256_mask: | 
|  | case X86::BI__builtin_ia32_cmpw256_mask: | 
|  | case X86::BI__builtin_ia32_cmpd256_mask: | 
|  | case X86::BI__builtin_ia32_cmpq256_mask: | 
|  | case X86::BI__builtin_ia32_cmpb512_mask: | 
|  | case X86::BI__builtin_ia32_cmpw512_mask: | 
|  | case X86::BI__builtin_ia32_cmpd512_mask: | 
|  | case X86::BI__builtin_ia32_cmpq512_mask: | 
|  | case X86::BI__builtin_ia32_ucmpb128_mask: | 
|  | case X86::BI__builtin_ia32_ucmpw128_mask: | 
|  | case X86::BI__builtin_ia32_ucmpd128_mask: | 
|  | case X86::BI__builtin_ia32_ucmpq128_mask: | 
|  | case X86::BI__builtin_ia32_ucmpb256_mask: | 
|  | case X86::BI__builtin_ia32_ucmpw256_mask: | 
|  | case X86::BI__builtin_ia32_ucmpd256_mask: | 
|  | case X86::BI__builtin_ia32_ucmpq256_mask: | 
|  | case X86::BI__builtin_ia32_ucmpb512_mask: | 
|  | case X86::BI__builtin_ia32_ucmpw512_mask: | 
|  | case X86::BI__builtin_ia32_ucmpd512_mask: | 
|  | case X86::BI__builtin_ia32_ucmpq512_mask: | 
|  | case X86::BI__builtin_ia32_vpcomub: | 
|  | case X86::BI__builtin_ia32_vpcomuw: | 
|  | case X86::BI__builtin_ia32_vpcomud: | 
|  | case X86::BI__builtin_ia32_vpcomuq: | 
|  | case X86::BI__builtin_ia32_vpcomb: | 
|  | case X86::BI__builtin_ia32_vpcomw: | 
|  | case X86::BI__builtin_ia32_vpcomd: | 
|  | case X86::BI__builtin_ia32_vpcomq: | 
|  | case X86::BI__builtin_ia32_vec_set_v8hi: | 
|  | case X86::BI__builtin_ia32_vec_set_v8si: | 
|  | i = 2; l = 0; u = 7; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vpermilpd256: | 
|  | case X86::BI__builtin_ia32_roundps: | 
|  | case X86::BI__builtin_ia32_roundpd: | 
|  | case X86::BI__builtin_ia32_roundps256: | 
|  | case X86::BI__builtin_ia32_roundpd256: | 
|  | case X86::BI__builtin_ia32_getmantpd128_mask: | 
|  | case X86::BI__builtin_ia32_getmantpd256_mask: | 
|  | case X86::BI__builtin_ia32_getmantps128_mask: | 
|  | case X86::BI__builtin_ia32_getmantps256_mask: | 
|  | case X86::BI__builtin_ia32_getmantpd512_mask: | 
|  | case X86::BI__builtin_ia32_getmantps512_mask: | 
|  | case X86::BI__builtin_ia32_vec_ext_v16qi: | 
|  | case X86::BI__builtin_ia32_vec_ext_v16hi: | 
|  | i = 1; l = 0; u = 15; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_pblendd128: | 
|  | case X86::BI__builtin_ia32_blendps: | 
|  | case X86::BI__builtin_ia32_blendpd256: | 
|  | case X86::BI__builtin_ia32_shufpd256: | 
|  | case X86::BI__builtin_ia32_roundss: | 
|  | case X86::BI__builtin_ia32_roundsd: | 
|  | case X86::BI__builtin_ia32_rangepd128_mask: | 
|  | case X86::BI__builtin_ia32_rangepd256_mask: | 
|  | case X86::BI__builtin_ia32_rangepd512_mask: | 
|  | case X86::BI__builtin_ia32_rangeps128_mask: | 
|  | case X86::BI__builtin_ia32_rangeps256_mask: | 
|  | case X86::BI__builtin_ia32_rangeps512_mask: | 
|  | case X86::BI__builtin_ia32_getmantsd_round_mask: | 
|  | case X86::BI__builtin_ia32_getmantss_round_mask: | 
|  | case X86::BI__builtin_ia32_vec_set_v16qi: | 
|  | case X86::BI__builtin_ia32_vec_set_v16hi: | 
|  | i = 2; l = 0; u = 15; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vec_ext_v32qi: | 
|  | i = 1; l = 0; u = 31; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_cmpps: | 
|  | case X86::BI__builtin_ia32_cmpss: | 
|  | case X86::BI__builtin_ia32_cmppd: | 
|  | case X86::BI__builtin_ia32_cmpsd: | 
|  | case X86::BI__builtin_ia32_cmpps256: | 
|  | case X86::BI__builtin_ia32_cmppd256: | 
|  | case X86::BI__builtin_ia32_cmpps128_mask: | 
|  | case X86::BI__builtin_ia32_cmppd128_mask: | 
|  | case X86::BI__builtin_ia32_cmpps256_mask: | 
|  | case X86::BI__builtin_ia32_cmppd256_mask: | 
|  | case X86::BI__builtin_ia32_cmpps512_mask: | 
|  | case X86::BI__builtin_ia32_cmppd512_mask: | 
|  | case X86::BI__builtin_ia32_cmpsd_mask: | 
|  | case X86::BI__builtin_ia32_cmpss_mask: | 
|  | case X86::BI__builtin_ia32_vec_set_v32qi: | 
|  | i = 2; l = 0; u = 31; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_permdf256: | 
|  | case X86::BI__builtin_ia32_permdi256: | 
|  | case X86::BI__builtin_ia32_permdf512: | 
|  | case X86::BI__builtin_ia32_permdi512: | 
|  | case X86::BI__builtin_ia32_vpermilps: | 
|  | case X86::BI__builtin_ia32_vpermilps256: | 
|  | case X86::BI__builtin_ia32_vpermilpd512: | 
|  | case X86::BI__builtin_ia32_vpermilps512: | 
|  | case X86::BI__builtin_ia32_pshufd: | 
|  | case X86::BI__builtin_ia32_pshufd256: | 
|  | case X86::BI__builtin_ia32_pshufd512: | 
|  | case X86::BI__builtin_ia32_pshufhw: | 
|  | case X86::BI__builtin_ia32_pshufhw256: | 
|  | case X86::BI__builtin_ia32_pshufhw512: | 
|  | case X86::BI__builtin_ia32_pshuflw: | 
|  | case X86::BI__builtin_ia32_pshuflw256: | 
|  | case X86::BI__builtin_ia32_pshuflw512: | 
|  | case X86::BI__builtin_ia32_vcvtps2ph: | 
|  | case X86::BI__builtin_ia32_vcvtps2ph_mask: | 
|  | case X86::BI__builtin_ia32_vcvtps2ph256: | 
|  | case X86::BI__builtin_ia32_vcvtps2ph256_mask: | 
|  | case X86::BI__builtin_ia32_vcvtps2ph512_mask: | 
|  | case X86::BI__builtin_ia32_rndscaleps_128_mask: | 
|  | case X86::BI__builtin_ia32_rndscalepd_128_mask: | 
|  | case X86::BI__builtin_ia32_rndscaleps_256_mask: | 
|  | case X86::BI__builtin_ia32_rndscalepd_256_mask: | 
|  | case X86::BI__builtin_ia32_rndscaleps_mask: | 
|  | case X86::BI__builtin_ia32_rndscalepd_mask: | 
|  | case X86::BI__builtin_ia32_reducepd128_mask: | 
|  | case X86::BI__builtin_ia32_reducepd256_mask: | 
|  | case X86::BI__builtin_ia32_reducepd512_mask: | 
|  | case X86::BI__builtin_ia32_reduceps128_mask: | 
|  | case X86::BI__builtin_ia32_reduceps256_mask: | 
|  | case X86::BI__builtin_ia32_reduceps512_mask: | 
|  | case X86::BI__builtin_ia32_prold512: | 
|  | case X86::BI__builtin_ia32_prolq512: | 
|  | case X86::BI__builtin_ia32_prold128: | 
|  | case X86::BI__builtin_ia32_prold256: | 
|  | case X86::BI__builtin_ia32_prolq128: | 
|  | case X86::BI__builtin_ia32_prolq256: | 
|  | case X86::BI__builtin_ia32_prord512: | 
|  | case X86::BI__builtin_ia32_prorq512: | 
|  | case X86::BI__builtin_ia32_prord128: | 
|  | case X86::BI__builtin_ia32_prord256: | 
|  | case X86::BI__builtin_ia32_prorq128: | 
|  | case X86::BI__builtin_ia32_prorq256: | 
|  | case X86::BI__builtin_ia32_fpclasspd128_mask: | 
|  | case X86::BI__builtin_ia32_fpclasspd256_mask: | 
|  | case X86::BI__builtin_ia32_fpclassps128_mask: | 
|  | case X86::BI__builtin_ia32_fpclassps256_mask: | 
|  | case X86::BI__builtin_ia32_fpclassps512_mask: | 
|  | case X86::BI__builtin_ia32_fpclasspd512_mask: | 
|  | case X86::BI__builtin_ia32_fpclasssd_mask: | 
|  | case X86::BI__builtin_ia32_fpclassss_mask: | 
|  | case X86::BI__builtin_ia32_pslldqi128_byteshift: | 
|  | case X86::BI__builtin_ia32_pslldqi256_byteshift: | 
|  | case X86::BI__builtin_ia32_pslldqi512_byteshift: | 
|  | case X86::BI__builtin_ia32_psrldqi128_byteshift: | 
|  | case X86::BI__builtin_ia32_psrldqi256_byteshift: | 
|  | case X86::BI__builtin_ia32_psrldqi512_byteshift: | 
|  | case X86::BI__builtin_ia32_kshiftliqi: | 
|  | case X86::BI__builtin_ia32_kshiftlihi: | 
|  | case X86::BI__builtin_ia32_kshiftlisi: | 
|  | case X86::BI__builtin_ia32_kshiftlidi: | 
|  | case X86::BI__builtin_ia32_kshiftriqi: | 
|  | case X86::BI__builtin_ia32_kshiftrihi: | 
|  | case X86::BI__builtin_ia32_kshiftrisi: | 
|  | case X86::BI__builtin_ia32_kshiftridi: | 
|  | i = 1; l = 0; u = 255; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_vperm2f128_pd256: | 
|  | case X86::BI__builtin_ia32_vperm2f128_ps256: | 
|  | case X86::BI__builtin_ia32_vperm2f128_si256: | 
|  | case X86::BI__builtin_ia32_permti256: | 
|  | case X86::BI__builtin_ia32_pblendw128: | 
|  | case X86::BI__builtin_ia32_pblendw256: | 
|  | case X86::BI__builtin_ia32_blendps256: | 
|  | case X86::BI__builtin_ia32_pblendd256: | 
|  | case X86::BI__builtin_ia32_palignr128: | 
|  | case X86::BI__builtin_ia32_palignr256: | 
|  | case X86::BI__builtin_ia32_palignr512: | 
|  | case X86::BI__builtin_ia32_alignq512: | 
|  | case X86::BI__builtin_ia32_alignd512: | 
|  | case X86::BI__builtin_ia32_alignd128: | 
|  | case X86::BI__builtin_ia32_alignd256: | 
|  | case X86::BI__builtin_ia32_alignq128: | 
|  | case X86::BI__builtin_ia32_alignq256: | 
|  | case X86::BI__builtin_ia32_vcomisd: | 
|  | case X86::BI__builtin_ia32_vcomiss: | 
|  | case X86::BI__builtin_ia32_shuf_f32x4: | 
|  | case X86::BI__builtin_ia32_shuf_f64x2: | 
|  | case X86::BI__builtin_ia32_shuf_i32x4: | 
|  | case X86::BI__builtin_ia32_shuf_i64x2: | 
|  | case X86::BI__builtin_ia32_shufpd512: | 
|  | case X86::BI__builtin_ia32_shufps: | 
|  | case X86::BI__builtin_ia32_shufps256: | 
|  | case X86::BI__builtin_ia32_shufps512: | 
|  | case X86::BI__builtin_ia32_dbpsadbw128: | 
|  | case X86::BI__builtin_ia32_dbpsadbw256: | 
|  | case X86::BI__builtin_ia32_dbpsadbw512: | 
|  | case X86::BI__builtin_ia32_vpshldd128: | 
|  | case X86::BI__builtin_ia32_vpshldd256: | 
|  | case X86::BI__builtin_ia32_vpshldd512: | 
|  | case X86::BI__builtin_ia32_vpshldq128: | 
|  | case X86::BI__builtin_ia32_vpshldq256: | 
|  | case X86::BI__builtin_ia32_vpshldq512: | 
|  | case X86::BI__builtin_ia32_vpshldw128: | 
|  | case X86::BI__builtin_ia32_vpshldw256: | 
|  | case X86::BI__builtin_ia32_vpshldw512: | 
|  | case X86::BI__builtin_ia32_vpshrdd128: | 
|  | case X86::BI__builtin_ia32_vpshrdd256: | 
|  | case X86::BI__builtin_ia32_vpshrdd512: | 
|  | case X86::BI__builtin_ia32_vpshrdq128: | 
|  | case X86::BI__builtin_ia32_vpshrdq256: | 
|  | case X86::BI__builtin_ia32_vpshrdq512: | 
|  | case X86::BI__builtin_ia32_vpshrdw128: | 
|  | case X86::BI__builtin_ia32_vpshrdw256: | 
|  | case X86::BI__builtin_ia32_vpshrdw512: | 
|  | i = 2; l = 0; u = 255; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_fixupimmpd512_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmpd512_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmps512_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmps512_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmsd_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmsd_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmss_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmss_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmpd128_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmpd128_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmpd256_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmpd256_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmps128_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmps128_maskz: | 
|  | case X86::BI__builtin_ia32_fixupimmps256_mask: | 
|  | case X86::BI__builtin_ia32_fixupimmps256_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogd512_mask: | 
|  | case X86::BI__builtin_ia32_pternlogd512_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogq512_mask: | 
|  | case X86::BI__builtin_ia32_pternlogq512_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogd128_mask: | 
|  | case X86::BI__builtin_ia32_pternlogd128_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogd256_mask: | 
|  | case X86::BI__builtin_ia32_pternlogd256_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogq128_mask: | 
|  | case X86::BI__builtin_ia32_pternlogq128_maskz: | 
|  | case X86::BI__builtin_ia32_pternlogq256_mask: | 
|  | case X86::BI__builtin_ia32_pternlogq256_maskz: | 
|  | i = 3; l = 0; u = 255; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_gatherpfdpd: | 
|  | case X86::BI__builtin_ia32_gatherpfdps: | 
|  | case X86::BI__builtin_ia32_gatherpfqpd: | 
|  | case X86::BI__builtin_ia32_gatherpfqps: | 
|  | case X86::BI__builtin_ia32_scatterpfdpd: | 
|  | case X86::BI__builtin_ia32_scatterpfdps: | 
|  | case X86::BI__builtin_ia32_scatterpfqpd: | 
|  | case X86::BI__builtin_ia32_scatterpfqps: | 
|  | i = 4; l = 2; u = 3; | 
|  | break; | 
|  | case X86::BI__builtin_ia32_rndscalesd_round_mask: | 
|  | case X86::BI__builtin_ia32_rndscaless_round_mask: | 
|  | i = 4; l = 0; u = 255; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Note that we don't force a hard error on the range check here, allowing | 
|  | // template-generated or macro-generated dead code to potentially have out-of- | 
|  | // range values. These need to code generate, but don't need to necessarily | 
|  | // make any sense. We use a warning that defaults to an error. | 
|  | return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); | 
|  | } | 
|  |  | 
|  | /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo | 
|  | /// parameter with the FormatAttr's correct format_idx and firstDataArg. | 
|  | /// Returns true when the format fits the function and the FormatStringInfo has | 
|  | /// been populated. | 
|  | bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, | 
|  | FormatStringInfo *FSI) { | 
|  | FSI->HasVAListArg = Format->getFirstArg() == 0; | 
|  | FSI->FormatIdx = Format->getFormatIdx() - 1; | 
|  | FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; | 
|  |  | 
|  | // The way the format attribute works in GCC, the implicit this argument | 
|  | // of member functions is counted. However, it doesn't appear in our own | 
|  | // lists, so decrement format_idx in that case. | 
|  | if (IsCXXMember) { | 
|  | if(FSI->FormatIdx == 0) | 
|  | return false; | 
|  | --FSI->FormatIdx; | 
|  | if (FSI->FirstDataArg != 0) | 
|  | --FSI->FirstDataArg; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Checks if a the given expression evaluates to null. | 
|  | /// | 
|  | /// Returns true if the value evaluates to null. | 
|  | static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { | 
|  | // If the expression has non-null type, it doesn't evaluate to null. | 
|  | if (auto nullability | 
|  | = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { | 
|  | if (*nullability == NullabilityKind::NonNull) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // As a special case, transparent unions initialized with zero are | 
|  | // considered null for the purposes of the nonnull attribute. | 
|  | if (const RecordType *UT = Expr->getType()->getAsUnionType()) { | 
|  | if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | if (const CompoundLiteralExpr *CLE = | 
|  | dyn_cast<CompoundLiteralExpr>(Expr)) | 
|  | if (const InitListExpr *ILE = | 
|  | dyn_cast<InitListExpr>(CLE->getInitializer())) | 
|  | Expr = ILE->getInit(0); | 
|  | } | 
|  |  | 
|  | bool Result; | 
|  | return (!Expr->isValueDependent() && | 
|  | Expr->EvaluateAsBooleanCondition(Result, S.Context) && | 
|  | !Result); | 
|  | } | 
|  |  | 
|  | static void CheckNonNullArgument(Sema &S, | 
|  | const Expr *ArgExpr, | 
|  | SourceLocation CallSiteLoc) { | 
|  | if (CheckNonNullExpr(S, ArgExpr)) | 
|  | S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, | 
|  | S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { | 
|  | FormatStringInfo FSI; | 
|  | if ((GetFormatStringType(Format) == FST_NSString) && | 
|  | getFormatStringInfo(Format, false, &FSI)) { | 
|  | Idx = FSI.FormatIdx; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Diagnose use of %s directive in an NSString which is being passed | 
|  | /// as formatting string to formatting method. | 
|  | static void | 
|  | DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, | 
|  | const NamedDecl *FDecl, | 
|  | Expr **Args, | 
|  | unsigned NumArgs) { | 
|  | unsigned Idx = 0; | 
|  | bool Format = false; | 
|  | ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); | 
|  | if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { | 
|  | Idx = 2; | 
|  | Format = true; | 
|  | } | 
|  | else | 
|  | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { | 
|  | if (S.GetFormatNSStringIdx(I, Idx)) { | 
|  | Format = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Format || NumArgs <= Idx) | 
|  | return; | 
|  | const Expr *FormatExpr = Args[Idx]; | 
|  | if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) | 
|  | FormatExpr = CSCE->getSubExpr(); | 
|  | const StringLiteral *FormatString; | 
|  | if (const ObjCStringLiteral *OSL = | 
|  | dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) | 
|  | FormatString = OSL->getString(); | 
|  | else | 
|  | FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); | 
|  | if (!FormatString) | 
|  | return; | 
|  | if (S.FormatStringHasSArg(FormatString)) { | 
|  | S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) | 
|  | << "%s" << 1 << 1; | 
|  | S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) | 
|  | << FDecl->getDeclName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether the given type has a non-null nullability annotation. | 
|  | static bool isNonNullType(ASTContext &ctx, QualType type) { | 
|  | if (auto nullability = type->getNullability(ctx)) | 
|  | return *nullability == NullabilityKind::NonNull; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void CheckNonNullArguments(Sema &S, | 
|  | const NamedDecl *FDecl, | 
|  | const FunctionProtoType *Proto, | 
|  | ArrayRef<const Expr *> Args, | 
|  | SourceLocation CallSiteLoc) { | 
|  | assert((FDecl || Proto) && "Need a function declaration or prototype"); | 
|  |  | 
|  | // Check the attributes attached to the method/function itself. | 
|  | llvm::SmallBitVector NonNullArgs; | 
|  | if (FDecl) { | 
|  | // Handle the nonnull attribute on the function/method declaration itself. | 
|  | for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { | 
|  | if (!NonNull->args_size()) { | 
|  | // Easy case: all pointer arguments are nonnull. | 
|  | for (const auto *Arg : Args) | 
|  | if (S.isValidPointerAttrType(Arg->getType())) | 
|  | CheckNonNullArgument(S, Arg, CallSiteLoc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const ParamIdx &Idx : NonNull->args()) { | 
|  | unsigned IdxAST = Idx.getASTIndex(); | 
|  | if (IdxAST >= Args.size()) | 
|  | continue; | 
|  | if (NonNullArgs.empty()) | 
|  | NonNullArgs.resize(Args.size()); | 
|  | NonNullArgs.set(IdxAST); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { | 
|  | // Handle the nonnull attribute on the parameters of the | 
|  | // function/method. | 
|  | ArrayRef<ParmVarDecl*> parms; | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) | 
|  | parms = FD->parameters(); | 
|  | else | 
|  | parms = cast<ObjCMethodDecl>(FDecl)->parameters(); | 
|  |  | 
|  | unsigned ParamIndex = 0; | 
|  | for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); | 
|  | I != E; ++I, ++ParamIndex) { | 
|  | const ParmVarDecl *PVD = *I; | 
|  | if (PVD->hasAttr<NonNullAttr>() || | 
|  | isNonNullType(S.Context, PVD->getType())) { | 
|  | if (NonNullArgs.empty()) | 
|  | NonNullArgs.resize(Args.size()); | 
|  |  | 
|  | NonNullArgs.set(ParamIndex); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // If we have a non-function, non-method declaration but no | 
|  | // function prototype, try to dig out the function prototype. | 
|  | if (!Proto) { | 
|  | if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { | 
|  | QualType type = VD->getType().getNonReferenceType(); | 
|  | if (auto pointerType = type->getAs<PointerType>()) | 
|  | type = pointerType->getPointeeType(); | 
|  | else if (auto blockType = type->getAs<BlockPointerType>()) | 
|  | type = blockType->getPointeeType(); | 
|  | // FIXME: data member pointers? | 
|  |  | 
|  | // Dig out the function prototype, if there is one. | 
|  | Proto = type->getAs<FunctionProtoType>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in non-null argument information from the nullability | 
|  | // information on the parameter types (if we have them). | 
|  | if (Proto) { | 
|  | unsigned Index = 0; | 
|  | for (auto paramType : Proto->getParamTypes()) { | 
|  | if (isNonNullType(S.Context, paramType)) { | 
|  | if (NonNullArgs.empty()) | 
|  | NonNullArgs.resize(Args.size()); | 
|  |  | 
|  | NonNullArgs.set(Index); | 
|  | } | 
|  |  | 
|  | ++Index; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for non-null arguments. | 
|  | for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); | 
|  | ArgIndex != ArgIndexEnd; ++ArgIndex) { | 
|  | if (NonNullArgs[ArgIndex]) | 
|  | CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Handles the checks for format strings, non-POD arguments to vararg | 
|  | /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if | 
|  | /// attributes. | 
|  | void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, | 
|  | const Expr *ThisArg, ArrayRef<const Expr *> Args, | 
|  | bool IsMemberFunction, SourceLocation Loc, | 
|  | SourceRange Range, VariadicCallType CallType) { | 
|  | // FIXME: We should check as much as we can in the template definition. | 
|  | if (CurContext->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | // Printf and scanf checking. | 
|  | llvm::SmallBitVector CheckedVarArgs; | 
|  | if (FDecl) { | 
|  | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { | 
|  | // Only create vector if there are format attributes. | 
|  | CheckedVarArgs.resize(Args.size()); | 
|  |  | 
|  | CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, | 
|  | CheckedVarArgs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Refuse POD arguments that weren't caught by the format string | 
|  | // checks above. | 
|  | auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); | 
|  | if (CallType != VariadicDoesNotApply && | 
|  | (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { | 
|  | unsigned NumParams = Proto ? Proto->getNumParams() | 
|  | : FDecl && isa<FunctionDecl>(FDecl) | 
|  | ? cast<FunctionDecl>(FDecl)->getNumParams() | 
|  | : FDecl && isa<ObjCMethodDecl>(FDecl) | 
|  | ? cast<ObjCMethodDecl>(FDecl)->param_size() | 
|  | : 0; | 
|  |  | 
|  | for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { | 
|  | // Args[ArgIdx] can be null in malformed code. | 
|  | if (const Expr *Arg = Args[ArgIdx]) { | 
|  | if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) | 
|  | checkVariadicArgument(Arg, CallType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FDecl || Proto) { | 
|  | CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); | 
|  |  | 
|  | // Type safety checking. | 
|  | if (FDecl) { | 
|  | for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) | 
|  | CheckArgumentWithTypeTag(I, Args, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FD) | 
|  | diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); | 
|  | } | 
|  |  | 
|  | /// CheckConstructorCall - Check a constructor call for correctness and safety | 
|  | /// properties not enforced by the C type system. | 
|  | void Sema::CheckConstructorCall(FunctionDecl *FDecl, | 
|  | ArrayRef<const Expr *> Args, | 
|  | const FunctionProtoType *Proto, | 
|  | SourceLocation Loc) { | 
|  | VariadicCallType CallType = | 
|  | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | 
|  | checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, | 
|  | Loc, SourceRange(), CallType); | 
|  | } | 
|  |  | 
|  | /// CheckFunctionCall - Check a direct function call for various correctness | 
|  | /// and safety properties not strictly enforced by the C type system. | 
|  | bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, | 
|  | const FunctionProtoType *Proto) { | 
|  | bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && | 
|  | isa<CXXMethodDecl>(FDecl); | 
|  | bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || | 
|  | IsMemberOperatorCall; | 
|  | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, | 
|  | TheCall->getCallee()); | 
|  | Expr** Args = TheCall->getArgs(); | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  |  | 
|  | Expr *ImplicitThis = nullptr; | 
|  | if (IsMemberOperatorCall) { | 
|  | // If this is a call to a member operator, hide the first argument | 
|  | // from checkCall. | 
|  | // FIXME: Our choice of AST representation here is less than ideal. | 
|  | ImplicitThis = Args[0]; | 
|  | ++Args; | 
|  | --NumArgs; | 
|  | } else if (IsMemberFunction) | 
|  | ImplicitThis = | 
|  | cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); | 
|  |  | 
|  | checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), | 
|  | IsMemberFunction, TheCall->getRParenLoc(), | 
|  | TheCall->getCallee()->getSourceRange(), CallType); | 
|  |  | 
|  | IdentifierInfo *FnInfo = FDecl->getIdentifier(); | 
|  | // None of the checks below are needed for functions that don't have | 
|  | // simple names (e.g., C++ conversion functions). | 
|  | if (!FnInfo) | 
|  | return false; | 
|  |  | 
|  | CheckAbsoluteValueFunction(TheCall, FDecl); | 
|  | CheckMaxUnsignedZero(TheCall, FDecl); | 
|  |  | 
|  | if (getLangOpts().ObjC) | 
|  | DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); | 
|  |  | 
|  | unsigned CMId = FDecl->getMemoryFunctionKind(); | 
|  | if (CMId == 0) | 
|  | return false; | 
|  |  | 
|  | // Handle memory setting and copying functions. | 
|  | if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) | 
|  | CheckStrlcpycatArguments(TheCall, FnInfo); | 
|  | else if (CMId == Builtin::BIstrncat) | 
|  | CheckStrncatArguments(TheCall, FnInfo); | 
|  | else | 
|  | CheckMemaccessArguments(TheCall, CMId, FnInfo); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, | 
|  | ArrayRef<const Expr *> Args) { | 
|  | VariadicCallType CallType = | 
|  | Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; | 
|  |  | 
|  | checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, | 
|  | /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), | 
|  | CallType); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, | 
|  | const FunctionProtoType *Proto) { | 
|  | QualType Ty; | 
|  | if (const auto *V = dyn_cast<VarDecl>(NDecl)) | 
|  | Ty = V->getType().getNonReferenceType(); | 
|  | else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) | 
|  | Ty = F->getType().getNonReferenceType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && | 
|  | !Ty->isFunctionProtoType()) | 
|  | return false; | 
|  |  | 
|  | VariadicCallType CallType; | 
|  | if (!Proto || !Proto->isVariadic()) { | 
|  | CallType = VariadicDoesNotApply; | 
|  | } else if (Ty->isBlockPointerType()) { | 
|  | CallType = VariadicBlock; | 
|  | } else { // Ty->isFunctionPointerType() | 
|  | CallType = VariadicFunction; | 
|  | } | 
|  |  | 
|  | checkCall(NDecl, Proto, /*ThisArg=*/nullptr, | 
|  | llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), | 
|  | /*IsMemberFunction=*/false, TheCall->getRParenLoc(), | 
|  | TheCall->getCallee()->getSourceRange(), CallType); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks function calls when a FunctionDecl or a NamedDecl is not available, | 
|  | /// such as function pointers returned from functions. | 
|  | bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { | 
|  | VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, | 
|  | TheCall->getCallee()); | 
|  | checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, | 
|  | llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), | 
|  | /*IsMemberFunction=*/false, TheCall->getRParenLoc(), | 
|  | TheCall->getCallee()->getSourceRange(), CallType); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { | 
|  | if (!llvm::isValidAtomicOrderingCABI(Ordering)) | 
|  | return false; | 
|  |  | 
|  | auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; | 
|  | switch (Op) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | llvm_unreachable("There is no ordering argument for an init"); | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | case AtomicExpr::AO__atomic_load: | 
|  | return OrderingCABI != llvm::AtomicOrderingCABI::release && | 
|  | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | case AtomicExpr::AO__atomic_store_n: | 
|  | return OrderingCABI != llvm::AtomicOrderingCABI::consume && | 
|  | OrderingCABI != llvm::AtomicOrderingCABI::acquire && | 
|  | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, | 
|  | AtomicExpr::AtomicOp Op) { | 
|  | CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); | 
|  | DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); | 
|  |  | 
|  | // All the non-OpenCL operations take one of the following forms. | 
|  | // The OpenCL operations take the __c11 forms with one extra argument for | 
|  | // synchronization scope. | 
|  | enum { | 
|  | // C    __c11_atomic_init(A *, C) | 
|  | Init, | 
|  |  | 
|  | // C    __c11_atomic_load(A *, int) | 
|  | Load, | 
|  |  | 
|  | // void __atomic_load(A *, CP, int) | 
|  | LoadCopy, | 
|  |  | 
|  | // void __atomic_store(A *, CP, int) | 
|  | Copy, | 
|  |  | 
|  | // C    __c11_atomic_add(A *, M, int) | 
|  | Arithmetic, | 
|  |  | 
|  | // C    __atomic_exchange_n(A *, CP, int) | 
|  | Xchg, | 
|  |  | 
|  | // void __atomic_exchange(A *, C *, CP, int) | 
|  | GNUXchg, | 
|  |  | 
|  | // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) | 
|  | C11CmpXchg, | 
|  |  | 
|  | // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) | 
|  | GNUCmpXchg | 
|  | } Form = Init; | 
|  |  | 
|  | const unsigned NumForm = GNUCmpXchg + 1; | 
|  | const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; | 
|  | const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; | 
|  | // where: | 
|  | //   C is an appropriate type, | 
|  | //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, | 
|  | //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, | 
|  | //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and | 
|  | //   the int parameters are for orderings. | 
|  |  | 
|  | static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm | 
|  | && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, | 
|  | "need to update code for modified forms"); | 
|  | static_assert(AtomicExpr::AO__c11_atomic_init == 0 && | 
|  | AtomicExpr::AO__c11_atomic_fetch_xor + 1 == | 
|  | AtomicExpr::AO__atomic_load, | 
|  | "need to update code for modified C11 atomics"); | 
|  | bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && | 
|  | Op <= AtomicExpr::AO__opencl_atomic_fetch_max; | 
|  | bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && | 
|  | Op <= AtomicExpr::AO__c11_atomic_fetch_xor) || | 
|  | IsOpenCL; | 
|  | bool IsN = Op == AtomicExpr::AO__atomic_load_n || | 
|  | Op == AtomicExpr::AO__atomic_store_n || | 
|  | Op == AtomicExpr::AO__atomic_exchange_n || | 
|  | Op == AtomicExpr::AO__atomic_compare_exchange_n; | 
|  | bool IsAddSub = false; | 
|  | bool IsMinMax = false; | 
|  |  | 
|  | switch (Op) { | 
|  | case AtomicExpr::AO__c11_atomic_init: | 
|  | case AtomicExpr::AO__opencl_atomic_init: | 
|  | Form = Init; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_load: | 
|  | case AtomicExpr::AO__opencl_atomic_load: | 
|  | case AtomicExpr::AO__atomic_load_n: | 
|  | Form = Load; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_load: | 
|  | Form = LoadCopy; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_store: | 
|  | case AtomicExpr::AO__opencl_atomic_store: | 
|  | case AtomicExpr::AO__atomic_store: | 
|  | case AtomicExpr::AO__atomic_store_n: | 
|  | Form = Copy; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_fetch_add: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_add: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_sub: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_min: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_max: | 
|  | case AtomicExpr::AO__atomic_fetch_add: | 
|  | case AtomicExpr::AO__atomic_fetch_sub: | 
|  | case AtomicExpr::AO__atomic_add_fetch: | 
|  | case AtomicExpr::AO__atomic_sub_fetch: | 
|  | IsAddSub = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case AtomicExpr::AO__c11_atomic_fetch_and: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_or: | 
|  | case AtomicExpr::AO__c11_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_and: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_or: | 
|  | case AtomicExpr::AO__opencl_atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_fetch_and: | 
|  | case AtomicExpr::AO__atomic_fetch_or: | 
|  | case AtomicExpr::AO__atomic_fetch_xor: | 
|  | case AtomicExpr::AO__atomic_fetch_nand: | 
|  | case AtomicExpr::AO__atomic_and_fetch: | 
|  | case AtomicExpr::AO__atomic_or_fetch: | 
|  | case AtomicExpr::AO__atomic_xor_fetch: | 
|  | case AtomicExpr::AO__atomic_nand_fetch: | 
|  | Form = Arithmetic; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_fetch_min: | 
|  | case AtomicExpr::AO__atomic_fetch_max: | 
|  | IsMinMax = true; | 
|  | Form = Arithmetic; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_exchange: | 
|  | case AtomicExpr::AO__opencl_atomic_exchange: | 
|  | case AtomicExpr::AO__atomic_exchange_n: | 
|  | Form = Xchg; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_exchange: | 
|  | Form = GNUXchg; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: | 
|  | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: | 
|  | Form = C11CmpXchg; | 
|  | break; | 
|  |  | 
|  | case AtomicExpr::AO__atomic_compare_exchange: | 
|  | case AtomicExpr::AO__atomic_compare_exchange_n: | 
|  | Form = GNUCmpXchg; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned AdjustedNumArgs = NumArgs[Form]; | 
|  | if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) | 
|  | ++AdjustedNumArgs; | 
|  | // Check we have the right number of arguments. | 
|  | if (TheCall->getNumArgs() < AdjustedNumArgs) { | 
|  | Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) | 
|  | << 0 << AdjustedNumArgs << TheCall->getNumArgs() | 
|  | << TheCall->getCallee()->getSourceRange(); | 
|  | return ExprError(); | 
|  | } else if (TheCall->getNumArgs() > AdjustedNumArgs) { | 
|  | Diag(TheCall->getArg(AdjustedNumArgs)->getBeginLoc(), | 
|  | diag::err_typecheck_call_too_many_args) | 
|  | << 0 << AdjustedNumArgs << TheCall->getNumArgs() | 
|  | << TheCall->getCallee()->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Inspect the first argument of the atomic operation. | 
|  | Expr *Ptr = TheCall->getArg(0); | 
|  | ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); | 
|  | if (ConvertedPtr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | Ptr = ConvertedPtr.get(); | 
|  | const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); | 
|  | if (!pointerType) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) | 
|  | << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // For a __c11 builtin, this should be a pointer to an _Atomic type. | 
|  | QualType AtomTy = pointerType->getPointeeType(); // 'A' | 
|  | QualType ValType = AtomTy; // 'C' | 
|  | if (IsC11) { | 
|  | if (!AtomTy->isAtomicType()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic) | 
|  | << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || | 
|  | AtomTy.getAddressSpace() == LangAS::opencl_constant) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_atomic) | 
|  | << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() | 
|  | << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | ValType = AtomTy->getAs<AtomicType>()->getValueType(); | 
|  | } else if (Form != Load && Form != LoadCopy) { | 
|  | if (ValType.isConstQualified()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_non_const_pointer) | 
|  | << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For an arithmetic operation, the implied arithmetic must be well-formed. | 
|  | if (Form == Arithmetic) { | 
|  | // gcc does not enforce these rules for GNU atomics, but we do so for sanity. | 
|  | if (IsAddSub && !ValType->isIntegerType() | 
|  | && !ValType->isPointerType()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr) | 
|  | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | if (IsMinMax) { | 
|  | const BuiltinType *BT = ValType->getAs<BuiltinType>(); | 
|  | if (!BT || (BT->getKind() != BuiltinType::Int && | 
|  | BT->getKind() != BuiltinType::UInt)) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_int32_or_ptr); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | if (!IsAddSub && !IsMinMax && !ValType->isIntegerType()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_bitwise_needs_atomic_int) | 
|  | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  | if (IsC11 && ValType->isPointerType() && | 
|  | RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), | 
|  | diag::err_incomplete_type)) { | 
|  | return ExprError(); | 
|  | } | 
|  | } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { | 
|  | // For __atomic_*_n operations, the value type must be a scalar integral or | 
|  | // pointer type which is 1, 2, 4, 8 or 16 bytes in length. | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_atomic_int_or_ptr) | 
|  | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && | 
|  | !AtomTy->isScalarType()) { | 
|  | // For GNU atomics, require a trivially-copyable type. This is not part of | 
|  | // the GNU atomics specification, but we enforce it for sanity. | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_op_needs_trivial_copy) | 
|  | << Ptr->getType() << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | switch (ValType.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // okay | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | // FIXME: Can this happen? By this point, ValType should be known | 
|  | // to be trivially copyable. | 
|  | Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) | 
|  | << ValType << Ptr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // All atomic operations have an overload which takes a pointer to a volatile | 
|  | // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself | 
|  | // into the result or the other operands. Similarly atomic_load takes a | 
|  | // pointer to a const 'A'. | 
|  | ValType.removeLocalVolatile(); | 
|  | ValType.removeLocalConst(); | 
|  | QualType ResultType = ValType; | 
|  | if (Form == Copy || Form == LoadCopy || Form == GNUXchg || | 
|  | Form == Init) | 
|  | ResultType = Context.VoidTy; | 
|  | else if (Form == C11CmpXchg || Form == GNUCmpXchg) | 
|  | ResultType = Context.BoolTy; | 
|  |  | 
|  | // The type of a parameter passed 'by value'. In the GNU atomics, such | 
|  | // arguments are actually passed as pointers. | 
|  | QualType ByValType = ValType; // 'CP' | 
|  | bool IsPassedByAddress = false; | 
|  | if (!IsC11 && !IsN) { | 
|  | ByValType = Ptr->getType(); | 
|  | IsPassedByAddress = true; | 
|  | } | 
|  |  | 
|  | // The first argument's non-CV pointer type is used to deduce the type of | 
|  | // subsequent arguments, except for: | 
|  | //  - weak flag (always converted to bool) | 
|  | //  - memory order (always converted to int) | 
|  | //  - scope  (always converted to int) | 
|  | for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { | 
|  | QualType Ty; | 
|  | if (i < NumVals[Form] + 1) { | 
|  | switch (i) { | 
|  | case 0: | 
|  | // The first argument is always a pointer. It has a fixed type. | 
|  | // It is always dereferenced, a nullptr is undefined. | 
|  | CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); | 
|  | // Nothing else to do: we already know all we want about this pointer. | 
|  | continue; | 
|  | case 1: | 
|  | // The second argument is the non-atomic operand. For arithmetic, this | 
|  | // is always passed by value, and for a compare_exchange it is always | 
|  | // passed by address. For the rest, GNU uses by-address and C11 uses | 
|  | // by-value. | 
|  | assert(Form != Load); | 
|  | if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) | 
|  | Ty = ValType; | 
|  | else if (Form == Copy || Form == Xchg) { | 
|  | if (IsPassedByAddress) | 
|  | // The value pointer is always dereferenced, a nullptr is undefined. | 
|  | CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); | 
|  | Ty = ByValType; | 
|  | } else if (Form == Arithmetic) | 
|  | Ty = Context.getPointerDiffType(); | 
|  | else { | 
|  | Expr *ValArg = TheCall->getArg(i); | 
|  | // The value pointer is always dereferenced, a nullptr is undefined. | 
|  | CheckNonNullArgument(*this, ValArg, DRE->getBeginLoc()); | 
|  | LangAS AS = LangAS::Default; | 
|  | // Keep address space of non-atomic pointer type. | 
|  | if (const PointerType *PtrTy = | 
|  | ValArg->getType()->getAs<PointerType>()) { | 
|  | AS = PtrTy->getPointeeType().getAddressSpace(); | 
|  | } | 
|  | Ty = Context.getPointerType( | 
|  | Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | // The third argument to compare_exchange / GNU exchange is the desired | 
|  | // value, either by-value (for the C11 and *_n variant) or as a pointer. | 
|  | if (IsPassedByAddress) | 
|  | CheckNonNullArgument(*this, TheCall->getArg(i), DRE->getBeginLoc()); | 
|  | Ty = ByValType; | 
|  | break; | 
|  | case 3: | 
|  | // The fourth argument to GNU compare_exchange is a 'weak' flag. | 
|  | Ty = Context.BoolTy; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // The order(s) and scope are always converted to int. | 
|  | Ty = Context.IntTy; | 
|  | } | 
|  |  | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(Context, Ty, false); | 
|  | ExprResult Arg = TheCall->getArg(i); | 
|  | Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(i, Arg.get()); | 
|  | } | 
|  |  | 
|  | // Permute the arguments into a 'consistent' order. | 
|  | SmallVector<Expr*, 5> SubExprs; | 
|  | SubExprs.push_back(Ptr); | 
|  | switch (Form) { | 
|  | case Init: | 
|  | // Note, AtomicExpr::getVal1() has a special case for this atomic. | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Val1 | 
|  | break; | 
|  | case Load: | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Order | 
|  | break; | 
|  | case LoadCopy: | 
|  | case Copy: | 
|  | case Arithmetic: | 
|  | case Xchg: | 
|  | SubExprs.push_back(TheCall->getArg(2)); // Order | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Val1 | 
|  | break; | 
|  | case GNUXchg: | 
|  | // Note, AtomicExpr::getVal2() has a special case for this atomic. | 
|  | SubExprs.push_back(TheCall->getArg(3)); // Order | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Val1 | 
|  | SubExprs.push_back(TheCall->getArg(2)); // Val2 | 
|  | break; | 
|  | case C11CmpXchg: | 
|  | SubExprs.push_back(TheCall->getArg(3)); // Order | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Val1 | 
|  | SubExprs.push_back(TheCall->getArg(4)); // OrderFail | 
|  | SubExprs.push_back(TheCall->getArg(2)); // Val2 | 
|  | break; | 
|  | case GNUCmpXchg: | 
|  | SubExprs.push_back(TheCall->getArg(4)); // Order | 
|  | SubExprs.push_back(TheCall->getArg(1)); // Val1 | 
|  | SubExprs.push_back(TheCall->getArg(5)); // OrderFail | 
|  | SubExprs.push_back(TheCall->getArg(2)); // Val2 | 
|  | SubExprs.push_back(TheCall->getArg(3)); // Weak | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SubExprs.size() >= 2 && Form != Init) { | 
|  | llvm::APSInt Result(32); | 
|  | if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && | 
|  | !isValidOrderingForOp(Result.getSExtValue(), Op)) | 
|  | Diag(SubExprs[1]->getBeginLoc(), | 
|  | diag::warn_atomic_op_has_invalid_memory_order) | 
|  | << SubExprs[1]->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { | 
|  | auto *Scope = TheCall->getArg(TheCall->getNumArgs() - 1); | 
|  | llvm::APSInt Result(32); | 
|  | if (Scope->isIntegerConstantExpr(Result, Context) && | 
|  | !ScopeModel->isValid(Result.getZExtValue())) { | 
|  | Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) | 
|  | << Scope->getSourceRange(); | 
|  | } | 
|  | SubExprs.push_back(Scope); | 
|  | } | 
|  |  | 
|  | AtomicExpr *AE = | 
|  | new (Context) AtomicExpr(TheCall->getCallee()->getBeginLoc(), SubExprs, | 
|  | ResultType, Op, TheCall->getRParenLoc()); | 
|  |  | 
|  | if ((Op == AtomicExpr::AO__c11_atomic_load || | 
|  | Op == AtomicExpr::AO__c11_atomic_store || | 
|  | Op == AtomicExpr::AO__opencl_atomic_load || | 
|  | Op == AtomicExpr::AO__opencl_atomic_store ) && | 
|  | Context.AtomicUsesUnsupportedLibcall(AE)) | 
|  | Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) | 
|  | << ((Op == AtomicExpr::AO__c11_atomic_load || | 
|  | Op == AtomicExpr::AO__opencl_atomic_load) | 
|  | ? 0 | 
|  | : 1); | 
|  |  | 
|  | return AE; | 
|  | } | 
|  |  | 
|  | /// checkBuiltinArgument - Given a call to a builtin function, perform | 
|  | /// normal type-checking on the given argument, updating the call in | 
|  | /// place.  This is useful when a builtin function requires custom | 
|  | /// type-checking for some of its arguments but not necessarily all of | 
|  | /// them. | 
|  | /// | 
|  | /// Returns true on error. | 
|  | static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { | 
|  | FunctionDecl *Fn = E->getDirectCallee(); | 
|  | assert(Fn && "builtin call without direct callee!"); | 
|  |  | 
|  | ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, Param); | 
|  |  | 
|  | ExprResult Arg = E->getArg(0); | 
|  | Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E->setArg(ArgIndex, Arg.get()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// We have a call to a function like __sync_fetch_and_add, which is an | 
|  | /// overloaded function based on the pointer type of its first argument. | 
|  | /// The main ActOnCallExpr routines have already promoted the types of | 
|  | /// arguments because all of these calls are prototyped as void(...). | 
|  | /// | 
|  | /// This function goes through and does final semantic checking for these | 
|  | /// builtins, as well as generating any warnings. | 
|  | ExprResult | 
|  | Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { | 
|  | CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); | 
|  | Expr *Callee = TheCall->getCallee(); | 
|  | DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); | 
|  | FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); | 
|  |  | 
|  | // Ensure that we have at least one argument to do type inference from. | 
|  | if (TheCall->getNumArgs() < 1) { | 
|  | Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Inspect the first argument of the atomic builtin.  This should always be | 
|  | // a pointer type, whose element is an integral scalar or pointer type. | 
|  | // Because it is a pointer type, we don't have to worry about any implicit | 
|  | // casts here. | 
|  | // FIXME: We don't allow floating point scalars as input. | 
|  | Expr *FirstArg = TheCall->getArg(0); | 
|  | ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); | 
|  | if (FirstArgResult.isInvalid()) | 
|  | return ExprError(); | 
|  | FirstArg = FirstArgResult.get(); | 
|  | TheCall->setArg(0, FirstArg); | 
|  |  | 
|  | const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); | 
|  | if (!pointerType) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) | 
|  | << FirstArg->getType() << FirstArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | QualType ValType = pointerType->getPointeeType(); | 
|  | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && | 
|  | !ValType->isBlockPointerType()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) | 
|  | << FirstArg->getType() << FirstArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (ValType.isConstQualified()) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) | 
|  | << FirstArg->getType() << FirstArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | switch (ValType.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | // okay | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) | 
|  | << ValType << FirstArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Strip any qualifiers off ValType. | 
|  | ValType = ValType.getUnqualifiedType(); | 
|  |  | 
|  | // The majority of builtins return a value, but a few have special return | 
|  | // types, so allow them to override appropriately below. | 
|  | QualType ResultType = ValType; | 
|  |  | 
|  | // We need to figure out which concrete builtin this maps onto.  For example, | 
|  | // __sync_fetch_and_add with a 2 byte object turns into | 
|  | // __sync_fetch_and_add_2. | 
|  | #define BUILTIN_ROW(x) \ | 
|  | { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ | 
|  | Builtin::BI##x##_8, Builtin::BI##x##_16 } | 
|  |  | 
|  | static const unsigned BuiltinIndices[][5] = { | 
|  | BUILTIN_ROW(__sync_fetch_and_add), | 
|  | BUILTIN_ROW(__sync_fetch_and_sub), | 
|  | BUILTIN_ROW(__sync_fetch_and_or), | 
|  | BUILTIN_ROW(__sync_fetch_and_and), | 
|  | BUILTIN_ROW(__sync_fetch_and_xor), | 
|  | BUILTIN_ROW(__sync_fetch_and_nand), | 
|  |  | 
|  | BUILTIN_ROW(__sync_add_and_fetch), | 
|  | BUILTIN_ROW(__sync_sub_and_fetch), | 
|  | BUILTIN_ROW(__sync_and_and_fetch), | 
|  | BUILTIN_ROW(__sync_or_and_fetch), | 
|  | BUILTIN_ROW(__sync_xor_and_fetch), | 
|  | BUILTIN_ROW(__sync_nand_and_fetch), | 
|  |  | 
|  | BUILTIN_ROW(__sync_val_compare_and_swap), | 
|  | BUILTIN_ROW(__sync_bool_compare_and_swap), | 
|  | BUILTIN_ROW(__sync_lock_test_and_set), | 
|  | BUILTIN_ROW(__sync_lock_release), | 
|  | BUILTIN_ROW(__sync_swap) | 
|  | }; | 
|  | #undef BUILTIN_ROW | 
|  |  | 
|  | // Determine the index of the size. | 
|  | unsigned SizeIndex; | 
|  | switch (Context.getTypeSizeInChars(ValType).getQuantity()) { | 
|  | case 1: SizeIndex = 0; break; | 
|  | case 2: SizeIndex = 1; break; | 
|  | case 4: SizeIndex = 2; break; | 
|  | case 8: SizeIndex = 3; break; | 
|  | case 16: SizeIndex = 4; break; | 
|  | default: | 
|  | Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) | 
|  | << FirstArg->getType() << FirstArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Each of these builtins has one pointer argument, followed by some number of | 
|  | // values (0, 1 or 2) followed by a potentially empty varags list of stuff | 
|  | // that we ignore.  Find out which row of BuiltinIndices to read from as well | 
|  | // as the number of fixed args. | 
|  | unsigned BuiltinID = FDecl->getBuiltinID(); | 
|  | unsigned BuiltinIndex, NumFixed = 1; | 
|  | bool WarnAboutSemanticsChange = false; | 
|  | switch (BuiltinID) { | 
|  | default: llvm_unreachable("Unknown overloaded atomic builtin!"); | 
|  | case Builtin::BI__sync_fetch_and_add: | 
|  | case Builtin::BI__sync_fetch_and_add_1: | 
|  | case Builtin::BI__sync_fetch_and_add_2: | 
|  | case Builtin::BI__sync_fetch_and_add_4: | 
|  | case Builtin::BI__sync_fetch_and_add_8: | 
|  | case Builtin::BI__sync_fetch_and_add_16: | 
|  | BuiltinIndex = 0; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_fetch_and_sub: | 
|  | case Builtin::BI__sync_fetch_and_sub_1: | 
|  | case Builtin::BI__sync_fetch_and_sub_2: | 
|  | case Builtin::BI__sync_fetch_and_sub_4: | 
|  | case Builtin::BI__sync_fetch_and_sub_8: | 
|  | case Builtin::BI__sync_fetch_and_sub_16: | 
|  | BuiltinIndex = 1; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_fetch_and_or: | 
|  | case Builtin::BI__sync_fetch_and_or_1: | 
|  | case Builtin::BI__sync_fetch_and_or_2: | 
|  | case Builtin::BI__sync_fetch_and_or_4: | 
|  | case Builtin::BI__sync_fetch_and_or_8: | 
|  | case Builtin::BI__sync_fetch_and_or_16: | 
|  | BuiltinIndex = 2; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_fetch_and_and: | 
|  | case Builtin::BI__sync_fetch_and_and_1: | 
|  | case Builtin::BI__sync_fetch_and_and_2: | 
|  | case Builtin::BI__sync_fetch_and_and_4: | 
|  | case Builtin::BI__sync_fetch_and_and_8: | 
|  | case Builtin::BI__sync_fetch_and_and_16: | 
|  | BuiltinIndex = 3; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_fetch_and_xor: | 
|  | case Builtin::BI__sync_fetch_and_xor_1: | 
|  | case Builtin::BI__sync_fetch_and_xor_2: | 
|  | case Builtin::BI__sync_fetch_and_xor_4: | 
|  | case Builtin::BI__sync_fetch_and_xor_8: | 
|  | case Builtin::BI__sync_fetch_and_xor_16: | 
|  | BuiltinIndex = 4; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_fetch_and_nand: | 
|  | case Builtin::BI__sync_fetch_and_nand_1: | 
|  | case Builtin::BI__sync_fetch_and_nand_2: | 
|  | case Builtin::BI__sync_fetch_and_nand_4: | 
|  | case Builtin::BI__sync_fetch_and_nand_8: | 
|  | case Builtin::BI__sync_fetch_and_nand_16: | 
|  | BuiltinIndex = 5; | 
|  | WarnAboutSemanticsChange = true; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_add_and_fetch: | 
|  | case Builtin::BI__sync_add_and_fetch_1: | 
|  | case Builtin::BI__sync_add_and_fetch_2: | 
|  | case Builtin::BI__sync_add_and_fetch_4: | 
|  | case Builtin::BI__sync_add_and_fetch_8: | 
|  | case Builtin::BI__sync_add_and_fetch_16: | 
|  | BuiltinIndex = 6; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_sub_and_fetch: | 
|  | case Builtin::BI__sync_sub_and_fetch_1: | 
|  | case Builtin::BI__sync_sub_and_fetch_2: | 
|  | case Builtin::BI__sync_sub_and_fetch_4: | 
|  | case Builtin::BI__sync_sub_and_fetch_8: | 
|  | case Builtin::BI__sync_sub_and_fetch_16: | 
|  | BuiltinIndex = 7; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_and_and_fetch: | 
|  | case Builtin::BI__sync_and_and_fetch_1: | 
|  | case Builtin::BI__sync_and_and_fetch_2: | 
|  | case Builtin::BI__sync_and_and_fetch_4: | 
|  | case Builtin::BI__sync_and_and_fetch_8: | 
|  | case Builtin::BI__sync_and_and_fetch_16: | 
|  | BuiltinIndex = 8; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_or_and_fetch: | 
|  | case Builtin::BI__sync_or_and_fetch_1: | 
|  | case Builtin::BI__sync_or_and_fetch_2: | 
|  | case Builtin::BI__sync_or_and_fetch_4: | 
|  | case Builtin::BI__sync_or_and_fetch_8: | 
|  | case Builtin::BI__sync_or_and_fetch_16: | 
|  | BuiltinIndex = 9; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_xor_and_fetch: | 
|  | case Builtin::BI__sync_xor_and_fetch_1: | 
|  | case Builtin::BI__sync_xor_and_fetch_2: | 
|  | case Builtin::BI__sync_xor_and_fetch_4: | 
|  | case Builtin::BI__sync_xor_and_fetch_8: | 
|  | case Builtin::BI__sync_xor_and_fetch_16: | 
|  | BuiltinIndex = 10; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_nand_and_fetch: | 
|  | case Builtin::BI__sync_nand_and_fetch_1: | 
|  | case Builtin::BI__sync_nand_and_fetch_2: | 
|  | case Builtin::BI__sync_nand_and_fetch_4: | 
|  | case Builtin::BI__sync_nand_and_fetch_8: | 
|  | case Builtin::BI__sync_nand_and_fetch_16: | 
|  | BuiltinIndex = 11; | 
|  | WarnAboutSemanticsChange = true; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_val_compare_and_swap: | 
|  | case Builtin::BI__sync_val_compare_and_swap_1: | 
|  | case Builtin::BI__sync_val_compare_and_swap_2: | 
|  | case Builtin::BI__sync_val_compare_and_swap_4: | 
|  | case Builtin::BI__sync_val_compare_and_swap_8: | 
|  | case Builtin::BI__sync_val_compare_and_swap_16: | 
|  | BuiltinIndex = 12; | 
|  | NumFixed = 2; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_bool_compare_and_swap: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_1: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_2: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_4: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_8: | 
|  | case Builtin::BI__sync_bool_compare_and_swap_16: | 
|  | BuiltinIndex = 13; | 
|  | NumFixed = 2; | 
|  | ResultType = Context.BoolTy; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_lock_test_and_set: | 
|  | case Builtin::BI__sync_lock_test_and_set_1: | 
|  | case Builtin::BI__sync_lock_test_and_set_2: | 
|  | case Builtin::BI__sync_lock_test_and_set_4: | 
|  | case Builtin::BI__sync_lock_test_and_set_8: | 
|  | case Builtin::BI__sync_lock_test_and_set_16: | 
|  | BuiltinIndex = 14; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_lock_release: | 
|  | case Builtin::BI__sync_lock_release_1: | 
|  | case Builtin::BI__sync_lock_release_2: | 
|  | case Builtin::BI__sync_lock_release_4: | 
|  | case Builtin::BI__sync_lock_release_8: | 
|  | case Builtin::BI__sync_lock_release_16: | 
|  | BuiltinIndex = 15; | 
|  | NumFixed = 0; | 
|  | ResultType = Context.VoidTy; | 
|  | break; | 
|  |  | 
|  | case Builtin::BI__sync_swap: | 
|  | case Builtin::BI__sync_swap_1: | 
|  | case Builtin::BI__sync_swap_2: | 
|  | case Builtin::BI__sync_swap_4: | 
|  | case Builtin::BI__sync_swap_8: | 
|  | case Builtin::BI__sync_swap_16: | 
|  | BuiltinIndex = 16; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Now that we know how many fixed arguments we expect, first check that we | 
|  | // have at least that many. | 
|  | if (TheCall->getNumArgs() < 1+NumFixed) { | 
|  | Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 << 1 + NumFixed << TheCall->getNumArgs() | 
|  | << Callee->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) | 
|  | << Callee->getSourceRange(); | 
|  |  | 
|  | if (WarnAboutSemanticsChange) { | 
|  | Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) | 
|  | << Callee->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Get the decl for the concrete builtin from this, we can tell what the | 
|  | // concrete integer type we should convert to is. | 
|  | unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; | 
|  | const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); | 
|  | FunctionDecl *NewBuiltinDecl; | 
|  | if (NewBuiltinID == BuiltinID) | 
|  | NewBuiltinDecl = FDecl; | 
|  | else { | 
|  | // Perform builtin lookup to avoid redeclaring it. | 
|  | DeclarationName DN(&Context.Idents.get(NewBuiltinName)); | 
|  | LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); | 
|  | LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); | 
|  | assert(Res.getFoundDecl()); | 
|  | NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); | 
|  | if (!NewBuiltinDecl) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // The first argument --- the pointer --- has a fixed type; we | 
|  | // deduce the types of the rest of the arguments accordingly.  Walk | 
|  | // the remaining arguments, converting them to the deduced value type. | 
|  | for (unsigned i = 0; i != NumFixed; ++i) { | 
|  | ExprResult Arg = TheCall->getArg(i+1); | 
|  |  | 
|  | // GCC does an implicit conversion to the pointer or integer ValType.  This | 
|  | // can fail in some cases (1i -> int**), check for this error case now. | 
|  | // Initialize the argument. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | 
|  | ValType, /*consume*/ false); | 
|  | Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Okay, we have something that *can* be converted to the right type.  Check | 
|  | // to see if there is a potentially weird extension going on here.  This can | 
|  | // happen when you do an atomic operation on something like an char* and | 
|  | // pass in 42.  The 42 gets converted to char.  This is even more strange | 
|  | // for things like 45.123 -> char, etc. | 
|  | // FIXME: Do this check. | 
|  | TheCall->setArg(i+1, Arg.get()); | 
|  | } | 
|  |  | 
|  | // Create a new DeclRefExpr to refer to the new decl. | 
|  | DeclRefExpr* NewDRE = DeclRefExpr::Create( | 
|  | Context, | 
|  | DRE->getQualifierLoc(), | 
|  | SourceLocation(), | 
|  | NewBuiltinDecl, | 
|  | /*enclosing*/ false, | 
|  | DRE->getLocation(), | 
|  | Context.BuiltinFnTy, | 
|  | DRE->getValueKind()); | 
|  |  | 
|  | // Set the callee in the CallExpr. | 
|  | // FIXME: This loses syntactic information. | 
|  | QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); | 
|  | ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, | 
|  | CK_BuiltinFnToFnPtr); | 
|  | TheCall->setCallee(PromotedCall.get()); | 
|  |  | 
|  | // Change the result type of the call to match the original value type. This | 
|  | // is arbitrary, but the codegen for these builtins ins design to handle it | 
|  | // gracefully. | 
|  | TheCall->setType(ResultType); | 
|  |  | 
|  | return TheCallResult; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinNontemporalOverloaded - We have a call to | 
|  | /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an | 
|  | /// overloaded function based on the pointer type of its last argument. | 
|  | /// | 
|  | /// This function goes through and does final semantic checking for these | 
|  | /// builtins. | 
|  | ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { | 
|  | CallExpr *TheCall = (CallExpr *)TheCallResult.get(); | 
|  | DeclRefExpr *DRE = | 
|  | cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); | 
|  | FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); | 
|  | unsigned BuiltinID = FDecl->getBuiltinID(); | 
|  | assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || | 
|  | BuiltinID == Builtin::BI__builtin_nontemporal_load) && | 
|  | "Unexpected nontemporal load/store builtin!"); | 
|  | bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; | 
|  | unsigned numArgs = isStore ? 2 : 1; | 
|  |  | 
|  | // Ensure that we have the proper number of arguments. | 
|  | if (checkArgCount(*this, TheCall, numArgs)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Inspect the last argument of the nontemporal builtin.  This should always | 
|  | // be a pointer type, from which we imply the type of the memory access. | 
|  | // Because it is a pointer type, we don't have to worry about any implicit | 
|  | // casts here. | 
|  | Expr *PointerArg = TheCall->getArg(numArgs - 1); | 
|  | ExprResult PointerArgResult = | 
|  | DefaultFunctionArrayLvalueConversion(PointerArg); | 
|  |  | 
|  | if (PointerArgResult.isInvalid()) | 
|  | return ExprError(); | 
|  | PointerArg = PointerArgResult.get(); | 
|  | TheCall->setArg(numArgs - 1, PointerArg); | 
|  |  | 
|  | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); | 
|  | if (!pointerType) { | 
|  | Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) | 
|  | << PointerArg->getType() << PointerArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | QualType ValType = pointerType->getPointeeType(); | 
|  |  | 
|  | // Strip any qualifiers off ValType. | 
|  | ValType = ValType.getUnqualifiedType(); | 
|  | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && | 
|  | !ValType->isBlockPointerType() && !ValType->isFloatingType() && | 
|  | !ValType->isVectorType()) { | 
|  | Diag(DRE->getBeginLoc(), | 
|  | diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) | 
|  | << PointerArg->getType() << PointerArg->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!isStore) { | 
|  | TheCall->setType(ValType); | 
|  | return TheCallResult; | 
|  | } | 
|  |  | 
|  | ExprResult ValArg = TheCall->getArg(0); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | Context, ValType, /*consume*/ false); | 
|  | ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); | 
|  | if (ValArg.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | TheCall->setArg(0, ValArg.get()); | 
|  | TheCall->setType(Context.VoidTy); | 
|  | return TheCallResult; | 
|  | } | 
|  |  | 
|  | /// CheckObjCString - Checks that the argument to the builtin | 
|  | /// CFString constructor is correct | 
|  | /// Note: It might also make sense to do the UTF-16 conversion here (would | 
|  | /// simplify the backend). | 
|  | bool Sema::CheckObjCString(Expr *Arg) { | 
|  | Arg = Arg->IgnoreParenCasts(); | 
|  | StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); | 
|  |  | 
|  | if (!Literal || !Literal->isAscii()) { | 
|  | Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) | 
|  | << Arg->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Literal->containsNonAsciiOrNull()) { | 
|  | StringRef String = Literal->getString(); | 
|  | unsigned NumBytes = String.size(); | 
|  | SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); | 
|  | const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); | 
|  | llvm::UTF16 *ToPtr = &ToBuf[0]; | 
|  |  | 
|  | llvm::ConversionResult Result = | 
|  | llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, | 
|  | ToPtr + NumBytes, llvm::strictConversion); | 
|  | // Check for conversion failure. | 
|  | if (Result != llvm::conversionOK) | 
|  | Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckObjCString - Checks that the format string argument to the os_log() | 
|  | /// and os_trace() functions is correct, and converts it to const char *. | 
|  | ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { | 
|  | Arg = Arg->IgnoreParenCasts(); | 
|  | auto *Literal = dyn_cast<StringLiteral>(Arg); | 
|  | if (!Literal) { | 
|  | if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { | 
|  | Literal = ObjcLiteral->getString(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { | 
|  | return ExprError( | 
|  | Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) | 
|  | << Arg->getSourceRange()); | 
|  | } | 
|  |  | 
|  | ExprResult Result(Literal); | 
|  | QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(Context, ResultTy, false); | 
|  | Result = PerformCopyInitialization(Entity, SourceLocation(), Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Check that the user is calling the appropriate va_start builtin for the | 
|  | /// target and calling convention. | 
|  | static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { | 
|  | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); | 
|  | bool IsX64 = TT.getArch() == llvm::Triple::x86_64; | 
|  | bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64; | 
|  | bool IsWindows = TT.isOSWindows(); | 
|  | bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; | 
|  | if (IsX64 || IsAArch64) { | 
|  | CallingConv CC = CC_C; | 
|  | if (const FunctionDecl *FD = S.getCurFunctionDecl()) | 
|  | CC = FD->getType()->getAs<FunctionType>()->getCallConv(); | 
|  | if (IsMSVAStart) { | 
|  | // Don't allow this in System V ABI functions. | 
|  | if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) | 
|  | return S.Diag(Fn->getBeginLoc(), | 
|  | diag::err_ms_va_start_used_in_sysv_function); | 
|  | } else { | 
|  | // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. | 
|  | // On x64 Windows, don't allow this in System V ABI functions. | 
|  | // (Yes, that means there's no corresponding way to support variadic | 
|  | // System V ABI functions on Windows.) | 
|  | if ((IsWindows && CC == CC_X86_64SysV) || | 
|  | (!IsWindows && CC == CC_Win64)) | 
|  | return S.Diag(Fn->getBeginLoc(), | 
|  | diag::err_va_start_used_in_wrong_abi_function) | 
|  | << !IsWindows; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IsMSVAStart) | 
|  | return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, | 
|  | ParmVarDecl **LastParam = nullptr) { | 
|  | // Determine whether the current function, block, or obj-c method is variadic | 
|  | // and get its parameter list. | 
|  | bool IsVariadic = false; | 
|  | ArrayRef<ParmVarDecl *> Params; | 
|  | DeclContext *Caller = S.CurContext; | 
|  | if (auto *Block = dyn_cast<BlockDecl>(Caller)) { | 
|  | IsVariadic = Block->isVariadic(); | 
|  | Params = Block->parameters(); | 
|  | } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { | 
|  | IsVariadic = FD->isVariadic(); | 
|  | Params = FD->parameters(); | 
|  | } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { | 
|  | IsVariadic = MD->isVariadic(); | 
|  | // FIXME: This isn't correct for methods (results in bogus warning). | 
|  | Params = MD->parameters(); | 
|  | } else if (isa<CapturedDecl>(Caller)) { | 
|  | // We don't support va_start in a CapturedDecl. | 
|  | S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); | 
|  | return true; | 
|  | } else { | 
|  | // This must be some other declcontext that parses exprs. | 
|  | S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!IsVariadic) { | 
|  | S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (LastParam) | 
|  | *LastParam = Params.empty() ? nullptr : Params.back(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' | 
|  | /// for validity.  Emit an error and return true on failure; return false | 
|  | /// on success. | 
|  | bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { | 
|  | Expr *Fn = TheCall->getCallee(); | 
|  |  | 
|  | if (checkVAStartABI(*this, BuiltinID, Fn)) | 
|  | return true; | 
|  |  | 
|  | if (TheCall->getNumArgs() > 2) { | 
|  | Diag(TheCall->getArg(2)->getBeginLoc(), | 
|  | diag::err_typecheck_call_too_many_args) | 
|  | << 0 /*function call*/ << 2 << TheCall->getNumArgs() | 
|  | << Fn->getSourceRange() | 
|  | << SourceRange(TheCall->getArg(2)->getBeginLoc(), | 
|  | (*(TheCall->arg_end() - 1))->getEndLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (TheCall->getNumArgs() < 2) { | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 /*function call*/ << 2 << TheCall->getNumArgs(); | 
|  | } | 
|  |  | 
|  | // Type-check the first argument normally. | 
|  | if (checkBuiltinArgument(*this, TheCall, 0)) | 
|  | return true; | 
|  |  | 
|  | // Check that the current function is variadic, and get its last parameter. | 
|  | ParmVarDecl *LastParam; | 
|  | if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) | 
|  | return true; | 
|  |  | 
|  | // Verify that the second argument to the builtin is the last argument of the | 
|  | // current function or method. | 
|  | bool SecondArgIsLastNamedArgument = false; | 
|  | const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); | 
|  |  | 
|  | // These are valid if SecondArgIsLastNamedArgument is false after the next | 
|  | // block. | 
|  | QualType Type; | 
|  | SourceLocation ParamLoc; | 
|  | bool IsCRegister = false; | 
|  |  | 
|  | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { | 
|  | if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { | 
|  | SecondArgIsLastNamedArgument = PV == LastParam; | 
|  |  | 
|  | Type = PV->getType(); | 
|  | ParamLoc = PV->getLocation(); | 
|  | IsCRegister = | 
|  | PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SecondArgIsLastNamedArgument) | 
|  | Diag(TheCall->getArg(1)->getBeginLoc(), | 
|  | diag::warn_second_arg_of_va_start_not_last_named_param); | 
|  | else if (IsCRegister || Type->isReferenceType() || | 
|  | Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { | 
|  | // Promotable integers are UB, but enumerations need a bit of | 
|  | // extra checking to see what their promotable type actually is. | 
|  | if (!Type->isPromotableIntegerType()) | 
|  | return false; | 
|  | if (!Type->isEnumeralType()) | 
|  | return true; | 
|  | const EnumDecl *ED = Type->getAs<EnumType>()->getDecl(); | 
|  | return !(ED && | 
|  | Context.typesAreCompatible(ED->getPromotionType(), Type)); | 
|  | }()) { | 
|  | unsigned Reason = 0; | 
|  | if (Type->isReferenceType())  Reason = 1; | 
|  | else if (IsCRegister)         Reason = 2; | 
|  | Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; | 
|  | Diag(ParamLoc, diag::note_parameter_type) << Type; | 
|  | } | 
|  |  | 
|  | TheCall->setType(Context.VoidTy); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { | 
|  | // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, | 
|  | //                 const char *named_addr); | 
|  |  | 
|  | Expr *Func = Call->getCallee(); | 
|  |  | 
|  | if (Call->getNumArgs() < 3) | 
|  | return Diag(Call->getEndLoc(), | 
|  | diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 /*function call*/ << 3 << Call->getNumArgs(); | 
|  |  | 
|  | // Type-check the first argument normally. | 
|  | if (checkBuiltinArgument(*this, Call, 0)) | 
|  | return true; | 
|  |  | 
|  | // Check that the current function is variadic. | 
|  | if (checkVAStartIsInVariadicFunction(*this, Func)) | 
|  | return true; | 
|  |  | 
|  | // __va_start on Windows does not validate the parameter qualifiers | 
|  |  | 
|  | const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); | 
|  | const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); | 
|  |  | 
|  | const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); | 
|  | const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); | 
|  |  | 
|  | const QualType &ConstCharPtrTy = | 
|  | Context.getPointerType(Context.CharTy.withConst()); | 
|  | if (!Arg1Ty->isPointerType() || | 
|  | Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) | 
|  | Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ | 
|  | << 0                                      /* qualifier difference */ | 
|  | << 3                                      /* parameter mismatch */ | 
|  | << 2 << Arg1->getType() << ConstCharPtrTy; | 
|  |  | 
|  | const QualType SizeTy = Context.getSizeType(); | 
|  | if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) | 
|  | Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) | 
|  | << Arg2->getType() << SizeTy << 1 /* different class */ | 
|  | << 0                              /* qualifier difference */ | 
|  | << 3                              /* parameter mismatch */ | 
|  | << 3 << Arg2->getType() << SizeTy; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and | 
|  | /// friends.  This is declared to take (...), so we have to check everything. | 
|  | bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { | 
|  | if (TheCall->getNumArgs() < 2) | 
|  | return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) | 
|  | << 0 << 2 << TheCall->getNumArgs() /*function call*/; | 
|  | if (TheCall->getNumArgs() > 2) | 
|  | return Diag(TheCall->getArg(2)->getBeginLoc(), | 
|  | diag::err_typecheck_call_too_many_args) | 
|  | << 0 /*function call*/ << 2 << TheCall->getNumArgs() | 
|  | << SourceRange(TheCall->getArg(2)->getBeginLoc(), | 
|  | (*(TheCall->arg_end() - 1))->getEndLoc()); | 
|  |  | 
|  | ExprResult OrigArg0 = TheCall->getArg(0); | 
|  | ExprResult OrigArg1 = TheCall->getArg(1); | 
|  |  | 
|  | // Do standard promotions between the two arguments, returning their common | 
|  | // type. | 
|  | QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); | 
|  | if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Make sure any conversions are pushed back into the call; this is | 
|  | // type safe since unordered compare builtins are declared as "_Bool | 
|  | // foo(...)". | 
|  | TheCall->setArg(0, OrigArg0.get()); | 
|  | TheCall->setArg(1, OrigArg1.get()); | 
|  |  | 
|  | if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | // If the common type isn't a real floating type, then the arguments were | 
|  | // invalid for this operation. | 
|  | if (Res.isNull() || !Res->isRealFloatingType()) | 
|  | return Diag(OrigArg0.get()->getBeginLoc(), | 
|  | diag::err_typecheck_call_invalid_ordered_compare) | 
|  | << OrigArg0.get()->getType() << OrigArg1.get()->getType() | 
|  | << SourceRange(OrigArg0.get()->getBeginLoc(), | 
|  | OrigArg1.get()->getEndLoc()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like | 
|  | /// __builtin_isnan and friends.  This is declared to take (...), so we have | 
|  | /// to check everything. We expect the last argument to be a floating point | 
|  | /// value. | 
|  | bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { | 
|  | if (TheCall->getNumArgs() < NumArgs) | 
|  | return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) | 
|  | << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; | 
|  | if (TheCall->getNumArgs() > NumArgs) | 
|  | return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), | 
|  | diag::err_typecheck_call_too_many_args) | 
|  | << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() | 
|  | << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), | 
|  | (*(TheCall->arg_end() - 1))->getEndLoc()); | 
|  |  | 
|  | Expr *OrigArg = TheCall->getArg(NumArgs-1); | 
|  |  | 
|  | if (OrigArg->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | // This operation requires a non-_Complex floating-point number. | 
|  | if (!OrigArg->getType()->isRealFloatingType()) | 
|  | return Diag(OrigArg->getBeginLoc(), | 
|  | diag::err_typecheck_call_invalid_unary_fp) | 
|  | << OrigArg->getType() << OrigArg->getSourceRange(); | 
|  |  | 
|  | // If this is an implicit conversion from float -> float, double, or | 
|  | // long double, remove it. | 
|  | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) { | 
|  | // Only remove standard FloatCasts, leaving other casts inplace | 
|  | if (Cast->getCastKind() == CK_FloatingCast) { | 
|  | Expr *CastArg = Cast->getSubExpr(); | 
|  | if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) { | 
|  | assert( | 
|  | (Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) || | 
|  | Cast->getType()->isSpecificBuiltinType(BuiltinType::Float) || | 
|  | Cast->getType()->isSpecificBuiltinType(BuiltinType::LongDouble)) && | 
|  | "promotion from float to either float, double, or long double is " | 
|  | "the only expected cast here"); | 
|  | Cast->setSubExpr(nullptr); | 
|  | TheCall->setArg(NumArgs-1, CastArg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Customized Sema Checking for VSX builtins that have the following signature: | 
|  | // vector [...] builtinName(vector [...], vector [...], const int); | 
|  | // Which takes the same type of vectors (any legal vector type) for the first | 
|  | // two arguments and takes compile time constant for the third argument. | 
|  | // Example builtins are : | 
|  | // vector double vec_xxpermdi(vector double, vector double, int); | 
|  | // vector short vec_xxsldwi(vector short, vector short, int); | 
|  | bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { | 
|  | unsigned ExpectedNumArgs = 3; | 
|  | if (TheCall->getNumArgs() < ExpectedNumArgs) | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() | 
|  | << TheCall->getSourceRange(); | 
|  |  | 
|  | if (TheCall->getNumArgs() > ExpectedNumArgs) | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_many_args_at_most) | 
|  | << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() | 
|  | << TheCall->getSourceRange(); | 
|  |  | 
|  | // Check the third argument is a compile time constant | 
|  | llvm::APSInt Value; | 
|  | if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) | 
|  | return Diag(TheCall->getBeginLoc(), | 
|  | diag::err_vsx_builtin_nonconstant_argument) | 
|  | << 3 /* argument index */ << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(2)->getBeginLoc(), | 
|  | TheCall->getArg(2)->getEndLoc()); | 
|  |  | 
|  | QualType Arg1Ty = TheCall->getArg(0)->getType(); | 
|  | QualType Arg2Ty = TheCall->getArg(1)->getType(); | 
|  |  | 
|  | // Check the type of argument 1 and argument 2 are vectors. | 
|  | SourceLocation BuiltinLoc = TheCall->getBeginLoc(); | 
|  | if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || | 
|  | (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { | 
|  | return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) | 
|  | << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(0)->getBeginLoc(), | 
|  | TheCall->getArg(1)->getEndLoc()); | 
|  | } | 
|  |  | 
|  | // Check the first two arguments are the same type. | 
|  | if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { | 
|  | return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) | 
|  | << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(0)->getBeginLoc(), | 
|  | TheCall->getArg(1)->getEndLoc()); | 
|  | } | 
|  |  | 
|  | // When default clang type checking is turned off and the customized type | 
|  | // checking is used, the returning type of the function must be explicitly | 
|  | // set. Otherwise it is _Bool by default. | 
|  | TheCall->setType(Arg1Ty); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. | 
|  | // This is declared to take (...), so we have to check everything. | 
|  | ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { | 
|  | if (TheCall->getNumArgs() < 2) | 
|  | return ExprError(Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_few_args_at_least) | 
|  | << 0 /*function call*/ << 2 << TheCall->getNumArgs() | 
|  | << TheCall->getSourceRange()); | 
|  |  | 
|  | // Determine which of the following types of shufflevector we're checking: | 
|  | // 1) unary, vector mask: (lhs, mask) | 
|  | // 2) binary, scalar mask: (lhs, rhs, index, ..., index) | 
|  | QualType resType = TheCall->getArg(0)->getType(); | 
|  | unsigned numElements = 0; | 
|  |  | 
|  | if (!TheCall->getArg(0)->isTypeDependent() && | 
|  | !TheCall->getArg(1)->isTypeDependent()) { | 
|  | QualType LHSType = TheCall->getArg(0)->getType(); | 
|  | QualType RHSType = TheCall->getArg(1)->getType(); | 
|  |  | 
|  | if (!LHSType->isVectorType() || !RHSType->isVectorType()) | 
|  | return ExprError( | 
|  | Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) | 
|  | << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(0)->getBeginLoc(), | 
|  | TheCall->getArg(1)->getEndLoc())); | 
|  |  | 
|  | numElements = LHSType->getAs<VectorType>()->getNumElements(); | 
|  | unsigned numResElements = TheCall->getNumArgs() - 2; | 
|  |  | 
|  | // Check to see if we have a call with 2 vector arguments, the unary shuffle | 
|  | // with mask.  If so, verify that RHS is an integer vector type with the | 
|  | // same number of elts as lhs. | 
|  | if (TheCall->getNumArgs() == 2) { | 
|  | if (!RHSType->hasIntegerRepresentation() || | 
|  | RHSType->getAs<VectorType>()->getNumElements() != numElements) | 
|  | return ExprError(Diag(TheCall->getBeginLoc(), | 
|  | diag::err_vec_builtin_incompatible_vector) | 
|  | << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(1)->getBeginLoc(), | 
|  | TheCall->getArg(1)->getEndLoc())); | 
|  | } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { | 
|  | return ExprError(Diag(TheCall->getBeginLoc(), | 
|  | diag::err_vec_builtin_incompatible_vector) | 
|  | << TheCall->getDirectCallee() | 
|  | << SourceRange(TheCall->getArg(0)->getBeginLoc(), | 
|  | TheCall->getArg(1)->getEndLoc())); | 
|  | } else if (numElements != numResElements) { | 
|  | QualType eltType = LHSType->getAs<VectorType>()->getElementType(); | 
|  | resType = Context.getVectorType(eltType, numResElements, | 
|  | VectorType::GenericVector); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { | 
|  | if (TheCall->getArg(i)->isTypeDependent() || | 
|  | TheCall->getArg(i)->isValueDependent()) | 
|  | continue; | 
|  |  | 
|  | llvm::APSInt Result(32); | 
|  | if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) | 
|  | return ExprError(Diag(TheCall->getBeginLoc(), | 
|  | diag::err_shufflevector_nonconstant_argument) | 
|  | << TheCall->getArg(i)->getSourceRange()); | 
|  |  | 
|  | // Allow -1 which will be translated to undef in the IR. | 
|  | if (Result.isSigned() && Result.isAllOnesValue()) | 
|  | continue; | 
|  |  | 
|  | if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) | 
|  | return ExprError(Diag(TheCall->getBeginLoc(), | 
|  | diag::err_shufflevector_argument_too_large) | 
|  | << TheCall->getArg(i)->getSourceRange()); | 
|  | } | 
|  |  | 
|  | SmallVector<Expr*, 32> exprs; | 
|  |  | 
|  | for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { | 
|  | exprs.push_back(TheCall->getArg(i)); | 
|  | TheCall->setArg(i, nullptr); | 
|  | } | 
|  |  | 
|  | return new (Context) ShuffleVectorExpr(Context, exprs, resType, | 
|  | TheCall->getCallee()->getBeginLoc(), | 
|  | TheCall->getRParenLoc()); | 
|  | } | 
|  |  | 
|  | /// SemaConvertVectorExpr - Handle __builtin_convertvector | 
|  | ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, | 
|  | SourceLocation BuiltinLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | ExprValueKind VK = VK_RValue; | 
|  | ExprObjectKind OK = OK_Ordinary; | 
|  | QualType DstTy = TInfo->getType(); | 
|  | QualType SrcTy = E->getType(); | 
|  |  | 
|  | if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) | 
|  | return ExprError(Diag(BuiltinLoc, | 
|  | diag::err_convertvector_non_vector) | 
|  | << E->getSourceRange()); | 
|  | if (!DstTy->isVectorType() && !DstTy->isDependentType()) | 
|  | return ExprError(Diag(BuiltinLoc, | 
|  | diag::err_convertvector_non_vector_type)); | 
|  |  | 
|  | if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { | 
|  | unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements(); | 
|  | unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements(); | 
|  | if (SrcElts != DstElts) | 
|  | return ExprError(Diag(BuiltinLoc, | 
|  | diag::err_convertvector_incompatible_vector) | 
|  | << E->getSourceRange()); | 
|  | } | 
|  |  | 
|  | return new (Context) | 
|  | ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinPrefetch - Handle __builtin_prefetch. | 
|  | // This is declared to take (const void*, ...) and can take two | 
|  | // optional constant int args. | 
|  | bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  |  | 
|  | if (NumArgs > 3) | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_many_args_at_most) | 
|  | << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); | 
|  |  | 
|  | // Argument 0 is checked for us and the remaining arguments must be | 
|  | // constant integers. | 
|  | for (unsigned i = 1; i != NumArgs; ++i) | 
|  | if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinAssume - Handle __assume (MS Extension). | 
|  | // __assume does not evaluate its arguments, and should warn if its argument | 
|  | // has side effects. | 
|  | bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { | 
|  | Expr *Arg = TheCall->getArg(0); | 
|  | if (Arg->isInstantiationDependent()) return false; | 
|  |  | 
|  | if (Arg->HasSideEffects(Context)) | 
|  | Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) | 
|  | << Arg->getSourceRange() | 
|  | << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Handle __builtin_alloca_with_align. This is declared | 
|  | /// as (size_t, size_t) where the second size_t must be a power of 2 greater | 
|  | /// than 8. | 
|  | bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { | 
|  | // The alignment must be a constant integer. | 
|  | Expr *Arg = TheCall->getArg(1); | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { | 
|  | if (const auto *UE = | 
|  | dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) | 
|  | if (UE->getKind() == UETT_AlignOf || | 
|  | UE->getKind() == UETT_PreferredAlignOf) | 
|  | Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); | 
|  |  | 
|  | if (!Result.isPowerOf2()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | if (Result < Context.getCharWidth()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) | 
|  | << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); | 
|  |  | 
|  | if (Result > std::numeric_limits<int32_t>::max()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) | 
|  | << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Handle __builtin_assume_aligned. This is declared | 
|  | /// as (const void*, size_t, ...) and can take one optional constant int arg. | 
|  | bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  |  | 
|  | if (NumArgs > 3) | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_many_args_at_most) | 
|  | << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); | 
|  |  | 
|  | // The alignment must be a constant integer. | 
|  | Expr *Arg = TheCall->getArg(1); | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { | 
|  | llvm::APSInt Result; | 
|  | if (SemaBuiltinConstantArg(TheCall, 1, Result)) | 
|  | return true; | 
|  |  | 
|  | if (!Result.isPowerOf2()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) | 
|  | << Arg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (NumArgs > 2) { | 
|  | ExprResult Arg(TheCall->getArg(2)); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | 
|  | Context.getSizeType(), false); | 
|  | Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) return true; | 
|  | TheCall->setArg(2, Arg.get()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { | 
|  | unsigned BuiltinID = | 
|  | cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); | 
|  | bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; | 
|  |  | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  | unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; | 
|  | if (NumArgs < NumRequiredArgs) { | 
|  | return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) | 
|  | << 0 /* function call */ << NumRequiredArgs << NumArgs | 
|  | << TheCall->getSourceRange(); | 
|  | } | 
|  | if (NumArgs >= NumRequiredArgs + 0x100) { | 
|  | return Diag(TheCall->getEndLoc(), | 
|  | diag::err_typecheck_call_too_many_args_at_most) | 
|  | << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs | 
|  | << TheCall->getSourceRange(); | 
|  | } | 
|  | unsigned i = 0; | 
|  |  | 
|  | // For formatting call, check buffer arg. | 
|  | if (!IsSizeCall) { | 
|  | ExprResult Arg(TheCall->getArg(i)); | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
|  | Context, Context.VoidPtrTy, false); | 
|  | Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(i, Arg.get()); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | // Check string literal arg. | 
|  | unsigned FormatIdx = i; | 
|  | { | 
|  | ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | TheCall->setArg(i, Arg.get()); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | // Make sure variadic args are scalar. | 
|  | unsigned FirstDataArg = i; | 
|  | while (i < NumArgs) { | 
|  | ExprResult Arg = DefaultVariadicArgumentPromotion( | 
|  | TheCall->getArg(i), VariadicFunction, nullptr); | 
|  | if (Arg.isInvalid()) | 
|  | return true; | 
|  | CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); | 
|  | if (ArgSize.getQuantity() >= 0x100) { | 
|  | return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) | 
|  | << i << (int)ArgSize.getQuantity() << 0xff | 
|  | << TheCall->getSourceRange(); | 
|  | } | 
|  | TheCall->setArg(i, Arg.get()); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | // Check formatting specifiers. NOTE: We're only doing this for the non-size | 
|  | // call to avoid duplicate diagnostics. | 
|  | if (!IsSizeCall) { | 
|  | llvm::SmallBitVector CheckedVarArgs(NumArgs, false); | 
|  | ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); | 
|  | bool Success = CheckFormatArguments( | 
|  | Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, | 
|  | VariadicFunction, TheCall->getBeginLoc(), SourceRange(), | 
|  | CheckedVarArgs); | 
|  | if (!Success) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsSizeCall) { | 
|  | TheCall->setType(Context.getSizeType()); | 
|  | } else { | 
|  | TheCall->setType(Context.VoidPtrTy); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr | 
|  | /// TheCall is a constant expression. | 
|  | bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, | 
|  | llvm::APSInt &Result) { | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); | 
|  | FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); | 
|  |  | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; | 
|  |  | 
|  | if (!Arg->isIntegerConstantExpr(Result, Context)) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) | 
|  | << FDecl->getDeclName() << Arg->getSourceRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr | 
|  | /// TheCall is a constant expression in the range [Low, High]. | 
|  | bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, | 
|  | int Low, int High, bool RangeIsError) { | 
|  | llvm::APSInt Result; | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | // Check constant-ness first. | 
|  | if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) | 
|  | return true; | 
|  |  | 
|  | if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { | 
|  | if (RangeIsError) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) | 
|  | << Result.toString(10) << Low << High << Arg->getSourceRange(); | 
|  | else | 
|  | // Defer the warning until we know if the code will be emitted so that | 
|  | // dead code can ignore this. | 
|  | DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, | 
|  | PDiag(diag::warn_argument_invalid_range) | 
|  | << Result.toString(10) << Low << High | 
|  | << Arg->getSourceRange()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr | 
|  | /// TheCall is a constant expression is a multiple of Num.. | 
|  | bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, | 
|  | unsigned Num) { | 
|  | llvm::APSInt Result; | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | // Check constant-ness first. | 
|  | if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) | 
|  | return true; | 
|  |  | 
|  | if (Result.getSExtValue() % Num != 0) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) | 
|  | << Num << Arg->getSourceRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr | 
|  | /// TheCall is an ARM/AArch64 special register string literal. | 
|  | bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, | 
|  | int ArgNum, unsigned ExpectedFieldNum, | 
|  | bool AllowName) { | 
|  | bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsr64 || | 
|  | BuiltinID == ARM::BI__builtin_arm_rsr || | 
|  | BuiltinID == ARM::BI__builtin_arm_rsrp || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsr || | 
|  | BuiltinID == ARM::BI__builtin_arm_wsrp; | 
|  | bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsr64 || | 
|  | BuiltinID == AArch64::BI__builtin_arm_rsr || | 
|  | BuiltinID == AArch64::BI__builtin_arm_rsrp || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsr || | 
|  | BuiltinID == AArch64::BI__builtin_arm_wsrp; | 
|  | assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); | 
|  |  | 
|  | // We can't check the value of a dependent argument. | 
|  | Expr *Arg = TheCall->getArg(ArgNum); | 
|  | if (Arg->isTypeDependent() || Arg->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | // Check if the argument is a string literal. | 
|  | if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | // Check the type of special register given. | 
|  | StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); | 
|  | SmallVector<StringRef, 6> Fields; | 
|  | Reg.split(Fields, ":"); | 
|  |  | 
|  | if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) | 
|  | << Arg->getSourceRange(); | 
|  |  | 
|  | // If the string is the name of a register then we cannot check that it is | 
|  | // valid here but if the string is of one the forms described in ACLE then we | 
|  | // can check that the supplied fields are integers and within the valid | 
|  | // ranges. | 
|  | if (Fields.size() > 1) { | 
|  | bool FiveFields = Fields.size() == 5; | 
|  |  | 
|  | bool ValidString = true; | 
|  | if (IsARMBuiltin) { | 
|  | ValidString &= Fields[0].startswith_lower("cp") || | 
|  | Fields[0].startswith_lower("p"); | 
|  | if (ValidString) | 
|  | Fields[0] = | 
|  | Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); | 
|  |  | 
|  | ValidString &= Fields[2].startswith_lower("c"); | 
|  | if (ValidString) | 
|  | Fields[2] = Fields[2].drop_front(1); | 
|  |  | 
|  | if (FiveFields) { | 
|  | ValidString &= Fields[3].startswith_lower("c"); | 
|  | if (ValidString) | 
|  | Fields[3] = Fields[3].drop_front(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<int, 5> Ranges; | 
|  | if (FiveFields) | 
|  | Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); | 
|  | else | 
|  | Ranges.append({15, 7, 15}); | 
|  |  | 
|  | for (unsigned i=0; i<Fields.size(); ++i) { | 
|  | int IntField; | 
|  | ValidString &= !Fields[i].getAsInteger(10, IntField); | 
|  | ValidString &= (IntField >= 0 && IntField <= Ranges[i]); | 
|  | } | 
|  |  | 
|  | if (!ValidString) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) | 
|  | << Arg->getSourceRange(); | 
|  | } else if (IsAArch64Builtin && Fields.size() == 1) { | 
|  | // If the register name is one of those that appear in the condition below | 
|  | // and the special register builtin being used is one of the write builtins, | 
|  | // then we require that the argument provided for writing to the register | 
|  | // is an integer constant expression. This is because it will be lowered to | 
|  | // an MSR (immediate) instruction, so we need to know the immediate at | 
|  | // compile time. | 
|  | if (TheCall->getNumArgs() != 2) | 
|  | return false; | 
|  |  | 
|  | std::string RegLower = Reg.lower(); | 
|  | if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && | 
|  | RegLower != "pan" && RegLower != "uao") | 
|  | return false; | 
|  |  | 
|  | return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). | 
|  | /// This checks that the target supports __builtin_longjmp and | 
|  | /// that val is a constant 1. | 
|  | bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { | 
|  | if (!Context.getTargetInfo().hasSjLjLowering()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) | 
|  | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); | 
|  |  | 
|  | Expr *Arg = TheCall->getArg(1); | 
|  | llvm::APSInt Result; | 
|  |  | 
|  | // TODO: This is less than ideal. Overload this to take a value. | 
|  | if (SemaBuiltinConstantArg(TheCall, 1, Result)) | 
|  | return true; | 
|  |  | 
|  | if (Result != 1) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) | 
|  | << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). | 
|  | /// This checks that the target supports __builtin_setjmp. | 
|  | bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { | 
|  | if (!Context.getTargetInfo().hasSjLjLowering()) | 
|  | return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) | 
|  | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class UncoveredArgHandler { | 
|  | enum { Unknown = -1, AllCovered = -2 }; | 
|  |  | 
|  | signed FirstUncoveredArg = Unknown; | 
|  | SmallVector<const Expr *, 4> DiagnosticExprs; | 
|  |  | 
|  | public: | 
|  | UncoveredArgHandler() = default; | 
|  |  | 
|  | bool hasUncoveredArg() const { | 
|  | return (FirstUncoveredArg >= 0); | 
|  | } | 
|  |  | 
|  | unsigned getUncoveredArg() const { | 
|  | assert(hasUncoveredArg() && "no uncovered argument"); | 
|  | return FirstUncoveredArg; | 
|  | } | 
|  |  | 
|  | void setAllCovered() { | 
|  | // A string has been found with all arguments covered, so clear out | 
|  | // the diagnostics. | 
|  | DiagnosticExprs.clear(); | 
|  | FirstUncoveredArg = AllCovered; | 
|  | } | 
|  |  | 
|  | void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { | 
|  | assert(NewFirstUncoveredArg >= 0 && "Outside range"); | 
|  |  | 
|  | // Don't update if a previous string covers all arguments. | 
|  | if (FirstUncoveredArg == AllCovered) | 
|  | return; | 
|  |  | 
|  | // UncoveredArgHandler tracks the highest uncovered argument index | 
|  | // and with it all the strings that match this index. | 
|  | if (NewFirstUncoveredArg == FirstUncoveredArg) | 
|  | DiagnosticExprs.push_back(StrExpr); | 
|  | else if (NewFirstUncoveredArg > FirstUncoveredArg) { | 
|  | DiagnosticExprs.clear(); | 
|  | DiagnosticExprs.push_back(StrExpr); | 
|  | FirstUncoveredArg = NewFirstUncoveredArg; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); | 
|  | }; | 
|  |  | 
|  | enum StringLiteralCheckType { | 
|  | SLCT_NotALiteral, | 
|  | SLCT_UncheckedLiteral, | 
|  | SLCT_CheckedLiteral | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, | 
|  | BinaryOperatorKind BinOpKind, | 
|  | bool AddendIsRight) { | 
|  | unsigned BitWidth = Offset.getBitWidth(); | 
|  | unsigned AddendBitWidth = Addend.getBitWidth(); | 
|  | // There might be negative interim results. | 
|  | if (Addend.isUnsigned()) { | 
|  | Addend = Addend.zext(++AddendBitWidth); | 
|  | Addend.setIsSigned(true); | 
|  | } | 
|  | // Adjust the bit width of the APSInts. | 
|  | if (AddendBitWidth > BitWidth) { | 
|  | Offset = Offset.sext(AddendBitWidth); | 
|  | BitWidth = AddendBitWidth; | 
|  | } else if (BitWidth > AddendBitWidth) { | 
|  | Addend = Addend.sext(BitWidth); | 
|  | } | 
|  |  | 
|  | bool Ov = false; | 
|  | llvm::APSInt ResOffset = Offset; | 
|  | if (BinOpKind == BO_Add) | 
|  | ResOffset = Offset.sadd_ov(Addend, Ov); | 
|  | else { | 
|  | assert(AddendIsRight && BinOpKind == BO_Sub && | 
|  | "operator must be add or sub with addend on the right"); | 
|  | ResOffset = Offset.ssub_ov(Addend, Ov); | 
|  | } | 
|  |  | 
|  | // We add an offset to a pointer here so we should support an offset as big as | 
|  | // possible. | 
|  | if (Ov) { | 
|  | assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && | 
|  | "index (intermediate) result too big"); | 
|  | Offset = Offset.sext(2 * BitWidth); | 
|  | sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Offset = ResOffset; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // This is a wrapper class around StringLiteral to support offsetted string | 
|  | // literals as format strings. It takes the offset into account when returning | 
|  | // the string and its length or the source locations to display notes correctly. | 
|  | class FormatStringLiteral { | 
|  | const StringLiteral *FExpr; | 
|  | int64_t Offset; | 
|  |  | 
|  | public: | 
|  | FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) | 
|  | : FExpr(fexpr), Offset(Offset) {} | 
|  |  | 
|  | StringRef getString() const { | 
|  | return FExpr->getString().drop_front(Offset); | 
|  | } | 
|  |  | 
|  | unsigned getByteLength() const { | 
|  | return FExpr->getByteLength() - getCharByteWidth() * Offset; | 
|  | } | 
|  |  | 
|  | unsigned getLength() const { return FExpr->getLength() - Offset; } | 
|  | unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } | 
|  |  | 
|  | StringLiteral::StringKind getKind() const { return FExpr->getKind(); } | 
|  |  | 
|  | QualType getType() const { return FExpr->getType(); } | 
|  |  | 
|  | bool isAscii() const { return FExpr->isAscii(); } | 
|  | bool isWide() const { return FExpr->isWide(); } | 
|  | bool isUTF8() const { return FExpr->isUTF8(); } | 
|  | bool isUTF16() const { return FExpr->isUTF16(); } | 
|  | bool isUTF32() const { return FExpr->isUTF32(); } | 
|  | bool isPascal() const { return FExpr->isPascal(); } | 
|  |  | 
|  | SourceLocation getLocationOfByte( | 
|  | unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, | 
|  | const TargetInfo &Target, unsigned *StartToken = nullptr, | 
|  | unsigned *StartTokenByteOffset = nullptr) const { | 
|  | return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, | 
|  | StartToken, StartTokenByteOffset); | 
|  | } | 
|  |  | 
|  | SourceLocation getBeginLoc() const LLVM_READONLY { | 
|  | return FExpr->getBeginLoc().getLocWithOffset(Offset); | 
|  | } | 
|  |  | 
|  | SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, | 
|  | const Expr *OrigFormatExpr, | 
|  | ArrayRef<const Expr *> Args, | 
|  | bool HasVAListArg, unsigned format_idx, | 
|  | unsigned firstDataArg, | 
|  | Sema::FormatStringType Type, | 
|  | bool inFunctionCall, | 
|  | Sema::VariadicCallType CallType, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg); | 
|  |  | 
|  | // Determine if an expression is a string literal or constant string. | 
|  | // If this function returns false on the arguments to a function expecting a | 
|  | // format string, we will usually need to emit a warning. | 
|  | // True string literals are then checked by CheckFormatString. | 
|  | static StringLiteralCheckType | 
|  | checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, | 
|  | bool HasVAListArg, unsigned format_idx, | 
|  | unsigned firstDataArg, Sema::FormatStringType Type, | 
|  | Sema::VariadicCallType CallType, bool InFunctionCall, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg, | 
|  | llvm::APSInt Offset) { | 
|  | tryAgain: | 
|  | assert(Offset.isSigned() && "invalid offset"); | 
|  |  | 
|  | if (E->isTypeDependent() || E->isValueDependent()) | 
|  | return SLCT_NotALiteral; | 
|  |  | 
|  | E = E->IgnoreParenCasts(); | 
|  |  | 
|  | if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) | 
|  | // Technically -Wformat-nonliteral does not warn about this case. | 
|  | // The behavior of printf and friends in this case is implementation | 
|  | // dependent.  Ideally if the format string cannot be null then | 
|  | // it should have a 'nonnull' attribute in the function prototype. | 
|  | return SLCT_UncheckedLiteral; | 
|  |  | 
|  | switch (E->getStmtClass()) { | 
|  | case Stmt::BinaryConditionalOperatorClass: | 
|  | case Stmt::ConditionalOperatorClass: { | 
|  | // The expression is a literal if both sub-expressions were, and it was | 
|  | // completely checked only if both sub-expressions were checked. | 
|  | const AbstractConditionalOperator *C = | 
|  | cast<AbstractConditionalOperator>(E); | 
|  |  | 
|  | // Determine whether it is necessary to check both sub-expressions, for | 
|  | // example, because the condition expression is a constant that can be | 
|  | // evaluated at compile time. | 
|  | bool CheckLeft = true, CheckRight = true; | 
|  |  | 
|  | bool Cond; | 
|  | if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) { | 
|  | if (Cond) | 
|  | CheckRight = false; | 
|  | else | 
|  | CheckLeft = false; | 
|  | } | 
|  |  | 
|  | // We need to maintain the offsets for the right and the left hand side | 
|  | // separately to check if every possible indexed expression is a valid | 
|  | // string literal. They might have different offsets for different string | 
|  | // literals in the end. | 
|  | StringLiteralCheckType Left; | 
|  | if (!CheckLeft) | 
|  | Left = SLCT_UncheckedLiteral; | 
|  | else { | 
|  | Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, | 
|  | HasVAListArg, format_idx, firstDataArg, | 
|  | Type, CallType, InFunctionCall, | 
|  | CheckedVarArgs, UncoveredArg, Offset); | 
|  | if (Left == SLCT_NotALiteral || !CheckRight) { | 
|  | return Left; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringLiteralCheckType Right = | 
|  | checkFormatStringExpr(S, C->getFalseExpr(), Args, | 
|  | HasVAListArg, format_idx, firstDataArg, | 
|  | Type, CallType, InFunctionCall, CheckedVarArgs, | 
|  | UncoveredArg, Offset); | 
|  |  | 
|  | return (CheckLeft && Left < Right) ? Left : Right; | 
|  | } | 
|  |  | 
|  | case Stmt::ImplicitCastExprClass: | 
|  | E = cast<ImplicitCastExpr>(E)->getSubExpr(); | 
|  | goto tryAgain; | 
|  |  | 
|  | case Stmt::OpaqueValueExprClass: | 
|  | if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { | 
|  | E = src; | 
|  | goto tryAgain; | 
|  | } | 
|  | return SLCT_NotALiteral; | 
|  |  | 
|  | case Stmt::PredefinedExprClass: | 
|  | // While __func__, etc., are technically not string literals, they | 
|  | // cannot contain format specifiers and thus are not a security | 
|  | // liability. | 
|  | return SLCT_UncheckedLiteral; | 
|  |  | 
|  | case Stmt::DeclRefExprClass: { | 
|  | const DeclRefExpr *DR = cast<DeclRefExpr>(E); | 
|  |  | 
|  | // As an exception, do not flag errors for variables binding to | 
|  | // const string literals. | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { | 
|  | bool isConstant = false; | 
|  | QualType T = DR->getType(); | 
|  |  | 
|  | if (const ArrayType *AT = S.Context.getAsArrayType(T)) { | 
|  | isConstant = AT->getElementType().isConstant(S.Context); | 
|  | } else if (const PointerType *PT = T->getAs<PointerType>()) { | 
|  | isConstant = T.isConstant(S.Context) && | 
|  | PT->getPointeeType().isConstant(S.Context); | 
|  | } else if (T->isObjCObjectPointerType()) { | 
|  | // In ObjC, there is usually no "const ObjectPointer" type, | 
|  | // so don't check if the pointee type is constant. | 
|  | isConstant = T.isConstant(S.Context); | 
|  | } | 
|  |  | 
|  | if (isConstant) { | 
|  | if (const Expr *Init = VD->getAnyInitializer()) { | 
|  | // Look through initializers like const char c[] = { "foo" } | 
|  | if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { | 
|  | if (InitList->isStringLiteralInit()) | 
|  | Init = InitList->getInit(0)->IgnoreParenImpCasts(); | 
|  | } | 
|  | return checkFormatStringExpr(S, Init, Args, | 
|  | HasVAListArg, format_idx, | 
|  | firstDataArg, Type, CallType, | 
|  | /*InFunctionCall*/ false, CheckedVarArgs, | 
|  | UncoveredArg, Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For vprintf* functions (i.e., HasVAListArg==true), we add a | 
|  | // special check to see if the format string is a function parameter | 
|  | // of the function calling the printf function.  If the function | 
|  | // has an attribute indicating it is a printf-like function, then we | 
|  | // should suppress warnings concerning non-literals being used in a call | 
|  | // to a vprintf function.  For example: | 
|  | // | 
|  | // void | 
|  | // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ | 
|  | //      va_list ap; | 
|  | //      va_start(ap, fmt); | 
|  | //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt". | 
|  | //      ... | 
|  | // } | 
|  | if (HasVAListArg) { | 
|  | if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { | 
|  | if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { | 
|  | int PVIndex = PV->getFunctionScopeIndex() + 1; | 
|  | for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { | 
|  | // adjust for implicit parameter | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) | 
|  | if (MD->isInstance()) | 
|  | ++PVIndex; | 
|  | // We also check if the formats are compatible. | 
|  | // We can't pass a 'scanf' string to a 'printf' function. | 
|  | if (PVIndex == PVFormat->getFormatIdx() && | 
|  | Type == S.GetFormatStringType(PVFormat)) | 
|  | return SLCT_UncheckedLiteral; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  |  | 
|  | case Stmt::CallExprClass: | 
|  | case Stmt::CXXMemberCallExprClass: { | 
|  | const CallExpr *CE = cast<CallExpr>(E); | 
|  | if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { | 
|  | bool IsFirst = true; | 
|  | StringLiteralCheckType CommonResult; | 
|  | for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { | 
|  | const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); | 
|  | StringLiteralCheckType Result = checkFormatStringExpr( | 
|  | S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, | 
|  | CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset); | 
|  | if (IsFirst) { | 
|  | CommonResult = Result; | 
|  | IsFirst = false; | 
|  | } | 
|  | } | 
|  | if (!IsFirst) | 
|  | return CommonResult; | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { | 
|  | unsigned BuiltinID = FD->getBuiltinID(); | 
|  | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || | 
|  | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { | 
|  | const Expr *Arg = CE->getArg(0); | 
|  | return checkFormatStringExpr(S, Arg, Args, | 
|  | HasVAListArg, format_idx, | 
|  | firstDataArg, Type, CallType, | 
|  | InFunctionCall, CheckedVarArgs, | 
|  | UncoveredArg, Offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | case Stmt::ObjCMessageExprClass: { | 
|  | const auto *ME = cast<ObjCMessageExpr>(E); | 
|  | if (const auto *ND = ME->getMethodDecl()) { | 
|  | if (const auto *FA = ND->getAttr<FormatArgAttr>()) { | 
|  | const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); | 
|  | return checkFormatStringExpr( | 
|  | S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, | 
|  | CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | case Stmt::ObjCStringLiteralClass: | 
|  | case Stmt::StringLiteralClass: { | 
|  | const StringLiteral *StrE = nullptr; | 
|  |  | 
|  | if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) | 
|  | StrE = ObjCFExpr->getString(); | 
|  | else | 
|  | StrE = cast<StringLiteral>(E); | 
|  |  | 
|  | if (StrE) { | 
|  | if (Offset.isNegative() || Offset > StrE->getLength()) { | 
|  | // TODO: It would be better to have an explicit warning for out of | 
|  | // bounds literals. | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); | 
|  | CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, | 
|  | firstDataArg, Type, InFunctionCall, CallType, | 
|  | CheckedVarArgs, UncoveredArg); | 
|  | return SLCT_CheckedLiteral; | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | case Stmt::BinaryOperatorClass: { | 
|  | const BinaryOperator *BinOp = cast<BinaryOperator>(E); | 
|  |  | 
|  | // A string literal + an int offset is still a string literal. | 
|  | if (BinOp->isAdditiveOp()) { | 
|  | Expr::EvalResult LResult, RResult; | 
|  |  | 
|  | bool LIsInt = BinOp->getLHS()->EvaluateAsInt(LResult, S.Context); | 
|  | bool RIsInt = BinOp->getRHS()->EvaluateAsInt(RResult, S.Context); | 
|  |  | 
|  | if (LIsInt != RIsInt) { | 
|  | BinaryOperatorKind BinOpKind = BinOp->getOpcode(); | 
|  |  | 
|  | if (LIsInt) { | 
|  | if (BinOpKind == BO_Add) { | 
|  | sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); | 
|  | E = BinOp->getRHS(); | 
|  | goto tryAgain; | 
|  | } | 
|  | } else { | 
|  | sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); | 
|  | E = BinOp->getLHS(); | 
|  | goto tryAgain; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | const UnaryOperator *UnaOp = cast<UnaryOperator>(E); | 
|  | auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); | 
|  | if (UnaOp->getOpcode() == UO_AddrOf && ASE) { | 
|  | Expr::EvalResult IndexResult; | 
|  | if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context)) { | 
|  | sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, | 
|  | /*RHS is int*/ true); | 
|  | E = ASE->getBase(); | 
|  | goto tryAgain; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return SLCT_NotALiteral; | 
|  | } | 
|  | } | 
|  |  | 
|  | Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { | 
|  | return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) | 
|  | .Case("scanf", FST_Scanf) | 
|  | .Cases("printf", "printf0", FST_Printf) | 
|  | .Cases("NSString", "CFString", FST_NSString) | 
|  | .Case("strftime", FST_Strftime) | 
|  | .Case("strfmon", FST_Strfmon) | 
|  | .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) | 
|  | .Case("freebsd_kprintf", FST_FreeBSDKPrintf) | 
|  | .Case("os_trace", FST_OSLog) | 
|  | .Case("os_log", FST_OSLog) | 
|  | .Default(FST_Unknown); | 
|  | } | 
|  |  | 
|  | /// CheckFormatArguments - Check calls to printf and scanf (and similar | 
|  | /// functions) for correct use of format strings. | 
|  | /// Returns true if a format string has been fully checked. | 
|  | bool Sema::CheckFormatArguments(const FormatAttr *Format, | 
|  | ArrayRef<const Expr *> Args, | 
|  | bool IsCXXMember, | 
|  | VariadicCallType CallType, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | llvm::SmallBitVector &CheckedVarArgs) { | 
|  | FormatStringInfo FSI; | 
|  | if (getFormatStringInfo(Format, IsCXXMember, &FSI)) | 
|  | return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, | 
|  | FSI.FirstDataArg, GetFormatStringType(Format), | 
|  | CallType, Loc, Range, CheckedVarArgs); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, | 
|  | bool HasVAListArg, unsigned format_idx, | 
|  | unsigned firstDataArg, FormatStringType Type, | 
|  | VariadicCallType CallType, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | llvm::SmallBitVector &CheckedVarArgs) { | 
|  | // CHECK: printf/scanf-like function is called with no format string. | 
|  | if (format_idx >= Args.size()) { | 
|  | Diag(Loc, diag::warn_missing_format_string) << Range; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); | 
|  |  | 
|  | // CHECK: format string is not a string literal. | 
|  | // | 
|  | // Dynamically generated format strings are difficult to | 
|  | // automatically vet at compile time.  Requiring that format strings | 
|  | // are string literals: (1) permits the checking of format strings by | 
|  | // the compiler and thereby (2) can practically remove the source of | 
|  | // many format string exploits. | 
|  |  | 
|  | // Format string can be either ObjC string (e.g. @"%d") or | 
|  | // C string (e.g. "%d") | 
|  | // ObjC string uses the same format specifiers as C string, so we can use | 
|  | // the same format string checking logic for both ObjC and C strings. | 
|  | UncoveredArgHandler UncoveredArg; | 
|  | StringLiteralCheckType CT = | 
|  | checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, | 
|  | format_idx, firstDataArg, Type, CallType, | 
|  | /*IsFunctionCall*/ true, CheckedVarArgs, | 
|  | UncoveredArg, | 
|  | /*no string offset*/ llvm::APSInt(64, false) = 0); | 
|  |  | 
|  | // Generate a diagnostic where an uncovered argument is detected. | 
|  | if (UncoveredArg.hasUncoveredArg()) { | 
|  | unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; | 
|  | assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); | 
|  | UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); | 
|  | } | 
|  |  | 
|  | if (CT != SLCT_NotALiteral) | 
|  | // Literal format string found, check done! | 
|  | return CT == SLCT_CheckedLiteral; | 
|  |  | 
|  | // Strftime is particular as it always uses a single 'time' argument, | 
|  | // so it is safe to pass a non-literal string. | 
|  | if (Type == FST_Strftime) | 
|  | return false; | 
|  |  | 
|  | // Do not emit diag when the string param is a macro expansion and the | 
|  | // format is either NSString or CFString. This is a hack to prevent | 
|  | // diag when using the NSLocalizedString and CFCopyLocalizedString macros | 
|  | // which are usually used in place of NS and CF string literals. | 
|  | SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); | 
|  | if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) | 
|  | return false; | 
|  |  | 
|  | // If there are no arguments specified, warn with -Wformat-security, otherwise | 
|  | // warn only with -Wformat-nonliteral. | 
|  | if (Args.size() == firstDataArg) { | 
|  | Diag(FormatLoc, diag::warn_format_nonliteral_noargs) | 
|  | << OrigFormatExpr->getSourceRange(); | 
|  | switch (Type) { | 
|  | default: | 
|  | break; | 
|  | case FST_Kprintf: | 
|  | case FST_FreeBSDKPrintf: | 
|  | case FST_Printf: | 
|  | Diag(FormatLoc, diag::note_format_security_fixit) | 
|  | << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); | 
|  | break; | 
|  | case FST_NSString: | 
|  | Diag(FormatLoc, diag::note_format_security_fixit) | 
|  | << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | Diag(FormatLoc, diag::warn_format_nonliteral) | 
|  | << OrigFormatExpr->getSourceRange(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CheckFormatHandler : public analyze_format_string::FormatStringHandler { | 
|  | protected: | 
|  | Sema &S; | 
|  | const FormatStringLiteral *FExpr; | 
|  | const Expr *OrigFormatExpr; | 
|  | const Sema::FormatStringType FSType; | 
|  | const unsigned FirstDataArg; | 
|  | const unsigned NumDataArgs; | 
|  | const char *Beg; // Start of format string. | 
|  | const bool HasVAListArg; | 
|  | ArrayRef<const Expr *> Args; | 
|  | unsigned FormatIdx; | 
|  | llvm::SmallBitVector CoveredArgs; | 
|  | bool usesPositionalArgs = false; | 
|  | bool atFirstArg = true; | 
|  | bool inFunctionCall; | 
|  | Sema::VariadicCallType CallType; | 
|  | llvm::SmallBitVector &CheckedVarArgs; | 
|  | UncoveredArgHandler &UncoveredArg; | 
|  |  | 
|  | public: | 
|  | CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, | 
|  | const Expr *origFormatExpr, | 
|  | const Sema::FormatStringType type, unsigned firstDataArg, | 
|  | unsigned numDataArgs, const char *beg, bool hasVAListArg, | 
|  | ArrayRef<const Expr *> Args, unsigned formatIdx, | 
|  | bool inFunctionCall, Sema::VariadicCallType callType, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg) | 
|  | : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), | 
|  | FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), | 
|  | HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), | 
|  | inFunctionCall(inFunctionCall), CallType(callType), | 
|  | CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { | 
|  | CoveredArgs.resize(numDataArgs); | 
|  | CoveredArgs.reset(); | 
|  | } | 
|  |  | 
|  | void DoneProcessing(); | 
|  |  | 
|  | void HandleIncompleteSpecifier(const char *startSpecifier, | 
|  | unsigned specifierLen) override; | 
|  |  | 
|  | void HandleInvalidLengthModifier( | 
|  | const analyze_format_string::FormatSpecifier &FS, | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen, | 
|  | unsigned DiagID); | 
|  |  | 
|  | void HandleNonStandardLengthModifier( | 
|  | const analyze_format_string::FormatSpecifier &FS, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  |  | 
|  | void HandleNonStandardConversionSpecifier( | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  |  | 
|  | void HandlePosition(const char *startPos, unsigned posLen) override; | 
|  |  | 
|  | void HandleInvalidPosition(const char *startSpecifier, | 
|  | unsigned specifierLen, | 
|  | analyze_format_string::PositionContext p) override; | 
|  |  | 
|  | void HandleZeroPosition(const char *startPos, unsigned posLen) override; | 
|  |  | 
|  | void HandleNullChar(const char *nullCharacter) override; | 
|  |  | 
|  | template <typename Range> | 
|  | static void | 
|  | EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, | 
|  | const PartialDiagnostic &PDiag, SourceLocation StringLoc, | 
|  | bool IsStringLocation, Range StringRange, | 
|  | ArrayRef<FixItHint> Fixit = None); | 
|  |  | 
|  | protected: | 
|  | bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, | 
|  | const char *startSpec, | 
|  | unsigned specifierLen, | 
|  | const char *csStart, unsigned csLen); | 
|  |  | 
|  | void HandlePositionalNonpositionalArgs(SourceLocation Loc, | 
|  | const char *startSpec, | 
|  | unsigned specifierLen); | 
|  |  | 
|  | SourceRange getFormatStringRange(); | 
|  | CharSourceRange getSpecifierRange(const char *startSpecifier, | 
|  | unsigned specifierLen); | 
|  | SourceLocation getLocationOfByte(const char *x); | 
|  |  | 
|  | const Expr *getDataArg(unsigned i) const; | 
|  |  | 
|  | bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen, | 
|  | unsigned argIndex); | 
|  |  | 
|  | template <typename Range> | 
|  | void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, | 
|  | bool IsStringLocation, Range StringRange, | 
|  | ArrayRef<FixItHint> Fixit = None); | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | SourceRange CheckFormatHandler::getFormatStringRange() { | 
|  | return OrigFormatExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | CharSourceRange CheckFormatHandler:: | 
|  | getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { | 
|  | SourceLocation Start = getLocationOfByte(startSpecifier); | 
|  | SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1); | 
|  |  | 
|  | // Advance the end SourceLocation by one due to half-open ranges. | 
|  | End = End.getLocWithOffset(1); | 
|  |  | 
|  | return CharSourceRange::getCharRange(Start, End); | 
|  | } | 
|  |  | 
|  | SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { | 
|  | return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), | 
|  | S.getLangOpts(), S.Context.getTargetInfo()); | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, | 
|  | unsigned specifierLen){ | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), | 
|  | getLocationOfByte(startSpecifier), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleInvalidLengthModifier( | 
|  | const analyze_format_string::FormatSpecifier &FS, | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { | 
|  | using namespace analyze_format_string; | 
|  |  | 
|  | const LengthModifier &LM = FS.getLengthModifier(); | 
|  | CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); | 
|  |  | 
|  | // See if we know how to fix this length modifier. | 
|  | Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); | 
|  | if (FixedLM) { | 
|  | EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), | 
|  | getLocationOfByte(LM.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) | 
|  | << FixedLM->toString() | 
|  | << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); | 
|  |  | 
|  | } else { | 
|  | FixItHint Hint; | 
|  | if (DiagID == diag::warn_format_nonsensical_length) | 
|  | Hint = FixItHint::CreateRemoval(LMRange); | 
|  |  | 
|  | EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), | 
|  | getLocationOfByte(LM.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen), | 
|  | Hint); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleNonStandardLengthModifier( | 
|  | const analyze_format_string::FormatSpecifier &FS, | 
|  | const char *startSpecifier, unsigned specifierLen) { | 
|  | using namespace analyze_format_string; | 
|  |  | 
|  | const LengthModifier &LM = FS.getLengthModifier(); | 
|  | CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); | 
|  |  | 
|  | // See if we know how to fix this length modifier. | 
|  | Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); | 
|  | if (FixedLM) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) | 
|  | << LM.toString() << 0, | 
|  | getLocationOfByte(LM.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) | 
|  | << FixedLM->toString() | 
|  | << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); | 
|  |  | 
|  | } else { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) | 
|  | << LM.toString() << 0, | 
|  | getLocationOfByte(LM.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleNonStandardConversionSpecifier( | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen) { | 
|  | using namespace analyze_format_string; | 
|  |  | 
|  | // See if we know how to fix this conversion specifier. | 
|  | Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); | 
|  | if (FixedCS) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) | 
|  | << CS.toString() << /*conversion specifier*/1, | 
|  | getLocationOfByte(CS.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); | 
|  | S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) | 
|  | << FixedCS->toString() | 
|  | << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); | 
|  | } else { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) | 
|  | << CS.toString() << /*conversion specifier*/1, | 
|  | getLocationOfByte(CS.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandlePosition(const char *startPos, | 
|  | unsigned posLen) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), | 
|  | getLocationOfByte(startPos), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startPos, posLen)); | 
|  | } | 
|  |  | 
|  | void | 
|  | CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, | 
|  | analyze_format_string::PositionContext p) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) | 
|  | << (unsigned) p, | 
|  | getLocationOfByte(startPos), /*IsStringLocation*/true, | 
|  | getSpecifierRange(startPos, posLen)); | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleZeroPosition(const char *startPos, | 
|  | unsigned posLen) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), | 
|  | getLocationOfByte(startPos), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startPos, posLen)); | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { | 
|  | if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { | 
|  | // The presence of a null character is likely an error. | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_printf_format_string_contains_null_char), | 
|  | getLocationOfByte(nullCharacter), /*IsStringLocation*/true, | 
|  | getFormatStringRange()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that this may return NULL if there was an error parsing or building | 
|  | // one of the argument expressions. | 
|  | const Expr *CheckFormatHandler::getDataArg(unsigned i) const { | 
|  | return Args[FirstDataArg + i]; | 
|  | } | 
|  |  | 
|  | void CheckFormatHandler::DoneProcessing() { | 
|  | // Does the number of data arguments exceed the number of | 
|  | // format conversions in the format string? | 
|  | if (!HasVAListArg) { | 
|  | // Find any arguments that weren't covered. | 
|  | CoveredArgs.flip(); | 
|  | signed notCoveredArg = CoveredArgs.find_first(); | 
|  | if (notCoveredArg >= 0) { | 
|  | assert((unsigned)notCoveredArg < NumDataArgs); | 
|  | UncoveredArg.Update(notCoveredArg, OrigFormatExpr); | 
|  | } else { | 
|  | UncoveredArg.setAllCovered(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, | 
|  | const Expr *ArgExpr) { | 
|  | assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && | 
|  | "Invalid state"); | 
|  |  | 
|  | if (!ArgExpr) | 
|  | return; | 
|  |  | 
|  | SourceLocation Loc = ArgExpr->getBeginLoc(); | 
|  |  | 
|  | if (S.getSourceManager().isInSystemMacro(Loc)) | 
|  | return; | 
|  |  | 
|  | PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); | 
|  | for (auto E : DiagnosticExprs) | 
|  | PDiag << E->getSourceRange(); | 
|  |  | 
|  | CheckFormatHandler::EmitFormatDiagnostic( | 
|  | S, IsFunctionCall, DiagnosticExprs[0], | 
|  | PDiag, Loc, /*IsStringLocation*/false, | 
|  | DiagnosticExprs[0]->getSourceRange()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, | 
|  | SourceLocation Loc, | 
|  | const char *startSpec, | 
|  | unsigned specifierLen, | 
|  | const char *csStart, | 
|  | unsigned csLen) { | 
|  | bool keepGoing = true; | 
|  | if (argIndex < NumDataArgs) { | 
|  | // Consider the argument coverered, even though the specifier doesn't | 
|  | // make sense. | 
|  | CoveredArgs.set(argIndex); | 
|  | } | 
|  | else { | 
|  | // If argIndex exceeds the number of data arguments we | 
|  | // don't issue a warning because that is just a cascade of warnings (and | 
|  | // they may have intended '%%' anyway). We don't want to continue processing | 
|  | // the format string after this point, however, as we will like just get | 
|  | // gibberish when trying to match arguments. | 
|  | keepGoing = false; | 
|  | } | 
|  |  | 
|  | StringRef Specifier(csStart, csLen); | 
|  |  | 
|  | // If the specifier in non-printable, it could be the first byte of a UTF-8 | 
|  | // sequence. In that case, print the UTF-8 code point. If not, print the byte | 
|  | // hex value. | 
|  | std::string CodePointStr; | 
|  | if (!llvm::sys::locale::isPrint(*csStart)) { | 
|  | llvm::UTF32 CodePoint; | 
|  | const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); | 
|  | const llvm::UTF8 *E = | 
|  | reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); | 
|  | llvm::ConversionResult Result = | 
|  | llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); | 
|  |  | 
|  | if (Result != llvm::conversionOK) { | 
|  | unsigned char FirstChar = *csStart; | 
|  | CodePoint = (llvm::UTF32)FirstChar; | 
|  | } | 
|  |  | 
|  | llvm::raw_string_ostream OS(CodePointStr); | 
|  | if (CodePoint < 256) | 
|  | OS << "\\x" << llvm::format("%02x", CodePoint); | 
|  | else if (CodePoint <= 0xFFFF) | 
|  | OS << "\\u" << llvm::format("%04x", CodePoint); | 
|  | else | 
|  | OS << "\\U" << llvm::format("%08x", CodePoint); | 
|  | OS.flush(); | 
|  | Specifier = CodePointStr; | 
|  | } | 
|  |  | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, | 
|  | /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); | 
|  |  | 
|  | return keepGoing; | 
|  | } | 
|  |  | 
|  | void | 
|  | CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, | 
|  | const char *startSpec, | 
|  | unsigned specifierLen) { | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_format_mix_positional_nonpositional_args), | 
|  | Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); | 
|  | } | 
|  |  | 
|  | bool | 
|  | CheckFormatHandler::CheckNumArgs( | 
|  | const analyze_format_string::FormatSpecifier &FS, | 
|  | const analyze_format_string::ConversionSpecifier &CS, | 
|  | const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { | 
|  |  | 
|  | if (argIndex >= NumDataArgs) { | 
|  | PartialDiagnostic PDiag = FS.usesPositionalArg() | 
|  | ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) | 
|  | << (argIndex+1) << NumDataArgs) | 
|  | : S.PDiag(diag::warn_printf_insufficient_data_args); | 
|  | EmitFormatDiagnostic( | 
|  | PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | // Since more arguments than conversion tokens are given, by extension | 
|  | // all arguments are covered, so mark this as so. | 
|  | UncoveredArg.setAllCovered(); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<typename Range> | 
|  | void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, | 
|  | SourceLocation Loc, | 
|  | bool IsStringLocation, | 
|  | Range StringRange, | 
|  | ArrayRef<FixItHint> FixIt) { | 
|  | EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, | 
|  | Loc, IsStringLocation, StringRange, FixIt); | 
|  | } | 
|  |  | 
|  | /// If the format string is not within the function call, emit a note | 
|  | /// so that the function call and string are in diagnostic messages. | 
|  | /// | 
|  | /// \param InFunctionCall if true, the format string is within the function | 
|  | /// call and only one diagnostic message will be produced.  Otherwise, an | 
|  | /// extra note will be emitted pointing to location of the format string. | 
|  | /// | 
|  | /// \param ArgumentExpr the expression that is passed as the format string | 
|  | /// argument in the function call.  Used for getting locations when two | 
|  | /// diagnostics are emitted. | 
|  | /// | 
|  | /// \param PDiag the callee should already have provided any strings for the | 
|  | /// diagnostic message.  This function only adds locations and fixits | 
|  | /// to diagnostics. | 
|  | /// | 
|  | /// \param Loc primary location for diagnostic.  If two diagnostics are | 
|  | /// required, one will be at Loc and a new SourceLocation will be created for | 
|  | /// the other one. | 
|  | /// | 
|  | /// \param IsStringLocation if true, Loc points to the format string should be | 
|  | /// used for the note.  Otherwise, Loc points to the argument list and will | 
|  | /// be used with PDiag. | 
|  | /// | 
|  | /// \param StringRange some or all of the string to highlight.  This is | 
|  | /// templated so it can accept either a CharSourceRange or a SourceRange. | 
|  | /// | 
|  | /// \param FixIt optional fix it hint for the format string. | 
|  | template <typename Range> | 
|  | void CheckFormatHandler::EmitFormatDiagnostic( | 
|  | Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, | 
|  | const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, | 
|  | Range StringRange, ArrayRef<FixItHint> FixIt) { | 
|  | if (InFunctionCall) { | 
|  | const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); | 
|  | D << StringRange; | 
|  | D << FixIt; | 
|  | } else { | 
|  | S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) | 
|  | << ArgumentExpr->getSourceRange(); | 
|  |  | 
|  | const Sema::SemaDiagnosticBuilder &Note = | 
|  | S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), | 
|  | diag::note_format_string_defined); | 
|  |  | 
|  | Note << StringRange; | 
|  | Note << FixIt; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Printf format string checking ------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CheckPrintfHandler : public CheckFormatHandler { | 
|  | public: | 
|  | CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, | 
|  | const Expr *origFormatExpr, | 
|  | const Sema::FormatStringType type, unsigned firstDataArg, | 
|  | unsigned numDataArgs, bool isObjC, const char *beg, | 
|  | bool hasVAListArg, ArrayRef<const Expr *> Args, | 
|  | unsigned formatIdx, bool inFunctionCall, | 
|  | Sema::VariadicCallType CallType, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg) | 
|  | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, | 
|  | numDataArgs, beg, hasVAListArg, Args, formatIdx, | 
|  | inFunctionCall, CallType, CheckedVarArgs, | 
|  | UncoveredArg) {} | 
|  |  | 
|  | bool isObjCContext() const { return FSType == Sema::FST_NSString; } | 
|  |  | 
|  | /// Returns true if '%@' specifiers are allowed in the format string. | 
|  | bool allowsObjCArg() const { | 
|  | return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || | 
|  | FSType == Sema::FST_OSTrace; | 
|  | } | 
|  |  | 
|  | bool HandleInvalidPrintfConversionSpecifier( | 
|  | const analyze_printf::PrintfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) override; | 
|  |  | 
|  | void handleInvalidMaskType(StringRef MaskType) override; | 
|  |  | 
|  | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) override; | 
|  | bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, | 
|  | const char *StartSpecifier, | 
|  | unsigned SpecifierLen, | 
|  | const Expr *E); | 
|  |  | 
|  | bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  | void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalAmount &Amt, | 
|  | unsigned type, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  | void HandleFlag(const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalFlag &flag, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  | void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalFlag &ignoredFlag, | 
|  | const analyze_printf::OptionalFlag &flag, | 
|  | const char *startSpecifier, unsigned specifierLen); | 
|  | bool checkForCStrMembers(const analyze_printf::ArgType &AT, | 
|  | const Expr *E); | 
|  |  | 
|  | void HandleEmptyObjCModifierFlag(const char *startFlag, | 
|  | unsigned flagLen) override; | 
|  |  | 
|  | void HandleInvalidObjCModifierFlag(const char *startFlag, | 
|  | unsigned flagLen) override; | 
|  |  | 
|  | void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, | 
|  | const char *flagsEnd, | 
|  | const char *conversionPosition) | 
|  | override; | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( | 
|  | const analyze_printf::PrintfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | const analyze_printf::PrintfConversionSpecifier &CS = | 
|  | FS.getConversionSpecifier(); | 
|  |  | 
|  | return HandleInvalidConversionSpecifier(FS.getArgIndex(), | 
|  | getLocationOfByte(CS.getStart()), | 
|  | startSpecifier, specifierLen, | 
|  | CS.getStart(), CS.getLength()); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { | 
|  | S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); | 
|  | } | 
|  |  | 
|  | bool CheckPrintfHandler::HandleAmount( | 
|  | const analyze_format_string::OptionalAmount &Amt, | 
|  | unsigned k, const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | if (Amt.hasDataArgument()) { | 
|  | if (!HasVAListArg) { | 
|  | unsigned argIndex = Amt.getArgIndex(); | 
|  | if (argIndex >= NumDataArgs) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) | 
|  | << k, | 
|  | getLocationOfByte(Amt.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | // Don't do any more checking.  We will just emit | 
|  | // spurious errors. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Type check the data argument.  It should be an 'int'. | 
|  | // Although not in conformance with C99, we also allow the argument to be | 
|  | // an 'unsigned int' as that is a reasonably safe case.  GCC also | 
|  | // doesn't emit a warning for that case. | 
|  | CoveredArgs.set(argIndex); | 
|  | const Expr *Arg = getDataArg(argIndex); | 
|  | if (!Arg) | 
|  | return false; | 
|  |  | 
|  | QualType T = Arg->getType(); | 
|  |  | 
|  | const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); | 
|  | assert(AT.isValid()); | 
|  |  | 
|  | if (!AT.matchesType(S.Context, T)) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) | 
|  | << k << AT.getRepresentativeTypeName(S.Context) | 
|  | << T << Arg->getSourceRange(), | 
|  | getLocationOfByte(Amt.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | // Don't do any more checking.  We will just emit | 
|  | // spurious errors. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleInvalidAmount( | 
|  | const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalAmount &Amt, | 
|  | unsigned type, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | const analyze_printf::PrintfConversionSpecifier &CS = | 
|  | FS.getConversionSpecifier(); | 
|  |  | 
|  | FixItHint fixit = | 
|  | Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant | 
|  | ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), | 
|  | Amt.getConstantLength())) | 
|  | : FixItHint(); | 
|  |  | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) | 
|  | << type << CS.toString(), | 
|  | getLocationOfByte(Amt.getStart()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen), | 
|  | fixit); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalFlag &flag, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | // Warn about pointless flag with a fixit removal. | 
|  | const analyze_printf::PrintfConversionSpecifier &CS = | 
|  | FS.getConversionSpecifier(); | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) | 
|  | << flag.toString() << CS.toString(), | 
|  | getLocationOfByte(flag.getPosition()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen), | 
|  | FixItHint::CreateRemoval( | 
|  | getSpecifierRange(flag.getPosition(), 1))); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleIgnoredFlag( | 
|  | const analyze_printf::PrintfSpecifier &FS, | 
|  | const analyze_printf::OptionalFlag &ignoredFlag, | 
|  | const analyze_printf::OptionalFlag &flag, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | // Warn about ignored flag with a fixit removal. | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) | 
|  | << ignoredFlag.toString() << flag.toString(), | 
|  | getLocationOfByte(ignoredFlag.getPosition()), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startSpecifier, specifierLen), | 
|  | FixItHint::CreateRemoval( | 
|  | getSpecifierRange(ignoredFlag.getPosition(), 1))); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, | 
|  | unsigned flagLen) { | 
|  | // Warn about an empty flag. | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), | 
|  | getLocationOfByte(startFlag), | 
|  | /*IsStringLocation*/true, | 
|  | getSpecifierRange(startFlag, flagLen)); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, | 
|  | unsigned flagLen) { | 
|  | // Warn about an invalid flag. | 
|  | auto Range = getSpecifierRange(startFlag, flagLen); | 
|  | StringRef flag(startFlag, flagLen); | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, | 
|  | getLocationOfByte(startFlag), | 
|  | /*IsStringLocation*/true, | 
|  | Range, FixItHint::CreateRemoval(Range)); | 
|  | } | 
|  |  | 
|  | void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( | 
|  | const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { | 
|  | // Warn about using '[...]' without a '@' conversion. | 
|  | auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); | 
|  | auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; | 
|  | EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), | 
|  | getLocationOfByte(conversionPosition), | 
|  | /*IsStringLocation*/true, | 
|  | Range, FixItHint::CreateRemoval(Range)); | 
|  | } | 
|  |  | 
|  | // Determines if the specified is a C++ class or struct containing | 
|  | // a member with the specified name and kind (e.g. a CXXMethodDecl named | 
|  | // "c_str()"). | 
|  | template<typename MemberKind> | 
|  | static llvm::SmallPtrSet<MemberKind*, 1> | 
|  | CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { | 
|  | const RecordType *RT = Ty->getAs<RecordType>(); | 
|  | llvm::SmallPtrSet<MemberKind*, 1> Results; | 
|  |  | 
|  | if (!RT) | 
|  | return Results; | 
|  | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!RD || !RD->getDefinition()) | 
|  | return Results; | 
|  |  | 
|  | LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), | 
|  | Sema::LookupMemberName); | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | // We just need to include all members of the right kind turned up by the | 
|  | // filter, at this point. | 
|  | if (S.LookupQualifiedName(R, RT->getDecl())) | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | NamedDecl *decl = (*I)->getUnderlyingDecl(); | 
|  | if (MemberKind *FK = dyn_cast<MemberKind>(decl)) | 
|  | Results.insert(FK); | 
|  | } | 
|  | return Results; | 
|  | } | 
|  |  | 
|  | /// Check if we could call '.c_str()' on an object. | 
|  | /// | 
|  | /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't | 
|  | /// allow the call, or if it would be ambiguous). | 
|  | bool Sema::hasCStrMethod(const Expr *E) { | 
|  | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; | 
|  |  | 
|  | MethodSet Results = | 
|  | CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); | 
|  | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); | 
|  | MI != ME; ++MI) | 
|  | if ((*MI)->getMinRequiredArguments() == 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if a (w)string was passed when a (w)char* was needed, and offer a | 
|  | // better diagnostic if so. AT is assumed to be valid. | 
|  | // Returns true when a c_str() conversion method is found. | 
|  | bool CheckPrintfHandler::checkForCStrMembers( | 
|  | const analyze_printf::ArgType &AT, const Expr *E) { | 
|  | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; | 
|  |  | 
|  | MethodSet Results = | 
|  | CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); | 
|  |  | 
|  | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); | 
|  | MI != ME; ++MI) { | 
|  | const CXXMethodDecl *Method = *MI; | 
|  | if (Method->getMinRequiredArguments() == 0 && | 
|  | AT.matchesType(S.Context, Method->getReturnType())) { | 
|  | // FIXME: Suggest parens if the expression needs them. | 
|  | SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); | 
|  | S.Diag(E->getBeginLoc(), diag::note_printf_c_str) | 
|  | << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier | 
|  | &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | using namespace analyze_format_string; | 
|  | using namespace analyze_printf; | 
|  |  | 
|  | const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); | 
|  |  | 
|  | if (FS.consumesDataArgument()) { | 
|  | if (atFirstArg) { | 
|  | atFirstArg = false; | 
|  | usesPositionalArgs = FS.usesPositionalArg(); | 
|  | } | 
|  | else if (usesPositionalArgs != FS.usesPositionalArg()) { | 
|  | HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), | 
|  | startSpecifier, specifierLen); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First check if the field width, precision, and conversion specifier | 
|  | // have matching data arguments. | 
|  | if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, | 
|  | startSpecifier, specifierLen)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!HandleAmount(FS.getPrecision(), /* precision */ 1, | 
|  | startSpecifier, specifierLen)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!CS.consumesDataArgument()) { | 
|  | // FIXME: Technically specifying a precision or field width here | 
|  | // makes no sense.  Worth issuing a warning at some point. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Consume the argument. | 
|  | unsigned argIndex = FS.getArgIndex(); | 
|  | if (argIndex < NumDataArgs) { | 
|  | // The check to see if the argIndex is valid will come later. | 
|  | // We set the bit here because we may exit early from this | 
|  | // function if we encounter some other error. | 
|  | CoveredArgs.set(argIndex); | 
|  | } | 
|  |  | 
|  | // FreeBSD kernel extensions. | 
|  | if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || | 
|  | CS.getKind() == ConversionSpecifier::FreeBSDDArg) { | 
|  | // We need at least two arguments. | 
|  | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) | 
|  | return false; | 
|  |  | 
|  | // Claim the second argument. | 
|  | CoveredArgs.set(argIndex + 1); | 
|  |  | 
|  | // Type check the first argument (int for %b, pointer for %D) | 
|  | const Expr *Ex = getDataArg(argIndex); | 
|  | const analyze_printf::ArgType &AT = | 
|  | (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? | 
|  | ArgType(S.Context.IntTy) : ArgType::CPointerTy; | 
|  | if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) | 
|  | << AT.getRepresentativeTypeName(S.Context) << Ex->getType() | 
|  | << false << Ex->getSourceRange(), | 
|  | Ex->getBeginLoc(), /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | // Type check the second argument (char * for both %b and %D) | 
|  | Ex = getDataArg(argIndex + 1); | 
|  | const analyze_printf::ArgType &AT2 = ArgType::CStrTy; | 
|  | if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) | 
|  | << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() | 
|  | << false << Ex->getSourceRange(), | 
|  | Ex->getBeginLoc(), /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check for using an Objective-C specific conversion specifier | 
|  | // in a non-ObjC literal. | 
|  | if (!allowsObjCArg() && CS.isObjCArg()) { | 
|  | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, | 
|  | specifierLen); | 
|  | } | 
|  |  | 
|  | // %P can only be used with os_log. | 
|  | if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { | 
|  | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, | 
|  | specifierLen); | 
|  | } | 
|  |  | 
|  | // %n is not allowed with os_log. | 
|  | if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), | 
|  | getLocationOfByte(CS.getStart()), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Only scalars are allowed for os_trace. | 
|  | if (FSType == Sema::FST_OSTrace && | 
|  | (CS.getKind() == ConversionSpecifier::PArg || | 
|  | CS.getKind() == ConversionSpecifier::sArg || | 
|  | CS.getKind() == ConversionSpecifier::ObjCObjArg)) { | 
|  | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, | 
|  | specifierLen); | 
|  | } | 
|  |  | 
|  | // Check for use of public/private annotation outside of os_log(). | 
|  | if (FSType != Sema::FST_OSLog) { | 
|  | if (FS.isPublic().isSet()) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) | 
|  | << "public", | 
|  | getLocationOfByte(FS.isPublic().getPosition()), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  | if (FS.isPrivate().isSet()) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) | 
|  | << "private", | 
|  | getLocationOfByte(FS.isPrivate().getPosition()), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for invalid use of field width | 
|  | if (!FS.hasValidFieldWidth()) { | 
|  | HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, | 
|  | startSpecifier, specifierLen); | 
|  | } | 
|  |  | 
|  | // Check for invalid use of precision | 
|  | if (!FS.hasValidPrecision()) { | 
|  | HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, | 
|  | startSpecifier, specifierLen); | 
|  | } | 
|  |  | 
|  | // Precision is mandatory for %P specifier. | 
|  | if (CS.getKind() == ConversionSpecifier::PArg && | 
|  | FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), | 
|  | getLocationOfByte(startSpecifier), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  |  | 
|  | // Check each flag does not conflict with any other component. | 
|  | if (!FS.hasValidThousandsGroupingPrefix()) | 
|  | HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); | 
|  | if (!FS.hasValidLeadingZeros()) | 
|  | HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); | 
|  | if (!FS.hasValidPlusPrefix()) | 
|  | HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); | 
|  | if (!FS.hasValidSpacePrefix()) | 
|  | HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); | 
|  | if (!FS.hasValidAlternativeForm()) | 
|  | HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); | 
|  | if (!FS.hasValidLeftJustified()) | 
|  | HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); | 
|  |  | 
|  | // Check that flags are not ignored by another flag | 
|  | if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' | 
|  | HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), | 
|  | startSpecifier, specifierLen); | 
|  | if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' | 
|  | HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), | 
|  | startSpecifier, specifierLen); | 
|  |  | 
|  | // Check the length modifier is valid with the given conversion specifier. | 
|  | if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), | 
|  | S.getLangOpts())) | 
|  | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, | 
|  | diag::warn_format_nonsensical_length); | 
|  | else if (!FS.hasStandardLengthModifier()) | 
|  | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); | 
|  | else if (!FS.hasStandardLengthConversionCombination()) | 
|  | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, | 
|  | diag::warn_format_non_standard_conversion_spec); | 
|  |  | 
|  | if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) | 
|  | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); | 
|  |  | 
|  | // The remaining checks depend on the data arguments. | 
|  | if (HasVAListArg) | 
|  | return true; | 
|  |  | 
|  | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) | 
|  | return false; | 
|  |  | 
|  | const Expr *Arg = getDataArg(argIndex); | 
|  | if (!Arg) | 
|  | return true; | 
|  |  | 
|  | return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); | 
|  | } | 
|  |  | 
|  | static bool requiresParensToAddCast(const Expr *E) { | 
|  | // FIXME: We should have a general way to reason about operator | 
|  | // precedence and whether parens are actually needed here. | 
|  | // Take care of a few common cases where they aren't. | 
|  | const Expr *Inside = E->IgnoreImpCasts(); | 
|  | if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) | 
|  | Inside = POE->getSyntacticForm()->IgnoreImpCasts(); | 
|  |  | 
|  | switch (Inside->getStmtClass()) { | 
|  | case Stmt::ArraySubscriptExprClass: | 
|  | case Stmt::CallExprClass: | 
|  | case Stmt::CharacterLiteralClass: | 
|  | case Stmt::CXXBoolLiteralExprClass: | 
|  | case Stmt::DeclRefExprClass: | 
|  | case Stmt::FloatingLiteralClass: | 
|  | case Stmt::IntegerLiteralClass: | 
|  | case Stmt::MemberExprClass: | 
|  | case Stmt::ObjCArrayLiteralClass: | 
|  | case Stmt::ObjCBoolLiteralExprClass: | 
|  | case Stmt::ObjCBoxedExprClass: | 
|  | case Stmt::ObjCDictionaryLiteralClass: | 
|  | case Stmt::ObjCEncodeExprClass: | 
|  | case Stmt::ObjCIvarRefExprClass: | 
|  | case Stmt::ObjCMessageExprClass: | 
|  | case Stmt::ObjCPropertyRefExprClass: | 
|  | case Stmt::ObjCStringLiteralClass: | 
|  | case Stmt::ObjCSubscriptRefExprClass: | 
|  | case Stmt::ParenExprClass: | 
|  | case Stmt::StringLiteralClass: | 
|  | case Stmt::UnaryOperatorClass: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::pair<QualType, StringRef> | 
|  | shouldNotPrintDirectly(const ASTContext &Context, | 
|  | QualType IntendedTy, | 
|  | const Expr *E) { | 
|  | // Use a 'while' to peel off layers of typedefs. | 
|  | QualType TyTy = IntendedTy; | 
|  | while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { | 
|  | StringRef Name = UserTy->getDecl()->getName(); | 
|  | QualType CastTy = llvm::StringSwitch<QualType>(Name) | 
|  | .Case("CFIndex", Context.getNSIntegerType()) | 
|  | .Case("NSInteger", Context.getNSIntegerType()) | 
|  | .Case("NSUInteger", Context.getNSUIntegerType()) | 
|  | .Case("SInt32", Context.IntTy) | 
|  | .Case("UInt32", Context.UnsignedIntTy) | 
|  | .Default(QualType()); | 
|  |  | 
|  | if (!CastTy.isNull()) | 
|  | return std::make_pair(CastTy, Name); | 
|  |  | 
|  | TyTy = UserTy->desugar(); | 
|  | } | 
|  |  | 
|  | // Strip parens if necessary. | 
|  | if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) | 
|  | return shouldNotPrintDirectly(Context, | 
|  | PE->getSubExpr()->getType(), | 
|  | PE->getSubExpr()); | 
|  |  | 
|  | // If this is a conditional expression, then its result type is constructed | 
|  | // via usual arithmetic conversions and thus there might be no necessary | 
|  | // typedef sugar there.  Recurse to operands to check for NSInteger & | 
|  | // Co. usage condition. | 
|  | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | 
|  | QualType TrueTy, FalseTy; | 
|  | StringRef TrueName, FalseName; | 
|  |  | 
|  | std::tie(TrueTy, TrueName) = | 
|  | shouldNotPrintDirectly(Context, | 
|  | CO->getTrueExpr()->getType(), | 
|  | CO->getTrueExpr()); | 
|  | std::tie(FalseTy, FalseName) = | 
|  | shouldNotPrintDirectly(Context, | 
|  | CO->getFalseExpr()->getType(), | 
|  | CO->getFalseExpr()); | 
|  |  | 
|  | if (TrueTy == FalseTy) | 
|  | return std::make_pair(TrueTy, TrueName); | 
|  | else if (TrueTy.isNull()) | 
|  | return std::make_pair(FalseTy, FalseName); | 
|  | else if (FalseTy.isNull()) | 
|  | return std::make_pair(TrueTy, TrueName); | 
|  | } | 
|  |  | 
|  | return std::make_pair(QualType(), StringRef()); | 
|  | } | 
|  |  | 
|  | /// Return true if \p ICE is an implicit argument promotion of an arithmetic | 
|  | /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked | 
|  | /// type do not count. | 
|  | static bool | 
|  | isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { | 
|  | QualType From = ICE->getSubExpr()->getType(); | 
|  | QualType To = ICE->getType(); | 
|  | // It's an integer promotion if the destination type is the promoted | 
|  | // source type. | 
|  | if (ICE->getCastKind() == CK_IntegralCast && | 
|  | From->isPromotableIntegerType() && | 
|  | S.Context.getPromotedIntegerType(From) == To) | 
|  | return true; | 
|  | // Look through vector types, since we do default argument promotion for | 
|  | // those in OpenCL. | 
|  | if (const auto *VecTy = From->getAs<ExtVectorType>()) | 
|  | From = VecTy->getElementType(); | 
|  | if (const auto *VecTy = To->getAs<ExtVectorType>()) | 
|  | To = VecTy->getElementType(); | 
|  | // It's a floating promotion if the source type is a lower rank. | 
|  | return ICE->getCastKind() == CK_FloatingCast && | 
|  | S.Context.getFloatingTypeOrder(From, To) < 0; | 
|  | } | 
|  |  | 
|  | bool | 
|  | CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, | 
|  | const char *StartSpecifier, | 
|  | unsigned SpecifierLen, | 
|  | const Expr *E) { | 
|  | using namespace analyze_format_string; | 
|  | using namespace analyze_printf; | 
|  |  | 
|  | // Now type check the data expression that matches the | 
|  | // format specifier. | 
|  | const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); | 
|  | if (!AT.isValid()) | 
|  | return true; | 
|  |  | 
|  | QualType ExprTy = E->getType(); | 
|  | while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { | 
|  | ExprTy = TET->getUnderlyingExpr()->getType(); | 
|  | } | 
|  |  | 
|  | const analyze_printf::ArgType::MatchKind Match = | 
|  | AT.matchesType(S.Context, ExprTy); | 
|  | bool Pedantic = Match == analyze_printf::ArgType::NoMatchPedantic; | 
|  | if (Match == analyze_printf::ArgType::Match) | 
|  | return true; | 
|  |  | 
|  | // Look through argument promotions for our error message's reported type. | 
|  | // This includes the integral and floating promotions, but excludes array | 
|  | // and function pointer decay (seeing that an argument intended to be a | 
|  | // string has type 'char [6]' is probably more confusing than 'char *') and | 
|  | // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). | 
|  | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (isArithmeticArgumentPromotion(S, ICE)) { | 
|  | E = ICE->getSubExpr(); | 
|  | ExprTy = E->getType(); | 
|  |  | 
|  | // Check if we didn't match because of an implicit cast from a 'char' | 
|  | // or 'short' to an 'int'.  This is done because printf is a varargs | 
|  | // function. | 
|  | if (ICE->getType() == S.Context.IntTy || | 
|  | ICE->getType() == S.Context.UnsignedIntTy) { | 
|  | // All further checking is done on the subexpression. | 
|  | if (AT.matchesType(S.Context, ExprTy)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { | 
|  | // Special case for 'a', which has type 'int' in C. | 
|  | // Note, however, that we do /not/ want to treat multibyte constants like | 
|  | // 'MooV' as characters! This form is deprecated but still exists. | 
|  | if (ExprTy == S.Context.IntTy) | 
|  | if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) | 
|  | ExprTy = S.Context.CharTy; | 
|  | } | 
|  |  | 
|  | // Look through enums to their underlying type. | 
|  | bool IsEnum = false; | 
|  | if (auto EnumTy = ExprTy->getAs<EnumType>()) { | 
|  | ExprTy = EnumTy->getDecl()->getIntegerType(); | 
|  | IsEnum = true; | 
|  | } | 
|  |  | 
|  | // %C in an Objective-C context prints a unichar, not a wchar_t. | 
|  | // If the argument is an integer of some kind, believe the %C and suggest | 
|  | // a cast instead of changing the conversion specifier. | 
|  | QualType IntendedTy = ExprTy; | 
|  | if (isObjCContext() && | 
|  | FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { | 
|  | if (ExprTy->isIntegralOrUnscopedEnumerationType() && | 
|  | !ExprTy->isCharType()) { | 
|  | // 'unichar' is defined as a typedef of unsigned short, but we should | 
|  | // prefer using the typedef if it is visible. | 
|  | IntendedTy = S.Context.UnsignedShortTy; | 
|  |  | 
|  | // While we are here, check if the value is an IntegerLiteral that happens | 
|  | // to be within the valid range. | 
|  | if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { | 
|  | const llvm::APInt &V = IL->getValue(); | 
|  | if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), | 
|  | Sema::LookupOrdinaryName); | 
|  | if (S.LookupName(Result, S.getCurScope())) { | 
|  | NamedDecl *ND = Result.getFoundDecl(); | 
|  | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) | 
|  | if (TD->getUnderlyingType() == IntendedTy) | 
|  | IntendedTy = S.Context.getTypedefType(TD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special-case some of Darwin's platform-independence types by suggesting | 
|  | // casts to primitive types that are known to be large enough. | 
|  | bool ShouldNotPrintDirectly = false; StringRef CastTyName; | 
|  | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { | 
|  | QualType CastTy; | 
|  | std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); | 
|  | if (!CastTy.isNull()) { | 
|  | // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int | 
|  | // (long in ASTContext). Only complain to pedants. | 
|  | if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && | 
|  | (AT.isSizeT() || AT.isPtrdiffT()) && | 
|  | AT.matchesType(S.Context, CastTy)) | 
|  | Pedantic = true; | 
|  | IntendedTy = CastTy; | 
|  | ShouldNotPrintDirectly = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We may be able to offer a FixItHint if it is a supported type. | 
|  | PrintfSpecifier fixedFS = FS; | 
|  | bool Success = | 
|  | fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); | 
|  |  | 
|  | if (Success) { | 
|  | // Get the fix string from the fixed format specifier | 
|  | SmallString<16> buf; | 
|  | llvm::raw_svector_ostream os(buf); | 
|  | fixedFS.toString(os); | 
|  |  | 
|  | CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); | 
|  |  | 
|  | if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { | 
|  | unsigned Diag = | 
|  | Pedantic | 
|  | ? diag::warn_format_conversion_argument_type_mismatch_pedantic | 
|  | : diag::warn_format_conversion_argument_type_mismatch; | 
|  | // In this case, the specifier is wrong and should be changed to match | 
|  | // the argument. | 
|  | EmitFormatDiagnostic(S.PDiag(Diag) | 
|  | << AT.getRepresentativeTypeName(S.Context) | 
|  | << IntendedTy << IsEnum << E->getSourceRange(), | 
|  | E->getBeginLoc(), | 
|  | /*IsStringLocation*/ false, SpecRange, | 
|  | FixItHint::CreateReplacement(SpecRange, os.str())); | 
|  | } else { | 
|  | // The canonical type for formatting this value is different from the | 
|  | // actual type of the expression. (This occurs, for example, with Darwin's | 
|  | // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but | 
|  | // should be printed as 'long' for 64-bit compatibility.) | 
|  | // Rather than emitting a normal format/argument mismatch, we want to | 
|  | // add a cast to the recommended type (and correct the format string | 
|  | // if necessary). | 
|  | SmallString<16> CastBuf; | 
|  | llvm::raw_svector_ostream CastFix(CastBuf); | 
|  | CastFix << "("; | 
|  | IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); | 
|  | CastFix << ")"; | 
|  |  | 
|  | SmallVector<FixItHint,4> Hints; | 
|  | if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) | 
|  | Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); | 
|  |  | 
|  | if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { | 
|  | // If there's already a cast present, just replace it. | 
|  | SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); | 
|  | Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); | 
|  |  | 
|  | } else if (!requiresParensToAddCast(E)) { | 
|  | // If the expression has high enough precedence, | 
|  | // just write the C-style cast. | 
|  | Hints.push_back( | 
|  | FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); | 
|  | } else { | 
|  | // Otherwise, add parens around the expression as well as the cast. | 
|  | CastFix << "("; | 
|  | Hints.push_back( | 
|  | FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); | 
|  |  | 
|  | SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); | 
|  | Hints.push_back(FixItHint::CreateInsertion(After, ")")); | 
|  | } | 
|  |  | 
|  | if (ShouldNotPrintDirectly) { | 
|  | // The expression has a type that should not be printed directly. | 
|  | // We extract the name from the typedef because we don't want to show | 
|  | // the underlying type in the diagnostic. | 
|  | StringRef Name; | 
|  | if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) | 
|  | Name = TypedefTy->getDecl()->getName(); | 
|  | else | 
|  | Name = CastTyName; | 
|  | unsigned Diag = Pedantic | 
|  | ? diag::warn_format_argument_needs_cast_pedantic | 
|  | : diag::warn_format_argument_needs_cast; | 
|  | EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum | 
|  | << E->getSourceRange(), | 
|  | E->getBeginLoc(), /*IsStringLocation=*/false, | 
|  | SpecRange, Hints); | 
|  | } else { | 
|  | // In this case, the expression could be printed using a different | 
|  | // specifier, but we've decided that the specifier is probably correct | 
|  | // and we should cast instead. Just use the normal warning message. | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::warn_format_conversion_argument_type_mismatch) | 
|  | << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum | 
|  | << E->getSourceRange(), | 
|  | E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, | 
|  | SpecifierLen); | 
|  | // Since the warning for passing non-POD types to variadic functions | 
|  | // was deferred until now, we emit a warning for non-POD | 
|  | // arguments here. | 
|  | switch (S.isValidVarArgType(ExprTy)) { | 
|  | case Sema::VAK_Valid: | 
|  | case Sema::VAK_ValidInCXX11: { | 
|  | unsigned Diag = | 
|  | Pedantic | 
|  | ? diag::warn_format_conversion_argument_type_mismatch_pedantic | 
|  | : diag::warn_format_conversion_argument_type_mismatch; | 
|  |  | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy | 
|  | << IsEnum << CSR << E->getSourceRange(), | 
|  | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); | 
|  | break; | 
|  | } | 
|  | case Sema::VAK_Undefined: | 
|  | case Sema::VAK_MSVCUndefined: | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) | 
|  | << S.getLangOpts().CPlusPlus11 << ExprTy | 
|  | << CallType | 
|  | << AT.getRepresentativeTypeName(S.Context) << CSR | 
|  | << E->getSourceRange(), | 
|  | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); | 
|  | checkForCStrMembers(AT, E); | 
|  | break; | 
|  |  | 
|  | case Sema::VAK_Invalid: | 
|  | if (ExprTy->isObjCObjectType()) | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) | 
|  | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType | 
|  | << AT.getRepresentativeTypeName(S.Context) << CSR | 
|  | << E->getSourceRange(), | 
|  | E->getBeginLoc(), /*IsStringLocation*/ false, CSR); | 
|  | else | 
|  | // FIXME: If this is an initializer list, suggest removing the braces | 
|  | // or inserting a cast to the target type. | 
|  | S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) | 
|  | << isa<InitListExpr>(E) << ExprTy << CallType | 
|  | << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && | 
|  | "format string specifier index out of range"); | 
|  | CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Scanf format string checking ------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CheckScanfHandler : public CheckFormatHandler { | 
|  | public: | 
|  | CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, | 
|  | const Expr *origFormatExpr, Sema::FormatStringType type, | 
|  | unsigned firstDataArg, unsigned numDataArgs, | 
|  | const char *beg, bool hasVAListArg, | 
|  | ArrayRef<const Expr *> Args, unsigned formatIdx, | 
|  | bool inFunctionCall, Sema::VariadicCallType CallType, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg) | 
|  | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, | 
|  | numDataArgs, beg, hasVAListArg, Args, formatIdx, | 
|  | inFunctionCall, CallType, CheckedVarArgs, | 
|  | UncoveredArg) {} | 
|  |  | 
|  | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) override; | 
|  |  | 
|  | bool HandleInvalidScanfConversionSpecifier( | 
|  | const analyze_scanf::ScanfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) override; | 
|  |  | 
|  | void HandleIncompleteScanList(const char *start, const char *end) override; | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | void CheckScanfHandler::HandleIncompleteScanList(const char *start, | 
|  | const char *end) { | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), | 
|  | getLocationOfByte(end), /*IsStringLocation*/true, | 
|  | getSpecifierRange(start, end - start)); | 
|  | } | 
|  |  | 
|  | bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( | 
|  | const analyze_scanf::ScanfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | const analyze_scanf::ScanfConversionSpecifier &CS = | 
|  | FS.getConversionSpecifier(); | 
|  |  | 
|  | return HandleInvalidConversionSpecifier(FS.getArgIndex(), | 
|  | getLocationOfByte(CS.getStart()), | 
|  | startSpecifier, specifierLen, | 
|  | CS.getStart(), CS.getLength()); | 
|  | } | 
|  |  | 
|  | bool CheckScanfHandler::HandleScanfSpecifier( | 
|  | const analyze_scanf::ScanfSpecifier &FS, | 
|  | const char *startSpecifier, | 
|  | unsigned specifierLen) { | 
|  | using namespace analyze_scanf; | 
|  | using namespace analyze_format_string; | 
|  |  | 
|  | const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); | 
|  |  | 
|  | // Handle case where '%' and '*' don't consume an argument.  These shouldn't | 
|  | // be used to decide if we are using positional arguments consistently. | 
|  | if (FS.consumesDataArgument()) { | 
|  | if (atFirstArg) { | 
|  | atFirstArg = false; | 
|  | usesPositionalArgs = FS.usesPositionalArg(); | 
|  | } | 
|  | else if (usesPositionalArgs != FS.usesPositionalArg()) { | 
|  | HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), | 
|  | startSpecifier, specifierLen); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the field with is non-zero. | 
|  | const OptionalAmount &Amt = FS.getFieldWidth(); | 
|  | if (Amt.getHowSpecified() == OptionalAmount::Constant) { | 
|  | if (Amt.getConstantAmount() == 0) { | 
|  | const CharSourceRange &R = getSpecifierRange(Amt.getStart(), | 
|  | Amt.getConstantLength()); | 
|  | EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), | 
|  | getLocationOfByte(Amt.getStart()), | 
|  | /*IsStringLocation*/true, R, | 
|  | FixItHint::CreateRemoval(R)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FS.consumesDataArgument()) { | 
|  | // FIXME: Technically specifying a precision or field width here | 
|  | // makes no sense.  Worth issuing a warning at some point. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Consume the argument. | 
|  | unsigned argIndex = FS.getArgIndex(); | 
|  | if (argIndex < NumDataArgs) { | 
|  | // The check to see if the argIndex is valid will come later. | 
|  | // We set the bit here because we may exit early from this | 
|  | // function if we encounter some other error. | 
|  | CoveredArgs.set(argIndex); | 
|  | } | 
|  |  | 
|  | // Check the length modifier is valid with the given conversion specifier. | 
|  | if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), | 
|  | S.getLangOpts())) | 
|  | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, | 
|  | diag::warn_format_nonsensical_length); | 
|  | else if (!FS.hasStandardLengthModifier()) | 
|  | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); | 
|  | else if (!FS.hasStandardLengthConversionCombination()) | 
|  | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, | 
|  | diag::warn_format_non_standard_conversion_spec); | 
|  |  | 
|  | if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) | 
|  | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); | 
|  |  | 
|  | // The remaining checks depend on the data arguments. | 
|  | if (HasVAListArg) | 
|  | return true; | 
|  |  | 
|  | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) | 
|  | return false; | 
|  |  | 
|  | // Check that the argument type matches the format specifier. | 
|  | const Expr *Ex = getDataArg(argIndex); | 
|  | if (!Ex) | 
|  | return true; | 
|  |  | 
|  | const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); | 
|  |  | 
|  | if (!AT.isValid()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | analyze_format_string::ArgType::MatchKind Match = | 
|  | AT.matchesType(S.Context, Ex->getType()); | 
|  | bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; | 
|  | if (Match == analyze_format_string::ArgType::Match) | 
|  | return true; | 
|  |  | 
|  | ScanfSpecifier fixedFS = FS; | 
|  | bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), | 
|  | S.getLangOpts(), S.Context); | 
|  |  | 
|  | unsigned Diag = | 
|  | Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic | 
|  | : diag::warn_format_conversion_argument_type_mismatch; | 
|  |  | 
|  | if (Success) { | 
|  | // Get the fix string from the fixed format specifier. | 
|  | SmallString<128> buf; | 
|  | llvm::raw_svector_ostream os(buf); | 
|  | fixedFS.toString(os); | 
|  |  | 
|  | EmitFormatDiagnostic( | 
|  | S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) | 
|  | << Ex->getType() << false << Ex->getSourceRange(), | 
|  | Ex->getBeginLoc(), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen), | 
|  | FixItHint::CreateReplacement( | 
|  | getSpecifierRange(startSpecifier, specifierLen), os.str())); | 
|  | } else { | 
|  | EmitFormatDiagnostic(S.PDiag(Diag) | 
|  | << AT.getRepresentativeTypeName(S.Context) | 
|  | << Ex->getType() << false << Ex->getSourceRange(), | 
|  | Ex->getBeginLoc(), | 
|  | /*IsStringLocation*/ false, | 
|  | getSpecifierRange(startSpecifier, specifierLen)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, | 
|  | const Expr *OrigFormatExpr, | 
|  | ArrayRef<const Expr *> Args, | 
|  | bool HasVAListArg, unsigned format_idx, | 
|  | unsigned firstDataArg, | 
|  | Sema::FormatStringType Type, | 
|  | bool inFunctionCall, | 
|  | Sema::VariadicCallType CallType, | 
|  | llvm::SmallBitVector &CheckedVarArgs, | 
|  | UncoveredArgHandler &UncoveredArg) { | 
|  | // CHECK: is the format string a wide literal? | 
|  | if (!FExpr->isAscii() && !FExpr->isUTF8()) { | 
|  | CheckFormatHandler::EmitFormatDiagnostic( | 
|  | S, inFunctionCall, Args[format_idx], | 
|  | S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), | 
|  | /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Str - The format string.  NOTE: this is NOT null-terminated! | 
|  | StringRef StrRef = FExpr->getString(); | 
|  | const char *Str = StrRef.data(); | 
|  | // Account for cases where the string literal is truncated in a declaration. | 
|  | const ConstantArrayType *T = | 
|  | S.Context.getAsConstantArrayType(FExpr->getType()); | 
|  | assert(T && "String literal not of constant array type!"); | 
|  | size_t TypeSize = T->getSize().getZExtValue(); | 
|  | size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); | 
|  | const unsigned numDataArgs = Args.size() - firstDataArg; | 
|  |  | 
|  | // Emit a warning if the string literal is truncated and does not contain an | 
|  | // embedded null character. | 
|  | if (TypeSize <= StrRef.size() && | 
|  | StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { | 
|  | CheckFormatHandler::EmitFormatDiagnostic( | 
|  | S, inFunctionCall, Args[format_idx], | 
|  | S.PDiag(diag::warn_printf_format_string_not_null_terminated), | 
|  | FExpr->getBeginLoc(), | 
|  | /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // CHECK: empty format string? | 
|  | if (StrLen == 0 && numDataArgs > 0) { | 
|  | CheckFormatHandler::EmitFormatDiagnostic( | 
|  | S, inFunctionCall, Args[format_idx], | 
|  | S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), | 
|  | /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || | 
|  | Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || | 
|  | Type == Sema::FST_OSTrace) { | 
|  | CheckPrintfHandler H( | 
|  | S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, | 
|  | (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, | 
|  | HasVAListArg, Args, format_idx, inFunctionCall, CallType, | 
|  | CheckedVarArgs, UncoveredArg); | 
|  |  | 
|  | if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, | 
|  | S.getLangOpts(), | 
|  | S.Context.getTargetInfo(), | 
|  | Type == Sema::FST_FreeBSDKPrintf)) | 
|  | H.DoneProcessing(); | 
|  | } else if (Type == Sema::FST_Scanf) { | 
|  | CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, | 
|  | numDataArgs, Str, HasVAListArg, Args, format_idx, | 
|  | inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); | 
|  |  | 
|  | if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, | 
|  | S.getLangOpts(), | 
|  | S.Context.getTargetInfo())) | 
|  | H.DoneProcessing(); | 
|  | } // TODO: handle other formats | 
|  | } | 
|  |  | 
|  | bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { | 
|  | // Str - The format string.  NOTE: this is NOT null-terminated! | 
|  | StringRef StrRef = FExpr->getString(); | 
|  | const char *Str = StrRef.data(); | 
|  | // Account for cases where the string literal is truncated in a declaration. | 
|  | const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); | 
|  | assert(T && "String literal not of constant array type!"); | 
|  | size_t TypeSize = T->getSize().getZExtValue(); | 
|  | size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); | 
|  | return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, | 
|  | getLangOpts(), | 
|  | Context.getTargetInfo()); | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Warn on use of wrong absolute value function. -------------===// | 
|  |  | 
|  | // Returns the related absolute value function that is larger, of 0 if one | 
|  | // does not exist. | 
|  | static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { | 
|  | switch (AbsFunction) { | 
|  | default: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BI__builtin_abs: | 
|  | return Builtin::BI__builtin_labs; | 
|  | case Builtin::BI__builtin_labs: | 
|  | return Builtin::BI__builtin_llabs; | 
|  | case Builtin::BI__builtin_llabs: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BI__builtin_fabsf: | 
|  | return Builtin::BI__builtin_fabs; | 
|  | case Builtin::BI__builtin_fabs: | 
|  | return Builtin::BI__builtin_fabsl; | 
|  | case Builtin::BI__builtin_fabsl: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BI__builtin_cabsf: | 
|  | return Builtin::BI__builtin_cabs; | 
|  | case Builtin::BI__builtin_cabs: | 
|  | return Builtin::BI__builtin_cabsl; | 
|  | case Builtin::BI__builtin_cabsl: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BIabs: | 
|  | return Builtin::BIlabs; | 
|  | case Builtin::BIlabs: | 
|  | return Builtin::BIllabs; | 
|  | case Builtin::BIllabs: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BIfabsf: | 
|  | return Builtin::BIfabs; | 
|  | case Builtin::BIfabs: | 
|  | return Builtin::BIfabsl; | 
|  | case Builtin::BIfabsl: | 
|  | return 0; | 
|  |  | 
|  | case Builtin::BIcabsf: | 
|  | return Builtin::BIcabs; | 
|  | case Builtin::BIcabs: | 
|  | return Builtin::BIcabsl; | 
|  | case Builtin::BIcabsl: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the argument type of the absolute value function. | 
|  | static QualType getAbsoluteValueArgumentType(ASTContext &Context, | 
|  | unsigned AbsType) { | 
|  | if (AbsType == 0) | 
|  | return QualType(); | 
|  |  | 
|  | ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; | 
|  | QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); | 
|  | if (Error != ASTContext::GE_None) | 
|  | return QualType(); | 
|  |  | 
|  | const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); | 
|  | if (!FT) | 
|  | return QualType(); | 
|  |  | 
|  | if (FT->getNumParams() != 1) | 
|  | return QualType(); | 
|  |  | 
|  | return FT->getParamType(0); | 
|  | } | 
|  |  | 
|  | // Returns the best absolute value function, or zero, based on type and | 
|  | // current absolute value function. | 
|  | static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, | 
|  | unsigned AbsFunctionKind) { | 
|  | unsigned BestKind = 0; | 
|  | uint64_t ArgSize = Context.getTypeSize(ArgType); | 
|  | for (unsigned Kind = AbsFunctionKind; Kind != 0; | 
|  | Kind = getLargerAbsoluteValueFunction(Kind)) { | 
|  | QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); | 
|  | if (Context.getTypeSize(ParamType) >= ArgSize) { | 
|  | if (BestKind == 0) | 
|  | BestKind = Kind; | 
|  | else if (Context.hasSameType(ParamType, ArgType)) { | 
|  | BestKind = Kind; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return BestKind; | 
|  | } | 
|  |  | 
|  | enum AbsoluteValueKind { | 
|  | AVK_Integer, | 
|  | AVK_Floating, | 
|  | AVK_Complex | 
|  | }; | 
|  |  | 
|  | static AbsoluteValueKind getAbsoluteValueKind(QualType T) { | 
|  | if (T->isIntegralOrEnumerationType()) | 
|  | return AVK_Integer; | 
|  | if (T->isRealFloatingType()) | 
|  | return AVK_Floating; | 
|  | if (T->isAnyComplexType()) | 
|  | return AVK_Complex; | 
|  |  | 
|  | llvm_unreachable("Type not integer, floating, or complex"); | 
|  | } | 
|  |  | 
|  | // Changes the absolute value function to a different type.  Preserves whether | 
|  | // the function is a builtin. | 
|  | static unsigned changeAbsFunction(unsigned AbsKind, | 
|  | AbsoluteValueKind ValueKind) { | 
|  | switch (ValueKind) { | 
|  | case AVK_Integer: | 
|  | switch (AbsKind) { | 
|  | default: | 
|  | return 0; | 
|  | case Builtin::BI__builtin_fabsf: | 
|  | case Builtin::BI__builtin_fabs: | 
|  | case Builtin::BI__builtin_fabsl: | 
|  | case Builtin::BI__builtin_cabsf: | 
|  | case Builtin::BI__builtin_cabs: | 
|  | case Builtin::BI__builtin_cabsl: | 
|  | return Builtin::BI__builtin_abs; | 
|  | case Builtin::BIfabsf: | 
|  | case Builtin::BIfabs: | 
|  | case Builtin::BIfabsl: | 
|  | case Builtin::BIcabsf: | 
|  | case Builtin::BIcabs: | 
|  | case Builtin::BIcabsl: | 
|  | return Builtin::BIabs; | 
|  | } | 
|  | case AVK_Floating: | 
|  | switch (AbsKind) { | 
|  | default: | 
|  | return 0; | 
|  | case Builtin::BI__builtin_abs: | 
|  | case Builtin::BI__builtin_labs: | 
|  | case Builtin::BI__builtin_llabs: | 
|  | case Builtin::BI__builtin_cabsf: | 
|  | case Builtin::BI__builtin_cabs: | 
|  | case Builtin::BI__builtin_cabsl: | 
|  | return Builtin::BI__builtin_fabsf; | 
|  | case Builtin::BIabs: | 
|  | case Builtin::BIlabs: | 
|  | case Builtin::BIllabs: | 
|  | case Builtin::BIcabsf: | 
|  | case Builtin::BIcabs: | 
|  | case Builtin::BIcabsl: | 
|  | return Builtin::BIfabsf; | 
|  | } | 
|  | case AVK_Complex: | 
|  | switch (AbsKind) { | 
|  | default: | 
|  | return 0; | 
|  | case Builtin::BI__builtin_abs: | 
|  | case Builtin::BI__builtin_labs: | 
|  | case Builtin::BI__builtin_llabs: | 
|  | case Builtin::BI__builtin_fabsf: | 
|  | case Builtin::BI__builtin_fabs: | 
|  | case Builtin::BI__builtin_fabsl: | 
|  | return Builtin::BI__builtin_cabsf; | 
|  | case Builtin::BIabs: | 
|  | case Builtin::BIlabs: | 
|  | case Builtin::BIllabs: | 
|  | case Builtin::BIfabsf: | 
|  | case Builtin::BIfabs: | 
|  | case Builtin::BIfabsl: | 
|  | return Builtin::BIcabsf; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unable to convert function"); | 
|  | } | 
|  |  | 
|  | static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { | 
|  | const IdentifierInfo *FnInfo = FDecl->getIdentifier(); | 
|  | if (!FnInfo) | 
|  | return 0; | 
|  |  | 
|  | switch (FDecl->getBuiltinID()) { | 
|  | default: | 
|  | return 0; | 
|  | case Builtin::BI__builtin_abs: | 
|  | case Builtin::BI__builtin_fabs: | 
|  | case Builtin::BI__builtin_fabsf: | 
|  | case Builtin::BI__builtin_fabsl: | 
|  | case Builtin::BI__builtin_labs: | 
|  | case Builtin::BI__builtin_llabs: | 
|  | case Builtin::BI__builtin_cabs: | 
|  | case Builtin::BI__builtin_cabsf: | 
|  | case Builtin::BI__builtin_cabsl: | 
|  | case Builtin::BIabs: | 
|  | case Builtin::BIlabs: | 
|  | case Builtin::BIllabs: | 
|  | case Builtin::BIfabs: | 
|  | case Builtin::BIfabsf: | 
|  | case Builtin::BIfabsl: | 
|  | case Builtin::BIcabs: | 
|  | case Builtin::BIcabsf: | 
|  | case Builtin::BIcabsl: | 
|  | return FDecl->getBuiltinID(); | 
|  | } | 
|  | llvm_unreachable("Unknown Builtin type"); | 
|  | } | 
|  |  | 
|  | // If the replacement is valid, emit a note with replacement function. | 
|  | // Additionally, suggest including the proper header if not already included. | 
|  | static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, | 
|  | unsigned AbsKind, QualType ArgType) { | 
|  | bool EmitHeaderHint = true; | 
|  | const char *HeaderName = nullptr; | 
|  | const char *FunctionName = nullptr; | 
|  | if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { | 
|  | FunctionName = "std::abs"; | 
|  | if (ArgType->isIntegralOrEnumerationType()) { | 
|  | HeaderName = "cstdlib"; | 
|  | } else if (ArgType->isRealFloatingType()) { | 
|  | HeaderName = "cmath"; | 
|  | } else { | 
|  | llvm_unreachable("Invalid Type"); | 
|  | } | 
|  |  | 
|  | // Lookup all std::abs | 
|  | if (NamespaceDecl *Std = S.getStdNamespace()) { | 
|  | LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); | 
|  | R.suppressDiagnostics(); | 
|  | S.LookupQualifiedName(R, Std); | 
|  |  | 
|  | for (const auto *I : R) { | 
|  | const FunctionDecl *FDecl = nullptr; | 
|  | if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { | 
|  | FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); | 
|  | } else { | 
|  | FDecl = dyn_cast<FunctionDecl>(I); | 
|  | } | 
|  | if (!FDecl) | 
|  | continue; | 
|  |  | 
|  | // Found std::abs(), check that they are the right ones. | 
|  | if (FDecl->getNumParams() != 1) | 
|  | continue; | 
|  |  | 
|  | // Check that the parameter type can handle the argument. | 
|  | QualType ParamType = FDecl->getParamDecl(0)->getType(); | 
|  | if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && | 
|  | S.Context.getTypeSize(ArgType) <= | 
|  | S.Context.getTypeSize(ParamType)) { | 
|  | // Found a function, don't need the header hint. | 
|  | EmitHeaderHint = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | FunctionName = S.Context.BuiltinInfo.getName(AbsKind); | 
|  | HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); | 
|  |  | 
|  | if (HeaderName) { | 
|  | DeclarationName DN(&S.Context.Idents.get(FunctionName)); | 
|  | LookupResult R(S, DN, Loc, Sema::LookupAnyName); | 
|  | R.suppressDiagnostics(); | 
|  | S.LookupName(R, S.getCurScope()); | 
|  |  | 
|  | if (R.isSingleResult()) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); | 
|  | if (FD && FD->getBuiltinID() == AbsKind) { | 
|  | EmitHeaderHint = false; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | } else if (!R.empty()) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | S.Diag(Loc, diag::note_replace_abs_function) | 
|  | << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); | 
|  |  | 
|  | if (!HeaderName) | 
|  | return; | 
|  |  | 
|  | if (!EmitHeaderHint) | 
|  | return; | 
|  |  | 
|  | S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName | 
|  | << FunctionName; | 
|  | } | 
|  |  | 
|  | template <std::size_t StrLen> | 
|  | static bool IsStdFunction(const FunctionDecl *FDecl, | 
|  | const char (&Str)[StrLen]) { | 
|  | if (!FDecl) | 
|  | return false; | 
|  | if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) | 
|  | return false; | 
|  | if (!FDecl->isInStdNamespace()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Warn when using the wrong abs() function. | 
|  | void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, | 
|  | const FunctionDecl *FDecl) { | 
|  | if (Call->getNumArgs() != 1) | 
|  | return; | 
|  |  | 
|  | unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); | 
|  | bool IsStdAbs = IsStdFunction(FDecl, "abs"); | 
|  | if (AbsKind == 0 && !IsStdAbs) | 
|  | return; | 
|  |  | 
|  | QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); | 
|  | QualType ParamType = Call->getArg(0)->getType(); | 
|  |  | 
|  | // Unsigned types cannot be negative.  Suggest removing the absolute value | 
|  | // function call. | 
|  | if (ArgType->isUnsignedIntegerType()) { | 
|  | const char *FunctionName = | 
|  | IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); | 
|  | Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; | 
|  | Diag(Call->getExprLoc(), diag::note_remove_abs) | 
|  | << FunctionName | 
|  | << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Taking the absolute value of a pointer is very suspicious, they probably | 
|  | // wanted to index into an array, dereference a pointer, call a function, etc. | 
|  | if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { | 
|  | unsigned DiagType = 0; | 
|  | if (ArgType->isFunctionType()) | 
|  | DiagType = 1; | 
|  | else if (ArgType->isArrayType()) | 
|  | DiagType = 2; | 
|  |  | 
|  | Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // std::abs has overloads which prevent most of the absolute value problems | 
|  | // from occurring. | 
|  | if (IsStdAbs) | 
|  | return; | 
|  |  | 
|  | AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); | 
|  | AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); | 
|  |  | 
|  | // The argument and parameter are the same kind.  Check if they are the right | 
|  | // size. | 
|  | if (ArgValueKind == ParamValueKind) { | 
|  | if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) | 
|  | return; | 
|  |  | 
|  | unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); | 
|  | Diag(Call->getExprLoc(), diag::warn_abs_too_small) | 
|  | << FDecl << ArgType << ParamType; | 
|  |  | 
|  | if (NewAbsKind == 0) | 
|  | return; | 
|  |  | 
|  | emitReplacement(*this, Call->getExprLoc(), | 
|  | Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // ArgValueKind != ParamValueKind | 
|  | // The wrong type of absolute value function was used.  Attempt to find the | 
|  | // proper one. | 
|  | unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); | 
|  | NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); | 
|  | if (NewAbsKind == 0) | 
|  | return; | 
|  |  | 
|  | Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) | 
|  | << FDecl << ParamValueKind << ArgValueKind; | 
|  |  | 
|  | emitReplacement(*this, Call->getExprLoc(), | 
|  | Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// | 
|  | void Sema::CheckMaxUnsignedZero(const CallExpr *Call, | 
|  | const FunctionDecl *FDecl) { | 
|  | if (!Call || !FDecl) return; | 
|  |  | 
|  | // Ignore template specializations and macros. | 
|  | if (inTemplateInstantiation()) return; | 
|  | if (Call->getExprLoc().isMacroID()) return; | 
|  |  | 
|  | // Only care about the one template argument, two function parameter std::max | 
|  | if (Call->getNumArgs() != 2) return; | 
|  | if (!IsStdFunction(FDecl, "max")) return; | 
|  | const auto * ArgList = FDecl->getTemplateSpecializationArgs(); | 
|  | if (!ArgList) return; | 
|  | if (ArgList->size() != 1) return; | 
|  |  | 
|  | // Check that template type argument is unsigned integer. | 
|  | const auto& TA = ArgList->get(0); | 
|  | if (TA.getKind() != TemplateArgument::Type) return; | 
|  | QualType ArgType = TA.getAsType(); | 
|  | if (!ArgType->isUnsignedIntegerType()) return; | 
|  |  | 
|  | // See if either argument is a literal zero. | 
|  | auto IsLiteralZeroArg = [](const Expr* E) -> bool { | 
|  | const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); | 
|  | if (!MTE) return false; | 
|  | const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr()); | 
|  | if (!Num) return false; | 
|  | if (Num->getValue() != 0) return false; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | const Expr *FirstArg = Call->getArg(0); | 
|  | const Expr *SecondArg = Call->getArg(1); | 
|  | const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); | 
|  | const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); | 
|  |  | 
|  | // Only warn when exactly one argument is zero. | 
|  | if (IsFirstArgZero == IsSecondArgZero) return; | 
|  |  | 
|  | SourceRange FirstRange = FirstArg->getSourceRange(); | 
|  | SourceRange SecondRange = SecondArg->getSourceRange(); | 
|  |  | 
|  | SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; | 
|  |  | 
|  | Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) | 
|  | << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; | 
|  |  | 
|  | // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". | 
|  | SourceRange RemovalRange; | 
|  | if (IsFirstArgZero) { | 
|  | RemovalRange = SourceRange(FirstRange.getBegin(), | 
|  | SecondRange.getBegin().getLocWithOffset(-1)); | 
|  | } else { | 
|  | RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), | 
|  | SecondRange.getEnd()); | 
|  | } | 
|  |  | 
|  | Diag(Call->getExprLoc(), diag::note_remove_max_call) | 
|  | << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) | 
|  | << FixItHint::CreateRemoval(RemovalRange); | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Standard memory functions ---------------------------------===// | 
|  |  | 
|  | /// Takes the expression passed to the size_t parameter of functions | 
|  | /// such as memcmp, strncat, etc and warns if it's a comparison. | 
|  | /// | 
|  | /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. | 
|  | static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, | 
|  | IdentifierInfo *FnName, | 
|  | SourceLocation FnLoc, | 
|  | SourceLocation RParenLoc) { | 
|  | const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); | 
|  | if (!Size) | 
|  | return false; | 
|  |  | 
|  | // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: | 
|  | if (!Size->isComparisonOp() && !Size->isLogicalOp()) | 
|  | return false; | 
|  |  | 
|  | SourceRange SizeRange = Size->getSourceRange(); | 
|  | S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) | 
|  | << SizeRange << FnName; | 
|  | S.Diag(FnLoc, diag::note_memsize_comparison_paren) | 
|  | << FnName | 
|  | << FixItHint::CreateInsertion( | 
|  | S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") | 
|  | << FixItHint::CreateRemoval(RParenLoc); | 
|  | S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) | 
|  | << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") | 
|  | << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), | 
|  | ")"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given type is or contains a dynamic class type | 
|  | /// (e.g., whether it has a vtable). | 
|  | static const CXXRecordDecl *getContainedDynamicClass(QualType T, | 
|  | bool &IsContained) { | 
|  | // Look through array types while ignoring qualifiers. | 
|  | const Type *Ty = T->getBaseElementTypeUnsafe(); | 
|  | IsContained = false; | 
|  |  | 
|  | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); | 
|  | RD = RD ? RD->getDefinition() : nullptr; | 
|  | if (!RD || RD->isInvalidDecl()) | 
|  | return nullptr; | 
|  |  | 
|  | if (RD->isDynamicClass()) | 
|  | return RD; | 
|  |  | 
|  | // Check all the fields.  If any bases were dynamic, the class is dynamic. | 
|  | // It's impossible for a class to transitively contain itself by value, so | 
|  | // infinite recursion is impossible. | 
|  | for (auto *FD : RD->fields()) { | 
|  | bool SubContained; | 
|  | if (const CXXRecordDecl *ContainedRD = | 
|  | getContainedDynamicClass(FD->getType(), SubContained)) { | 
|  | IsContained = true; | 
|  | return ContainedRD; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { | 
|  | if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) | 
|  | if (Unary->getKind() == UETT_SizeOf) | 
|  | return Unary; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If E is a sizeof expression, returns its argument expression, | 
|  | /// otherwise returns NULL. | 
|  | static const Expr *getSizeOfExprArg(const Expr *E) { | 
|  | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) | 
|  | if (!SizeOf->isArgumentType()) | 
|  | return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If E is a sizeof expression, returns its argument type. | 
|  | static QualType getSizeOfArgType(const Expr *E) { | 
|  | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) | 
|  | return SizeOf->getTypeOfArgument(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct SearchNonTrivialToInitializeField | 
|  | : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { | 
|  | using Super = | 
|  | DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; | 
|  |  | 
|  | SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} | 
|  |  | 
|  | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, | 
|  | SourceLocation SL) { | 
|  | if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { | 
|  | asDerived().visitArray(PDIK, AT, SL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Super::visitWithKind(PDIK, FT, SL); | 
|  | } | 
|  |  | 
|  | void visitARCStrong(QualType FT, SourceLocation SL) { | 
|  | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); | 
|  | } | 
|  | void visitARCWeak(QualType FT, SourceLocation SL) { | 
|  | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); | 
|  | } | 
|  | void visitStruct(QualType FT, SourceLocation SL) { | 
|  | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) | 
|  | visit(FD->getType(), FD->getLocation()); | 
|  | } | 
|  | void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, | 
|  | const ArrayType *AT, SourceLocation SL) { | 
|  | visit(getContext().getBaseElementType(AT), SL); | 
|  | } | 
|  | void visitTrivial(QualType FT, SourceLocation SL) {} | 
|  |  | 
|  | static void diag(QualType RT, const Expr *E, Sema &S) { | 
|  | SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); | 
|  | } | 
|  |  | 
|  | ASTContext &getContext() { return S.getASTContext(); } | 
|  |  | 
|  | const Expr *E; | 
|  | Sema &S; | 
|  | }; | 
|  |  | 
|  | struct SearchNonTrivialToCopyField | 
|  | : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { | 
|  | using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; | 
|  |  | 
|  | SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} | 
|  |  | 
|  | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, | 
|  | SourceLocation SL) { | 
|  | if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { | 
|  | asDerived().visitArray(PCK, AT, SL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Super::visitWithKind(PCK, FT, SL); | 
|  | } | 
|  |  | 
|  | void visitARCStrong(QualType FT, SourceLocation SL) { | 
|  | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); | 
|  | } | 
|  | void visitARCWeak(QualType FT, SourceLocation SL) { | 
|  | S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); | 
|  | } | 
|  | void visitStruct(QualType FT, SourceLocation SL) { | 
|  | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) | 
|  | visit(FD->getType(), FD->getLocation()); | 
|  | } | 
|  | void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, | 
|  | SourceLocation SL) { | 
|  | visit(getContext().getBaseElementType(AT), SL); | 
|  | } | 
|  | void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, | 
|  | SourceLocation SL) {} | 
|  | void visitTrivial(QualType FT, SourceLocation SL) {} | 
|  | void visitVolatileTrivial(QualType FT, SourceLocation SL) {} | 
|  |  | 
|  | static void diag(QualType RT, const Expr *E, Sema &S) { | 
|  | SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); | 
|  | } | 
|  |  | 
|  | ASTContext &getContext() { return S.getASTContext(); } | 
|  |  | 
|  | const Expr *E; | 
|  | Sema &S; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. | 
|  | static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { | 
|  | SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { | 
|  | if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) | 
|  | return false; | 
|  |  | 
|  | return doesExprLikelyComputeSize(BO->getLHS()) || | 
|  | doesExprLikelyComputeSize(BO->getRHS()); | 
|  | } | 
|  |  | 
|  | return getAsSizeOfExpr(SizeofExpr) != nullptr; | 
|  | } | 
|  |  | 
|  | /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. | 
|  | /// | 
|  | /// \code | 
|  | ///   #define MACRO 0 | 
|  | ///   foo(MACRO); | 
|  | ///   foo(0); | 
|  | /// \endcode | 
|  | /// | 
|  | /// This should return true for the first call to foo, but not for the second | 
|  | /// (regardless of whether foo is a macro or function). | 
|  | static bool isArgumentExpandedFromMacro(SourceManager &SM, | 
|  | SourceLocation CallLoc, | 
|  | SourceLocation ArgLoc) { | 
|  | if (!CallLoc.isMacroID()) | 
|  | return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); | 
|  |  | 
|  | return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != | 
|  | SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); | 
|  | } | 
|  |  | 
|  | /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the | 
|  | /// last two arguments transposed. | 
|  | static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { | 
|  | if (BId != Builtin::BImemset && BId != Builtin::BIbzero) | 
|  | return; | 
|  |  | 
|  | const Expr *SizeArg = | 
|  | Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); | 
|  |  | 
|  | auto isLiteralZero = [](const Expr *E) { | 
|  | return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; | 
|  | }; | 
|  |  | 
|  | // If we're memsetting or bzeroing 0 bytes, then this is likely an error. | 
|  | SourceLocation CallLoc = Call->getRParenLoc(); | 
|  | SourceManager &SM = S.getSourceManager(); | 
|  | if (isLiteralZero(SizeArg) && | 
|  | !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { | 
|  |  | 
|  | SourceLocation DiagLoc = SizeArg->getExprLoc(); | 
|  |  | 
|  | // Some platforms #define bzero to __builtin_memset. See if this is the | 
|  | // case, and if so, emit a better diagnostic. | 
|  | if (BId == Builtin::BIbzero || | 
|  | (CallLoc.isMacroID() && Lexer::getImmediateMacroName( | 
|  | CallLoc, SM, S.getLangOpts()) == "bzero")) { | 
|  | S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); | 
|  | S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); | 
|  | } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { | 
|  | S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; | 
|  | S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the second argument to a memset is a sizeof expression and the third | 
|  | // isn't, this is also likely an error. This should catch | 
|  | // 'memset(buf, sizeof(buf), 0xff)'. | 
|  | if (BId == Builtin::BImemset && | 
|  | doesExprLikelyComputeSize(Call->getArg(1)) && | 
|  | !doesExprLikelyComputeSize(Call->getArg(2))) { | 
|  | SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); | 
|  | S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; | 
|  | S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check for dangerous or invalid arguments to memset(). | 
|  | /// | 
|  | /// This issues warnings on known problematic, dangerous or unspecified | 
|  | /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' | 
|  | /// function calls. | 
|  | /// | 
|  | /// \param Call The call expression to diagnose. | 
|  | void Sema::CheckMemaccessArguments(const CallExpr *Call, | 
|  | unsigned BId, | 
|  | IdentifierInfo *FnName) { | 
|  | assert(BId != 0); | 
|  |  | 
|  | // It is possible to have a non-standard definition of memset.  Validate | 
|  | // we have enough arguments, and if not, abort further checking. | 
|  | unsigned ExpectedNumArgs = | 
|  | (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); | 
|  | if (Call->getNumArgs() < ExpectedNumArgs) | 
|  | return; | 
|  |  | 
|  | unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || | 
|  | BId == Builtin::BIstrndup ? 1 : 2); | 
|  | unsigned LenArg = | 
|  | (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); | 
|  | const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, | 
|  | Call->getBeginLoc(), Call->getRParenLoc())) | 
|  | return; | 
|  |  | 
|  | // Catch cases like 'memset(buf, sizeof(buf), 0)'. | 
|  | CheckMemaccessSize(*this, BId, Call); | 
|  |  | 
|  | // We have special checking when the length is a sizeof expression. | 
|  | QualType SizeOfArgTy = getSizeOfArgType(LenExpr); | 
|  | const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); | 
|  | llvm::FoldingSetNodeID SizeOfArgID; | 
|  |  | 
|  | // Although widely used, 'bzero' is not a standard function. Be more strict | 
|  | // with the argument types before allowing diagnostics and only allow the | 
|  | // form bzero(ptr, sizeof(...)). | 
|  | QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); | 
|  | if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) | 
|  | return; | 
|  |  | 
|  | for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { | 
|  | const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); | 
|  | SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); | 
|  |  | 
|  | QualType DestTy = Dest->getType(); | 
|  | QualType PointeeTy; | 
|  | if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { | 
|  | PointeeTy = DestPtrTy->getPointeeType(); | 
|  |  | 
|  | // Never warn about void type pointers. This can be used to suppress | 
|  | // false positives. | 
|  | if (PointeeTy->isVoidType()) | 
|  | continue; | 
|  |  | 
|  | // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by | 
|  | // actually comparing the expressions for equality. Because computing the | 
|  | // expression IDs can be expensive, we only do this if the diagnostic is | 
|  | // enabled. | 
|  | if (SizeOfArg && | 
|  | !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, | 
|  | SizeOfArg->getExprLoc())) { | 
|  | // We only compute IDs for expressions if the warning is enabled, and | 
|  | // cache the sizeof arg's ID. | 
|  | if (SizeOfArgID == llvm::FoldingSetNodeID()) | 
|  | SizeOfArg->Profile(SizeOfArgID, Context, true); | 
|  | llvm::FoldingSetNodeID DestID; | 
|  | Dest->Profile(DestID, Context, true); | 
|  | if (DestID == SizeOfArgID) { | 
|  | // TODO: For strncpy() and friends, this could suggest sizeof(dst) | 
|  | //       over sizeof(src) as well. | 
|  | unsigned ActionIdx = 0; // Default is to suggest dereferencing. | 
|  | StringRef ReadableName = FnName->getName(); | 
|  |  | 
|  | if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) | 
|  | if (UnaryOp->getOpcode() == UO_AddrOf) | 
|  | ActionIdx = 1; // If its an address-of operator, just remove it. | 
|  | if (!PointeeTy->isIncompleteType() && | 
|  | (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) | 
|  | ActionIdx = 2; // If the pointee's size is sizeof(char), | 
|  | // suggest an explicit length. | 
|  |  | 
|  | // If the function is defined as a builtin macro, do not show macro | 
|  | // expansion. | 
|  | SourceLocation SL = SizeOfArg->getExprLoc(); | 
|  | SourceRange DSR = Dest->getSourceRange(); | 
|  | SourceRange SSR = SizeOfArg->getSourceRange(); | 
|  | SourceManager &SM = getSourceManager(); | 
|  |  | 
|  | if (SM.isMacroArgExpansion(SL)) { | 
|  | ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); | 
|  | SL = SM.getSpellingLoc(SL); | 
|  | DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), | 
|  | SM.getSpellingLoc(DSR.getEnd())); | 
|  | SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), | 
|  | SM.getSpellingLoc(SSR.getEnd())); | 
|  | } | 
|  |  | 
|  | DiagRuntimeBehavior(SL, SizeOfArg, | 
|  | PDiag(diag::warn_sizeof_pointer_expr_memaccess) | 
|  | << ReadableName | 
|  | << PointeeTy | 
|  | << DestTy | 
|  | << DSR | 
|  | << SSR); | 
|  | DiagRuntimeBehavior(SL, SizeOfArg, | 
|  | PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) | 
|  | << ActionIdx | 
|  | << SSR); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also check for cases where the sizeof argument is the exact same | 
|  | // type as the memory argument, and where it points to a user-defined | 
|  | // record type. | 
|  | if (SizeOfArgTy != QualType()) { | 
|  | if (PointeeTy->isRecordType() && | 
|  | Context.typesAreCompatible(SizeOfArgTy, DestTy)) { | 
|  | DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, | 
|  | PDiag(diag::warn_sizeof_pointer_type_memaccess) | 
|  | << FnName << SizeOfArgTy << ArgIdx | 
|  | << PointeeTy << Dest->getSourceRange() | 
|  | << LenExpr->getSourceRange()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (DestTy->isArrayType()) { | 
|  | PointeeTy = DestTy; | 
|  | } | 
|  |  | 
|  | if (PointeeTy == QualType()) | 
|  | continue; | 
|  |  | 
|  | // Always complain about dynamic classes. | 
|  | bool IsContained; | 
|  | if (const CXXRecordDecl *ContainedRD = | 
|  | getContainedDynamicClass(PointeeTy, IsContained)) { | 
|  |  | 
|  | unsigned OperationType = 0; | 
|  | const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; | 
|  | // "overwritten" if we're warning about the destination for any call | 
|  | // but memcmp; otherwise a verb appropriate to the call. | 
|  | if (ArgIdx != 0 || IsCmp) { | 
|  | if (BId == Builtin::BImemcpy) | 
|  | OperationType = 1; | 
|  | else if(BId == Builtin::BImemmove) | 
|  | OperationType = 2; | 
|  | else if (IsCmp) | 
|  | OperationType = 3; | 
|  | } | 
|  |  | 
|  | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, | 
|  | PDiag(diag::warn_dyn_class_memaccess) | 
|  | << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName | 
|  | << IsContained << ContainedRD << OperationType | 
|  | << Call->getCallee()->getSourceRange()); | 
|  | } else if (PointeeTy.hasNonTrivialObjCLifetime() && | 
|  | BId != Builtin::BImemset) | 
|  | DiagRuntimeBehavior( | 
|  | Dest->getExprLoc(), Dest, | 
|  | PDiag(diag::warn_arc_object_memaccess) | 
|  | << ArgIdx << FnName << PointeeTy | 
|  | << Call->getCallee()->getSourceRange()); | 
|  | else if (const auto *RT = PointeeTy->getAs<RecordType>()) { | 
|  | if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && | 
|  | RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { | 
|  | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, | 
|  | PDiag(diag::warn_cstruct_memaccess) | 
|  | << ArgIdx << FnName << PointeeTy << 0); | 
|  | SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); | 
|  | } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && | 
|  | RT->getDecl()->isNonTrivialToPrimitiveCopy()) { | 
|  | DiagRuntimeBehavior(Dest->getExprLoc(), Dest, | 
|  | PDiag(diag::warn_cstruct_memaccess) | 
|  | << ArgIdx << FnName << PointeeTy << 1); | 
|  | SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } else | 
|  | continue; | 
|  |  | 
|  | DiagRuntimeBehavior( | 
|  | Dest->getExprLoc(), Dest, | 
|  | PDiag(diag::note_bad_memaccess_silence) | 
|  | << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A little helper routine: ignore addition and subtraction of integer literals. | 
|  | // This intentionally does not ignore all integer constant expressions because | 
|  | // we don't want to remove sizeof(). | 
|  | static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { | 
|  | Ex = Ex->IgnoreParenCasts(); | 
|  |  | 
|  | while (true) { | 
|  | const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); | 
|  | if (!BO || !BO->isAdditiveOp()) | 
|  | break; | 
|  |  | 
|  | const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); | 
|  | const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); | 
|  |  | 
|  | if (isa<IntegerLiteral>(RHS)) | 
|  | Ex = LHS; | 
|  | else if (isa<IntegerLiteral>(LHS)) | 
|  | Ex = RHS; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Ex; | 
|  | } | 
|  |  | 
|  | static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, | 
|  | ASTContext &Context) { | 
|  | // Only handle constant-sized or VLAs, but not flexible members. | 
|  | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { | 
|  | // Only issue the FIXIT for arrays of size > 1. | 
|  | if (CAT->getSize().getSExtValue() <= 1) | 
|  | return false; | 
|  | } else if (!Ty->isVariableArrayType()) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Warn if the user has made the 'size' argument to strlcpy or strlcat | 
|  | // be the size of the source, instead of the destination. | 
|  | void Sema::CheckStrlcpycatArguments(const CallExpr *Call, | 
|  | IdentifierInfo *FnName) { | 
|  |  | 
|  | // Don't crash if the user has the wrong number of arguments | 
|  | unsigned NumArgs = Call->getNumArgs(); | 
|  | if ((NumArgs != 3) && (NumArgs != 4)) | 
|  | return; | 
|  |  | 
|  | const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); | 
|  | const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); | 
|  | const Expr *CompareWithSrc = nullptr; | 
|  |  | 
|  | if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, | 
|  | Call->getBeginLoc(), Call->getRParenLoc())) | 
|  | return; | 
|  |  | 
|  | // Look for 'strlcpy(dst, x, sizeof(x))' | 
|  | if (const Expr *Ex = getSizeOfExprArg(SizeArg)) | 
|  | CompareWithSrc = Ex; | 
|  | else { | 
|  | // Look for 'strlcpy(dst, x, strlen(x))' | 
|  | if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { | 
|  | if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && | 
|  | SizeCall->getNumArgs() == 1) | 
|  | CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CompareWithSrc) | 
|  | return; | 
|  |  | 
|  | // Determine if the argument to sizeof/strlen is equal to the source | 
|  | // argument.  In principle there's all kinds of things you could do | 
|  | // here, for instance creating an == expression and evaluating it with | 
|  | // EvaluateAsBooleanCondition, but this uses a more direct technique: | 
|  | const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); | 
|  | if (!SrcArgDRE) | 
|  | return; | 
|  |  | 
|  | const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); | 
|  | if (!CompareWithSrcDRE || | 
|  | SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) | 
|  | return; | 
|  |  | 
|  | const Expr *OriginalSizeArg = Call->getArg(2); | 
|  | Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) | 
|  | << OriginalSizeArg->getSourceRange() << FnName; | 
|  |  | 
|  | // Output a FIXIT hint if the destination is an array (rather than a | 
|  | // pointer to an array).  This could be enhanced to handle some | 
|  | // pointers if we know the actual size, like if DstArg is 'array+2' | 
|  | // we could say 'sizeof(array)-2'. | 
|  | const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); | 
|  | if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) | 
|  | return; | 
|  |  | 
|  | SmallString<128> sizeString; | 
|  | llvm::raw_svector_ostream OS(sizeString); | 
|  | OS << "sizeof("; | 
|  | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); | 
|  | OS << ")"; | 
|  |  | 
|  | Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) | 
|  | << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), | 
|  | OS.str()); | 
|  | } | 
|  |  | 
|  | /// Check if two expressions refer to the same declaration. | 
|  | static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { | 
|  | if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) | 
|  | if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) | 
|  | return D1->getDecl() == D2->getDecl(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const Expr *getStrlenExprArg(const Expr *E) { | 
|  | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | 
|  | const FunctionDecl *FD = CE->getDirectCallee(); | 
|  | if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) | 
|  | return nullptr; | 
|  | return CE->getArg(0)->IgnoreParenCasts(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Warn on anti-patterns as the 'size' argument to strncat. | 
|  | // The correct size argument should look like following: | 
|  | //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1); | 
|  | void Sema::CheckStrncatArguments(const CallExpr *CE, | 
|  | IdentifierInfo *FnName) { | 
|  | // Don't crash if the user has the wrong number of arguments. | 
|  | if (CE->getNumArgs() < 3) | 
|  | return; | 
|  | const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); | 
|  | const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); | 
|  | const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); | 
|  |  | 
|  | if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), | 
|  | CE->getRParenLoc())) | 
|  | return; | 
|  |  | 
|  | // Identify common expressions, which are wrongly used as the size argument | 
|  | // to strncat and may lead to buffer overflows. | 
|  | unsigned PatternType = 0; | 
|  | if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { | 
|  | // - sizeof(dst) | 
|  | if (referToTheSameDecl(SizeOfArg, DstArg)) | 
|  | PatternType = 1; | 
|  | // - sizeof(src) | 
|  | else if (referToTheSameDecl(SizeOfArg, SrcArg)) | 
|  | PatternType = 2; | 
|  | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { | 
|  | if (BE->getOpcode() == BO_Sub) { | 
|  | const Expr *L = BE->getLHS()->IgnoreParenCasts(); | 
|  | const Expr *R = BE->getRHS()->IgnoreParenCasts(); | 
|  | // - sizeof(dst) - strlen(dst) | 
|  | if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && | 
|  | referToTheSameDecl(DstArg, getStrlenExprArg(R))) | 
|  | PatternType = 1; | 
|  | // - sizeof(src) - (anything) | 
|  | else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) | 
|  | PatternType = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PatternType == 0) | 
|  | return; | 
|  |  | 
|  | // Generate the diagnostic. | 
|  | SourceLocation SL = LenArg->getBeginLoc(); | 
|  | SourceRange SR = LenArg->getSourceRange(); | 
|  | SourceManager &SM = getSourceManager(); | 
|  |  | 
|  | // If the function is defined as a builtin macro, do not show macro expansion. | 
|  | if (SM.isMacroArgExpansion(SL)) { | 
|  | SL = SM.getSpellingLoc(SL); | 
|  | SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), | 
|  | SM.getSpellingLoc(SR.getEnd())); | 
|  | } | 
|  |  | 
|  | // Check if the destination is an array (rather than a pointer to an array). | 
|  | QualType DstTy = DstArg->getType(); | 
|  | bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, | 
|  | Context); | 
|  | if (!isKnownSizeArray) { | 
|  | if (PatternType == 1) | 
|  | Diag(SL, diag::warn_strncat_wrong_size) << SR; | 
|  | else | 
|  | Diag(SL, diag::warn_strncat_src_size) << SR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PatternType == 1) | 
|  | Diag(SL, diag::warn_strncat_large_size) << SR; | 
|  | else | 
|  | Diag(SL, diag::warn_strncat_src_size) << SR; | 
|  |  | 
|  | SmallString<128> sizeString; | 
|  | llvm::raw_svector_ostream OS(sizeString); | 
|  | OS << "sizeof("; | 
|  | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); | 
|  | OS << ") - "; | 
|  | OS << "strlen("; | 
|  | DstArg->printPretty(OS, nullptr, getPrintingPolicy()); | 
|  | OS << ") - 1"; | 
|  |  | 
|  | Diag(SL, diag::note_strncat_wrong_size) | 
|  | << FixItHint::CreateReplacement(SR, OS.str()); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, | 
|  | SourceLocation ReturnLoc, | 
|  | bool isObjCMethod, | 
|  | const AttrVec *Attrs, | 
|  | const FunctionDecl *FD) { | 
|  | // Check if the return value is null but should not be. | 
|  | if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || | 
|  | (!isObjCMethod && isNonNullType(Context, lhsType))) && | 
|  | CheckNonNullExpr(*this, RetValExp)) | 
|  | Diag(ReturnLoc, diag::warn_null_ret) | 
|  | << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); | 
|  |  | 
|  | // C++11 [basic.stc.dynamic.allocation]p4: | 
|  | //   If an allocation function declared with a non-throwing | 
|  | //   exception-specification fails to allocate storage, it shall return | 
|  | //   a null pointer. Any other allocation function that fails to allocate | 
|  | //   storage shall indicate failure only by throwing an exception [...] | 
|  | if (FD) { | 
|  | OverloadedOperatorKind Op = FD->getOverloadedOperator(); | 
|  | if (Op == OO_New || Op == OO_Array_New) { | 
|  | const FunctionProtoType *Proto | 
|  | = FD->getType()->castAs<FunctionProtoType>(); | 
|  | if (!Proto->isNothrow(/*ResultIfDependent*/true) && | 
|  | CheckNonNullExpr(*this, RetValExp)) | 
|  | Diag(ReturnLoc, diag::warn_operator_new_returns_null) | 
|  | << FD << getLangOpts().CPlusPlus11; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// | 
|  |  | 
|  | /// Check for comparisons of floating point operands using != and ==. | 
|  | /// Issue a warning if these are no self-comparisons, as they are not likely | 
|  | /// to do what the programmer intended. | 
|  | void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { | 
|  | Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); | 
|  | Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); | 
|  |  | 
|  | // Special case: check for x == x (which is OK). | 
|  | // Do not emit warnings for such cases. | 
|  | if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) | 
|  | if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) | 
|  | if (DRL->getDecl() == DRR->getDecl()) | 
|  | return; | 
|  |  | 
|  | // Special case: check for comparisons against literals that can be exactly | 
|  | //  represented by APFloat.  In such cases, do not emit a warning.  This | 
|  | //  is a heuristic: often comparison against such literals are used to | 
|  | //  detect if a value in a variable has not changed.  This clearly can | 
|  | //  lead to false negatives. | 
|  | if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { | 
|  | if (FLL->isExact()) | 
|  | return; | 
|  | } else | 
|  | if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) | 
|  | if (FLR->isExact()) | 
|  | return; | 
|  |  | 
|  | // Check for comparisons with builtin types. | 
|  | if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) | 
|  | if (CL->getBuiltinCallee()) | 
|  | return; | 
|  |  | 
|  | if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) | 
|  | if (CR->getBuiltinCallee()) | 
|  | return; | 
|  |  | 
|  | // Emit the diagnostic. | 
|  | Diag(Loc, diag::warn_floatingpoint_eq) | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// | 
|  | //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Structure recording the 'active' range of an integer-valued | 
|  | /// expression. | 
|  | struct IntRange { | 
|  | /// The number of bits active in the int. | 
|  | unsigned Width; | 
|  |  | 
|  | /// True if the int is known not to have negative values. | 
|  | bool NonNegative; | 
|  |  | 
|  | IntRange(unsigned Width, bool NonNegative) | 
|  | : Width(Width), NonNegative(NonNegative) {} | 
|  |  | 
|  | /// Returns the range of the bool type. | 
|  | static IntRange forBoolType() { | 
|  | return IntRange(1, true); | 
|  | } | 
|  |  | 
|  | /// Returns the range of an opaque value of the given integral type. | 
|  | static IntRange forValueOfType(ASTContext &C, QualType T) { | 
|  | return forValueOfCanonicalType(C, | 
|  | T->getCanonicalTypeInternal().getTypePtr()); | 
|  | } | 
|  |  | 
|  | /// Returns the range of an opaque value of a canonical integral type. | 
|  | static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { | 
|  | assert(T->isCanonicalUnqualified()); | 
|  |  | 
|  | if (const VectorType *VT = dyn_cast<VectorType>(T)) | 
|  | T = VT->getElementType().getTypePtr(); | 
|  | if (const ComplexType *CT = dyn_cast<ComplexType>(T)) | 
|  | T = CT->getElementType().getTypePtr(); | 
|  | if (const AtomicType *AT = dyn_cast<AtomicType>(T)) | 
|  | T = AT->getValueType().getTypePtr(); | 
|  |  | 
|  | if (!C.getLangOpts().CPlusPlus) { | 
|  | // For enum types in C code, use the underlying datatype. | 
|  | if (const EnumType *ET = dyn_cast<EnumType>(T)) | 
|  | T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); | 
|  | } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { | 
|  | // For enum types in C++, use the known bit width of the enumerators. | 
|  | EnumDecl *Enum = ET->getDecl(); | 
|  | // In C++11, enums can have a fixed underlying type. Use this type to | 
|  | // compute the range. | 
|  | if (Enum->isFixed()) { | 
|  | return IntRange(C.getIntWidth(QualType(T, 0)), | 
|  | !ET->isSignedIntegerOrEnumerationType()); | 
|  | } | 
|  |  | 
|  | unsigned NumPositive = Enum->getNumPositiveBits(); | 
|  | unsigned NumNegative = Enum->getNumNegativeBits(); | 
|  |  | 
|  | if (NumNegative == 0) | 
|  | return IntRange(NumPositive, true/*NonNegative*/); | 
|  | else | 
|  | return IntRange(std::max(NumPositive + 1, NumNegative), | 
|  | false/*NonNegative*/); | 
|  | } | 
|  |  | 
|  | const BuiltinType *BT = cast<BuiltinType>(T); | 
|  | assert(BT->isInteger()); | 
|  |  | 
|  | return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); | 
|  | } | 
|  |  | 
|  | /// Returns the "target" range of a canonical integral type, i.e. | 
|  | /// the range of values expressible in the type. | 
|  | /// | 
|  | /// This matches forValueOfCanonicalType except that enums have the | 
|  | /// full range of their type, not the range of their enumerators. | 
|  | static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { | 
|  | assert(T->isCanonicalUnqualified()); | 
|  |  | 
|  | if (const VectorType *VT = dyn_cast<VectorType>(T)) | 
|  | T = VT->getElementType().getTypePtr(); | 
|  | if (const ComplexType *CT = dyn_cast<ComplexType>(T)) | 
|  | T = CT->getElementType().getTypePtr(); | 
|  | if (const AtomicType *AT = dyn_cast<AtomicType>(T)) | 
|  | T = AT->getValueType().getTypePtr(); | 
|  | if (const EnumType *ET = dyn_cast<EnumType>(T)) | 
|  | T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); | 
|  |  | 
|  | const BuiltinType *BT = cast<BuiltinType>(T); | 
|  | assert(BT->isInteger()); | 
|  |  | 
|  | return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); | 
|  | } | 
|  |  | 
|  | /// Returns the supremum of two ranges: i.e. their conservative merge. | 
|  | static IntRange join(IntRange L, IntRange R) { | 
|  | return IntRange(std::max(L.Width, R.Width), | 
|  | L.NonNegative && R.NonNegative); | 
|  | } | 
|  |  | 
|  | /// Returns the infinum of two ranges: i.e. their aggressive merge. | 
|  | static IntRange meet(IntRange L, IntRange R) { | 
|  | return IntRange(std::min(L.Width, R.Width), | 
|  | L.NonNegative || R.NonNegative); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, | 
|  | unsigned MaxWidth) { | 
|  | if (value.isSigned() && value.isNegative()) | 
|  | return IntRange(value.getMinSignedBits(), false); | 
|  |  | 
|  | if (value.getBitWidth() > MaxWidth) | 
|  | value = value.trunc(MaxWidth); | 
|  |  | 
|  | // isNonNegative() just checks the sign bit without considering | 
|  | // signedness. | 
|  | return IntRange(value.getActiveBits(), true); | 
|  | } | 
|  |  | 
|  | static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, | 
|  | unsigned MaxWidth) { | 
|  | if (result.isInt()) | 
|  | return GetValueRange(C, result.getInt(), MaxWidth); | 
|  |  | 
|  | if (result.isVector()) { | 
|  | IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); | 
|  | for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { | 
|  | IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); | 
|  | R = IntRange::join(R, El); | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (result.isComplexInt()) { | 
|  | IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); | 
|  | IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); | 
|  | return IntRange::join(R, I); | 
|  | } | 
|  |  | 
|  | // This can happen with lossless casts to intptr_t of "based" lvalues. | 
|  | // Assume it might use arbitrary bits. | 
|  | // FIXME: The only reason we need to pass the type in here is to get | 
|  | // the sign right on this one case.  It would be nice if APValue | 
|  | // preserved this. | 
|  | assert(result.isLValue() || result.isAddrLabelDiff()); | 
|  | return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); | 
|  | } | 
|  |  | 
|  | static QualType GetExprType(const Expr *E) { | 
|  | QualType Ty = E->getType(); | 
|  | if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) | 
|  | Ty = AtomicRHS->getValueType(); | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// Pseudo-evaluate the given integer expression, estimating the | 
|  | /// range of values it might take. | 
|  | /// | 
|  | /// \param MaxWidth - the width to which the value will be truncated | 
|  | static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // Try a full evaluation first. | 
|  | Expr::EvalResult result; | 
|  | if (E->EvaluateAsRValue(result, C)) | 
|  | return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); | 
|  |  | 
|  | // I think we only want to look through implicit casts here; if the | 
|  | // user has an explicit widening cast, we should treat the value as | 
|  | // being of the new, wider type. | 
|  | if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) | 
|  | return GetExprRange(C, CE->getSubExpr(), MaxWidth); | 
|  |  | 
|  | IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); | 
|  |  | 
|  | bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || | 
|  | CE->getCastKind() == CK_BooleanToSignedIntegral; | 
|  |  | 
|  | // Assume that non-integer casts can span the full range of the type. | 
|  | if (!isIntegerCast) | 
|  | return OutputTypeRange; | 
|  |  | 
|  | IntRange SubRange | 
|  | = GetExprRange(C, CE->getSubExpr(), | 
|  | std::min(MaxWidth, OutputTypeRange.Width)); | 
|  |  | 
|  | // Bail out if the subexpr's range is as wide as the cast type. | 
|  | if (SubRange.Width >= OutputTypeRange.Width) | 
|  | return OutputTypeRange; | 
|  |  | 
|  | // Otherwise, we take the smaller width, and we're non-negative if | 
|  | // either the output type or the subexpr is. | 
|  | return IntRange(SubRange.Width, | 
|  | SubRange.NonNegative || OutputTypeRange.NonNegative); | 
|  | } | 
|  |  | 
|  | if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { | 
|  | // If we can fold the condition, just take that operand. | 
|  | bool CondResult; | 
|  | if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) | 
|  | return GetExprRange(C, CondResult ? CO->getTrueExpr() | 
|  | : CO->getFalseExpr(), | 
|  | MaxWidth); | 
|  |  | 
|  | // Otherwise, conservatively merge. | 
|  | IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth); | 
|  | IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth); | 
|  | return IntRange::join(L, R); | 
|  | } | 
|  |  | 
|  | if (const auto *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | switch (BO->getOpcode()) { | 
|  | case BO_Cmp: | 
|  | llvm_unreachable("builtin <=> should have class type"); | 
|  |  | 
|  | // Boolean-valued operations are single-bit and positive. | 
|  | case BO_LAnd: | 
|  | case BO_LOr: | 
|  | case BO_LT: | 
|  | case BO_GT: | 
|  | case BO_LE: | 
|  | case BO_GE: | 
|  | case BO_EQ: | 
|  | case BO_NE: | 
|  | return IntRange::forBoolType(); | 
|  |  | 
|  | // The type of the assignments is the type of the LHS, so the RHS | 
|  | // is not necessarily the same type. | 
|  | case BO_MulAssign: | 
|  | case BO_DivAssign: | 
|  | case BO_RemAssign: | 
|  | case BO_AddAssign: | 
|  | case BO_SubAssign: | 
|  | case BO_XorAssign: | 
|  | case BO_OrAssign: | 
|  | // TODO: bitfields? | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  |  | 
|  | // Simple assignments just pass through the RHS, which will have | 
|  | // been coerced to the LHS type. | 
|  | case BO_Assign: | 
|  | // TODO: bitfields? | 
|  | return GetExprRange(C, BO->getRHS(), MaxWidth); | 
|  |  | 
|  | // Operations with opaque sources are black-listed. | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  |  | 
|  | // Bitwise-and uses the *infinum* of the two source ranges. | 
|  | case BO_And: | 
|  | case BO_AndAssign: | 
|  | return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth), | 
|  | GetExprRange(C, BO->getRHS(), MaxWidth)); | 
|  |  | 
|  | // Left shift gets black-listed based on a judgement call. | 
|  | case BO_Shl: | 
|  | // ...except that we want to treat '1 << (blah)' as logically | 
|  | // positive.  It's an important idiom. | 
|  | if (IntegerLiteral *I | 
|  | = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { | 
|  | if (I->getValue() == 1) { | 
|  | IntRange R = IntRange::forValueOfType(C, GetExprType(E)); | 
|  | return IntRange(R.Width, /*NonNegative*/ true); | 
|  | } | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case BO_ShlAssign: | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  |  | 
|  | // Right shift by a constant can narrow its left argument. | 
|  | case BO_Shr: | 
|  | case BO_ShrAssign: { | 
|  | IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); | 
|  |  | 
|  | // If the shift amount is a positive constant, drop the width by | 
|  | // that much. | 
|  | llvm::APSInt shift; | 
|  | if (BO->getRHS()->isIntegerConstantExpr(shift, C) && | 
|  | shift.isNonNegative()) { | 
|  | unsigned zext = shift.getZExtValue(); | 
|  | if (zext >= L.Width) | 
|  | L.Width = (L.NonNegative ? 0 : 1); | 
|  | else | 
|  | L.Width -= zext; | 
|  | } | 
|  |  | 
|  | return L; | 
|  | } | 
|  |  | 
|  | // Comma acts as its right operand. | 
|  | case BO_Comma: | 
|  | return GetExprRange(C, BO->getRHS(), MaxWidth); | 
|  |  | 
|  | // Black-list pointer subtractions. | 
|  | case BO_Sub: | 
|  | if (BO->getLHS()->getType()->isPointerType()) | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  | break; | 
|  |  | 
|  | // The width of a division result is mostly determined by the size | 
|  | // of the LHS. | 
|  | case BO_Div: { | 
|  | // Don't 'pre-truncate' the operands. | 
|  | unsigned opWidth = C.getIntWidth(GetExprType(E)); | 
|  | IntRange L = GetExprRange(C, BO->getLHS(), opWidth); | 
|  |  | 
|  | // If the divisor is constant, use that. | 
|  | llvm::APSInt divisor; | 
|  | if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { | 
|  | unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) | 
|  | if (log2 >= L.Width) | 
|  | L.Width = (L.NonNegative ? 0 : 1); | 
|  | else | 
|  | L.Width = std::min(L.Width - log2, MaxWidth); | 
|  | return L; | 
|  | } | 
|  |  | 
|  | // Otherwise, just use the LHS's width. | 
|  | IntRange R = GetExprRange(C, BO->getRHS(), opWidth); | 
|  | return IntRange(L.Width, L.NonNegative && R.NonNegative); | 
|  | } | 
|  |  | 
|  | // The result of a remainder can't be larger than the result of | 
|  | // either side. | 
|  | case BO_Rem: { | 
|  | // Don't 'pre-truncate' the operands. | 
|  | unsigned opWidth = C.getIntWidth(GetExprType(E)); | 
|  | IntRange L = GetExprRange(C, BO->getLHS(), opWidth); | 
|  | IntRange R = GetExprRange(C, BO->getRHS(), opWidth); | 
|  |  | 
|  | IntRange meet = IntRange::meet(L, R); | 
|  | meet.Width = std::min(meet.Width, MaxWidth); | 
|  | return meet; | 
|  | } | 
|  |  | 
|  | // The default behavior is okay for these. | 
|  | case BO_Mul: | 
|  | case BO_Add: | 
|  | case BO_Xor: | 
|  | case BO_Or: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The default case is to treat the operation as if it were closed | 
|  | // on the narrowest type that encompasses both operands. | 
|  | IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth); | 
|  | IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth); | 
|  | return IntRange::join(L, R); | 
|  | } | 
|  |  | 
|  | if (const auto *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | switch (UO->getOpcode()) { | 
|  | // Boolean-valued operations are white-listed. | 
|  | case UO_LNot: | 
|  | return IntRange::forBoolType(); | 
|  |  | 
|  | // Operations with opaque sources are black-listed. | 
|  | case UO_Deref: | 
|  | case UO_AddrOf: // should be impossible | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  |  | 
|  | default: | 
|  | return GetExprRange(C, UO->getSubExpr(), MaxWidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) | 
|  | return GetExprRange(C, OVE->getSourceExpr(), MaxWidth); | 
|  |  | 
|  | if (const auto *BitField = E->getSourceBitField()) | 
|  | return IntRange(BitField->getBitWidthValue(C), | 
|  | BitField->getType()->isUnsignedIntegerOrEnumerationType()); | 
|  |  | 
|  | return IntRange::forValueOfType(C, GetExprType(E)); | 
|  | } | 
|  |  | 
|  | static IntRange GetExprRange(ASTContext &C, const Expr *E) { | 
|  | return GetExprRange(C, E, C.getIntWidth(GetExprType(E))); | 
|  | } | 
|  |  | 
|  | /// Checks whether the given value, which currently has the given | 
|  | /// source semantics, has the same value when coerced through the | 
|  | /// target semantics. | 
|  | static bool IsSameFloatAfterCast(const llvm::APFloat &value, | 
|  | const llvm::fltSemantics &Src, | 
|  | const llvm::fltSemantics &Tgt) { | 
|  | llvm::APFloat truncated = value; | 
|  |  | 
|  | bool ignored; | 
|  | truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); | 
|  | truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); | 
|  |  | 
|  | return truncated.bitwiseIsEqual(value); | 
|  | } | 
|  |  | 
|  | /// Checks whether the given value, which currently has the given | 
|  | /// source semantics, has the same value when coerced through the | 
|  | /// target semantics. | 
|  | /// | 
|  | /// The value might be a vector of floats (or a complex number). | 
|  | static bool IsSameFloatAfterCast(const APValue &value, | 
|  | const llvm::fltSemantics &Src, | 
|  | const llvm::fltSemantics &Tgt) { | 
|  | if (value.isFloat()) | 
|  | return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); | 
|  |  | 
|  | if (value.isVector()) { | 
|  | for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) | 
|  | if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | assert(value.isComplexFloat()); | 
|  | return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && | 
|  | IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); | 
|  | } | 
|  |  | 
|  | static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC); | 
|  |  | 
|  | static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { | 
|  | // Suppress cases where we are comparing against an enum constant. | 
|  | if (const DeclRefExpr *DR = | 
|  | dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) | 
|  | if (isa<EnumConstantDecl>(DR->getDecl())) | 
|  | return true; | 
|  |  | 
|  | // Suppress cases where the '0' value is expanded from a macro. | 
|  | if (E->getBeginLoc().isMacroID()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isKnownToHaveUnsignedValue(Expr *E) { | 
|  | return E->getType()->isIntegerType() && | 
|  | (!E->getType()->isSignedIntegerType() || | 
|  | !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// The promoted range of values of a type. In general this has the | 
|  | /// following structure: | 
|  | /// | 
|  | ///     |-----------| . . . |-----------| | 
|  | ///     ^           ^       ^           ^ | 
|  | ///    Min       HoleMin  HoleMax      Max | 
|  | /// | 
|  | /// ... where there is only a hole if a signed type is promoted to unsigned | 
|  | /// (in which case Min and Max are the smallest and largest representable | 
|  | /// values). | 
|  | struct PromotedRange { | 
|  | // Min, or HoleMax if there is a hole. | 
|  | llvm::APSInt PromotedMin; | 
|  | // Max, or HoleMin if there is a hole. | 
|  | llvm::APSInt PromotedMax; | 
|  |  | 
|  | PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { | 
|  | if (R.Width == 0) | 
|  | PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); | 
|  | else if (R.Width >= BitWidth && !Unsigned) { | 
|  | // Promotion made the type *narrower*. This happens when promoting | 
|  | // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. | 
|  | // Treat all values of 'signed int' as being in range for now. | 
|  | PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); | 
|  | PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); | 
|  | } else { | 
|  | PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) | 
|  | .extOrTrunc(BitWidth); | 
|  | PromotedMin.setIsUnsigned(Unsigned); | 
|  |  | 
|  | PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) | 
|  | .extOrTrunc(BitWidth); | 
|  | PromotedMax.setIsUnsigned(Unsigned); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether this range is contiguous (has no hole). | 
|  | bool isContiguous() const { return PromotedMin <= PromotedMax; } | 
|  |  | 
|  | // Where a constant value is within the range. | 
|  | enum ComparisonResult { | 
|  | LT = 0x1, | 
|  | LE = 0x2, | 
|  | GT = 0x4, | 
|  | GE = 0x8, | 
|  | EQ = 0x10, | 
|  | NE = 0x20, | 
|  | InRangeFlag = 0x40, | 
|  |  | 
|  | Less = LE | LT | NE, | 
|  | Min = LE | InRangeFlag, | 
|  | InRange = InRangeFlag, | 
|  | Max = GE | InRangeFlag, | 
|  | Greater = GE | GT | NE, | 
|  |  | 
|  | OnlyValue = LE | GE | EQ | InRangeFlag, | 
|  | InHole = NE | 
|  | }; | 
|  |  | 
|  | ComparisonResult compare(const llvm::APSInt &Value) const { | 
|  | assert(Value.getBitWidth() == PromotedMin.getBitWidth() && | 
|  | Value.isUnsigned() == PromotedMin.isUnsigned()); | 
|  | if (!isContiguous()) { | 
|  | assert(Value.isUnsigned() && "discontiguous range for signed compare"); | 
|  | if (Value.isMinValue()) return Min; | 
|  | if (Value.isMaxValue()) return Max; | 
|  | if (Value >= PromotedMin) return InRange; | 
|  | if (Value <= PromotedMax) return InRange; | 
|  | return InHole; | 
|  | } | 
|  |  | 
|  | switch (llvm::APSInt::compareValues(Value, PromotedMin)) { | 
|  | case -1: return Less; | 
|  | case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; | 
|  | case 1: | 
|  | switch (llvm::APSInt::compareValues(Value, PromotedMax)) { | 
|  | case -1: return InRange; | 
|  | case 0: return Max; | 
|  | case 1: return Greater; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("impossible compare result"); | 
|  | } | 
|  |  | 
|  | static llvm::Optional<StringRef> | 
|  | constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { | 
|  | if (Op == BO_Cmp) { | 
|  | ComparisonResult LTFlag = LT, GTFlag = GT; | 
|  | if (ConstantOnRHS) std::swap(LTFlag, GTFlag); | 
|  |  | 
|  | if (R & EQ) return StringRef("'std::strong_ordering::equal'"); | 
|  | if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); | 
|  | if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); | 
|  | return llvm::None; | 
|  | } | 
|  |  | 
|  | ComparisonResult TrueFlag, FalseFlag; | 
|  | if (Op == BO_EQ) { | 
|  | TrueFlag = EQ; | 
|  | FalseFlag = NE; | 
|  | } else if (Op == BO_NE) { | 
|  | TrueFlag = NE; | 
|  | FalseFlag = EQ; | 
|  | } else { | 
|  | if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { | 
|  | TrueFlag = LT; | 
|  | FalseFlag = GE; | 
|  | } else { | 
|  | TrueFlag = GT; | 
|  | FalseFlag = LE; | 
|  | } | 
|  | if (Op == BO_GE || Op == BO_LE) | 
|  | std::swap(TrueFlag, FalseFlag); | 
|  | } | 
|  | if (R & TrueFlag) | 
|  | return StringRef("true"); | 
|  | if (R & FalseFlag) | 
|  | return StringRef("false"); | 
|  | return llvm::None; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static bool HasEnumType(Expr *E) { | 
|  | // Strip off implicit integral promotions. | 
|  | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() != CK_IntegralCast && | 
|  | ICE->getCastKind() != CK_NoOp) | 
|  | break; | 
|  | E = ICE->getSubExpr(); | 
|  | } | 
|  |  | 
|  | return E->getType()->isEnumeralType(); | 
|  | } | 
|  |  | 
|  | static int classifyConstantValue(Expr *Constant) { | 
|  | // The values of this enumeration are used in the diagnostics | 
|  | // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. | 
|  | enum ConstantValueKind { | 
|  | Miscellaneous = 0, | 
|  | LiteralTrue, | 
|  | LiteralFalse | 
|  | }; | 
|  | if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) | 
|  | return BL->getValue() ? ConstantValueKind::LiteralTrue | 
|  | : ConstantValueKind::LiteralFalse; | 
|  | return ConstantValueKind::Miscellaneous; | 
|  | } | 
|  |  | 
|  | static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, | 
|  | Expr *Constant, Expr *Other, | 
|  | const llvm::APSInt &Value, | 
|  | bool RhsConstant) { | 
|  | if (S.inTemplateInstantiation()) | 
|  | return false; | 
|  |  | 
|  | Expr *OriginalOther = Other; | 
|  |  | 
|  | Constant = Constant->IgnoreParenImpCasts(); | 
|  | Other = Other->IgnoreParenImpCasts(); | 
|  |  | 
|  | // Suppress warnings on tautological comparisons between values of the same | 
|  | // enumeration type. There are only two ways we could warn on this: | 
|  | //  - If the constant is outside the range of representable values of | 
|  | //    the enumeration. In such a case, we should warn about the cast | 
|  | //    to enumeration type, not about the comparison. | 
|  | //  - If the constant is the maximum / minimum in-range value. For an | 
|  | //    enumeratin type, such comparisons can be meaningful and useful. | 
|  | if (Constant->getType()->isEnumeralType() && | 
|  | S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) | 
|  | return false; | 
|  |  | 
|  | // TODO: Investigate using GetExprRange() to get tighter bounds | 
|  | // on the bit ranges. | 
|  | QualType OtherT = Other->getType(); | 
|  | if (const auto *AT = OtherT->getAs<AtomicType>()) | 
|  | OtherT = AT->getValueType(); | 
|  | IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); | 
|  |  | 
|  | // Whether we're treating Other as being a bool because of the form of | 
|  | // expression despite it having another type (typically 'int' in C). | 
|  | bool OtherIsBooleanDespiteType = | 
|  | !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); | 
|  | if (OtherIsBooleanDespiteType) | 
|  | OtherRange = IntRange::forBoolType(); | 
|  |  | 
|  | // Determine the promoted range of the other type and see if a comparison of | 
|  | // the constant against that range is tautological. | 
|  | PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), | 
|  | Value.isUnsigned()); | 
|  | auto Cmp = OtherPromotedRange.compare(Value); | 
|  | auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); | 
|  | if (!Result) | 
|  | return false; | 
|  |  | 
|  | // Suppress the diagnostic for an in-range comparison if the constant comes | 
|  | // from a macro or enumerator. We don't want to diagnose | 
|  | // | 
|  | //   some_long_value <= INT_MAX | 
|  | // | 
|  | // when sizeof(int) == sizeof(long). | 
|  | bool InRange = Cmp & PromotedRange::InRangeFlag; | 
|  | if (InRange && IsEnumConstOrFromMacro(S, Constant)) | 
|  | return false; | 
|  |  | 
|  | // If this is a comparison to an enum constant, include that | 
|  | // constant in the diagnostic. | 
|  | const EnumConstantDecl *ED = nullptr; | 
|  | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) | 
|  | ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); | 
|  |  | 
|  | // Should be enough for uint128 (39 decimal digits) | 
|  | SmallString<64> PrettySourceValue; | 
|  | llvm::raw_svector_ostream OS(PrettySourceValue); | 
|  | if (ED) | 
|  | OS << '\'' << *ED << "' (" << Value << ")"; | 
|  | else | 
|  | OS << Value; | 
|  |  | 
|  | // FIXME: We use a somewhat different formatting for the in-range cases and | 
|  | // cases involving boolean values for historical reasons. We should pick a | 
|  | // consistent way of presenting these diagnostics. | 
|  | if (!InRange || Other->isKnownToHaveBooleanValue()) { | 
|  | S.DiagRuntimeBehavior( | 
|  | E->getOperatorLoc(), E, | 
|  | S.PDiag(!InRange ? diag::warn_out_of_range_compare | 
|  | : diag::warn_tautological_bool_compare) | 
|  | << OS.str() << classifyConstantValue(Constant) | 
|  | << OtherT << OtherIsBooleanDespiteType << *Result | 
|  | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); | 
|  | } else { | 
|  | unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) | 
|  | ? (HasEnumType(OriginalOther) | 
|  | ? diag::warn_unsigned_enum_always_true_comparison | 
|  | : diag::warn_unsigned_always_true_comparison) | 
|  | : diag::warn_tautological_constant_compare; | 
|  |  | 
|  | S.Diag(E->getOperatorLoc(), Diag) | 
|  | << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result | 
|  | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Analyze the operands of the given comparison.  Implements the | 
|  | /// fallback case from AnalyzeComparison. | 
|  | static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { | 
|  | AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); | 
|  | AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); | 
|  | } | 
|  |  | 
|  | /// Implements -Wsign-compare. | 
|  | /// | 
|  | /// \param E the binary operator to check for warnings | 
|  | static void AnalyzeComparison(Sema &S, BinaryOperator *E) { | 
|  | // The type the comparison is being performed in. | 
|  | QualType T = E->getLHS()->getType(); | 
|  |  | 
|  | // Only analyze comparison operators where both sides have been converted to | 
|  | // the same type. | 
|  | if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  |  | 
|  | // Don't analyze value-dependent comparisons directly. | 
|  | if (E->isValueDependent()) | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  |  | 
|  | Expr *LHS = E->getLHS(); | 
|  | Expr *RHS = E->getRHS(); | 
|  |  | 
|  | if (T->isIntegralType(S.Context)) { | 
|  | llvm::APSInt RHSValue; | 
|  | llvm::APSInt LHSValue; | 
|  |  | 
|  | bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); | 
|  | bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); | 
|  |  | 
|  | // We don't care about expressions whose result is a constant. | 
|  | if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  |  | 
|  | // We only care about expressions where just one side is literal | 
|  | if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { | 
|  | // Is the constant on the RHS or LHS? | 
|  | const bool RhsConstant = IsRHSIntegralLiteral; | 
|  | Expr *Const = RhsConstant ? RHS : LHS; | 
|  | Expr *Other = RhsConstant ? LHS : RHS; | 
|  | const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; | 
|  |  | 
|  | // Check whether an integer constant comparison results in a value | 
|  | // of 'true' or 'false'. | 
|  | if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!T->hasUnsignedIntegerRepresentation()) { | 
|  | // We don't do anything special if this isn't an unsigned integral | 
|  | // comparison:  we're only interested in integral comparisons, and | 
|  | // signed comparisons only happen in cases we don't care to warn about. | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  | } | 
|  |  | 
|  | LHS = LHS->IgnoreParenImpCasts(); | 
|  | RHS = RHS->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | // Avoid warning about comparison of integers with different signs when | 
|  | // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of | 
|  | // the type of `E`. | 
|  | if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) | 
|  | LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); | 
|  | if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) | 
|  | RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); | 
|  | } | 
|  |  | 
|  | // Check to see if one of the (unmodified) operands is of different | 
|  | // signedness. | 
|  | Expr *signedOperand, *unsignedOperand; | 
|  | if (LHS->getType()->hasSignedIntegerRepresentation()) { | 
|  | assert(!RHS->getType()->hasSignedIntegerRepresentation() && | 
|  | "unsigned comparison between two signed integer expressions?"); | 
|  | signedOperand = LHS; | 
|  | unsignedOperand = RHS; | 
|  | } else if (RHS->getType()->hasSignedIntegerRepresentation()) { | 
|  | signedOperand = RHS; | 
|  | unsignedOperand = LHS; | 
|  | } else { | 
|  | return AnalyzeImpConvsInComparison(S, E); | 
|  | } | 
|  |  | 
|  | // Otherwise, calculate the effective range of the signed operand. | 
|  | IntRange signedRange = GetExprRange(S.Context, signedOperand); | 
|  |  | 
|  | // Go ahead and analyze implicit conversions in the operands.  Note | 
|  | // that we skip the implicit conversions on both sides. | 
|  | AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); | 
|  | AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); | 
|  |  | 
|  | // If the signed range is non-negative, -Wsign-compare won't fire. | 
|  | if (signedRange.NonNegative) | 
|  | return; | 
|  |  | 
|  | // For (in)equality comparisons, if the unsigned operand is a | 
|  | // constant which cannot collide with a overflowed signed operand, | 
|  | // then reinterpreting the signed operand as unsigned will not | 
|  | // change the result of the comparison. | 
|  | if (E->isEqualityOp()) { | 
|  | unsigned comparisonWidth = S.Context.getIntWidth(T); | 
|  | IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand); | 
|  |  | 
|  | // We should never be unable to prove that the unsigned operand is | 
|  | // non-negative. | 
|  | assert(unsignedRange.NonNegative && "unsigned range includes negative?"); | 
|  |  | 
|  | if (unsignedRange.Width < comparisonWidth) | 
|  | return; | 
|  | } | 
|  |  | 
|  | S.DiagRuntimeBehavior(E->getOperatorLoc(), E, | 
|  | S.PDiag(diag::warn_mixed_sign_comparison) | 
|  | << LHS->getType() << RHS->getType() | 
|  | << LHS->getSourceRange() << RHS->getSourceRange()); | 
|  | } | 
|  |  | 
|  | /// Analyzes an attempt to assign the given value to a bitfield. | 
|  | /// | 
|  | /// Returns true if there was something fishy about the attempt. | 
|  | static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, | 
|  | SourceLocation InitLoc) { | 
|  | assert(Bitfield->isBitField()); | 
|  | if (Bitfield->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // White-list bool bitfields. | 
|  | QualType BitfieldType = Bitfield->getType(); | 
|  | if (BitfieldType->isBooleanType()) | 
|  | return false; | 
|  |  | 
|  | if (BitfieldType->isEnumeralType()) { | 
|  | EnumDecl *BitfieldEnumDecl = BitfieldType->getAs<EnumType>()->getDecl(); | 
|  | // If the underlying enum type was not explicitly specified as an unsigned | 
|  | // type and the enum contain only positive values, MSVC++ will cause an | 
|  | // inconsistency by storing this as a signed type. | 
|  | if (S.getLangOpts().CPlusPlus11 && | 
|  | !BitfieldEnumDecl->getIntegerTypeSourceInfo() && | 
|  | BitfieldEnumDecl->getNumPositiveBits() > 0 && | 
|  | BitfieldEnumDecl->getNumNegativeBits() == 0) { | 
|  | S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) | 
|  | << BitfieldEnumDecl->getNameAsString(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Bitfield->getType()->isBooleanType()) | 
|  | return false; | 
|  |  | 
|  | // Ignore value- or type-dependent expressions. | 
|  | if (Bitfield->getBitWidth()->isValueDependent() || | 
|  | Bitfield->getBitWidth()->isTypeDependent() || | 
|  | Init->isValueDependent() || | 
|  | Init->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | Expr *OriginalInit = Init->IgnoreParenImpCasts(); | 
|  | unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); | 
|  |  | 
|  | Expr::EvalResult Result; | 
|  | if (!OriginalInit->EvaluateAsInt(Result, S.Context, | 
|  | Expr::SE_AllowSideEffects)) { | 
|  | // The RHS is not constant.  If the RHS has an enum type, make sure the | 
|  | // bitfield is wide enough to hold all the values of the enum without | 
|  | // truncation. | 
|  | if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { | 
|  | EnumDecl *ED = EnumTy->getDecl(); | 
|  | bool SignedBitfield = BitfieldType->isSignedIntegerType(); | 
|  |  | 
|  | // Enum types are implicitly signed on Windows, so check if there are any | 
|  | // negative enumerators to see if the enum was intended to be signed or | 
|  | // not. | 
|  | bool SignedEnum = ED->getNumNegativeBits() > 0; | 
|  |  | 
|  | // Check for surprising sign changes when assigning enum values to a | 
|  | // bitfield of different signedness.  If the bitfield is signed and we | 
|  | // have exactly the right number of bits to store this unsigned enum, | 
|  | // suggest changing the enum to an unsigned type. This typically happens | 
|  | // on Windows where unfixed enums always use an underlying type of 'int'. | 
|  | unsigned DiagID = 0; | 
|  | if (SignedEnum && !SignedBitfield) { | 
|  | DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; | 
|  | } else if (SignedBitfield && !SignedEnum && | 
|  | ED->getNumPositiveBits() == FieldWidth) { | 
|  | DiagID = diag::warn_signed_bitfield_enum_conversion; | 
|  | } | 
|  |  | 
|  | if (DiagID) { | 
|  | S.Diag(InitLoc, DiagID) << Bitfield << ED; | 
|  | TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); | 
|  | SourceRange TypeRange = | 
|  | TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); | 
|  | S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) | 
|  | << SignedEnum << TypeRange; | 
|  | } | 
|  |  | 
|  | // Compute the required bitwidth. If the enum has negative values, we need | 
|  | // one more bit than the normal number of positive bits to represent the | 
|  | // sign bit. | 
|  | unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, | 
|  | ED->getNumNegativeBits()) | 
|  | : ED->getNumPositiveBits(); | 
|  |  | 
|  | // Check the bitwidth. | 
|  | if (BitsNeeded > FieldWidth) { | 
|  | Expr *WidthExpr = Bitfield->getBitWidth(); | 
|  | S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) | 
|  | << Bitfield << ED; | 
|  | S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) | 
|  | << BitsNeeded << ED << WidthExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm::APSInt Value = Result.Val.getInt(); | 
|  |  | 
|  | unsigned OriginalWidth = Value.getBitWidth(); | 
|  |  | 
|  | if (!Value.isSigned() || Value.isNegative()) | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) | 
|  | if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) | 
|  | OriginalWidth = Value.getMinSignedBits(); | 
|  |  | 
|  | if (OriginalWidth <= FieldWidth) | 
|  | return false; | 
|  |  | 
|  | // Compute the value which the bitfield will contain. | 
|  | llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); | 
|  | TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); | 
|  |  | 
|  | // Check whether the stored value is equal to the original value. | 
|  | TruncatedValue = TruncatedValue.extend(OriginalWidth); | 
|  | if (llvm::APSInt::isSameValue(Value, TruncatedValue)) | 
|  | return false; | 
|  |  | 
|  | // Special-case bitfields of width 1: booleans are naturally 0/1, and | 
|  | // therefore don't strictly fit into a signed bitfield of width 1. | 
|  | if (FieldWidth == 1 && Value == 1) | 
|  | return false; | 
|  |  | 
|  | std::string PrettyValue = Value.toString(10); | 
|  | std::string PrettyTrunc = TruncatedValue.toString(10); | 
|  |  | 
|  | S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) | 
|  | << PrettyValue << PrettyTrunc << OriginalInit->getType() | 
|  | << Init->getSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Analyze the given simple or compound assignment for warning-worthy | 
|  | /// operations. | 
|  | static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { | 
|  | // Just recurse on the LHS. | 
|  | AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); | 
|  |  | 
|  | // We want to recurse on the RHS as normal unless we're assigning to | 
|  | // a bitfield. | 
|  | if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { | 
|  | if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), | 
|  | E->getOperatorLoc())) { | 
|  | // Recurse, ignoring any implicit conversions on the RHS. | 
|  | return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), | 
|  | E->getOperatorLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); | 
|  |  | 
|  | // Diagnose implicitly sequentially-consistent atomic assignment. | 
|  | if (E->getLHS()->getType()->isAtomicType()) | 
|  | S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); | 
|  | } | 
|  |  | 
|  | /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion. | 
|  | static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, | 
|  | SourceLocation CContext, unsigned diag, | 
|  | bool pruneControlFlow = false) { | 
|  | if (pruneControlFlow) { | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(diag) | 
|  | << SourceType << T << E->getSourceRange() | 
|  | << SourceRange(CContext)); | 
|  | return; | 
|  | } | 
|  | S.Diag(E->getExprLoc(), diag) | 
|  | << SourceType << T << E->getSourceRange() << SourceRange(CContext); | 
|  | } | 
|  |  | 
|  | /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion. | 
|  | static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, | 
|  | SourceLocation CContext, | 
|  | unsigned diag, bool pruneControlFlow = false) { | 
|  | DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); | 
|  | } | 
|  |  | 
|  | /// Diagnose an implicit cast from a floating point value to an integer value. | 
|  | static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, | 
|  | SourceLocation CContext) { | 
|  | const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); | 
|  | const bool PruneWarnings = S.inTemplateInstantiation(); | 
|  |  | 
|  | Expr *InnerE = E->IgnoreParenImpCasts(); | 
|  | // We also want to warn on, e.g., "int i = -1.234" | 
|  | if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) | 
|  | if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) | 
|  | InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); | 
|  |  | 
|  | const bool IsLiteral = | 
|  | isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); | 
|  |  | 
|  | llvm::APFloat Value(0.0); | 
|  | bool IsConstant = | 
|  | E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); | 
|  | if (!IsConstant) { | 
|  | return DiagnoseImpCast(S, E, T, CContext, | 
|  | diag::warn_impcast_float_integer, PruneWarnings); | 
|  | } | 
|  |  | 
|  | bool isExact = false; | 
|  |  | 
|  | llvm::APSInt IntegerValue(S.Context.getIntWidth(T), | 
|  | T->hasUnsignedIntegerRepresentation()); | 
|  | llvm::APFloat::opStatus Result = Value.convertToInteger( | 
|  | IntegerValue, llvm::APFloat::rmTowardZero, &isExact); | 
|  |  | 
|  | if (Result == llvm::APFloat::opOK && isExact) { | 
|  | if (IsLiteral) return; | 
|  | return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, | 
|  | PruneWarnings); | 
|  | } | 
|  |  | 
|  | // Conversion of a floating-point value to a non-bool integer where the | 
|  | // integral part cannot be represented by the integer type is undefined. | 
|  | if (!IsBool && Result == llvm::APFloat::opInvalidOp) | 
|  | return DiagnoseImpCast( | 
|  | S, E, T, CContext, | 
|  | IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range | 
|  | : diag::warn_impcast_float_to_integer_out_of_range, | 
|  | PruneWarnings); | 
|  |  | 
|  | unsigned DiagID = 0; | 
|  | if (IsLiteral) { | 
|  | // Warn on floating point literal to integer. | 
|  | DiagID = diag::warn_impcast_literal_float_to_integer; | 
|  | } else if (IntegerValue == 0) { | 
|  | if (Value.isZero()) {  // Skip -0.0 to 0 conversion. | 
|  | return DiagnoseImpCast(S, E, T, CContext, | 
|  | diag::warn_impcast_float_integer, PruneWarnings); | 
|  | } | 
|  | // Warn on non-zero to zero conversion. | 
|  | DiagID = diag::warn_impcast_float_to_integer_zero; | 
|  | } else { | 
|  | if (IntegerValue.isUnsigned()) { | 
|  | if (!IntegerValue.isMaxValue()) { | 
|  | return DiagnoseImpCast(S, E, T, CContext, | 
|  | diag::warn_impcast_float_integer, PruneWarnings); | 
|  | } | 
|  | } else {  // IntegerValue.isSigned() | 
|  | if (!IntegerValue.isMaxSignedValue() && | 
|  | !IntegerValue.isMinSignedValue()) { | 
|  | return DiagnoseImpCast(S, E, T, CContext, | 
|  | diag::warn_impcast_float_integer, PruneWarnings); | 
|  | } | 
|  | } | 
|  | // Warn on evaluatable floating point expression to integer conversion. | 
|  | DiagID = diag::warn_impcast_float_to_integer; | 
|  | } | 
|  |  | 
|  | // FIXME: Force the precision of the source value down so we don't print | 
|  | // digits which are usually useless (we don't really care here if we | 
|  | // truncate a digit by accident in edge cases).  Ideally, APFloat::toString | 
|  | // would automatically print the shortest representation, but it's a bit | 
|  | // tricky to implement. | 
|  | SmallString<16> PrettySourceValue; | 
|  | unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); | 
|  | precision = (precision * 59 + 195) / 196; | 
|  | Value.toString(PrettySourceValue, precision); | 
|  |  | 
|  | SmallString<16> PrettyTargetValue; | 
|  | if (IsBool) | 
|  | PrettyTargetValue = Value.isZero() ? "false" : "true"; | 
|  | else | 
|  | IntegerValue.toString(PrettyTargetValue); | 
|  |  | 
|  | if (PruneWarnings) { | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(DiagID) | 
|  | << E->getType() << T.getUnqualifiedType() | 
|  | << PrettySourceValue << PrettyTargetValue | 
|  | << E->getSourceRange() << SourceRange(CContext)); | 
|  | } else { | 
|  | S.Diag(E->getExprLoc(), DiagID) | 
|  | << E->getType() << T.getUnqualifiedType() << PrettySourceValue | 
|  | << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Analyze the given compound assignment for the possible losing of | 
|  | /// floating-point precision. | 
|  | static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { | 
|  | assert(isa<CompoundAssignOperator>(E) && | 
|  | "Must be compound assignment operation"); | 
|  | // Recurse on the LHS and RHS in here | 
|  | AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); | 
|  | AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); | 
|  |  | 
|  | if (E->getLHS()->getType()->isAtomicType()) | 
|  | S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); | 
|  |  | 
|  | // Now check the outermost expression | 
|  | const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); | 
|  | const auto *RBT = cast<CompoundAssignOperator>(E) | 
|  | ->getComputationResultType() | 
|  | ->getAs<BuiltinType>(); | 
|  |  | 
|  | // The below checks assume source is floating point. | 
|  | if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; | 
|  |  | 
|  | // If source is floating point but target is an integer. | 
|  | if (ResultBT->isInteger()) | 
|  | return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), | 
|  | E->getExprLoc(), diag::warn_impcast_float_integer); | 
|  |  | 
|  | if (!ResultBT->isFloatingPoint()) | 
|  | return; | 
|  |  | 
|  | // If both source and target are floating points, warn about losing precision. | 
|  | int Order = S.getASTContext().getFloatingTypeSemanticOrder( | 
|  | QualType(ResultBT, 0), QualType(RBT, 0)); | 
|  | if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) | 
|  | // warn about dropping FP rank. | 
|  | DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), | 
|  | diag::warn_impcast_float_result_precision); | 
|  | } | 
|  |  | 
|  | static std::string PrettyPrintInRange(const llvm::APSInt &Value, | 
|  | IntRange Range) { | 
|  | if (!Range.Width) return "0"; | 
|  |  | 
|  | llvm::APSInt ValueInRange = Value; | 
|  | ValueInRange.setIsSigned(!Range.NonNegative); | 
|  | ValueInRange = ValueInRange.trunc(Range.Width); | 
|  | return ValueInRange.toString(10); | 
|  | } | 
|  |  | 
|  | static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { | 
|  | if (!isa<ImplicitCastExpr>(Ex)) | 
|  | return false; | 
|  |  | 
|  | Expr *InnerE = Ex->IgnoreParenImpCasts(); | 
|  | const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); | 
|  | const Type *Source = | 
|  | S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); | 
|  | if (Target->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | const BuiltinType *FloatCandidateBT = | 
|  | dyn_cast<BuiltinType>(ToBool ? Source : Target); | 
|  | const Type *BoolCandidateType = ToBool ? Target : Source; | 
|  |  | 
|  | return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && | 
|  | FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); | 
|  | } | 
|  |  | 
|  | static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, | 
|  | SourceLocation CC) { | 
|  | unsigned NumArgs = TheCall->getNumArgs(); | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | Expr *CurrA = TheCall->getArg(i); | 
|  | if (!IsImplicitBoolFloatConversion(S, CurrA, true)) | 
|  | continue; | 
|  |  | 
|  | bool IsSwapped = ((i > 0) && | 
|  | IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); | 
|  | IsSwapped |= ((i < (NumArgs - 1)) && | 
|  | IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); | 
|  | if (IsSwapped) { | 
|  | // Warn on this floating-point to bool conversion. | 
|  | DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), | 
|  | CurrA->getType(), CC, | 
|  | diag::warn_impcast_floating_point_to_bool); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, | 
|  | SourceLocation CC) { | 
|  | if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, | 
|  | E->getExprLoc())) | 
|  | return; | 
|  |  | 
|  | // Don't warn on functions which have return type nullptr_t. | 
|  | if (isa<CallExpr>(E)) | 
|  | return; | 
|  |  | 
|  | // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). | 
|  | const Expr::NullPointerConstantKind NullKind = | 
|  | E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); | 
|  | if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) | 
|  | return; | 
|  |  | 
|  | // Return if target type is a safe conversion. | 
|  | if (T->isAnyPointerType() || T->isBlockPointerType() || | 
|  | T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) | 
|  | return; | 
|  |  | 
|  | SourceLocation Loc = E->getSourceRange().getBegin(); | 
|  |  | 
|  | // Venture through the macro stacks to get to the source of macro arguments. | 
|  | // The new location is a better location than the complete location that was | 
|  | // passed in. | 
|  | Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); | 
|  | CC = S.SourceMgr.getTopMacroCallerLoc(CC); | 
|  |  | 
|  | // __null is usually wrapped in a macro.  Go up a macro if that is the case. | 
|  | if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { | 
|  | StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( | 
|  | Loc, S.SourceMgr, S.getLangOpts()); | 
|  | if (MacroName == "NULL") | 
|  | Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); | 
|  | } | 
|  |  | 
|  | // Only warn if the null and context location are in the same macro expansion. | 
|  | if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) | 
|  | return; | 
|  |  | 
|  | S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) | 
|  | << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) | 
|  | << FixItHint::CreateReplacement(Loc, | 
|  | S.getFixItZeroLiteralForType(T, Loc)); | 
|  | } | 
|  |  | 
|  | static void checkObjCArrayLiteral(Sema &S, QualType TargetType, | 
|  | ObjCArrayLiteral *ArrayLiteral); | 
|  |  | 
|  | static void | 
|  | checkObjCDictionaryLiteral(Sema &S, QualType TargetType, | 
|  | ObjCDictionaryLiteral *DictionaryLiteral); | 
|  |  | 
|  | /// Check a single element within a collection literal against the | 
|  | /// target element type. | 
|  | static void checkObjCCollectionLiteralElement(Sema &S, | 
|  | QualType TargetElementType, | 
|  | Expr *Element, | 
|  | unsigned ElementKind) { | 
|  | // Skip a bitcast to 'id' or qualified 'id'. | 
|  | if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { | 
|  | if (ICE->getCastKind() == CK_BitCast && | 
|  | ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) | 
|  | Element = ICE->getSubExpr(); | 
|  | } | 
|  |  | 
|  | QualType ElementType = Element->getType(); | 
|  | ExprResult ElementResult(Element); | 
|  | if (ElementType->getAs<ObjCObjectPointerType>() && | 
|  | S.CheckSingleAssignmentConstraints(TargetElementType, | 
|  | ElementResult, | 
|  | false, false) | 
|  | != Sema::Compatible) { | 
|  | S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) | 
|  | << ElementType << ElementKind << TargetElementType | 
|  | << Element->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) | 
|  | checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); | 
|  | else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) | 
|  | checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); | 
|  | } | 
|  |  | 
|  | /// Check an Objective-C array literal being converted to the given | 
|  | /// target type. | 
|  | static void checkObjCArrayLiteral(Sema &S, QualType TargetType, | 
|  | ObjCArrayLiteral *ArrayLiteral) { | 
|  | if (!S.NSArrayDecl) | 
|  | return; | 
|  |  | 
|  | const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); | 
|  | if (!TargetObjCPtr) | 
|  | return; | 
|  |  | 
|  | if (TargetObjCPtr->isUnspecialized() || | 
|  | TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() | 
|  | != S.NSArrayDecl->getCanonicalDecl()) | 
|  | return; | 
|  |  | 
|  | auto TypeArgs = TargetObjCPtr->getTypeArgs(); | 
|  | if (TypeArgs.size() != 1) | 
|  | return; | 
|  |  | 
|  | QualType TargetElementType = TypeArgs[0]; | 
|  | for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { | 
|  | checkObjCCollectionLiteralElement(S, TargetElementType, | 
|  | ArrayLiteral->getElement(I), | 
|  | 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check an Objective-C dictionary literal being converted to the given | 
|  | /// target type. | 
|  | static void | 
|  | checkObjCDictionaryLiteral(Sema &S, QualType TargetType, | 
|  | ObjCDictionaryLiteral *DictionaryLiteral) { | 
|  | if (!S.NSDictionaryDecl) | 
|  | return; | 
|  |  | 
|  | const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); | 
|  | if (!TargetObjCPtr) | 
|  | return; | 
|  |  | 
|  | if (TargetObjCPtr->isUnspecialized() || | 
|  | TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() | 
|  | != S.NSDictionaryDecl->getCanonicalDecl()) | 
|  | return; | 
|  |  | 
|  | auto TypeArgs = TargetObjCPtr->getTypeArgs(); | 
|  | if (TypeArgs.size() != 2) | 
|  | return; | 
|  |  | 
|  | QualType TargetKeyType = TypeArgs[0]; | 
|  | QualType TargetObjectType = TypeArgs[1]; | 
|  | for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { | 
|  | auto Element = DictionaryLiteral->getKeyValueElement(I); | 
|  | checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); | 
|  | checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper function to filter out cases for constant width constant conversion. | 
|  | // Don't warn on char array initialization or for non-decimal values. | 
|  | static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, | 
|  | SourceLocation CC) { | 
|  | // If initializing from a constant, and the constant starts with '0', | 
|  | // then it is a binary, octal, or hexadecimal.  Allow these constants | 
|  | // to fill all the bits, even if there is a sign change. | 
|  | if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { | 
|  | const char FirstLiteralCharacter = | 
|  | S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; | 
|  | if (FirstLiteralCharacter == '0') | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the CC location points to a '{', and the type is char, then assume | 
|  | // assume it is an array initialization. | 
|  | if (CC.isValid() && T->isCharType()) { | 
|  | const char FirstContextCharacter = | 
|  | S.getSourceManager().getCharacterData(CC)[0]; | 
|  | if (FirstContextCharacter == '{') | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | CheckImplicitConversion(Sema &S, Expr *E, QualType T, SourceLocation CC, | 
|  | bool *ICContext = nullptr) { | 
|  | if (E->isTypeDependent() || E->isValueDependent()) return; | 
|  |  | 
|  | const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); | 
|  | const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); | 
|  | if (Source == Target) return; | 
|  | if (Target->isDependentType()) return; | 
|  |  | 
|  | // If the conversion context location is invalid don't complain. We also | 
|  | // don't want to emit a warning if the issue occurs from the expansion of | 
|  | // a system macro. The problem is that 'getSpellingLoc()' is slow, so we | 
|  | // delay this check as long as possible. Once we detect we are in that | 
|  | // scenario, we just return. | 
|  | if (CC.isInvalid()) | 
|  | return; | 
|  |  | 
|  | if (Source->isAtomicType()) | 
|  | S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); | 
|  |  | 
|  | // Diagnose implicit casts to bool. | 
|  | if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { | 
|  | if (isa<StringLiteral>(E)) | 
|  | // Warn on string literal to bool.  Checks for string literals in logical | 
|  | // and expressions, for instance, assert(0 && "error here"), are | 
|  | // prevented by a check in AnalyzeImplicitConversions(). | 
|  | return DiagnoseImpCast(S, E, T, CC, | 
|  | diag::warn_impcast_string_literal_to_bool); | 
|  | if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || | 
|  | isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { | 
|  | // This covers the literal expressions that evaluate to Objective-C | 
|  | // objects. | 
|  | return DiagnoseImpCast(S, E, T, CC, | 
|  | diag::warn_impcast_objective_c_literal_to_bool); | 
|  | } | 
|  | if (Source->isPointerType() || Source->canDecayToPointerType()) { | 
|  | // Warn on pointer to bool conversion that is always true. | 
|  | S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, | 
|  | SourceRange(CC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check implicit casts from Objective-C collection literals to specialized | 
|  | // collection types, e.g., NSArray<NSString *> *. | 
|  | if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) | 
|  | checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); | 
|  | else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) | 
|  | checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); | 
|  |  | 
|  | // Strip vector types. | 
|  | if (isa<VectorType>(Source)) { | 
|  | if (!isa<VectorType>(Target)) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); | 
|  | } | 
|  |  | 
|  | // If the vector cast is cast between two vectors of the same size, it is | 
|  | // a bitcast, not a conversion. | 
|  | if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) | 
|  | return; | 
|  |  | 
|  | Source = cast<VectorType>(Source)->getElementType().getTypePtr(); | 
|  | Target = cast<VectorType>(Target)->getElementType().getTypePtr(); | 
|  | } | 
|  | if (auto VecTy = dyn_cast<VectorType>(Target)) | 
|  | Target = VecTy->getElementType().getTypePtr(); | 
|  |  | 
|  | // Strip complex types. | 
|  | if (isa<ComplexType>(Source)) { | 
|  | if (!isa<ComplexType>(Target)) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) | 
|  | return; | 
|  |  | 
|  | return DiagnoseImpCast(S, E, T, CC, | 
|  | S.getLangOpts().CPlusPlus | 
|  | ? diag::err_impcast_complex_scalar | 
|  | : diag::warn_impcast_complex_scalar); | 
|  | } | 
|  |  | 
|  | Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); | 
|  | Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); | 
|  | } | 
|  |  | 
|  | const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); | 
|  | const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); | 
|  |  | 
|  | // If the source is floating point... | 
|  | if (SourceBT && SourceBT->isFloatingPoint()) { | 
|  | // ...and the target is floating point... | 
|  | if (TargetBT && TargetBT->isFloatingPoint()) { | 
|  | // ...then warn if we're dropping FP rank. | 
|  |  | 
|  | int Order = S.getASTContext().getFloatingTypeSemanticOrder( | 
|  | QualType(SourceBT, 0), QualType(TargetBT, 0)); | 
|  | if (Order > 0) { | 
|  | // Don't warn about float constants that are precisely | 
|  | // representable in the target type. | 
|  | Expr::EvalResult result; | 
|  | if (E->EvaluateAsRValue(result, S.Context)) { | 
|  | // Value might be a float, a float vector, or a float complex. | 
|  | if (IsSameFloatAfterCast(result.Val, | 
|  | S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), | 
|  | S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); | 
|  | } | 
|  | // ... or possibly if we're increasing rank, too | 
|  | else if (Order < 0) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the target is integral, always warn. | 
|  | if (TargetBT && TargetBT->isInteger()) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | DiagnoseFloatingImpCast(S, E, T, CC); | 
|  | } | 
|  |  | 
|  | // Detect the case where a call result is converted from floating-point to | 
|  | // to bool, and the final argument to the call is converted from bool, to | 
|  | // discover this typo: | 
|  | // | 
|  | //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;" | 
|  | // | 
|  | // FIXME: This is an incredibly special case; is there some more general | 
|  | // way to detect this class of misplaced-parentheses bug? | 
|  | if (Target->isBooleanType() && isa<CallExpr>(E)) { | 
|  | // Check last argument of function call to see if it is an | 
|  | // implicit cast from a type matching the type the result | 
|  | // is being cast to. | 
|  | CallExpr *CEx = cast<CallExpr>(E); | 
|  | if (unsigned NumArgs = CEx->getNumArgs()) { | 
|  | Expr *LastA = CEx->getArg(NumArgs - 1); | 
|  | Expr *InnerE = LastA->IgnoreParenImpCasts(); | 
|  | if (isa<ImplicitCastExpr>(LastA) && | 
|  | InnerE->getType()->isBooleanType()) { | 
|  | // Warn on this floating-point to bool conversion | 
|  | DiagnoseImpCast(S, E, T, CC, | 
|  | diag::warn_impcast_floating_point_to_bool); | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Valid casts involving fixed point types should be accounted for here. | 
|  | if (Source->isFixedPointType()) { | 
|  | if (Target->isUnsaturatedFixedPointType()) { | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsFixedPoint(Result, S.Context, | 
|  | Expr::SE_AllowSideEffects)) { | 
|  | APFixedPoint Value = Result.Val.getFixedPoint(); | 
|  | APFixedPoint MaxVal = S.Context.getFixedPointMax(T); | 
|  | APFixedPoint MinVal = S.Context.getFixedPointMin(T); | 
|  | if (Value > MaxVal || Value < MinVal) { | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(diag::warn_impcast_fixed_point_range) | 
|  | << Value.toString() << T | 
|  | << E->getSourceRange() | 
|  | << clang::SourceRange(CC)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (Target->isIntegerType()) { | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsFixedPoint(Result, S.Context, | 
|  | Expr::SE_AllowSideEffects)) { | 
|  | APFixedPoint FXResult = Result.Val.getFixedPoint(); | 
|  |  | 
|  | bool Overflowed; | 
|  | llvm::APSInt IntResult = FXResult.convertToInt( | 
|  | S.Context.getIntWidth(T), | 
|  | Target->isSignedIntegerOrEnumerationType(), &Overflowed); | 
|  |  | 
|  | if (Overflowed) { | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(diag::warn_impcast_fixed_point_range) | 
|  | << FXResult.toString() << T | 
|  | << E->getSourceRange() | 
|  | << clang::SourceRange(CC)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Target->isUnsaturatedFixedPointType()) { | 
|  | if (Source->isIntegerType()) { | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { | 
|  | llvm::APSInt Value = Result.Val.getInt(); | 
|  |  | 
|  | bool Overflowed; | 
|  | APFixedPoint IntResult = APFixedPoint::getFromIntValue( | 
|  | Value, S.Context.getFixedPointSemantics(T), &Overflowed); | 
|  |  | 
|  | if (Overflowed) { | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(diag::warn_impcast_fixed_point_range) | 
|  | << Value.toString(/*radix=*/10) << T | 
|  | << E->getSourceRange() | 
|  | << clang::SourceRange(CC)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnoseNullConversion(S, E, T, CC); | 
|  |  | 
|  | S.DiscardMisalignedMemberAddress(Target, E); | 
|  |  | 
|  | if (!Source->isIntegerType() || !Target->isIntegerType()) | 
|  | return; | 
|  |  | 
|  | // TODO: remove this early return once the false positives for constant->bool | 
|  | // in templates, macros, etc, are reduced or removed. | 
|  | if (Target->isSpecificBuiltinType(BuiltinType::Bool)) | 
|  | return; | 
|  |  | 
|  | IntRange SourceRange = GetExprRange(S.Context, E); | 
|  | IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); | 
|  |  | 
|  | if (SourceRange.Width > TargetRange.Width) { | 
|  | // If the source is a constant, use a default-on diagnostic. | 
|  | // TODO: this should happen for bitfield stores, too. | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { | 
|  | llvm::APSInt Value(32); | 
|  | Value = Result.Val.getInt(); | 
|  |  | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | std::string PrettySourceValue = Value.toString(10); | 
|  | std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); | 
|  |  | 
|  | S.DiagRuntimeBehavior(E->getExprLoc(), E, | 
|  | S.PDiag(diag::warn_impcast_integer_precision_constant) | 
|  | << PrettySourceValue << PrettyTargetValue | 
|  | << E->getType() << T << E->getSourceRange() | 
|  | << clang::SourceRange(CC)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // People want to build with -Wshorten-64-to-32 and not -Wconversion. | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) | 
|  | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, | 
|  | /* pruneControlFlow */ true); | 
|  | return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); | 
|  | } | 
|  |  | 
|  | if (TargetRange.Width > SourceRange.Width) { | 
|  | if (auto *UO = dyn_cast<UnaryOperator>(E)) | 
|  | if (UO->getOpcode() == UO_Minus) | 
|  | if (Source->isUnsignedIntegerType()) { | 
|  | if (Target->isUnsignedIntegerType()) | 
|  | return DiagnoseImpCast(S, E, T, CC, | 
|  | diag::warn_impcast_high_order_zero_bits); | 
|  | if (Target->isSignedIntegerType()) | 
|  | return DiagnoseImpCast(S, E, T, CC, | 
|  | diag::warn_impcast_nonnegative_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && | 
|  | SourceRange.NonNegative && Source->isSignedIntegerType()) { | 
|  | // Warn when doing a signed to signed conversion, warn if the positive | 
|  | // source value is exactly the width of the target type, which will | 
|  | // cause a negative value to be stored. | 
|  |  | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && | 
|  | !S.SourceMgr.isInSystemMacro(CC)) { | 
|  | llvm::APSInt Value = Result.Val.getInt(); | 
|  | if (isSameWidthConstantConversion(S, E, T, CC)) { | 
|  | std::string PrettySourceValue = Value.toString(10); | 
|  | std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); | 
|  |  | 
|  | S.DiagRuntimeBehavior( | 
|  | E->getExprLoc(), E, | 
|  | S.PDiag(diag::warn_impcast_integer_precision_constant) | 
|  | << PrettySourceValue << PrettyTargetValue << E->getType() << T | 
|  | << E->getSourceRange() << clang::SourceRange(CC)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fall through for non-constants to give a sign conversion warning. | 
|  | } | 
|  |  | 
|  | if ((TargetRange.NonNegative && !SourceRange.NonNegative) || | 
|  | (!TargetRange.NonNegative && SourceRange.NonNegative && | 
|  | SourceRange.Width == TargetRange.Width)) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | unsigned DiagID = diag::warn_impcast_integer_sign; | 
|  |  | 
|  | // Traditionally, gcc has warned about this under -Wsign-compare. | 
|  | // We also want to warn about it in -Wconversion. | 
|  | // So if -Wconversion is off, use a completely identical diagnostic | 
|  | // in the sign-compare group. | 
|  | // The conditional-checking code will | 
|  | if (ICContext) { | 
|  | DiagID = diag::warn_impcast_integer_sign_conditional; | 
|  | *ICContext = true; | 
|  | } | 
|  |  | 
|  | return DiagnoseImpCast(S, E, T, CC, DiagID); | 
|  | } | 
|  |  | 
|  | // Diagnose conversions between different enumeration types. | 
|  | // In C, we pretend that the type of an EnumConstantDecl is its enumeration | 
|  | // type, to give us better diagnostics. | 
|  | QualType SourceType = E->getType(); | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { | 
|  | EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); | 
|  | SourceType = S.Context.getTypeDeclType(Enum); | 
|  | Source = S.Context.getCanonicalType(SourceType).getTypePtr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const EnumType *SourceEnum = Source->getAs<EnumType>()) | 
|  | if (const EnumType *TargetEnum = Target->getAs<EnumType>()) | 
|  | if (SourceEnum->getDecl()->hasNameForLinkage() && | 
|  | TargetEnum->getDecl()->hasNameForLinkage() && | 
|  | SourceEnum != TargetEnum) { | 
|  | if (S.SourceMgr.isInSystemMacro(CC)) | 
|  | return; | 
|  |  | 
|  | return DiagnoseImpCast(S, E, SourceType, T, CC, | 
|  | diag::warn_impcast_different_enum_types); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, | 
|  | SourceLocation CC, QualType T); | 
|  |  | 
|  | static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, | 
|  | SourceLocation CC, bool &ICContext) { | 
|  | E = E->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (isa<ConditionalOperator>(E)) | 
|  | return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T); | 
|  |  | 
|  | AnalyzeImplicitConversions(S, E, CC); | 
|  | if (E->getType() != T) | 
|  | return CheckImplicitConversion(S, E, T, CC, &ICContext); | 
|  | } | 
|  |  | 
|  | static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, | 
|  | SourceLocation CC, QualType T) { | 
|  | AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); | 
|  |  | 
|  | bool Suspicious = false; | 
|  | CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); | 
|  | CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); | 
|  |  | 
|  | // If -Wconversion would have warned about either of the candidates | 
|  | // for a signedness conversion to the context type... | 
|  | if (!Suspicious) return; | 
|  |  | 
|  | // ...but it's currently ignored... | 
|  | if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) | 
|  | return; | 
|  |  | 
|  | // ...then check whether it would have warned about either of the | 
|  | // candidates for a signedness conversion to the condition type. | 
|  | if (E->getType() == T) return; | 
|  |  | 
|  | Suspicious = false; | 
|  | CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), | 
|  | E->getType(), CC, &Suspicious); | 
|  | if (!Suspicious) | 
|  | CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), | 
|  | E->getType(), CC, &Suspicious); | 
|  | } | 
|  |  | 
|  | /// Check conversion of given expression to boolean. | 
|  | /// Input argument E is a logical expression. | 
|  | static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { | 
|  | if (S.getLangOpts().Bool) | 
|  | return; | 
|  | if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) | 
|  | return; | 
|  | CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); | 
|  | } | 
|  |  | 
|  | /// AnalyzeImplicitConversions - Find and report any interesting | 
|  | /// implicit conversions in the given expression.  There are a couple | 
|  | /// of competing diagnostics here, -Wconversion and -Wsign-compare. | 
|  | static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, | 
|  | SourceLocation CC) { | 
|  | QualType T = OrigE->getType(); | 
|  | Expr *E = OrigE->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (E->isTypeDependent() || E->isValueDependent()) | 
|  | return; | 
|  |  | 
|  | // For conditional operators, we analyze the arguments as if they | 
|  | // were being fed directly into the output. | 
|  | if (isa<ConditionalOperator>(E)) { | 
|  | ConditionalOperator *CO = cast<ConditionalOperator>(E); | 
|  | CheckConditionalOperator(S, CO, CC, T); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check implicit argument conversions for function calls. | 
|  | if (CallExpr *Call = dyn_cast<CallExpr>(E)) | 
|  | CheckImplicitArgumentConversions(S, Call, CC); | 
|  |  | 
|  | // Go ahead and check any implicit conversions we might have skipped. | 
|  | // The non-canonical typecheck is just an optimization; | 
|  | // CheckImplicitConversion will filter out dead implicit conversions. | 
|  | if (E->getType() != T) | 
|  | CheckImplicitConversion(S, E, T, CC); | 
|  |  | 
|  | // Now continue drilling into this expression. | 
|  |  | 
|  | if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { | 
|  | // The bound subexpressions in a PseudoObjectExpr are not reachable | 
|  | // as transitive children. | 
|  | // FIXME: Use a more uniform representation for this. | 
|  | for (auto *SE : POE->semantics()) | 
|  | if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) | 
|  | AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC); | 
|  | } | 
|  |  | 
|  | // Skip past explicit casts. | 
|  | if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { | 
|  | E = CE->getSubExpr()->IgnoreParenImpCasts(); | 
|  | if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) | 
|  | S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); | 
|  | return AnalyzeImplicitConversions(S, E, CC); | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | // Do a somewhat different check with comparison operators. | 
|  | if (BO->isComparisonOp()) | 
|  | return AnalyzeComparison(S, BO); | 
|  |  | 
|  | // And with simple assignments. | 
|  | if (BO->getOpcode() == BO_Assign) | 
|  | return AnalyzeAssignment(S, BO); | 
|  | // And with compound assignments. | 
|  | if (BO->isAssignmentOp()) | 
|  | return AnalyzeCompoundAssignment(S, BO); | 
|  | } | 
|  |  | 
|  | // These break the otherwise-useful invariant below.  Fortunately, | 
|  | // we don't really need to recurse into them, because any internal | 
|  | // expressions should have been analyzed already when they were | 
|  | // built into statements. | 
|  | if (isa<StmtExpr>(E)) return; | 
|  |  | 
|  | // Don't descend into unevaluated contexts. | 
|  | if (isa<UnaryExprOrTypeTraitExpr>(E)) return; | 
|  |  | 
|  | // Now just recurse over the expression's children. | 
|  | CC = E->getExprLoc(); | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(E); | 
|  | bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; | 
|  | for (Stmt *SubStmt : E->children()) { | 
|  | Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); | 
|  | if (!ChildExpr) | 
|  | continue; | 
|  |  | 
|  | if (IsLogicalAndOperator && | 
|  | isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) | 
|  | // Ignore checking string literals that are in logical and operators. | 
|  | // This is a common pattern for asserts. | 
|  | continue; | 
|  | AnalyzeImplicitConversions(S, ChildExpr, CC); | 
|  | } | 
|  |  | 
|  | if (BO && BO->isLogicalOp()) { | 
|  | Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); | 
|  | if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) | 
|  | ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); | 
|  |  | 
|  | SubExpr = BO->getRHS()->IgnoreParenImpCasts(); | 
|  | if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) | 
|  | ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); | 
|  | } | 
|  |  | 
|  | if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { | 
|  | if (U->getOpcode() == UO_LNot) { | 
|  | ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); | 
|  | } else if (U->getOpcode() != UO_AddrOf) { | 
|  | if (U->getSubExpr()->getType()->isAtomicType()) | 
|  | S.Diag(U->getSubExpr()->getBeginLoc(), | 
|  | diag::warn_atomic_implicit_seq_cst); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnose integer type and any valid implicit conversion to it. | 
|  | static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { | 
|  | // Taking into account implicit conversions, | 
|  | // allow any integer. | 
|  | if (!E->getType()->isIntegerType()) { | 
|  | S.Diag(E->getBeginLoc(), | 
|  | diag::err_opencl_enqueue_kernel_invalid_local_size_type); | 
|  | return true; | 
|  | } | 
|  | // Potentially emit standard warnings for implicit conversions if enabled | 
|  | // using -Wconversion. | 
|  | CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper function for Sema::DiagnoseAlwaysNonNullPointer. | 
|  | // Returns true when emitting a warning about taking the address of a reference. | 
|  | static bool CheckForReference(Sema &SemaRef, const Expr *E, | 
|  | const PartialDiagnostic &PD) { | 
|  | E = E->IgnoreParenImpCasts(); | 
|  |  | 
|  | const FunctionDecl *FD = nullptr; | 
|  |  | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (!DRE->getDecl()->getType()->isReferenceType()) | 
|  | return false; | 
|  | } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { | 
|  | if (!M->getMemberDecl()->getType()->isReferenceType()) | 
|  | return false; | 
|  | } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { | 
|  | if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) | 
|  | return false; | 
|  | FD = Call->getDirectCallee(); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(E->getExprLoc(), PD); | 
|  |  | 
|  | // If possible, point to location of function. | 
|  | if (FD) { | 
|  | SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true if the SourceLocation is expanded from any macro body. | 
|  | // Returns false if the SourceLocation is invalid, is from not in a macro | 
|  | // expansion, or is from expanded from a top-level macro argument. | 
|  | static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { | 
|  | if (Loc.isInvalid()) | 
|  | return false; | 
|  |  | 
|  | while (Loc.isMacroID()) { | 
|  | if (SM.isMacroBodyExpansion(Loc)) | 
|  | return true; | 
|  | Loc = SM.getImmediateMacroCallerLoc(Loc); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Diagnose pointers that are always non-null. | 
|  | /// \param E the expression containing the pointer | 
|  | /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is | 
|  | /// compared to a null pointer | 
|  | /// \param IsEqual True when the comparison is equal to a null pointer | 
|  | /// \param Range Extra SourceRange to highlight in the diagnostic | 
|  | void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, | 
|  | Expr::NullPointerConstantKind NullKind, | 
|  | bool IsEqual, SourceRange Range) { | 
|  | if (!E) | 
|  | return; | 
|  |  | 
|  | // Don't warn inside macros. | 
|  | if (E->getExprLoc().isMacroID()) { | 
|  | const SourceManager &SM = getSourceManager(); | 
|  | if (IsInAnyMacroBody(SM, E->getExprLoc()) || | 
|  | IsInAnyMacroBody(SM, Range.getBegin())) | 
|  | return; | 
|  | } | 
|  | E = E->IgnoreImpCasts(); | 
|  |  | 
|  | const bool IsCompare = NullKind != Expr::NPCK_NotNull; | 
|  |  | 
|  | if (isa<CXXThisExpr>(E)) { | 
|  | unsigned DiagID = IsCompare ? diag::warn_this_null_compare | 
|  | : diag::warn_this_bool_conversion; | 
|  | Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool IsAddressOf = false; | 
|  |  | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | if (UO->getOpcode() != UO_AddrOf) | 
|  | return; | 
|  | IsAddressOf = true; | 
|  | E = UO->getSubExpr(); | 
|  | } | 
|  |  | 
|  | if (IsAddressOf) { | 
|  | unsigned DiagID = IsCompare | 
|  | ? diag::warn_address_of_reference_null_compare | 
|  | : diag::warn_address_of_reference_bool_conversion; | 
|  | PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range | 
|  | << IsEqual; | 
|  | if (CheckForReference(*this, E, PD)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { | 
|  | bool IsParam = isa<NonNullAttr>(NonnullAttr); | 
|  | std::string Str; | 
|  | llvm::raw_string_ostream S(Str); | 
|  | E->printPretty(S, nullptr, getPrintingPolicy()); | 
|  | unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare | 
|  | : diag::warn_cast_nonnull_to_bool; | 
|  | Diag(E->getExprLoc(), DiagID) << IsParam << S.str() | 
|  | << E->getSourceRange() << Range << IsEqual; | 
|  | Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; | 
|  | }; | 
|  |  | 
|  | // If we have a CallExpr that is tagged with returns_nonnull, we can complain. | 
|  | if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { | 
|  | if (auto *Callee = Call->getDirectCallee()) { | 
|  | if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { | 
|  | ComplainAboutNonnullParamOrCall(A); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expect to find a single Decl.  Skip anything more complicated. | 
|  | ValueDecl *D = nullptr; | 
|  | if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { | 
|  | D = R->getDecl(); | 
|  | } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { | 
|  | D = M->getMemberDecl(); | 
|  | } | 
|  |  | 
|  | // Weak Decls can be null. | 
|  | if (!D || D->isWeak()) | 
|  | return; | 
|  |  | 
|  | // Check for parameter decl with nonnull attribute | 
|  | if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { | 
|  | if (getCurFunction() && | 
|  | !getCurFunction()->ModifiedNonNullParams.count(PV)) { | 
|  | if (const Attr *A = PV->getAttr<NonNullAttr>()) { | 
|  | ComplainAboutNonnullParamOrCall(A); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { | 
|  | // Skip function template not specialized yet. | 
|  | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
|  | return; | 
|  | auto ParamIter = llvm::find(FD->parameters(), PV); | 
|  | assert(ParamIter != FD->param_end()); | 
|  | unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); | 
|  |  | 
|  | for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { | 
|  | if (!NonNull->args_size()) { | 
|  | ComplainAboutNonnullParamOrCall(NonNull); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const ParamIdx &ArgNo : NonNull->args()) { | 
|  | if (ArgNo.getASTIndex() == ParamNo) { | 
|  | ComplainAboutNonnullParamOrCall(NonNull); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType T = D->getType(); | 
|  | const bool IsArray = T->isArrayType(); | 
|  | const bool IsFunction = T->isFunctionType(); | 
|  |  | 
|  | // Address of function is used to silence the function warning. | 
|  | if (IsAddressOf && IsFunction) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Found nothing. | 
|  | if (!IsAddressOf && !IsFunction && !IsArray) | 
|  | return; | 
|  |  | 
|  | // Pretty print the expression for the diagnostic. | 
|  | std::string Str; | 
|  | llvm::raw_string_ostream S(Str); | 
|  | E->printPretty(S, nullptr, getPrintingPolicy()); | 
|  |  | 
|  | unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare | 
|  | : diag::warn_impcast_pointer_to_bool; | 
|  | enum { | 
|  | AddressOf, | 
|  | FunctionPointer, | 
|  | ArrayPointer | 
|  | } DiagType; | 
|  | if (IsAddressOf) | 
|  | DiagType = AddressOf; | 
|  | else if (IsFunction) | 
|  | DiagType = FunctionPointer; | 
|  | else if (IsArray) | 
|  | DiagType = ArrayPointer; | 
|  | else | 
|  | llvm_unreachable("Could not determine diagnostic."); | 
|  | Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() | 
|  | << Range << IsEqual; | 
|  |  | 
|  | if (!IsFunction) | 
|  | return; | 
|  |  | 
|  | // Suggest '&' to silence the function warning. | 
|  | Diag(E->getExprLoc(), diag::note_function_warning_silence) | 
|  | << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); | 
|  |  | 
|  | // Check to see if '()' fixit should be emitted. | 
|  | QualType ReturnType; | 
|  | UnresolvedSet<4> NonTemplateOverloads; | 
|  | tryExprAsCall(*E, ReturnType, NonTemplateOverloads); | 
|  | if (ReturnType.isNull()) | 
|  | return; | 
|  |  | 
|  | if (IsCompare) { | 
|  | // There are two cases here.  If there is null constant, the only suggest | 
|  | // for a pointer return type.  If the null is 0, then suggest if the return | 
|  | // type is a pointer or an integer type. | 
|  | if (!ReturnType->isPointerType()) { | 
|  | if (NullKind == Expr::NPCK_ZeroExpression || | 
|  | NullKind == Expr::NPCK_ZeroLiteral) { | 
|  | if (!ReturnType->isIntegerType()) | 
|  | return; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else { // !IsCompare | 
|  | // For function to bool, only suggest if the function pointer has bool | 
|  | // return type. | 
|  | if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) | 
|  | return; | 
|  | } | 
|  | Diag(E->getExprLoc(), diag::note_function_to_function_call) | 
|  | << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); | 
|  | } | 
|  |  | 
|  | /// Diagnoses "dangerous" implicit conversions within the given | 
|  | /// expression (which is a full expression).  Implements -Wconversion | 
|  | /// and -Wsign-compare. | 
|  | /// | 
|  | /// \param CC the "context" location of the implicit conversion, i.e. | 
|  | ///   the most location of the syntactic entity requiring the implicit | 
|  | ///   conversion | 
|  | void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { | 
|  | // Don't diagnose in unevaluated contexts. | 
|  | if (isUnevaluatedContext()) | 
|  | return; | 
|  |  | 
|  | // Don't diagnose for value- or type-dependent expressions. | 
|  | if (E->isTypeDependent() || E->isValueDependent()) | 
|  | return; | 
|  |  | 
|  | // Check for array bounds violations in cases where the check isn't triggered | 
|  | // elsewhere for other Expr types (like BinaryOperators), e.g. when an | 
|  | // ArraySubscriptExpr is on the RHS of a variable initialization. | 
|  | CheckArrayAccess(E); | 
|  |  | 
|  | // This is not the right CC for (e.g.) a variable initialization. | 
|  | AnalyzeImplicitConversions(*this, E, CC); | 
|  | } | 
|  |  | 
|  | /// CheckBoolLikeConversion - Check conversion of given expression to boolean. | 
|  | /// Input argument E is a logical expression. | 
|  | void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { | 
|  | ::CheckBoolLikeConversion(*this, E, CC); | 
|  | } | 
|  |  | 
|  | /// Diagnose when expression is an integer constant expression and its evaluation | 
|  | /// results in integer overflow | 
|  | void Sema::CheckForIntOverflow (Expr *E) { | 
|  | // Use a work list to deal with nested struct initializers. | 
|  | SmallVector<Expr *, 2> Exprs(1, E); | 
|  |  | 
|  | do { | 
|  | Expr *OriginalE = Exprs.pop_back_val(); | 
|  | Expr *E = OriginalE->IgnoreParenCasts(); | 
|  |  | 
|  | if (isa<BinaryOperator>(E)) { | 
|  | E->EvaluateForOverflow(Context); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) | 
|  | Exprs.append(InitList->inits().begin(), InitList->inits().end()); | 
|  | else if (isa<ObjCBoxedExpr>(OriginalE)) | 
|  | E->EvaluateForOverflow(Context); | 
|  | else if (auto Call = dyn_cast<CallExpr>(E)) | 
|  | Exprs.append(Call->arg_begin(), Call->arg_end()); | 
|  | else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) | 
|  | Exprs.append(Message->arg_begin(), Message->arg_end()); | 
|  | } while (!Exprs.empty()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Visitor for expressions which looks for unsequenced operations on the | 
|  | /// same object. | 
|  | class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> { | 
|  | using Base = EvaluatedExprVisitor<SequenceChecker>; | 
|  |  | 
|  | /// A tree of sequenced regions within an expression. Two regions are | 
|  | /// unsequenced if one is an ancestor or a descendent of the other. When we | 
|  | /// finish processing an expression with sequencing, such as a comma | 
|  | /// expression, we fold its tree nodes into its parent, since they are | 
|  | /// unsequenced with respect to nodes we will visit later. | 
|  | class SequenceTree { | 
|  | struct Value { | 
|  | explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} | 
|  | unsigned Parent : 31; | 
|  | unsigned Merged : 1; | 
|  | }; | 
|  | SmallVector<Value, 8> Values; | 
|  |  | 
|  | public: | 
|  | /// A region within an expression which may be sequenced with respect | 
|  | /// to some other region. | 
|  | class Seq { | 
|  | friend class SequenceTree; | 
|  |  | 
|  | unsigned Index; | 
|  |  | 
|  | explicit Seq(unsigned N) : Index(N) {} | 
|  |  | 
|  | public: | 
|  | Seq() : Index(0) {} | 
|  | }; | 
|  |  | 
|  | SequenceTree() { Values.push_back(Value(0)); } | 
|  | Seq root() const { return Seq(0); } | 
|  |  | 
|  | /// Create a new sequence of operations, which is an unsequenced | 
|  | /// subset of \p Parent. This sequence of operations is sequenced with | 
|  | /// respect to other children of \p Parent. | 
|  | Seq allocate(Seq Parent) { | 
|  | Values.push_back(Value(Parent.Index)); | 
|  | return Seq(Values.size() - 1); | 
|  | } | 
|  |  | 
|  | /// Merge a sequence of operations into its parent. | 
|  | void merge(Seq S) { | 
|  | Values[S.Index].Merged = true; | 
|  | } | 
|  |  | 
|  | /// Determine whether two operations are unsequenced. This operation | 
|  | /// is asymmetric: \p Cur should be the more recent sequence, and \p Old | 
|  | /// should have been merged into its parent as appropriate. | 
|  | bool isUnsequenced(Seq Cur, Seq Old) { | 
|  | unsigned C = representative(Cur.Index); | 
|  | unsigned Target = representative(Old.Index); | 
|  | while (C >= Target) { | 
|  | if (C == Target) | 
|  | return true; | 
|  | C = Values[C].Parent; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Pick a representative for a sequence. | 
|  | unsigned representative(unsigned K) { | 
|  | if (Values[K].Merged) | 
|  | // Perform path compression as we go. | 
|  | return Values[K].Parent = representative(Values[K].Parent); | 
|  | return K; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// An object for which we can track unsequenced uses. | 
|  | using Object = NamedDecl *; | 
|  |  | 
|  | /// Different flavors of object usage which we track. We only track the | 
|  | /// least-sequenced usage of each kind. | 
|  | enum UsageKind { | 
|  | /// A read of an object. Multiple unsequenced reads are OK. | 
|  | UK_Use, | 
|  |  | 
|  | /// A modification of an object which is sequenced before the value | 
|  | /// computation of the expression, such as ++n in C++. | 
|  | UK_ModAsValue, | 
|  |  | 
|  | /// A modification of an object which is not sequenced before the value | 
|  | /// computation of the expression, such as n++. | 
|  | UK_ModAsSideEffect, | 
|  |  | 
|  | UK_Count = UK_ModAsSideEffect + 1 | 
|  | }; | 
|  |  | 
|  | struct Usage { | 
|  | Expr *Use; | 
|  | SequenceTree::Seq Seq; | 
|  |  | 
|  | Usage() : Use(nullptr), Seq() {} | 
|  | }; | 
|  |  | 
|  | struct UsageInfo { | 
|  | Usage Uses[UK_Count]; | 
|  |  | 
|  | /// Have we issued a diagnostic for this variable already? | 
|  | bool Diagnosed; | 
|  |  | 
|  | UsageInfo() : Uses(), Diagnosed(false) {} | 
|  | }; | 
|  | using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; | 
|  |  | 
|  | Sema &SemaRef; | 
|  |  | 
|  | /// Sequenced regions within the expression. | 
|  | SequenceTree Tree; | 
|  |  | 
|  | /// Declaration modifications and references which we have seen. | 
|  | UsageInfoMap UsageMap; | 
|  |  | 
|  | /// The region we are currently within. | 
|  | SequenceTree::Seq Region; | 
|  |  | 
|  | /// Filled in with declarations which were modified as a side-effect | 
|  | /// (that is, post-increment operations). | 
|  | SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; | 
|  |  | 
|  | /// Expressions to check later. We defer checking these to reduce | 
|  | /// stack usage. | 
|  | SmallVectorImpl<Expr *> &WorkList; | 
|  |  | 
|  | /// RAII object wrapping the visitation of a sequenced subexpression of an | 
|  | /// expression. At the end of this process, the side-effects of the evaluation | 
|  | /// become sequenced with respect to the value computation of the result, so | 
|  | /// we downgrade any UK_ModAsSideEffect within the evaluation to | 
|  | /// UK_ModAsValue. | 
|  | struct SequencedSubexpression { | 
|  | SequencedSubexpression(SequenceChecker &Self) | 
|  | : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { | 
|  | Self.ModAsSideEffect = &ModAsSideEffect; | 
|  | } | 
|  |  | 
|  | ~SequencedSubexpression() { | 
|  | for (auto &M : llvm::reverse(ModAsSideEffect)) { | 
|  | UsageInfo &U = Self.UsageMap[M.first]; | 
|  | auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect]; | 
|  | Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue); | 
|  | SideEffectUsage = M.second; | 
|  | } | 
|  | Self.ModAsSideEffect = OldModAsSideEffect; | 
|  | } | 
|  |  | 
|  | SequenceChecker &Self; | 
|  | SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; | 
|  | SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; | 
|  | }; | 
|  |  | 
|  | /// RAII object wrapping the visitation of a subexpression which we might | 
|  | /// choose to evaluate as a constant. If any subexpression is evaluated and | 
|  | /// found to be non-constant, this allows us to suppress the evaluation of | 
|  | /// the outer expression. | 
|  | class EvaluationTracker { | 
|  | public: | 
|  | EvaluationTracker(SequenceChecker &Self) | 
|  | : Self(Self), Prev(Self.EvalTracker) { | 
|  | Self.EvalTracker = this; | 
|  | } | 
|  |  | 
|  | ~EvaluationTracker() { | 
|  | Self.EvalTracker = Prev; | 
|  | if (Prev) | 
|  | Prev->EvalOK &= EvalOK; | 
|  | } | 
|  |  | 
|  | bool evaluate(const Expr *E, bool &Result) { | 
|  | if (!EvalOK || E->isValueDependent()) | 
|  | return false; | 
|  | EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context); | 
|  | return EvalOK; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SequenceChecker &Self; | 
|  | EvaluationTracker *Prev; | 
|  | bool EvalOK = true; | 
|  | } *EvalTracker = nullptr; | 
|  |  | 
|  | /// Find the object which is produced by the specified expression, | 
|  | /// if any. | 
|  | Object getObject(Expr *E, bool Mod) const { | 
|  | E = E->IgnoreParenCasts(); | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) | 
|  | return getObject(UO->getSubExpr(), Mod); | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) | 
|  | return getObject(BO->getRHS(), Mod); | 
|  | if (Mod && BO->isAssignmentOp()) | 
|  | return getObject(BO->getLHS(), Mod); | 
|  | } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | 
|  | // FIXME: Check for more interesting cases, like "x.n = ++x.n". | 
|  | if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) | 
|  | return ME->getMemberDecl(); | 
|  | } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | // FIXME: If this is a reference, map through to its value. | 
|  | return DRE->getDecl(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Note that an object was modified or used by an expression. | 
|  | void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) { | 
|  | Usage &U = UI.Uses[UK]; | 
|  | if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) { | 
|  | if (UK == UK_ModAsSideEffect && ModAsSideEffect) | 
|  | ModAsSideEffect->push_back(std::make_pair(O, U)); | 
|  | U.Use = Ref; | 
|  | U.Seq = Region; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether a modification or use conflicts with a prior usage. | 
|  | void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind, | 
|  | bool IsModMod) { | 
|  | if (UI.Diagnosed) | 
|  | return; | 
|  |  | 
|  | const Usage &U = UI.Uses[OtherKind]; | 
|  | if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) | 
|  | return; | 
|  |  | 
|  | Expr *Mod = U.Use; | 
|  | Expr *ModOrUse = Ref; | 
|  | if (OtherKind == UK_Use) | 
|  | std::swap(Mod, ModOrUse); | 
|  |  | 
|  | SemaRef.Diag(Mod->getExprLoc(), | 
|  | IsModMod ? diag::warn_unsequenced_mod_mod | 
|  | : diag::warn_unsequenced_mod_use) | 
|  | << O << SourceRange(ModOrUse->getExprLoc()); | 
|  | UI.Diagnosed = true; | 
|  | } | 
|  |  | 
|  | void notePreUse(Object O, Expr *Use) { | 
|  | UsageInfo &U = UsageMap[O]; | 
|  | // Uses conflict with other modifications. | 
|  | checkUsage(O, U, Use, UK_ModAsValue, false); | 
|  | } | 
|  |  | 
|  | void notePostUse(Object O, Expr *Use) { | 
|  | UsageInfo &U = UsageMap[O]; | 
|  | checkUsage(O, U, Use, UK_ModAsSideEffect, false); | 
|  | addUsage(U, O, Use, UK_Use); | 
|  | } | 
|  |  | 
|  | void notePreMod(Object O, Expr *Mod) { | 
|  | UsageInfo &U = UsageMap[O]; | 
|  | // Modifications conflict with other modifications and with uses. | 
|  | checkUsage(O, U, Mod, UK_ModAsValue, true); | 
|  | checkUsage(O, U, Mod, UK_Use, false); | 
|  | } | 
|  |  | 
|  | void notePostMod(Object O, Expr *Use, UsageKind UK) { | 
|  | UsageInfo &U = UsageMap[O]; | 
|  | checkUsage(O, U, Use, UK_ModAsSideEffect, true); | 
|  | addUsage(U, O, Use, UK); | 
|  | } | 
|  |  | 
|  | public: | 
|  | SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList) | 
|  | : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | void VisitStmt(Stmt *S) { | 
|  | // Skip all statements which aren't expressions for now. | 
|  | } | 
|  |  | 
|  | void VisitExpr(Expr *E) { | 
|  | // By default, just recurse to evaluated subexpressions. | 
|  | Base::VisitStmt(E); | 
|  | } | 
|  |  | 
|  | void VisitCastExpr(CastExpr *E) { | 
|  | Object O = Object(); | 
|  | if (E->getCastKind() == CK_LValueToRValue) | 
|  | O = getObject(E->getSubExpr(), false); | 
|  |  | 
|  | if (O) | 
|  | notePreUse(O, E); | 
|  | VisitExpr(E); | 
|  | if (O) | 
|  | notePostUse(O, E); | 
|  | } | 
|  |  | 
|  | void VisitSequencedExpressions(Expr *SequencedBefore, Expr *SequencedAfter) { | 
|  | SequenceTree::Seq BeforeRegion = Tree.allocate(Region); | 
|  | SequenceTree::Seq AfterRegion = Tree.allocate(Region); | 
|  | SequenceTree::Seq OldRegion = Region; | 
|  |  | 
|  | { | 
|  | SequencedSubexpression SeqBefore(*this); | 
|  | Region = BeforeRegion; | 
|  | Visit(SequencedBefore); | 
|  | } | 
|  |  | 
|  | Region = AfterRegion; | 
|  | Visit(SequencedAfter); | 
|  |  | 
|  | Region = OldRegion; | 
|  |  | 
|  | Tree.merge(BeforeRegion); | 
|  | Tree.merge(AfterRegion); | 
|  | } | 
|  |  | 
|  | void VisitArraySubscriptExpr(ArraySubscriptExpr *ASE) { | 
|  | // C++17 [expr.sub]p1: | 
|  | //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The | 
|  | //   expression E1 is sequenced before the expression E2. | 
|  | if (SemaRef.getLangOpts().CPlusPlus17) | 
|  | VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); | 
|  | else | 
|  | Base::VisitStmt(ASE); | 
|  | } | 
|  |  | 
|  | void VisitBinComma(BinaryOperator *BO) { | 
|  | // C++11 [expr.comma]p1: | 
|  | //   Every value computation and side effect associated with the left | 
|  | //   expression is sequenced before every value computation and side | 
|  | //   effect associated with the right expression. | 
|  | VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); | 
|  | } | 
|  |  | 
|  | void VisitBinAssign(BinaryOperator *BO) { | 
|  | // The modification is sequenced after the value computation of the LHS | 
|  | // and RHS, so check it before inspecting the operands and update the | 
|  | // map afterwards. | 
|  | Object O = getObject(BO->getLHS(), true); | 
|  | if (!O) | 
|  | return VisitExpr(BO); | 
|  |  | 
|  | notePreMod(O, BO); | 
|  |  | 
|  | // C++11 [expr.ass]p7: | 
|  | //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated | 
|  | //   only once. | 
|  | // | 
|  | // Therefore, for a compound assignment operator, O is considered used | 
|  | // everywhere except within the evaluation of E1 itself. | 
|  | if (isa<CompoundAssignOperator>(BO)) | 
|  | notePreUse(O, BO); | 
|  |  | 
|  | Visit(BO->getLHS()); | 
|  |  | 
|  | if (isa<CompoundAssignOperator>(BO)) | 
|  | notePostUse(O, BO); | 
|  |  | 
|  | Visit(BO->getRHS()); | 
|  |  | 
|  | // C++11 [expr.ass]p1: | 
|  | //   the assignment is sequenced [...] before the value computation of the | 
|  | //   assignment expression. | 
|  | // C11 6.5.16/3 has no such rule. | 
|  | notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue | 
|  | : UK_ModAsSideEffect); | 
|  | } | 
|  |  | 
|  | void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) { | 
|  | VisitBinAssign(CAO); | 
|  | } | 
|  |  | 
|  | void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } | 
|  | void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } | 
|  | void VisitUnaryPreIncDec(UnaryOperator *UO) { | 
|  | Object O = getObject(UO->getSubExpr(), true); | 
|  | if (!O) | 
|  | return VisitExpr(UO); | 
|  |  | 
|  | notePreMod(O, UO); | 
|  | Visit(UO->getSubExpr()); | 
|  | // C++11 [expr.pre.incr]p1: | 
|  | //   the expression ++x is equivalent to x+=1 | 
|  | notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue | 
|  | : UK_ModAsSideEffect); | 
|  | } | 
|  |  | 
|  | void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } | 
|  | void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } | 
|  | void VisitUnaryPostIncDec(UnaryOperator *UO) { | 
|  | Object O = getObject(UO->getSubExpr(), true); | 
|  | if (!O) | 
|  | return VisitExpr(UO); | 
|  |  | 
|  | notePreMod(O, UO); | 
|  | Visit(UO->getSubExpr()); | 
|  | notePostMod(O, UO, UK_ModAsSideEffect); | 
|  | } | 
|  |  | 
|  | /// Don't visit the RHS of '&&' or '||' if it might not be evaluated. | 
|  | void VisitBinLOr(BinaryOperator *BO) { | 
|  | // The side-effects of the LHS of an '&&' are sequenced before the | 
|  | // value computation of the RHS, and hence before the value computation | 
|  | // of the '&&' itself, unless the LHS evaluates to zero. We treat them | 
|  | // as if they were unconditionally sequenced. | 
|  | EvaluationTracker Eval(*this); | 
|  | { | 
|  | SequencedSubexpression Sequenced(*this); | 
|  | Visit(BO->getLHS()); | 
|  | } | 
|  |  | 
|  | bool Result; | 
|  | if (Eval.evaluate(BO->getLHS(), Result)) { | 
|  | if (!Result) | 
|  | Visit(BO->getRHS()); | 
|  | } else { | 
|  | // Check for unsequenced operations in the RHS, treating it as an | 
|  | // entirely separate evaluation. | 
|  | // | 
|  | // FIXME: If there are operations in the RHS which are unsequenced | 
|  | // with respect to operations outside the RHS, and those operations | 
|  | // are unconditionally evaluated, diagnose them. | 
|  | WorkList.push_back(BO->getRHS()); | 
|  | } | 
|  | } | 
|  | void VisitBinLAnd(BinaryOperator *BO) { | 
|  | EvaluationTracker Eval(*this); | 
|  | { | 
|  | SequencedSubexpression Sequenced(*this); | 
|  | Visit(BO->getLHS()); | 
|  | } | 
|  |  | 
|  | bool Result; | 
|  | if (Eval.evaluate(BO->getLHS(), Result)) { | 
|  | if (Result) | 
|  | Visit(BO->getRHS()); | 
|  | } else { | 
|  | WorkList.push_back(BO->getRHS()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only visit the condition, unless we can be sure which subexpression will | 
|  | // be chosen. | 
|  | void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) { | 
|  | EvaluationTracker Eval(*this); | 
|  | { | 
|  | SequencedSubexpression Sequenced(*this); | 
|  | Visit(CO->getCond()); | 
|  | } | 
|  |  | 
|  | bool Result; | 
|  | if (Eval.evaluate(CO->getCond(), Result)) | 
|  | Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr()); | 
|  | else { | 
|  | WorkList.push_back(CO->getTrueExpr()); | 
|  | WorkList.push_back(CO->getFalseExpr()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VisitCallExpr(CallExpr *CE) { | 
|  | // C++11 [intro.execution]p15: | 
|  | //   When calling a function [...], every value computation and side effect | 
|  | //   associated with any argument expression, or with the postfix expression | 
|  | //   designating the called function, is sequenced before execution of every | 
|  | //   expression or statement in the body of the function [and thus before | 
|  | //   the value computation of its result]. | 
|  | SequencedSubexpression Sequenced(*this); | 
|  | Base::VisitCallExpr(CE); | 
|  |  | 
|  | // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. | 
|  | } | 
|  |  | 
|  | void VisitCXXConstructExpr(CXXConstructExpr *CCE) { | 
|  | // This is a call, so all subexpressions are sequenced before the result. | 
|  | SequencedSubexpression Sequenced(*this); | 
|  |  | 
|  | if (!CCE->isListInitialization()) | 
|  | return VisitExpr(CCE); | 
|  |  | 
|  | // In C++11, list initializations are sequenced. | 
|  | SmallVector<SequenceTree::Seq, 32> Elts; | 
|  | SequenceTree::Seq Parent = Region; | 
|  | for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(), | 
|  | E = CCE->arg_end(); | 
|  | I != E; ++I) { | 
|  | Region = Tree.allocate(Parent); | 
|  | Elts.push_back(Region); | 
|  | Visit(*I); | 
|  | } | 
|  |  | 
|  | // Forget that the initializers are sequenced. | 
|  | Region = Parent; | 
|  | for (unsigned I = 0; I < Elts.size(); ++I) | 
|  | Tree.merge(Elts[I]); | 
|  | } | 
|  |  | 
|  | void VisitInitListExpr(InitListExpr *ILE) { | 
|  | if (!SemaRef.getLangOpts().CPlusPlus11) | 
|  | return VisitExpr(ILE); | 
|  |  | 
|  | // In C++11, list initializations are sequenced. | 
|  | SmallVector<SequenceTree::Seq, 32> Elts; | 
|  | SequenceTree::Seq Parent = Region; | 
|  | for (unsigned I = 0; I < ILE->getNumInits(); ++I) { | 
|  | Expr *E = ILE->getInit(I); | 
|  | if (!E) continue; | 
|  | Region = Tree.allocate(Parent); | 
|  | Elts.push_back(Region); | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | // Forget that the initializers are sequenced. | 
|  | Region = Parent; | 
|  | for (unsigned I = 0; I < Elts.size(); ++I) | 
|  | Tree.merge(Elts[I]); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | void Sema::CheckUnsequencedOperations(Expr *E) { | 
|  | SmallVector<Expr *, 8> WorkList; | 
|  | WorkList.push_back(E); | 
|  | while (!WorkList.empty()) { | 
|  | Expr *Item = WorkList.pop_back_val(); | 
|  | SequenceChecker(*this, Item, WorkList); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, | 
|  | bool IsConstexpr) { | 
|  | CheckImplicitConversions(E, CheckLoc); | 
|  | if (!E->isInstantiationDependent()) | 
|  | CheckUnsequencedOperations(E); | 
|  | if (!IsConstexpr && !E->isValueDependent()) | 
|  | CheckForIntOverflow(E); | 
|  | DiagnoseMisalignedMembers(); | 
|  | } | 
|  |  | 
|  | void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, | 
|  | FieldDecl *BitField, | 
|  | Expr *Init) { | 
|  | (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); | 
|  | } | 
|  |  | 
|  | static void diagnoseArrayStarInParamType(Sema &S, QualType PType, | 
|  | SourceLocation Loc) { | 
|  | if (!PType->isVariablyModifiedType()) | 
|  | return; | 
|  | if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { | 
|  | diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); | 
|  | return; | 
|  | } | 
|  | if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { | 
|  | diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); | 
|  | return; | 
|  | } | 
|  | if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { | 
|  | diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const ArrayType *AT = S.Context.getAsArrayType(PType); | 
|  | if (!AT) | 
|  | return; | 
|  |  | 
|  | if (AT->getSizeModifier() != ArrayType::Star) { | 
|  | diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | S.Diag(Loc, diag::err_array_star_in_function_definition); | 
|  | } | 
|  |  | 
|  | /// CheckParmsForFunctionDef - Check that the parameters of the given | 
|  | /// function are appropriate for the definition of a function. This | 
|  | /// takes care of any checks that cannot be performed on the | 
|  | /// declaration itself, e.g., that the types of each of the function | 
|  | /// parameters are complete. | 
|  | bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, | 
|  | bool CheckParameterNames) { | 
|  | bool HasInvalidParm = false; | 
|  | for (ParmVarDecl *Param : Parameters) { | 
|  | // C99 6.7.5.3p4: the parameters in a parameter type list in a | 
|  | // function declarator that is part of a function definition of | 
|  | // that function shall not have incomplete type. | 
|  | // | 
|  | // This is also C++ [dcl.fct]p6. | 
|  | if (!Param->isInvalidDecl() && | 
|  | RequireCompleteType(Param->getLocation(), Param->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Param->setInvalidDecl(); | 
|  | HasInvalidParm = true; | 
|  | } | 
|  |  | 
|  | // C99 6.9.1p5: If the declarator includes a parameter type list, the | 
|  | // declaration of each parameter shall include an identifier. | 
|  | if (CheckParameterNames && | 
|  | Param->getIdentifier() == nullptr && | 
|  | !Param->isImplicit() && | 
|  | !getLangOpts().CPlusPlus) | 
|  | Diag(Param->getLocation(), diag::err_parameter_name_omitted); | 
|  |  | 
|  | // C99 6.7.5.3p12: | 
|  | //   If the function declarator is not part of a definition of that | 
|  | //   function, parameters may have incomplete type and may use the [*] | 
|  | //   notation in their sequences of declarator specifiers to specify | 
|  | //   variable length array types. | 
|  | QualType PType = Param->getOriginalType(); | 
|  | // FIXME: This diagnostic should point the '[*]' if source-location | 
|  | // information is added for it. | 
|  | diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); | 
|  |  | 
|  | // If the parameter is a c++ class type and it has to be destructed in the | 
|  | // callee function, declare the destructor so that it can be called by the | 
|  | // callee function. Do not perform any direct access check on the dtor here. | 
|  | if (!Param->isInvalidDecl()) { | 
|  | if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { | 
|  | if (!ClassDecl->isInvalidDecl() && | 
|  | !ClassDecl->hasIrrelevantDestructor() && | 
|  | !ClassDecl->isDependentContext() && | 
|  | ClassDecl->isParamDestroyedInCallee()) { | 
|  | CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); | 
|  | MarkFunctionReferenced(Param->getLocation(), Destructor); | 
|  | DiagnoseUseOfDecl(Destructor, Param->getLocation()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Parameters with the pass_object_size attribute only need to be marked | 
|  | // constant at function definitions. Because we lack information about | 
|  | // whether we're on a declaration or definition when we're instantiating the | 
|  | // attribute, we need to check for constness here. | 
|  | if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) | 
|  | if (!Param->getType().isConstQualified()) | 
|  | Diag(Param->getLocation(), diag::err_attribute_pointers_only) | 
|  | << Attr->getSpelling() << 1; | 
|  |  | 
|  | // Check for parameter names shadowing fields from the class. | 
|  | if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { | 
|  | // The owning context for the parameter should be the function, but we | 
|  | // want to see if this function's declaration context is a record. | 
|  | DeclContext *DC = Param->getDeclContext(); | 
|  | if (DC && DC->isFunctionOrMethod()) { | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) | 
|  | CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), | 
|  | RD, /*DeclIsField*/ false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return HasInvalidParm; | 
|  | } | 
|  |  | 
|  | /// A helper function to get the alignment of a Decl referred to by DeclRefExpr | 
|  | /// or MemberExpr. | 
|  | static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign, | 
|  | ASTContext &Context) { | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | return Context.getDeclAlign(DRE->getDecl()); | 
|  |  | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) | 
|  | return Context.getDeclAlign(ME->getMemberDecl()); | 
|  |  | 
|  | return TypeAlign; | 
|  | } | 
|  |  | 
|  | /// CheckCastAlign - Implements -Wcast-align, which warns when a | 
|  | /// pointer cast increases the alignment requirements. | 
|  | void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { | 
|  | // This is actually a lot of work to potentially be doing on every | 
|  | // cast; don't do it if we're ignoring -Wcast_align (as is the default). | 
|  | if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) | 
|  | return; | 
|  |  | 
|  | // Ignore dependent types. | 
|  | if (T->isDependentType() || Op->getType()->isDependentType()) | 
|  | return; | 
|  |  | 
|  | // Require that the destination be a pointer type. | 
|  | const PointerType *DestPtr = T->getAs<PointerType>(); | 
|  | if (!DestPtr) return; | 
|  |  | 
|  | // If the destination has alignment 1, we're done. | 
|  | QualType DestPointee = DestPtr->getPointeeType(); | 
|  | if (DestPointee->isIncompleteType()) return; | 
|  | CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); | 
|  | if (DestAlign.isOne()) return; | 
|  |  | 
|  | // Require that the source be a pointer type. | 
|  | const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); | 
|  | if (!SrcPtr) return; | 
|  | QualType SrcPointee = SrcPtr->getPointeeType(); | 
|  |  | 
|  | // Whitelist casts from cv void*.  We already implicitly | 
|  | // whitelisted casts to cv void*, since they have alignment 1. | 
|  | // Also whitelist casts involving incomplete types, which implicitly | 
|  | // includes 'void'. | 
|  | if (SrcPointee->isIncompleteType()) return; | 
|  |  | 
|  | CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); | 
|  |  | 
|  | if (auto *CE = dyn_cast<CastExpr>(Op)) { | 
|  | if (CE->getCastKind() == CK_ArrayToPointerDecay) | 
|  | SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context); | 
|  | } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) { | 
|  | if (UO->getOpcode() == UO_AddrOf) | 
|  | SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context); | 
|  | } | 
|  |  | 
|  | if (SrcAlign >= DestAlign) return; | 
|  |  | 
|  | Diag(TRange.getBegin(), diag::warn_cast_align) | 
|  | << Op->getType() << T | 
|  | << static_cast<unsigned>(SrcAlign.getQuantity()) | 
|  | << static_cast<unsigned>(DestAlign.getQuantity()) | 
|  | << TRange << Op->getSourceRange(); | 
|  | } | 
|  |  | 
|  | /// Check whether this array fits the idiom of a size-one tail padded | 
|  | /// array member of a struct. | 
|  | /// | 
|  | /// We avoid emitting out-of-bounds access warnings for such arrays as they are | 
|  | /// commonly used to emulate flexible arrays in C89 code. | 
|  | static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, | 
|  | const NamedDecl *ND) { | 
|  | if (Size != 1 || !ND) return false; | 
|  |  | 
|  | const FieldDecl *FD = dyn_cast<FieldDecl>(ND); | 
|  | if (!FD) return false; | 
|  |  | 
|  | // Don't consider sizes resulting from macro expansions or template argument | 
|  | // substitution to form C89 tail-padded arrays. | 
|  |  | 
|  | TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); | 
|  | while (TInfo) { | 
|  | TypeLoc TL = TInfo->getTypeLoc(); | 
|  | // Look through typedefs. | 
|  | if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { | 
|  | const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); | 
|  | TInfo = TDL->getTypeSourceInfo(); | 
|  | continue; | 
|  | } | 
|  | if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { | 
|  | const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); | 
|  | if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); | 
|  | if (!RD) return false; | 
|  | if (RD->isUnion()) return false; | 
|  | if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (!CRD->isStandardLayout()) return false; | 
|  | } | 
|  |  | 
|  | // See if this is the last field decl in the record. | 
|  | const Decl *D = FD; | 
|  | while ((D = D->getNextDeclInContext())) | 
|  | if (isa<FieldDecl>(D)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, | 
|  | const ArraySubscriptExpr *ASE, | 
|  | bool AllowOnePastEnd, bool IndexNegated) { | 
|  | IndexExpr = IndexExpr->IgnoreParenImpCasts(); | 
|  | if (IndexExpr->isValueDependent()) | 
|  | return; | 
|  |  | 
|  | const Type *EffectiveType = | 
|  | BaseExpr->getType()->getPointeeOrArrayElementType(); | 
|  | BaseExpr = BaseExpr->IgnoreParenCasts(); | 
|  | const ConstantArrayType *ArrayTy = | 
|  | Context.getAsConstantArrayType(BaseExpr->getType()); | 
|  |  | 
|  | if (!ArrayTy) | 
|  | return; | 
|  |  | 
|  | const Type *BaseType = ArrayTy->getElementType().getTypePtr(); | 
|  | if (EffectiveType->isDependentType() || BaseType->isDependentType()) | 
|  | return; | 
|  |  | 
|  | Expr::EvalResult Result; | 
|  | if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) | 
|  | return; | 
|  |  | 
|  | llvm::APSInt index = Result.Val.getInt(); | 
|  | if (IndexNegated) | 
|  | index = -index; | 
|  |  | 
|  | const NamedDecl *ND = nullptr; | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) | 
|  | ND = DRE->getDecl(); | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) | 
|  | ND = ME->getMemberDecl(); | 
|  |  | 
|  | if (index.isUnsigned() || !index.isNegative()) { | 
|  | // It is possible that the type of the base expression after | 
|  | // IgnoreParenCasts is incomplete, even though the type of the base | 
|  | // expression before IgnoreParenCasts is complete (see PR39746 for an | 
|  | // example). In this case we have no information about whether the array | 
|  | // access exceeds the array bounds. However we can still diagnose an array | 
|  | // access which precedes the array bounds. | 
|  | if (BaseType->isIncompleteType()) | 
|  | return; | 
|  |  | 
|  | llvm::APInt size = ArrayTy->getSize(); | 
|  | if (!size.isStrictlyPositive()) | 
|  | return; | 
|  |  | 
|  | if (BaseType != EffectiveType) { | 
|  | // Make sure we're comparing apples to apples when comparing index to size | 
|  | uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); | 
|  | uint64_t array_typesize = Context.getTypeSize(BaseType); | 
|  | // Handle ptrarith_typesize being zero, such as when casting to void* | 
|  | if (!ptrarith_typesize) ptrarith_typesize = 1; | 
|  | if (ptrarith_typesize != array_typesize) { | 
|  | // There's a cast to a different size type involved | 
|  | uint64_t ratio = array_typesize / ptrarith_typesize; | 
|  | // TODO: Be smarter about handling cases where array_typesize is not a | 
|  | // multiple of ptrarith_typesize | 
|  | if (ptrarith_typesize * ratio == array_typesize) | 
|  | size *= llvm::APInt(size.getBitWidth(), ratio); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (size.getBitWidth() > index.getBitWidth()) | 
|  | index = index.zext(size.getBitWidth()); | 
|  | else if (size.getBitWidth() < index.getBitWidth()) | 
|  | size = size.zext(index.getBitWidth()); | 
|  |  | 
|  | // For array subscripting the index must be less than size, but for pointer | 
|  | // arithmetic also allow the index (offset) to be equal to size since | 
|  | // computing the next address after the end of the array is legal and | 
|  | // commonly done e.g. in C++ iterators and range-based for loops. | 
|  | if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) | 
|  | return; | 
|  |  | 
|  | // Also don't warn for arrays of size 1 which are members of some | 
|  | // structure. These are often used to approximate flexible arrays in C89 | 
|  | // code. | 
|  | if (IsTailPaddedMemberArray(*this, size, ND)) | 
|  | return; | 
|  |  | 
|  | // Suppress the warning if the subscript expression (as identified by the | 
|  | // ']' location) and the index expression are both from macro expansions | 
|  | // within a system header. | 
|  | if (ASE) { | 
|  | SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( | 
|  | ASE->getRBracketLoc()); | 
|  | if (SourceMgr.isInSystemHeader(RBracketLoc)) { | 
|  | SourceLocation IndexLoc = | 
|  | SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); | 
|  | if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; | 
|  | if (ASE) | 
|  | DiagID = diag::warn_array_index_exceeds_bounds; | 
|  |  | 
|  | DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, | 
|  | PDiag(DiagID) << index.toString(10, true) | 
|  | << size.toString(10, true) | 
|  | << (unsigned)size.getLimitedValue(~0U) | 
|  | << IndexExpr->getSourceRange()); | 
|  | } else { | 
|  | unsigned DiagID = diag::warn_array_index_precedes_bounds; | 
|  | if (!ASE) { | 
|  | DiagID = diag::warn_ptr_arith_precedes_bounds; | 
|  | if (index.isNegative()) index = -index; | 
|  | } | 
|  |  | 
|  | DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, | 
|  | PDiag(DiagID) << index.toString(10, true) | 
|  | << IndexExpr->getSourceRange()); | 
|  | } | 
|  |  | 
|  | if (!ND) { | 
|  | // Try harder to find a NamedDecl to point at in the note. | 
|  | while (const ArraySubscriptExpr *ASE = | 
|  | dyn_cast<ArraySubscriptExpr>(BaseExpr)) | 
|  | BaseExpr = ASE->getBase()->IgnoreParenCasts(); | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) | 
|  | ND = DRE->getDecl(); | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) | 
|  | ND = ME->getMemberDecl(); | 
|  | } | 
|  |  | 
|  | if (ND) | 
|  | DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, | 
|  | PDiag(diag::note_array_index_out_of_bounds) | 
|  | << ND->getDeclName()); | 
|  | } | 
|  |  | 
|  | void Sema::CheckArrayAccess(const Expr *expr) { | 
|  | int AllowOnePastEnd = 0; | 
|  | while (expr) { | 
|  | expr = expr->IgnoreParenImpCasts(); | 
|  | switch (expr->getStmtClass()) { | 
|  | case Stmt::ArraySubscriptExprClass: { | 
|  | const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); | 
|  | CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, | 
|  | AllowOnePastEnd > 0); | 
|  | expr = ASE->getBase(); | 
|  | break; | 
|  | } | 
|  | case Stmt::MemberExprClass: { | 
|  | expr = cast<MemberExpr>(expr)->getBase(); | 
|  | break; | 
|  | } | 
|  | case Stmt::OMPArraySectionExprClass: { | 
|  | const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); | 
|  | if (ASE->getLowerBound()) | 
|  | CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), | 
|  | /*ASE=*/nullptr, AllowOnePastEnd > 0); | 
|  | return; | 
|  | } | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | // Only unwrap the * and & unary operators | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(expr); | 
|  | expr = UO->getSubExpr(); | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_AddrOf: | 
|  | AllowOnePastEnd++; | 
|  | break; | 
|  | case UO_Deref: | 
|  | AllowOnePastEnd--; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Stmt::ConditionalOperatorClass: { | 
|  | const ConditionalOperator *cond = cast<ConditionalOperator>(expr); | 
|  | if (const Expr *lhs = cond->getLHS()) | 
|  | CheckArrayAccess(lhs); | 
|  | if (const Expr *rhs = cond->getRHS()) | 
|  | CheckArrayAccess(rhs); | 
|  | return; | 
|  | } | 
|  | case Stmt::CXXOperatorCallExprClass: { | 
|  | const auto *OCE = cast<CXXOperatorCallExpr>(expr); | 
|  | for (const auto *Arg : OCE->arguments()) | 
|  | CheckArrayAccess(Arg); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Objective-C retain cycles ----------------------------------// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct RetainCycleOwner { | 
|  | VarDecl *Variable = nullptr; | 
|  | SourceRange Range; | 
|  | SourceLocation Loc; | 
|  | bool Indirect = false; | 
|  |  | 
|  | RetainCycleOwner() = default; | 
|  |  | 
|  | void setLocsFrom(Expr *e) { | 
|  | Loc = e->getExprLoc(); | 
|  | Range = e->getSourceRange(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Consider whether capturing the given variable can possibly lead to | 
|  | /// a retain cycle. | 
|  | static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { | 
|  | // In ARC, it's captured strongly iff the variable has __strong | 
|  | // lifetime.  In MRR, it's captured strongly if the variable is | 
|  | // __block and has an appropriate type. | 
|  | if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) | 
|  | return false; | 
|  |  | 
|  | owner.Variable = var; | 
|  | if (ref) | 
|  | owner.setLocsFrom(ref); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { | 
|  | while (true) { | 
|  | e = e->IgnoreParens(); | 
|  | if (CastExpr *cast = dyn_cast<CastExpr>(e)) { | 
|  | switch (cast->getCastKind()) { | 
|  | case CK_BitCast: | 
|  | case CK_LValueBitCast: | 
|  | case CK_LValueToRValue: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | e = cast->getSubExpr(); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { | 
|  | ObjCIvarDecl *ivar = ref->getDecl(); | 
|  | if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) | 
|  | return false; | 
|  |  | 
|  | // Try to find a retain cycle in the base. | 
|  | if (!findRetainCycleOwner(S, ref->getBase(), owner)) | 
|  | return false; | 
|  |  | 
|  | if (ref->isFreeIvar()) owner.setLocsFrom(ref); | 
|  | owner.Indirect = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { | 
|  | VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); | 
|  | if (!var) return false; | 
|  | return considerVariable(var, ref, owner); | 
|  | } | 
|  |  | 
|  | if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { | 
|  | if (member->isArrow()) return false; | 
|  |  | 
|  | // Don't count this as an indirect ownership. | 
|  | e = member->getBase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { | 
|  | // Only pay attention to pseudo-objects on property references. | 
|  | ObjCPropertyRefExpr *pre | 
|  | = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() | 
|  | ->IgnoreParens()); | 
|  | if (!pre) return false; | 
|  | if (pre->isImplicitProperty()) return false; | 
|  | ObjCPropertyDecl *property = pre->getExplicitProperty(); | 
|  | if (!property->isRetaining() && | 
|  | !(property->getPropertyIvarDecl() && | 
|  | property->getPropertyIvarDecl()->getType() | 
|  | .getObjCLifetime() == Qualifiers::OCL_Strong)) | 
|  | return false; | 
|  |  | 
|  | owner.Indirect = true; | 
|  | if (pre->isSuperReceiver()) { | 
|  | owner.Variable = S.getCurMethodDecl()->getSelfDecl(); | 
|  | if (!owner.Variable) | 
|  | return false; | 
|  | owner.Loc = pre->getLocation(); | 
|  | owner.Range = pre->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) | 
|  | ->getSourceExpr()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Array ivars? | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { | 
|  | ASTContext &Context; | 
|  | VarDecl *Variable; | 
|  | Expr *Capturer = nullptr; | 
|  | bool VarWillBeReased = false; | 
|  |  | 
|  | FindCaptureVisitor(ASTContext &Context, VarDecl *variable) | 
|  | : EvaluatedExprVisitor<FindCaptureVisitor>(Context), | 
|  | Context(Context), Variable(variable) {} | 
|  |  | 
|  | void VisitDeclRefExpr(DeclRefExpr *ref) { | 
|  | if (ref->getDecl() == Variable && !Capturer) | 
|  | Capturer = ref; | 
|  | } | 
|  |  | 
|  | void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { | 
|  | if (Capturer) return; | 
|  | Visit(ref->getBase()); | 
|  | if (Capturer && ref->isFreeIvar()) | 
|  | Capturer = ref; | 
|  | } | 
|  |  | 
|  | void VisitBlockExpr(BlockExpr *block) { | 
|  | // Look inside nested blocks | 
|  | if (block->getBlockDecl()->capturesVariable(Variable)) | 
|  | Visit(block->getBlockDecl()->getBody()); | 
|  | } | 
|  |  | 
|  | void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { | 
|  | if (Capturer) return; | 
|  | if (OVE->getSourceExpr()) | 
|  | Visit(OVE->getSourceExpr()); | 
|  | } | 
|  |  | 
|  | void VisitBinaryOperator(BinaryOperator *BinOp) { | 
|  | if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) | 
|  | return; | 
|  | Expr *LHS = BinOp->getLHS(); | 
|  | if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { | 
|  | if (DRE->getDecl() != Variable) | 
|  | return; | 
|  | if (Expr *RHS = BinOp->getRHS()) { | 
|  | RHS = RHS->IgnoreParenCasts(); | 
|  | llvm::APSInt Value; | 
|  | VarWillBeReased = | 
|  | (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Check whether the given argument is a block which captures a | 
|  | /// variable. | 
|  | static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { | 
|  | assert(owner.Variable && owner.Loc.isValid()); | 
|  |  | 
|  | e = e->IgnoreParenCasts(); | 
|  |  | 
|  | // Look through [^{...} copy] and Block_copy(^{...}). | 
|  | if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { | 
|  | Selector Cmd = ME->getSelector(); | 
|  | if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { | 
|  | e = ME->getInstanceReceiver(); | 
|  | if (!e) | 
|  | return nullptr; | 
|  | e = e->IgnoreParenCasts(); | 
|  | } | 
|  | } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { | 
|  | if (CE->getNumArgs() == 1) { | 
|  | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); | 
|  | if (Fn) { | 
|  | const IdentifierInfo *FnI = Fn->getIdentifier(); | 
|  | if (FnI && FnI->isStr("_Block_copy")) { | 
|  | e = CE->getArg(0)->IgnoreParenCasts(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | BlockExpr *block = dyn_cast<BlockExpr>(e); | 
|  | if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) | 
|  | return nullptr; | 
|  |  | 
|  | FindCaptureVisitor visitor(S.Context, owner.Variable); | 
|  | visitor.Visit(block->getBlockDecl()->getBody()); | 
|  | return visitor.VarWillBeReased ? nullptr : visitor.Capturer; | 
|  | } | 
|  |  | 
|  | static void diagnoseRetainCycle(Sema &S, Expr *capturer, | 
|  | RetainCycleOwner &owner) { | 
|  | assert(capturer); | 
|  | assert(owner.Variable && owner.Loc.isValid()); | 
|  |  | 
|  | S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) | 
|  | << owner.Variable << capturer->getSourceRange(); | 
|  | S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) | 
|  | << owner.Indirect << owner.Range; | 
|  | } | 
|  |  | 
|  | /// Check for a keyword selector that starts with the word 'add' or | 
|  | /// 'set'. | 
|  | static bool isSetterLikeSelector(Selector sel) { | 
|  | if (sel.isUnarySelector()) return false; | 
|  |  | 
|  | StringRef str = sel.getNameForSlot(0); | 
|  | while (!str.empty() && str.front() == '_') str = str.substr(1); | 
|  | if (str.startswith("set")) | 
|  | str = str.substr(3); | 
|  | else if (str.startswith("add")) { | 
|  | // Specially whitelist 'addOperationWithBlock:'. | 
|  | if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) | 
|  | return false; | 
|  | str = str.substr(3); | 
|  | } | 
|  | else | 
|  | return false; | 
|  |  | 
|  | if (str.empty()) return true; | 
|  | return !isLowercase(str.front()); | 
|  | } | 
|  |  | 
|  | static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, | 
|  | ObjCMessageExpr *Message) { | 
|  | bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( | 
|  | Message->getReceiverInterface(), | 
|  | NSAPI::ClassId_NSMutableArray); | 
|  | if (!IsMutableArray) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Selector Sel = Message->getSelector(); | 
|  |  | 
|  | Optional<NSAPI::NSArrayMethodKind> MKOpt = | 
|  | S.NSAPIObj->getNSArrayMethodKind(Sel); | 
|  | if (!MKOpt) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | NSAPI::NSArrayMethodKind MK = *MKOpt; | 
|  |  | 
|  | switch (MK) { | 
|  | case NSAPI::NSMutableArr_addObject: | 
|  | case NSAPI::NSMutableArr_insertObjectAtIndex: | 
|  | case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: | 
|  | return 0; | 
|  | case NSAPI::NSMutableArr_replaceObjectAtIndex: | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | return None; | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static | 
|  | Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, | 
|  | ObjCMessageExpr *Message) { | 
|  | bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( | 
|  | Message->getReceiverInterface(), | 
|  | NSAPI::ClassId_NSMutableDictionary); | 
|  | if (!IsMutableDictionary) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Selector Sel = Message->getSelector(); | 
|  |  | 
|  | Optional<NSAPI::NSDictionaryMethodKind> MKOpt = | 
|  | S.NSAPIObj->getNSDictionaryMethodKind(Sel); | 
|  | if (!MKOpt) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | NSAPI::NSDictionaryMethodKind MK = *MKOpt; | 
|  |  | 
|  | switch (MK) { | 
|  | case NSAPI::NSMutableDict_setObjectForKey: | 
|  | case NSAPI::NSMutableDict_setValueForKey: | 
|  | case NSAPI::NSMutableDict_setObjectForKeyedSubscript: | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return None; | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { | 
|  | bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( | 
|  | Message->getReceiverInterface(), | 
|  | NSAPI::ClassId_NSMutableSet); | 
|  |  | 
|  | bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( | 
|  | Message->getReceiverInterface(), | 
|  | NSAPI::ClassId_NSMutableOrderedSet); | 
|  | if (!IsMutableSet && !IsMutableOrderedSet) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Selector Sel = Message->getSelector(); | 
|  |  | 
|  | Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); | 
|  | if (!MKOpt) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | NSAPI::NSSetMethodKind MK = *MKOpt; | 
|  |  | 
|  | switch (MK) { | 
|  | case NSAPI::NSMutableSet_addObject: | 
|  | case NSAPI::NSOrderedSet_setObjectAtIndex: | 
|  | case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: | 
|  | case NSAPI::NSOrderedSet_insertObjectAtIndex: | 
|  | return 0; | 
|  | case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { | 
|  | if (!Message->isInstanceMessage()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | Optional<int> ArgOpt; | 
|  |  | 
|  | if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && | 
|  | !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && | 
|  | !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int ArgIndex = *ArgOpt; | 
|  |  | 
|  | Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); | 
|  | if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { | 
|  | Arg = OE->getSourceExpr()->IgnoreImpCasts(); | 
|  | } | 
|  |  | 
|  | if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { | 
|  | if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { | 
|  | if (ArgRE->isObjCSelfExpr()) { | 
|  | Diag(Message->getSourceRange().getBegin(), | 
|  | diag::warn_objc_circular_container) | 
|  | << ArgRE->getDecl() << StringRef("'super'"); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); | 
|  |  | 
|  | if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { | 
|  | Receiver = OE->getSourceExpr()->IgnoreImpCasts(); | 
|  | } | 
|  |  | 
|  | if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { | 
|  | if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { | 
|  | if (ReceiverRE->getDecl() == ArgRE->getDecl()) { | 
|  | ValueDecl *Decl = ReceiverRE->getDecl(); | 
|  | Diag(Message->getSourceRange().getBegin(), | 
|  | diag::warn_objc_circular_container) | 
|  | << Decl << Decl; | 
|  | if (!ArgRE->isObjCSelfExpr()) { | 
|  | Diag(Decl->getLocation(), | 
|  | diag::note_objc_circular_container_declared_here) | 
|  | << Decl; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { | 
|  | if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { | 
|  | if (IvarRE->getDecl() == IvarArgRE->getDecl()) { | 
|  | ObjCIvarDecl *Decl = IvarRE->getDecl(); | 
|  | Diag(Message->getSourceRange().getBegin(), | 
|  | diag::warn_objc_circular_container) | 
|  | << Decl << Decl; | 
|  | Diag(Decl->getLocation(), | 
|  | diag::note_objc_circular_container_declared_here) | 
|  | << Decl; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check a message send to see if it's likely to cause a retain cycle. | 
|  | void Sema::checkRetainCycles(ObjCMessageExpr *msg) { | 
|  | // Only check instance methods whose selector looks like a setter. | 
|  | if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) | 
|  | return; | 
|  |  | 
|  | // Try to find a variable that the receiver is strongly owned by. | 
|  | RetainCycleOwner owner; | 
|  | if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { | 
|  | if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) | 
|  | return; | 
|  | } else { | 
|  | assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); | 
|  | owner.Variable = getCurMethodDecl()->getSelfDecl(); | 
|  | owner.Loc = msg->getSuperLoc(); | 
|  | owner.Range = msg->getSuperLoc(); | 
|  | } | 
|  |  | 
|  | // Check whether the receiver is captured by any of the arguments. | 
|  | const ObjCMethodDecl *MD = msg->getMethodDecl(); | 
|  | for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { | 
|  | if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { | 
|  | // noescape blocks should not be retained by the method. | 
|  | if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) | 
|  | continue; | 
|  | return diagnoseRetainCycle(*this, capturer, owner); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check a property assign to see if it's likely to cause a retain cycle. | 
|  | void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { | 
|  | RetainCycleOwner owner; | 
|  | if (!findRetainCycleOwner(*this, receiver, owner)) | 
|  | return; | 
|  |  | 
|  | if (Expr *capturer = findCapturingExpr(*this, argument, owner)) | 
|  | diagnoseRetainCycle(*this, capturer, owner); | 
|  | } | 
|  |  | 
|  | void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { | 
|  | RetainCycleOwner Owner; | 
|  | if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) | 
|  | return; | 
|  |  | 
|  | // Because we don't have an expression for the variable, we have to set the | 
|  | // location explicitly here. | 
|  | Owner.Loc = Var->getLocation(); | 
|  | Owner.Range = Var->getSourceRange(); | 
|  |  | 
|  | if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) | 
|  | diagnoseRetainCycle(*this, Capturer, Owner); | 
|  | } | 
|  |  | 
|  | static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, | 
|  | Expr *RHS, bool isProperty) { | 
|  | // Check if RHS is an Objective-C object literal, which also can get | 
|  | // immediately zapped in a weak reference.  Note that we explicitly | 
|  | // allow ObjCStringLiterals, since those are designed to never really die. | 
|  | RHS = RHS->IgnoreParenImpCasts(); | 
|  |  | 
|  | // This enum needs to match with the 'select' in | 
|  | // warn_objc_arc_literal_assign (off-by-1). | 
|  | Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); | 
|  | if (Kind == Sema::LK_String || Kind == Sema::LK_None) | 
|  | return false; | 
|  |  | 
|  | S.Diag(Loc, diag::warn_arc_literal_assign) | 
|  | << (unsigned) Kind | 
|  | << (isProperty ? 0 : 1) | 
|  | << RHS->getSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, | 
|  | Qualifiers::ObjCLifetime LT, | 
|  | Expr *RHS, bool isProperty) { | 
|  | // Strip off any implicit cast added to get to the one ARC-specific. | 
|  | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { | 
|  | if (cast->getCastKind() == CK_ARCConsumeObject) { | 
|  | S.Diag(Loc, diag::warn_arc_retained_assign) | 
|  | << (LT == Qualifiers::OCL_ExplicitNone) | 
|  | << (isProperty ? 0 : 1) | 
|  | << RHS->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | RHS = cast->getSubExpr(); | 
|  | } | 
|  |  | 
|  | if (LT == Qualifiers::OCL_Weak && | 
|  | checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::checkUnsafeAssigns(SourceLocation Loc, | 
|  | QualType LHS, Expr *RHS) { | 
|  | Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); | 
|  |  | 
|  | if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) | 
|  | return false; | 
|  |  | 
|  | if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::checkUnsafeExprAssigns(SourceLocation Loc, | 
|  | Expr *LHS, Expr *RHS) { | 
|  | QualType LHSType; | 
|  | // PropertyRef on LHS type need be directly obtained from | 
|  | // its declaration as it has a PseudoType. | 
|  | ObjCPropertyRefExpr *PRE | 
|  | = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); | 
|  | if (PRE && !PRE->isImplicitProperty()) { | 
|  | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); | 
|  | if (PD) | 
|  | LHSType = PD->getType(); | 
|  | } | 
|  |  | 
|  | if (LHSType.isNull()) | 
|  | LHSType = LHS->getType(); | 
|  |  | 
|  | Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); | 
|  |  | 
|  | if (LT == Qualifiers::OCL_Weak) { | 
|  | if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) | 
|  | getCurFunction()->markSafeWeakUse(LHS); | 
|  | } | 
|  |  | 
|  | if (checkUnsafeAssigns(Loc, LHSType, RHS)) | 
|  | return; | 
|  |  | 
|  | // FIXME. Check for other life times. | 
|  | if (LT != Qualifiers::OCL_None) | 
|  | return; | 
|  |  | 
|  | if (PRE) { | 
|  | if (PRE->isImplicitProperty()) | 
|  | return; | 
|  | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); | 
|  | if (!PD) | 
|  | return; | 
|  |  | 
|  | unsigned Attributes = PD->getPropertyAttributes(); | 
|  | if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) { | 
|  | // when 'assign' attribute was not explicitly specified | 
|  | // by user, ignore it and rely on property type itself | 
|  | // for lifetime info. | 
|  | unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); | 
|  | if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) && | 
|  | LHSType->isObjCRetainableType()) | 
|  | return; | 
|  |  | 
|  | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { | 
|  | if (cast->getCastKind() == CK_ARCConsumeObject) { | 
|  | Diag(Loc, diag::warn_arc_retained_property_assign) | 
|  | << RHS->getSourceRange(); | 
|  | return; | 
|  | } | 
|  | RHS = cast->getSubExpr(); | 
|  | } | 
|  | } | 
|  | else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) { | 
|  | if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// | 
|  |  | 
|  | static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, | 
|  | SourceLocation StmtLoc, | 
|  | const NullStmt *Body) { | 
|  | // Do not warn if the body is a macro that expands to nothing, e.g: | 
|  | // | 
|  | // #define CALL(x) | 
|  | // if (condition) | 
|  | //   CALL(0); | 
|  | if (Body->hasLeadingEmptyMacro()) | 
|  | return false; | 
|  |  | 
|  | // Get line numbers of statement and body. | 
|  | bool StmtLineInvalid; | 
|  | unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, | 
|  | &StmtLineInvalid); | 
|  | if (StmtLineInvalid) | 
|  | return false; | 
|  |  | 
|  | bool BodyLineInvalid; | 
|  | unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), | 
|  | &BodyLineInvalid); | 
|  | if (BodyLineInvalid) | 
|  | return false; | 
|  |  | 
|  | // Warn if null statement and body are on the same line. | 
|  | if (StmtLine != BodyLine) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, | 
|  | const Stmt *Body, | 
|  | unsigned DiagID) { | 
|  | // Since this is a syntactic check, don't emit diagnostic for template | 
|  | // instantiations, this just adds noise. | 
|  | if (CurrentInstantiationScope) | 
|  | return; | 
|  |  | 
|  | // The body should be a null statement. | 
|  | const NullStmt *NBody = dyn_cast<NullStmt>(Body); | 
|  | if (!NBody) | 
|  | return; | 
|  |  | 
|  | // Do the usual checks. | 
|  | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) | 
|  | return; | 
|  |  | 
|  | Diag(NBody->getSemiLoc(), DiagID); | 
|  | Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseEmptyLoopBody(const Stmt *S, | 
|  | const Stmt *PossibleBody) { | 
|  | assert(!CurrentInstantiationScope); // Ensured by caller | 
|  |  | 
|  | SourceLocation StmtLoc; | 
|  | const Stmt *Body; | 
|  | unsigned DiagID; | 
|  | if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { | 
|  | StmtLoc = FS->getRParenLoc(); | 
|  | Body = FS->getBody(); | 
|  | DiagID = diag::warn_empty_for_body; | 
|  | } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { | 
|  | StmtLoc = WS->getCond()->getSourceRange().getEnd(); | 
|  | Body = WS->getBody(); | 
|  | DiagID = diag::warn_empty_while_body; | 
|  | } else | 
|  | return; // Neither `for' nor `while'. | 
|  |  | 
|  | // The body should be a null statement. | 
|  | const NullStmt *NBody = dyn_cast<NullStmt>(Body); | 
|  | if (!NBody) | 
|  | return; | 
|  |  | 
|  | // Skip expensive checks if diagnostic is disabled. | 
|  | if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) | 
|  | return; | 
|  |  | 
|  | // Do the usual checks. | 
|  | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) | 
|  | return; | 
|  |  | 
|  | // `for(...);' and `while(...);' are popular idioms, so in order to keep | 
|  | // noise level low, emit diagnostics only if for/while is followed by a | 
|  | // CompoundStmt, e.g.: | 
|  | //    for (int i = 0; i < n; i++); | 
|  | //    { | 
|  | //      a(i); | 
|  | //    } | 
|  | // or if for/while is followed by a statement with more indentation | 
|  | // than for/while itself: | 
|  | //    for (int i = 0; i < n; i++); | 
|  | //      a(i); | 
|  | bool ProbableTypo = isa<CompoundStmt>(PossibleBody); | 
|  | if (!ProbableTypo) { | 
|  | bool BodyColInvalid; | 
|  | unsigned BodyCol = SourceMgr.getPresumedColumnNumber( | 
|  | PossibleBody->getBeginLoc(), &BodyColInvalid); | 
|  | if (BodyColInvalid) | 
|  | return; | 
|  |  | 
|  | bool StmtColInvalid; | 
|  | unsigned StmtCol = | 
|  | SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); | 
|  | if (StmtColInvalid) | 
|  | return; | 
|  |  | 
|  | if (BodyCol > StmtCol) | 
|  | ProbableTypo = true; | 
|  | } | 
|  |  | 
|  | if (ProbableTypo) { | 
|  | Diag(NBody->getSemiLoc(), DiagID); | 
|  | Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===--- CHECK: Warn on self move with std::move. -------------------------===// | 
|  |  | 
|  | /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. | 
|  | void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, | 
|  | SourceLocation OpLoc) { | 
|  | if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) | 
|  | return; | 
|  |  | 
|  | if (inTemplateInstantiation()) | 
|  | return; | 
|  |  | 
|  | // Strip parens and casts away. | 
|  | LHSExpr = LHSExpr->IgnoreParenImpCasts(); | 
|  | RHSExpr = RHSExpr->IgnoreParenImpCasts(); | 
|  |  | 
|  | // Check for a call expression | 
|  | const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); | 
|  | if (!CE || CE->getNumArgs() != 1) | 
|  | return; | 
|  |  | 
|  | // Check for a call to std::move | 
|  | if (!CE->isCallToStdMove()) | 
|  | return; | 
|  |  | 
|  | // Get argument from std::move | 
|  | RHSExpr = CE->getArg(0); | 
|  |  | 
|  | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); | 
|  | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); | 
|  |  | 
|  | // Two DeclRefExpr's, check that the decls are the same. | 
|  | if (LHSDeclRef && RHSDeclRef) { | 
|  | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) | 
|  | return; | 
|  | if (LHSDeclRef->getDecl()->getCanonicalDecl() != | 
|  | RHSDeclRef->getDecl()->getCanonicalDecl()) | 
|  | return; | 
|  |  | 
|  | Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() | 
|  | << LHSExpr->getSourceRange() | 
|  | << RHSExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Member variables require a different approach to check for self moves. | 
|  | // MemberExpr's are the same if every nested MemberExpr refers to the same | 
|  | // Decl and that the base Expr's are DeclRefExpr's with the same Decl or | 
|  | // the base Expr's are CXXThisExpr's. | 
|  | const Expr *LHSBase = LHSExpr; | 
|  | const Expr *RHSBase = RHSExpr; | 
|  | const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); | 
|  | const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); | 
|  | if (!LHSME || !RHSME) | 
|  | return; | 
|  |  | 
|  | while (LHSME && RHSME) { | 
|  | if (LHSME->getMemberDecl()->getCanonicalDecl() != | 
|  | RHSME->getMemberDecl()->getCanonicalDecl()) | 
|  | return; | 
|  |  | 
|  | LHSBase = LHSME->getBase(); | 
|  | RHSBase = RHSME->getBase(); | 
|  | LHSME = dyn_cast<MemberExpr>(LHSBase); | 
|  | RHSME = dyn_cast<MemberExpr>(RHSBase); | 
|  | } | 
|  |  | 
|  | LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); | 
|  | RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); | 
|  | if (LHSDeclRef && RHSDeclRef) { | 
|  | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) | 
|  | return; | 
|  | if (LHSDeclRef->getDecl()->getCanonicalDecl() != | 
|  | RHSDeclRef->getDecl()->getCanonicalDecl()) | 
|  | return; | 
|  |  | 
|  | Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() | 
|  | << LHSExpr->getSourceRange() | 
|  | << RHSExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) | 
|  | Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() | 
|  | << LHSExpr->getSourceRange() | 
|  | << RHSExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | //===--- Layout compatibility ----------------------------------------------// | 
|  |  | 
|  | static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); | 
|  |  | 
|  | /// Check if two enumeration types are layout-compatible. | 
|  | static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { | 
|  | // C++11 [dcl.enum] p8: | 
|  | // Two enumeration types are layout-compatible if they have the same | 
|  | // underlying type. | 
|  | return ED1->isComplete() && ED2->isComplete() && | 
|  | C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); | 
|  | } | 
|  |  | 
|  | /// Check if two fields are layout-compatible. | 
|  | static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, | 
|  | FieldDecl *Field2) { | 
|  | if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) | 
|  | return false; | 
|  |  | 
|  | if (Field1->isBitField() != Field2->isBitField()) | 
|  | return false; | 
|  |  | 
|  | if (Field1->isBitField()) { | 
|  | // Make sure that the bit-fields are the same length. | 
|  | unsigned Bits1 = Field1->getBitWidthValue(C); | 
|  | unsigned Bits2 = Field2->getBitWidthValue(C); | 
|  |  | 
|  | if (Bits1 != Bits2) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if two standard-layout structs are layout-compatible. | 
|  | /// (C++11 [class.mem] p17) | 
|  | static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, | 
|  | RecordDecl *RD2) { | 
|  | // If both records are C++ classes, check that base classes match. | 
|  | if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { | 
|  | // If one of records is a CXXRecordDecl we are in C++ mode, | 
|  | // thus the other one is a CXXRecordDecl, too. | 
|  | const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); | 
|  | // Check number of base classes. | 
|  | if (D1CXX->getNumBases() != D2CXX->getNumBases()) | 
|  | return false; | 
|  |  | 
|  | // Check the base classes. | 
|  | for (CXXRecordDecl::base_class_const_iterator | 
|  | Base1 = D1CXX->bases_begin(), | 
|  | BaseEnd1 = D1CXX->bases_end(), | 
|  | Base2 = D2CXX->bases_begin(); | 
|  | Base1 != BaseEnd1; | 
|  | ++Base1, ++Base2) { | 
|  | if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) | 
|  | return false; | 
|  | } | 
|  | } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { | 
|  | // If only RD2 is a C++ class, it should have zero base classes. | 
|  | if (D2CXX->getNumBases() > 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the fields. | 
|  | RecordDecl::field_iterator Field2 = RD2->field_begin(), | 
|  | Field2End = RD2->field_end(), | 
|  | Field1 = RD1->field_begin(), | 
|  | Field1End = RD1->field_end(); | 
|  | for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { | 
|  | if (!isLayoutCompatible(C, *Field1, *Field2)) | 
|  | return false; | 
|  | } | 
|  | if (Field1 != Field1End || Field2 != Field2End) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if two standard-layout unions are layout-compatible. | 
|  | /// (C++11 [class.mem] p18) | 
|  | static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, | 
|  | RecordDecl *RD2) { | 
|  | llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; | 
|  | for (auto *Field2 : RD2->fields()) | 
|  | UnmatchedFields.insert(Field2); | 
|  |  | 
|  | for (auto *Field1 : RD1->fields()) { | 
|  | llvm::SmallPtrSet<FieldDecl *, 8>::iterator | 
|  | I = UnmatchedFields.begin(), | 
|  | E = UnmatchedFields.end(); | 
|  |  | 
|  | for ( ; I != E; ++I) { | 
|  | if (isLayoutCompatible(C, Field1, *I)) { | 
|  | bool Result = UnmatchedFields.erase(*I); | 
|  | (void) Result; | 
|  | assert(Result); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (I == E) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return UnmatchedFields.empty(); | 
|  | } | 
|  |  | 
|  | static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, | 
|  | RecordDecl *RD2) { | 
|  | if (RD1->isUnion() != RD2->isUnion()) | 
|  | return false; | 
|  |  | 
|  | if (RD1->isUnion()) | 
|  | return isLayoutCompatibleUnion(C, RD1, RD2); | 
|  | else | 
|  | return isLayoutCompatibleStruct(C, RD1, RD2); | 
|  | } | 
|  |  | 
|  | /// Check if two types are layout-compatible in C++11 sense. | 
|  | static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { | 
|  | if (T1.isNull() || T2.isNull()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [basic.types] p11: | 
|  | // If two types T1 and T2 are the same type, then T1 and T2 are | 
|  | // layout-compatible types. | 
|  | if (C.hasSameType(T1, T2)) | 
|  | return true; | 
|  |  | 
|  | T1 = T1.getCanonicalType().getUnqualifiedType(); | 
|  | T2 = T2.getCanonicalType().getUnqualifiedType(); | 
|  |  | 
|  | const Type::TypeClass TC1 = T1->getTypeClass(); | 
|  | const Type::TypeClass TC2 = T2->getTypeClass(); | 
|  |  | 
|  | if (TC1 != TC2) | 
|  | return false; | 
|  |  | 
|  | if (TC1 == Type::Enum) { | 
|  | return isLayoutCompatible(C, | 
|  | cast<EnumType>(T1)->getDecl(), | 
|  | cast<EnumType>(T2)->getDecl()); | 
|  | } else if (TC1 == Type::Record) { | 
|  | if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) | 
|  | return false; | 
|  |  | 
|  | return isLayoutCompatible(C, | 
|  | cast<RecordType>(T1)->getDecl(), | 
|  | cast<RecordType>(T2)->getDecl()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// | 
|  |  | 
|  | /// Given a type tag expression find the type tag itself. | 
|  | /// | 
|  | /// \param TypeExpr Type tag expression, as it appears in user's code. | 
|  | /// | 
|  | /// \param VD Declaration of an identifier that appears in a type tag. | 
|  | /// | 
|  | /// \param MagicValue Type tag magic value. | 
|  | static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, | 
|  | const ValueDecl **VD, uint64_t *MagicValue) { | 
|  | while(true) { | 
|  | if (!TypeExpr) | 
|  | return false; | 
|  |  | 
|  | TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); | 
|  |  | 
|  | switch (TypeExpr->getStmtClass()) { | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); | 
|  | if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { | 
|  | TypeExpr = UO->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Stmt::DeclRefExprClass: { | 
|  | const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); | 
|  | *VD = DRE->getDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Stmt::IntegerLiteralClass: { | 
|  | const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); | 
|  | llvm::APInt MagicValueAPInt = IL->getValue(); | 
|  | if (MagicValueAPInt.getActiveBits() <= 64) { | 
|  | *MagicValue = MagicValueAPInt.getZExtValue(); | 
|  | return true; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Stmt::BinaryConditionalOperatorClass: | 
|  | case Stmt::ConditionalOperatorClass: { | 
|  | const AbstractConditionalOperator *ACO = | 
|  | cast<AbstractConditionalOperator>(TypeExpr); | 
|  | bool Result; | 
|  | if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) { | 
|  | if (Result) | 
|  | TypeExpr = ACO->getTrueExpr(); | 
|  | else | 
|  | TypeExpr = ACO->getFalseExpr(); | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Stmt::BinaryOperatorClass: { | 
|  | const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | TypeExpr = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Retrieve the C type corresponding to type tag TypeExpr. | 
|  | /// | 
|  | /// \param TypeExpr Expression that specifies a type tag. | 
|  | /// | 
|  | /// \param MagicValues Registered magic values. | 
|  | /// | 
|  | /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong | 
|  | ///        kind. | 
|  | /// | 
|  | /// \param TypeInfo Information about the corresponding C type. | 
|  | /// | 
|  | /// \returns true if the corresponding C type was found. | 
|  | static bool GetMatchingCType( | 
|  | const IdentifierInfo *ArgumentKind, | 
|  | const Expr *TypeExpr, const ASTContext &Ctx, | 
|  | const llvm::DenseMap<Sema::TypeTagMagicValue, | 
|  | Sema::TypeTagData> *MagicValues, | 
|  | bool &FoundWrongKind, | 
|  | Sema::TypeTagData &TypeInfo) { | 
|  | FoundWrongKind = false; | 
|  |  | 
|  | // Variable declaration that has type_tag_for_datatype attribute. | 
|  | const ValueDecl *VD = nullptr; | 
|  |  | 
|  | uint64_t MagicValue; | 
|  |  | 
|  | if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue)) | 
|  | return false; | 
|  |  | 
|  | if (VD) { | 
|  | if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { | 
|  | if (I->getArgumentKind() != ArgumentKind) { | 
|  | FoundWrongKind = true; | 
|  | return false; | 
|  | } | 
|  | TypeInfo.Type = I->getMatchingCType(); | 
|  | TypeInfo.LayoutCompatible = I->getLayoutCompatible(); | 
|  | TypeInfo.MustBeNull = I->getMustBeNull(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!MagicValues) | 
|  | return false; | 
|  |  | 
|  | llvm::DenseMap<Sema::TypeTagMagicValue, | 
|  | Sema::TypeTagData>::const_iterator I = | 
|  | MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); | 
|  | if (I == MagicValues->end()) | 
|  | return false; | 
|  |  | 
|  | TypeInfo = I->second; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, | 
|  | uint64_t MagicValue, QualType Type, | 
|  | bool LayoutCompatible, | 
|  | bool MustBeNull) { | 
|  | if (!TypeTagForDatatypeMagicValues) | 
|  | TypeTagForDatatypeMagicValues.reset( | 
|  | new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); | 
|  |  | 
|  | TypeTagMagicValue Magic(ArgumentKind, MagicValue); | 
|  | (*TypeTagForDatatypeMagicValues)[Magic] = | 
|  | TypeTagData(Type, LayoutCompatible, MustBeNull); | 
|  | } | 
|  |  | 
|  | static bool IsSameCharType(QualType T1, QualType T2) { | 
|  | const BuiltinType *BT1 = T1->getAs<BuiltinType>(); | 
|  | if (!BT1) | 
|  | return false; | 
|  |  | 
|  | const BuiltinType *BT2 = T2->getAs<BuiltinType>(); | 
|  | if (!BT2) | 
|  | return false; | 
|  |  | 
|  | BuiltinType::Kind T1Kind = BT1->getKind(); | 
|  | BuiltinType::Kind T2Kind = BT2->getKind(); | 
|  |  | 
|  | return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) || | 
|  | (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) || | 
|  | (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || | 
|  | (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); | 
|  | } | 
|  |  | 
|  | void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, | 
|  | const ArrayRef<const Expr *> ExprArgs, | 
|  | SourceLocation CallSiteLoc) { | 
|  | const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); | 
|  | bool IsPointerAttr = Attr->getIsPointer(); | 
|  |  | 
|  | // Retrieve the argument representing the 'type_tag'. | 
|  | unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); | 
|  | if (TypeTagIdxAST >= ExprArgs.size()) { | 
|  | Diag(CallSiteLoc, diag::err_tag_index_out_of_range) | 
|  | << 0 << Attr->getTypeTagIdx().getSourceIndex(); | 
|  | return; | 
|  | } | 
|  | const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; | 
|  | bool FoundWrongKind; | 
|  | TypeTagData TypeInfo; | 
|  | if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, | 
|  | TypeTagForDatatypeMagicValues.get(), | 
|  | FoundWrongKind, TypeInfo)) { | 
|  | if (FoundWrongKind) | 
|  | Diag(TypeTagExpr->getExprLoc(), | 
|  | diag::warn_type_tag_for_datatype_wrong_kind) | 
|  | << TypeTagExpr->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Retrieve the argument representing the 'arg_idx'. | 
|  | unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); | 
|  | if (ArgumentIdxAST >= ExprArgs.size()) { | 
|  | Diag(CallSiteLoc, diag::err_tag_index_out_of_range) | 
|  | << 1 << Attr->getArgumentIdx().getSourceIndex(); | 
|  | return; | 
|  | } | 
|  | const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; | 
|  | if (IsPointerAttr) { | 
|  | // Skip implicit cast of pointer to `void *' (as a function argument). | 
|  | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) | 
|  | if (ICE->getType()->isVoidPointerType() && | 
|  | ICE->getCastKind() == CK_BitCast) | 
|  | ArgumentExpr = ICE->getSubExpr(); | 
|  | } | 
|  | QualType ArgumentType = ArgumentExpr->getType(); | 
|  |  | 
|  | // Passing a `void*' pointer shouldn't trigger a warning. | 
|  | if (IsPointerAttr && ArgumentType->isVoidPointerType()) | 
|  | return; | 
|  |  | 
|  | if (TypeInfo.MustBeNull) { | 
|  | // Type tag with matching void type requires a null pointer. | 
|  | if (!ArgumentExpr->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNotNull)) { | 
|  | Diag(ArgumentExpr->getExprLoc(), | 
|  | diag::warn_type_safety_null_pointer_required) | 
|  | << ArgumentKind->getName() | 
|  | << ArgumentExpr->getSourceRange() | 
|  | << TypeTagExpr->getSourceRange(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType RequiredType = TypeInfo.Type; | 
|  | if (IsPointerAttr) | 
|  | RequiredType = Context.getPointerType(RequiredType); | 
|  |  | 
|  | bool mismatch = false; | 
|  | if (!TypeInfo.LayoutCompatible) { | 
|  | mismatch = !Context.hasSameType(ArgumentType, RequiredType); | 
|  |  | 
|  | // C++11 [basic.fundamental] p1: | 
|  | // Plain char, signed char, and unsigned char are three distinct types. | 
|  | // | 
|  | // But we treat plain `char' as equivalent to `signed char' or `unsigned | 
|  | // char' depending on the current char signedness mode. | 
|  | if (mismatch) | 
|  | if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), | 
|  | RequiredType->getPointeeType())) || | 
|  | (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) | 
|  | mismatch = false; | 
|  | } else | 
|  | if (IsPointerAttr) | 
|  | mismatch = !isLayoutCompatible(Context, | 
|  | ArgumentType->getPointeeType(), | 
|  | RequiredType->getPointeeType()); | 
|  | else | 
|  | mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); | 
|  |  | 
|  | if (mismatch) | 
|  | Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) | 
|  | << ArgumentType << ArgumentKind | 
|  | << TypeInfo.LayoutCompatible << RequiredType | 
|  | << ArgumentExpr->getSourceRange() | 
|  | << TypeTagExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, | 
|  | CharUnits Alignment) { | 
|  | MisalignedMembers.emplace_back(E, RD, MD, Alignment); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseMisalignedMembers() { | 
|  | for (MisalignedMember &m : MisalignedMembers) { | 
|  | const NamedDecl *ND = m.RD; | 
|  | if (ND->getName().empty()) { | 
|  | if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) | 
|  | ND = TD; | 
|  | } | 
|  | Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) | 
|  | << m.MD << ND << m.E->getSourceRange(); | 
|  | } | 
|  | MisalignedMembers.clear(); | 
|  | } | 
|  |  | 
|  | void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { | 
|  | E = E->IgnoreParens(); | 
|  | if (!T->isPointerType() && !T->isIntegerType()) | 
|  | return; | 
|  | if (isa<UnaryOperator>(E) && | 
|  | cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { | 
|  | auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | 
|  | if (isa<MemberExpr>(Op)) { | 
|  | auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); | 
|  | if (MA != MisalignedMembers.end() && | 
|  | (T->isIntegerType() || | 
|  | (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || | 
|  | Context.getTypeAlignInChars( | 
|  | T->getPointeeType()) <= MA->Alignment)))) | 
|  | MisalignedMembers.erase(MA); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::RefersToMemberWithReducedAlignment( | 
|  | Expr *E, | 
|  | llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> | 
|  | Action) { | 
|  | const auto *ME = dyn_cast<MemberExpr>(E); | 
|  | if (!ME) | 
|  | return; | 
|  |  | 
|  | // No need to check expressions with an __unaligned-qualified type. | 
|  | if (E->getType().getQualifiers().hasUnaligned()) | 
|  | return; | 
|  |  | 
|  | // For a chain of MemberExpr like "a.b.c.d" this list | 
|  | // will keep FieldDecl's like [d, c, b]. | 
|  | SmallVector<FieldDecl *, 4> ReverseMemberChain; | 
|  | const MemberExpr *TopME = nullptr; | 
|  | bool AnyIsPacked = false; | 
|  | do { | 
|  | QualType BaseType = ME->getBase()->getType(); | 
|  | if (ME->isArrow()) | 
|  | BaseType = BaseType->getPointeeType(); | 
|  | RecordDecl *RD = BaseType->getAs<RecordType>()->getDecl(); | 
|  | if (RD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | ValueDecl *MD = ME->getMemberDecl(); | 
|  | auto *FD = dyn_cast<FieldDecl>(MD); | 
|  | // We do not care about non-data members. | 
|  | if (!FD || FD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | AnyIsPacked = | 
|  | AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); | 
|  | ReverseMemberChain.push_back(FD); | 
|  |  | 
|  | TopME = ME; | 
|  | ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); | 
|  | } while (ME); | 
|  | assert(TopME && "We did not compute a topmost MemberExpr!"); | 
|  |  | 
|  | // Not the scope of this diagnostic. | 
|  | if (!AnyIsPacked) | 
|  | return; | 
|  |  | 
|  | const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); | 
|  | const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); | 
|  | // TODO: The innermost base of the member expression may be too complicated. | 
|  | // For now, just disregard these cases. This is left for future | 
|  | // improvement. | 
|  | if (!DRE && !isa<CXXThisExpr>(TopBase)) | 
|  | return; | 
|  |  | 
|  | // Alignment expected by the whole expression. | 
|  | CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); | 
|  |  | 
|  | // No need to do anything else with this case. | 
|  | if (ExpectedAlignment.isOne()) | 
|  | return; | 
|  |  | 
|  | // Synthesize offset of the whole access. | 
|  | CharUnits Offset; | 
|  | for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); | 
|  | I++) { | 
|  | Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); | 
|  | } | 
|  |  | 
|  | // Compute the CompleteObjectAlignment as the alignment of the whole chain. | 
|  | CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( | 
|  | ReverseMemberChain.back()->getParent()->getTypeForDecl()); | 
|  |  | 
|  | // The base expression of the innermost MemberExpr may give | 
|  | // stronger guarantees than the class containing the member. | 
|  | if (DRE && !TopME->isArrow()) { | 
|  | const ValueDecl *VD = DRE->getDecl(); | 
|  | if (!VD->getType()->isReferenceType()) | 
|  | CompleteObjectAlignment = | 
|  | std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); | 
|  | } | 
|  |  | 
|  | // Check if the synthesized offset fulfills the alignment. | 
|  | if (Offset % ExpectedAlignment != 0 || | 
|  | // It may fulfill the offset it but the effective alignment may still be | 
|  | // lower than the expected expression alignment. | 
|  | CompleteObjectAlignment < ExpectedAlignment) { | 
|  | // If this happens, we want to determine a sensible culprit of this. | 
|  | // Intuitively, watching the chain of member expressions from right to | 
|  | // left, we start with the required alignment (as required by the field | 
|  | // type) but some packed attribute in that chain has reduced the alignment. | 
|  | // It may happen that another packed structure increases it again. But if | 
|  | // we are here such increase has not been enough. So pointing the first | 
|  | // FieldDecl that either is packed or else its RecordDecl is, | 
|  | // seems reasonable. | 
|  | FieldDecl *FD = nullptr; | 
|  | CharUnits Alignment; | 
|  | for (FieldDecl *FDI : ReverseMemberChain) { | 
|  | if (FDI->hasAttr<PackedAttr>() || | 
|  | FDI->getParent()->hasAttr<PackedAttr>()) { | 
|  | FD = FDI; | 
|  | Alignment = std::min( | 
|  | Context.getTypeAlignInChars(FD->getType()), | 
|  | Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(FD && "We did not find a packed FieldDecl!"); | 
|  | Action(E, FD->getParent(), FD, Alignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckAddressOfPackedMember(Expr *rhs) { | 
|  | using namespace std::placeholders; | 
|  |  | 
|  | RefersToMemberWithReducedAlignment( | 
|  | rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, | 
|  | _2, _3, _4)); | 
|  | } |