blob: f034aa10ce3026f253849aa3a961a98f1d6a6a81 [file] [log] [blame]
//===--- Parser.h - C Language Parser ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Parser interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_PARSE_PARSER_H
#define LLVM_CLANG_PARSE_PARSER_H
#include "clang/Basic/Specifiers.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/Action.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/ADT/OwningPtr.h"
#include <stack>
#include <list>
namespace clang {
class AttributeList;
struct CXX0XAttributeList;
class PragmaHandler;
class Scope;
class DiagnosticBuilder;
class Parser;
class PragmaUnusedHandler;
class ColonProtectionRAIIObject;
/// PrettyStackTraceParserEntry - If a crash happens while the parser is active,
/// an entry is printed for it.
class PrettyStackTraceParserEntry : public llvm::PrettyStackTraceEntry {
const Parser &P;
public:
PrettyStackTraceParserEntry(const Parser &p) : P(p) {}
virtual void print(llvm::raw_ostream &OS) const;
};
/// Parser - This implements a parser for the C family of languages. After
/// parsing units of the grammar, productions are invoked to handle whatever has
/// been read.
///
class Parser {
friend class PragmaUnusedHandler;
friend class ColonProtectionRAIIObject;
PrettyStackTraceParserEntry CrashInfo;
Preprocessor &PP;
/// Tok - The current token we are peeking ahead. All parsing methods assume
/// that this is valid.
Token Tok;
// PrevTokLocation - The location of the token we previously
// consumed. This token is used for diagnostics where we expected to
// see a token following another token (e.g., the ';' at the end of
// a statement).
SourceLocation PrevTokLocation;
unsigned short ParenCount, BracketCount, BraceCount;
/// Actions - These are the callbacks we invoke as we parse various constructs
/// in the file. This refers to the common base class between MinimalActions
/// and SemaActions for those uses that don't matter.
Action &Actions;
Scope *CurScope;
Diagnostic &Diags;
/// ScopeCache - Cache scopes to reduce malloc traffic.
enum { ScopeCacheSize = 16 };
unsigned NumCachedScopes;
Scope *ScopeCache[ScopeCacheSize];
/// Ident_super - IdentifierInfo for "super", to support fast
/// comparison.
IdentifierInfo *Ident_super;
/// Ident_vector and Ident_pixel - cached IdentifierInfo's for
/// "vector" and "pixel" fast comparison. Only present if
/// AltiVec enabled.
IdentifierInfo *Ident_vector;
IdentifierInfo *Ident_pixel;
llvm::OwningPtr<PragmaHandler> PackHandler;
llvm::OwningPtr<PragmaHandler> UnusedHandler;
llvm::OwningPtr<PragmaHandler> WeakHandler;
llvm::OwningPtr<clang::CommentHandler> CommentHandler;
/// Whether the '>' token acts as an operator or not. This will be
/// true except when we are parsing an expression within a C++
/// template argument list, where the '>' closes the template
/// argument list.
bool GreaterThanIsOperator;
/// ColonIsSacred - When this is false, we aggressively try to recover from
/// code like "foo : bar" as if it were a typo for "foo :: bar". This is not
/// safe in case statements and a few other things. This is managed by the
/// ColonProtectionRAIIObject RAII object.
bool ColonIsSacred;
/// The "depth" of the template parameters currently being parsed.
unsigned TemplateParameterDepth;
public:
Parser(Preprocessor &PP, Action &Actions);
~Parser();
const LangOptions &getLang() const { return PP.getLangOptions(); }
const TargetInfo &getTargetInfo() const { return PP.getTargetInfo(); }
Preprocessor &getPreprocessor() const { return PP; }
Action &getActions() const { return Actions; }
const Token &getCurToken() const { return Tok; }
// Type forwarding. All of these are statically 'void*', but they may all be
// different actual classes based on the actions in place.
typedef Action::ExprTy ExprTy;
typedef Action::StmtTy StmtTy;
typedef Action::DeclPtrTy DeclPtrTy;
typedef Action::DeclGroupPtrTy DeclGroupPtrTy;
typedef Action::TypeTy TypeTy;
typedef Action::BaseTy BaseTy;
typedef Action::MemInitTy MemInitTy;
typedef Action::CXXScopeTy CXXScopeTy;
typedef Action::TemplateParamsTy TemplateParamsTy;
typedef Action::TemplateTy TemplateTy;
typedef llvm::SmallVector<TemplateParamsTy *, 4> TemplateParameterLists;
typedef Action::ExprResult ExprResult;
typedef Action::StmtResult StmtResult;
typedef Action::BaseResult BaseResult;
typedef Action::MemInitResult MemInitResult;
typedef Action::TypeResult TypeResult;
typedef Action::OwningExprResult OwningExprResult;
typedef Action::OwningStmtResult OwningStmtResult;
typedef Action::ExprArg ExprArg;
typedef Action::MultiStmtArg MultiStmtArg;
typedef Action::FullExprArg FullExprArg;
/// Adorns a ExprResult with Actions to make it an OwningExprResult
OwningExprResult Owned(ExprResult res) {
return OwningExprResult(Actions, res);
}
/// Adorns a StmtResult with Actions to make it an OwningStmtResult
OwningStmtResult Owned(StmtResult res) {
return OwningStmtResult(Actions, res);
}
OwningExprResult ExprError() { return OwningExprResult(Actions, true); }
OwningStmtResult StmtError() { return OwningStmtResult(Actions, true); }
OwningExprResult ExprError(const DiagnosticBuilder &) { return ExprError(); }
OwningStmtResult StmtError(const DiagnosticBuilder &) { return StmtError(); }
OwningExprResult ExprEmpty() { return OwningExprResult(Actions, false); }
// Parsing methods.
/// ParseTranslationUnit - All in one method that initializes parses, and
/// shuts down the parser.
void ParseTranslationUnit();
/// Initialize - Warm up the parser.
///
void Initialize();
/// ParseTopLevelDecl - Parse one top-level declaration. Returns true if
/// the EOF was encountered.
bool ParseTopLevelDecl(DeclGroupPtrTy &Result);
DeclGroupPtrTy RetrievePendingObjCImpDecl();
private:
//===--------------------------------------------------------------------===//
// Low-Level token peeking and consumption methods.
//
/// isTokenParen - Return true if the cur token is '(' or ')'.
bool isTokenParen() const {
return Tok.getKind() == tok::l_paren || Tok.getKind() == tok::r_paren;
}
/// isTokenBracket - Return true if the cur token is '[' or ']'.
bool isTokenBracket() const {
return Tok.getKind() == tok::l_square || Tok.getKind() == tok::r_square;
}
/// isTokenBrace - Return true if the cur token is '{' or '}'.
bool isTokenBrace() const {
return Tok.getKind() == tok::l_brace || Tok.getKind() == tok::r_brace;
}
/// isTokenStringLiteral - True if this token is a string-literal.
///
bool isTokenStringLiteral() const {
return Tok.getKind() == tok::string_literal ||
Tok.getKind() == tok::wide_string_literal;
}
/// ConsumeToken - Consume the current 'peek token' and lex the next one.
/// This does not work with all kinds of tokens: strings and specific other
/// tokens must be consumed with custom methods below. This returns the
/// location of the consumed token.
SourceLocation ConsumeToken() {
assert(!isTokenStringLiteral() && !isTokenParen() && !isTokenBracket() &&
!isTokenBrace() &&
"Should consume special tokens with Consume*Token");
PrevTokLocation = Tok.getLocation();
PP.Lex(Tok);
return PrevTokLocation;
}
/// ConsumeAnyToken - Dispatch to the right Consume* method based on the
/// current token type. This should only be used in cases where the type of
/// the token really isn't known, e.g. in error recovery.
SourceLocation ConsumeAnyToken() {
if (isTokenParen())
return ConsumeParen();
else if (isTokenBracket())
return ConsumeBracket();
else if (isTokenBrace())
return ConsumeBrace();
else if (isTokenStringLiteral())
return ConsumeStringToken();
else
return ConsumeToken();
}
/// ConsumeParen - This consume method keeps the paren count up-to-date.
///
SourceLocation ConsumeParen() {
assert(isTokenParen() && "wrong consume method");
if (Tok.getKind() == tok::l_paren)
++ParenCount;
else if (ParenCount)
--ParenCount; // Don't let unbalanced )'s drive the count negative.
PrevTokLocation = Tok.getLocation();
PP.Lex(Tok);
return PrevTokLocation;
}
/// ConsumeBracket - This consume method keeps the bracket count up-to-date.
///
SourceLocation ConsumeBracket() {
assert(isTokenBracket() && "wrong consume method");
if (Tok.getKind() == tok::l_square)
++BracketCount;
else if (BracketCount)
--BracketCount; // Don't let unbalanced ]'s drive the count negative.
PrevTokLocation = Tok.getLocation();
PP.Lex(Tok);
return PrevTokLocation;
}
/// ConsumeBrace - This consume method keeps the brace count up-to-date.
///
SourceLocation ConsumeBrace() {
assert(isTokenBrace() && "wrong consume method");
if (Tok.getKind() == tok::l_brace)
++BraceCount;
else if (BraceCount)
--BraceCount; // Don't let unbalanced }'s drive the count negative.
PrevTokLocation = Tok.getLocation();
PP.Lex(Tok);
return PrevTokLocation;
}
/// ConsumeStringToken - Consume the current 'peek token', lexing a new one
/// and returning the token kind. This method is specific to strings, as it
/// handles string literal concatenation, as per C99 5.1.1.2, translation
/// phase #6.
SourceLocation ConsumeStringToken() {
assert(isTokenStringLiteral() &&
"Should only consume string literals with this method");
PrevTokLocation = Tok.getLocation();
PP.Lex(Tok);
return PrevTokLocation;
}
/// GetLookAheadToken - This peeks ahead N tokens and returns that token
/// without consuming any tokens. LookAhead(0) returns 'Tok', LookAhead(1)
/// returns the token after Tok, etc.
///
/// Note that this differs from the Preprocessor's LookAhead method, because
/// the Parser always has one token lexed that the preprocessor doesn't.
///
const Token &GetLookAheadToken(unsigned N) {
if (N == 0 || Tok.is(tok::eof)) return Tok;
return PP.LookAhead(N-1);
}
/// NextToken - This peeks ahead one token and returns it without
/// consuming it.
const Token &NextToken() {
return PP.LookAhead(0);
}
/// TryAnnotateTypeOrScopeToken - If the current token position is on a
/// typename (possibly qualified in C++) or a C++ scope specifier not followed
/// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens
/// with a single annotation token representing the typename or C++ scope
/// respectively.
/// This simplifies handling of C++ scope specifiers and allows efficient
/// backtracking without the need to re-parse and resolve nested-names and
/// typenames.
/// It will mainly be called when we expect to treat identifiers as typenames
/// (if they are typenames). For example, in C we do not expect identifiers
/// inside expressions to be treated as typenames so it will not be called
/// for expressions in C.
///
/// This returns true if the token was annotated.
bool TryAnnotateTypeOrScopeToken(bool EnteringContext = false);
/// TryAnnotateCXXScopeToken - Like TryAnnotateTypeOrScopeToken but
/// only annotates C++ scope specifiers. This returns true if there
/// was an unrecoverable error.
bool TryAnnotateCXXScopeToken(bool EnteringContext = false);
/// TryAltiVecToken - Check for context-sensitive AltiVec identifier tokens,
/// replacing them with the non-context-sensitive keywords. This returns
/// true if the token was replaced.
bool TryAltiVecToken(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
if (!getLang().AltiVec ||
(Tok.getIdentifierInfo() != Ident_vector &&
Tok.getIdentifierInfo() != Ident_pixel))
return false;
return TryAltiVecTokenOutOfLine(DS, Loc, PrevSpec, DiagID, isInvalid);
}
/// TryAltiVecVectorToken - Check for context-sensitive AltiVec vector
/// identifier token, replacing it with the non-context-sensitive __vector.
/// This returns true if the token was replaced.
bool TryAltiVecVectorToken() {
if (!getLang().AltiVec ||
Tok.getIdentifierInfo() != Ident_vector) return false;
return TryAltiVecVectorTokenOutOfLine();
}
bool TryAltiVecVectorTokenOutOfLine();
bool TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid);
/// TentativeParsingAction - An object that is used as a kind of "tentative
/// parsing transaction". It gets instantiated to mark the token position and
/// after the token consumption is done, Commit() or Revert() is called to
/// either "commit the consumed tokens" or revert to the previously marked
/// token position. Example:
///
/// TentativeParsingAction TPA(*this);
/// ConsumeToken();
/// ....
/// TPA.Revert();
///
class TentativeParsingAction {
Parser &P;
Token PrevTok;
bool isActive;
public:
explicit TentativeParsingAction(Parser& p) : P(p) {
PrevTok = P.Tok;
P.PP.EnableBacktrackAtThisPos();
isActive = true;
}
void Commit() {
assert(isActive && "Parsing action was finished!");
P.PP.CommitBacktrackedTokens();
isActive = false;
}
void Revert() {
assert(isActive && "Parsing action was finished!");
P.PP.Backtrack();
P.Tok = PrevTok;
isActive = false;
}
~TentativeParsingAction() {
assert(!isActive && "Forgot to call Commit or Revert!");
}
};
/// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'),
/// this helper function matches and consumes the specified RHS token if
/// present. If not present, it emits the specified diagnostic indicating
/// that the parser failed to match the RHS of the token at LHSLoc. LHSName
/// should be the name of the unmatched LHS token. This returns the location
/// of the consumed token.
SourceLocation MatchRHSPunctuation(tok::TokenKind RHSTok,
SourceLocation LHSLoc);
/// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the
/// input. If so, it is consumed and false is returned.
///
/// If the input is malformed, this emits the specified diagnostic. Next, if
/// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is
/// returned.
bool ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned Diag,
const char *DiagMsg = "",
tok::TokenKind SkipToTok = tok::unknown);
//===--------------------------------------------------------------------===//
// Scope manipulation
/// ParseScope - Introduces a new scope for parsing. The kind of
/// scope is determined by ScopeFlags. Objects of this type should
/// be created on the stack to coincide with the position where the
/// parser enters the new scope, and this object's constructor will
/// create that new scope. Similarly, once the object is destroyed
/// the parser will exit the scope.
class ParseScope {
Parser *Self;
ParseScope(const ParseScope&); // do not implement
ParseScope& operator=(const ParseScope&); // do not implement
public:
// ParseScope - Construct a new object to manage a scope in the
// parser Self where the new Scope is created with the flags
// ScopeFlags, but only when ManageScope is true (the default). If
// ManageScope is false, this object does nothing.
ParseScope(Parser *Self, unsigned ScopeFlags, bool ManageScope = true)
: Self(Self) {
if (ManageScope)
Self->EnterScope(ScopeFlags);
else
this->Self = 0;
}
// Exit - Exit the scope associated with this object now, rather
// than waiting until the object is destroyed.
void Exit() {
if (Self) {
Self->ExitScope();
Self = 0;
}
}
~ParseScope() {
Exit();
}
};
/// EnterScope - Start a new scope.
void EnterScope(unsigned ScopeFlags);
/// ExitScope - Pop a scope off the scope stack.
void ExitScope();
//===--------------------------------------------------------------------===//
// Diagnostic Emission and Error recovery.
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID);
void SuggestParentheses(SourceLocation Loc, unsigned DK,
SourceRange ParenRange);
/// SkipUntil - Read tokens until we get to the specified token, then consume
/// it (unless DontConsume is true). Because we cannot guarantee that the
/// token will ever occur, this skips to the next token, or to some likely
/// good stopping point. If StopAtSemi is true, skipping will stop at a ';'
/// character.
///
/// If SkipUntil finds the specified token, it returns true, otherwise it
/// returns false.
bool SkipUntil(tok::TokenKind T, bool StopAtSemi = true,
bool DontConsume = false) {
return SkipUntil(&T, 1, StopAtSemi, DontConsume);
}
bool SkipUntil(tok::TokenKind T1, tok::TokenKind T2, bool StopAtSemi = true,
bool DontConsume = false) {
tok::TokenKind TokArray[] = {T1, T2};
return SkipUntil(TokArray, 2, StopAtSemi, DontConsume);
}
bool SkipUntil(const tok::TokenKind *Toks, unsigned NumToks,
bool StopAtSemi = true, bool DontConsume = false);
//===--------------------------------------------------------------------===//
// Lexing and parsing of C++ inline methods.
struct LexedMethod {
Action::DeclPtrTy D;
CachedTokens Toks;
/// \brief Whether this member function had an associated template
/// scope. When true, D is a template declaration.
/// othewise, it is a member function declaration.
bool TemplateScope;
explicit LexedMethod(Action::DeclPtrTy MD) : D(MD), TemplateScope(false) {}
};
/// LateParsedDefaultArgument - Keeps track of a parameter that may
/// have a default argument that cannot be parsed yet because it
/// occurs within a member function declaration inside the class
/// (C++ [class.mem]p2).
struct LateParsedDefaultArgument {
explicit LateParsedDefaultArgument(Action::DeclPtrTy P,
CachedTokens *Toks = 0)
: Param(P), Toks(Toks) { }
/// Param - The parameter declaration for this parameter.
Action::DeclPtrTy Param;
/// Toks - The sequence of tokens that comprises the default
/// argument expression, not including the '=' or the terminating
/// ')' or ','. This will be NULL for parameters that have no
/// default argument.
CachedTokens *Toks;
};
/// LateParsedMethodDeclaration - A method declaration inside a class that
/// contains at least one entity whose parsing needs to be delayed
/// until the class itself is completely-defined, such as a default
/// argument (C++ [class.mem]p2).
struct LateParsedMethodDeclaration {
explicit LateParsedMethodDeclaration(Action::DeclPtrTy M)
: Method(M), TemplateScope(false) { }
/// Method - The method declaration.
Action::DeclPtrTy Method;
/// \brief Whether this member function had an associated template
/// scope. When true, D is a template declaration.
/// othewise, it is a member function declaration.
bool TemplateScope;
/// DefaultArgs - Contains the parameters of the function and
/// their default arguments. At least one of the parameters will
/// have a default argument, but all of the parameters of the
/// method will be stored so that they can be reintroduced into
/// scope at the appropriate times.
llvm::SmallVector<LateParsedDefaultArgument, 8> DefaultArgs;
};
/// LateParsedMethodDecls - During parsing of a top (non-nested) C++
/// class, its method declarations that contain parts that won't be
/// parsed until after the definiton is completed (C++ [class.mem]p2),
/// the method declarations will be stored here with the tokens that
/// will be parsed to create those entities.
typedef std::list<LateParsedMethodDeclaration> LateParsedMethodDecls;
/// LexedMethodsForTopClass - During parsing of a top (non-nested) C++ class,
/// its inline method definitions and the inline method definitions of its
/// nested classes are lexed and stored here.
typedef std::list<LexedMethod> LexedMethodsForTopClass;
/// \brief Representation of a class that has been parsed, including
/// any member function declarations or definitions that need to be
/// parsed after the corresponding top-level class is complete.
struct ParsingClass {
ParsingClass(DeclPtrTy TagOrTemplate, bool TopLevelClass)
: TopLevelClass(TopLevelClass), TemplateScope(false),
TagOrTemplate(TagOrTemplate) { }
/// \brief Whether this is a "top-level" class, meaning that it is
/// not nested within another class.
bool TopLevelClass : 1;
/// \brief Whether this class had an associated template
/// scope. When true, TagOrTemplate is a template declaration;
/// othewise, it is a tag declaration.
bool TemplateScope : 1;
/// \brief The class or class template whose definition we are parsing.
DeclPtrTy TagOrTemplate;
/// MethodDecls - Method declarations that contain pieces whose
/// parsing will be delayed until the class is fully defined.
LateParsedMethodDecls MethodDecls;
/// MethodDefs - Methods whose definitions will be parsed once the
/// class has been fully defined.
LexedMethodsForTopClass MethodDefs;
/// \brief Nested classes inside this class.
llvm::SmallVector<ParsingClass*, 4> NestedClasses;
};
/// \brief The stack of classes that is currently being
/// parsed. Nested and local classes will be pushed onto this stack
/// when they are parsed, and removed afterward.
std::stack<ParsingClass *> ClassStack;
ParsingClass &getCurrentClass() {
assert(!ClassStack.empty() && "No lexed method stacks!");
return *ClassStack.top();
}
/// \brief RAII object used to inform the actions that we're
/// currently parsing a declaration. This is active when parsing a
/// variable's initializer, but not when parsing the body of a
/// class or function definition.
class ParsingDeclRAIIObject {
Action &Actions;
Action::ParsingDeclStackState State;
bool Popped;
public:
ParsingDeclRAIIObject(Parser &P) : Actions(P.Actions) {
push();
}
~ParsingDeclRAIIObject() {
abort();
}
/// Resets the RAII object for a new declaration.
void reset() {
abort();
push();
}
/// Signals that the context was completed without an appropriate
/// declaration being parsed.
void abort() {
pop(DeclPtrTy());
}
void complete(DeclPtrTy D) {
assert(!Popped && "ParsingDeclaration has already been popped!");
pop(D);
}
private:
void push() {
State = Actions.PushParsingDeclaration();
Popped = false;
}
void pop(DeclPtrTy D) {
if (!Popped) {
Actions.PopParsingDeclaration(State, D);
Popped = true;
}
}
};
/// A class for parsing a DeclSpec.
class ParsingDeclSpec : public DeclSpec {
ParsingDeclRAIIObject ParsingRAII;
public:
ParsingDeclSpec(Parser &P) : ParsingRAII(P) {
}
void complete(DeclPtrTy D) {
ParsingRAII.complete(D);
}
void abort() {
ParsingRAII.abort();
}
};
/// A class for parsing a declarator.
class ParsingDeclarator : public Declarator {
ParsingDeclRAIIObject ParsingRAII;
public:
ParsingDeclarator(Parser &P, const ParsingDeclSpec &DS, TheContext C)
: Declarator(DS, C), ParsingRAII(P) {
}
const ParsingDeclSpec &getDeclSpec() const {
return static_cast<const ParsingDeclSpec&>(Declarator::getDeclSpec());
}
ParsingDeclSpec &getMutableDeclSpec() const {
return const_cast<ParsingDeclSpec&>(getDeclSpec());
}
void clear() {
Declarator::clear();
ParsingRAII.reset();
}
void complete(DeclPtrTy D) {
ParsingRAII.complete(D);
}
};
/// \brief RAII object used to
class ParsingClassDefinition {
Parser &P;
bool Popped;
public:
ParsingClassDefinition(Parser &P, DeclPtrTy TagOrTemplate, bool TopLevelClass)
: P(P), Popped(false) {
P.PushParsingClass(TagOrTemplate, TopLevelClass);
}
/// \brief Pop this class of the stack.
void Pop() {
assert(!Popped && "Nested class has already been popped");
Popped = true;
P.PopParsingClass();
}
~ParsingClassDefinition() {
if (!Popped)
P.PopParsingClass();
}
};
/// \brief Contains information about any template-specific
/// information that has been parsed prior to parsing declaration
/// specifiers.
struct ParsedTemplateInfo {
ParsedTemplateInfo()
: Kind(NonTemplate), TemplateParams(0), TemplateLoc() { }
ParsedTemplateInfo(TemplateParameterLists *TemplateParams,
bool isSpecialization,
bool lastParameterListWasEmpty = false)
: Kind(isSpecialization? ExplicitSpecialization : Template),
TemplateParams(TemplateParams),
LastParameterListWasEmpty(lastParameterListWasEmpty) { }
explicit ParsedTemplateInfo(SourceLocation ExternLoc,
SourceLocation TemplateLoc)
: Kind(ExplicitInstantiation), TemplateParams(0),
ExternLoc(ExternLoc), TemplateLoc(TemplateLoc),
LastParameterListWasEmpty(false){ }
/// \brief The kind of template we are parsing.
enum {
/// \brief We are not parsing a template at all.
NonTemplate = 0,
/// \brief We are parsing a template declaration.
Template,
/// \brief We are parsing an explicit specialization.
ExplicitSpecialization,
/// \brief We are parsing an explicit instantiation.
ExplicitInstantiation
} Kind;
/// \brief The template parameter lists, for template declarations
/// and explicit specializations.
TemplateParameterLists *TemplateParams;
/// \brief The location of the 'extern' keyword, if any, for an explicit
/// instantiation
SourceLocation ExternLoc;
/// \brief The location of the 'template' keyword, for an explicit
/// instantiation.
SourceLocation TemplateLoc;
/// \brief Whether the last template parameter list was empty.
bool LastParameterListWasEmpty;
};
void PushParsingClass(DeclPtrTy TagOrTemplate, bool TopLevelClass);
void DeallocateParsedClasses(ParsingClass *Class);
void PopParsingClass();
DeclPtrTy ParseCXXInlineMethodDef(AccessSpecifier AS, Declarator &D,
const ParsedTemplateInfo &TemplateInfo);
void ParseLexedMethodDeclarations(ParsingClass &Class);
void ParseLexedMethodDefs(ParsingClass &Class);
bool ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
tok::TokenKind EarlyAbortIf = tok::unknown,
bool ConsumeFinalToken = true);
//===--------------------------------------------------------------------===//
// C99 6.9: External Definitions.
DeclGroupPtrTy ParseExternalDeclaration(CXX0XAttributeList Attr);
bool isDeclarationAfterDeclarator();
bool isStartOfFunctionDefinition();
DeclGroupPtrTy ParseDeclarationOrFunctionDefinition(AttributeList *Attr,
AccessSpecifier AS = AS_none);
DeclGroupPtrTy ParseDeclarationOrFunctionDefinition(ParsingDeclSpec &DS,
AttributeList *Attr,
AccessSpecifier AS = AS_none);
DeclPtrTy ParseFunctionDefinition(ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo());
void ParseKNRParamDeclarations(Declarator &D);
// EndLoc, if non-NULL, is filled with the location of the last token of
// the simple-asm.
OwningExprResult ParseSimpleAsm(SourceLocation *EndLoc = 0);
OwningExprResult ParseAsmStringLiteral();
// Objective-C External Declarations
DeclPtrTy ParseObjCAtDirectives();
DeclPtrTy ParseObjCAtClassDeclaration(SourceLocation atLoc);
DeclPtrTy ParseObjCAtInterfaceDeclaration(SourceLocation atLoc,
AttributeList *prefixAttrs = 0);
void ParseObjCClassInstanceVariables(DeclPtrTy interfaceDecl,
tok::ObjCKeywordKind visibility,
SourceLocation atLoc);
bool ParseObjCProtocolReferences(llvm::SmallVectorImpl<Action::DeclPtrTy> &P,
llvm::SmallVectorImpl<SourceLocation> &PLocs,
bool WarnOnDeclarations,
SourceLocation &LAngleLoc,
SourceLocation &EndProtoLoc);
void ParseObjCInterfaceDeclList(DeclPtrTy interfaceDecl,
tok::ObjCKeywordKind contextKey);
DeclPtrTy ParseObjCAtProtocolDeclaration(SourceLocation atLoc,
AttributeList *prefixAttrs = 0);
DeclPtrTy ObjCImpDecl;
llvm::SmallVector<DeclPtrTy, 4> PendingObjCImpDecl;
DeclPtrTy ParseObjCAtImplementationDeclaration(SourceLocation atLoc);
DeclPtrTy ParseObjCAtEndDeclaration(SourceRange atEnd);
DeclPtrTy ParseObjCAtAliasDeclaration(SourceLocation atLoc);
DeclPtrTy ParseObjCPropertySynthesize(SourceLocation atLoc);
DeclPtrTy ParseObjCPropertyDynamic(SourceLocation atLoc);
IdentifierInfo *ParseObjCSelectorPiece(SourceLocation &MethodLocation);
// Definitions for Objective-c context sensitive keywords recognition.
enum ObjCTypeQual {
objc_in=0, objc_out, objc_inout, objc_oneway, objc_bycopy, objc_byref,
objc_NumQuals
};
IdentifierInfo *ObjCTypeQuals[objc_NumQuals];
bool isTokIdentifier_in() const;
TypeTy *ParseObjCTypeName(ObjCDeclSpec &DS);
void ParseObjCMethodRequirement();
DeclPtrTy ParseObjCMethodPrototype(DeclPtrTy classOrCat,
tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword);
DeclPtrTy ParseObjCMethodDecl(SourceLocation mLoc, tok::TokenKind mType,
DeclPtrTy classDecl,
tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword);
void ParseObjCPropertyAttribute(ObjCDeclSpec &DS, DeclPtrTy ClassDecl,
DeclPtrTy *Methods, unsigned NumMethods);
DeclPtrTy ParseObjCMethodDefinition();
//===--------------------------------------------------------------------===//
// C99 6.5: Expressions.
OwningExprResult ParseExpression();
OwningExprResult ParseConstantExpression();
// Expr that doesn't include commas.
OwningExprResult ParseAssignmentExpression();
OwningExprResult ParseExpressionWithLeadingAt(SourceLocation AtLoc);
OwningExprResult ParseExpressionWithLeadingExtension(SourceLocation ExtLoc);
OwningExprResult ParseRHSOfBinaryExpression(OwningExprResult LHS,
unsigned MinPrec);
OwningExprResult ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand,
bool &NotCastExpr,
TypeTy *TypeOfCast);
OwningExprResult ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand = false,
TypeTy *TypeOfCast = 0);
OwningExprResult ParsePostfixExpressionSuffix(OwningExprResult LHS);
OwningExprResult ParseSizeofAlignofExpression();
OwningExprResult ParseBuiltinPrimaryExpression();
OwningExprResult ParseExprAfterTypeofSizeofAlignof(const Token &OpTok,
bool &isCastExpr,
TypeTy *&CastTy,
SourceRange &CastRange);
static const unsigned ExprListSize = 12;
typedef llvm::SmallVector<ExprTy*, ExprListSize> ExprListTy;
typedef llvm::SmallVector<SourceLocation, ExprListSize> CommaLocsTy;
/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
bool ParseExpressionList(ExprListTy &Exprs, CommaLocsTy &CommaLocs,
void (Action::*Completer)(Scope *S, void *Data,
ExprTy **Args,
unsigned NumArgs) = 0,
void *Data = 0);
/// ParenParseOption - Control what ParseParenExpression will parse.
enum ParenParseOption {
SimpleExpr, // Only parse '(' expression ')'
CompoundStmt, // Also allow '(' compound-statement ')'
CompoundLiteral, // Also allow '(' type-name ')' '{' ... '}'
CastExpr // Also allow '(' type-name ')' <anything>
};
OwningExprResult ParseParenExpression(ParenParseOption &ExprType,
bool stopIfCastExpr,
TypeTy *TypeOfCast,
TypeTy *&CastTy,
SourceLocation &RParenLoc);
OwningExprResult ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
TypeTy *&CastTy,
SourceLocation LParenLoc,
SourceLocation &RParenLoc);
OwningExprResult ParseCompoundLiteralExpression(TypeTy *Ty,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
OwningExprResult ParseStringLiteralExpression();
//===--------------------------------------------------------------------===//
// C++ Expressions
OwningExprResult ParseCXXIdExpression(bool isAddressOfOperand = false);
bool ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
TypeTy *ObjectType,
bool EnteringContext,
bool *MayBePseudoDestructor = 0);
//===--------------------------------------------------------------------===//
// C++ 5.2p1: C++ Casts
OwningExprResult ParseCXXCasts();
//===--------------------------------------------------------------------===//
// C++ 5.2p1: C++ Type Identification
OwningExprResult ParseCXXTypeid();
//===--------------------------------------------------------------------===//
// C++ 5.2.4: C++ Pseudo-Destructor Expressions
OwningExprResult ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
Action::TypeTy *ObjectType);
//===--------------------------------------------------------------------===//
// C++ 9.3.2: C++ 'this' pointer
OwningExprResult ParseCXXThis();
//===--------------------------------------------------------------------===//
// C++ 15: C++ Throw Expression
OwningExprResult ParseThrowExpression();
// EndLoc is filled with the location of the last token of the specification.
bool ParseExceptionSpecification(SourceLocation &EndLoc,
llvm::SmallVector<TypeTy*, 2> &Exceptions,
llvm::SmallVector<SourceRange, 2> &Ranges,
bool &hasAnyExceptionSpec);
//===--------------------------------------------------------------------===//
// C++ 2.13.5: C++ Boolean Literals
OwningExprResult ParseCXXBoolLiteral();
//===--------------------------------------------------------------------===//
// C++ 5.2.3: Explicit type conversion (functional notation)
OwningExprResult ParseCXXTypeConstructExpression(const DeclSpec &DS);
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
void ParseCXXSimpleTypeSpecifier(DeclSpec &DS);
bool ParseCXXTypeSpecifierSeq(DeclSpec &DS);
//===--------------------------------------------------------------------===//
// C++ 5.3.4 and 5.3.5: C++ new and delete
bool ParseExpressionListOrTypeId(ExprListTy &Exprs, Declarator &D);
void ParseDirectNewDeclarator(Declarator &D);
OwningExprResult ParseCXXNewExpression(bool UseGlobal, SourceLocation Start);
OwningExprResult ParseCXXDeleteExpression(bool UseGlobal,
SourceLocation Start);
//===--------------------------------------------------------------------===//
// C++ if/switch/while condition expression.
bool ParseCXXCondition(OwningExprResult &ExprResult, DeclPtrTy &DeclResult);
//===--------------------------------------------------------------------===//
// C++ types
//===--------------------------------------------------------------------===//
// C99 6.7.8: Initialization.
/// ParseInitializer
/// initializer: [C99 6.7.8]
/// assignment-expression
/// '{' ...
OwningExprResult ParseInitializer() {
if (Tok.isNot(tok::l_brace))
return ParseAssignmentExpression();
return ParseBraceInitializer();
}
OwningExprResult ParseBraceInitializer();
OwningExprResult ParseInitializerWithPotentialDesignator();
//===--------------------------------------------------------------------===//
// clang Expressions
OwningExprResult ParseBlockLiteralExpression(); // ^{...}
//===--------------------------------------------------------------------===//
// Objective-C Expressions
bool isTokObjCMessageIdentifierReceiver() const {
if (!Tok.is(tok::identifier))
return false;
IdentifierInfo *II = Tok.getIdentifierInfo();
if (Actions.getTypeName(*II, Tok.getLocation(), CurScope))
return true;
return II == Ident_super;
}
OwningExprResult ParseObjCAtExpression(SourceLocation AtLocation);
OwningExprResult ParseObjCStringLiteral(SourceLocation AtLoc);
OwningExprResult ParseObjCEncodeExpression(SourceLocation AtLoc);
OwningExprResult ParseObjCSelectorExpression(SourceLocation AtLoc);
OwningExprResult ParseObjCProtocolExpression(SourceLocation AtLoc);
OwningExprResult ParseObjCMessageExpression();
OwningExprResult ParseObjCMessageExpressionBody(SourceLocation LBracloc,
SourceLocation NameLoc,
IdentifierInfo *ReceiverName,
ExprArg ReceiverExpr);
OwningExprResult ParseAssignmentExprWithObjCMessageExprStart(
SourceLocation LBracloc, SourceLocation NameLoc,
IdentifierInfo *ReceiverName, ExprArg ReceiverExpr);
//===--------------------------------------------------------------------===//
// C99 6.8: Statements and Blocks.
OwningStmtResult ParseStatement() {
return ParseStatementOrDeclaration(true);
}
OwningStmtResult ParseStatementOrDeclaration(bool OnlyStatement = false);
OwningStmtResult ParseLabeledStatement(AttributeList *Attr);
OwningStmtResult ParseCaseStatement(AttributeList *Attr);
OwningStmtResult ParseDefaultStatement(AttributeList *Attr);
OwningStmtResult ParseCompoundStatement(AttributeList *Attr,
bool isStmtExpr = false);
OwningStmtResult ParseCompoundStatementBody(bool isStmtExpr = false);
bool ParseParenExprOrCondition(OwningExprResult &ExprResult,
DeclPtrTy &DeclResult);
OwningStmtResult ParseIfStatement(AttributeList *Attr);
OwningStmtResult ParseSwitchStatement(AttributeList *Attr);
OwningStmtResult ParseWhileStatement(AttributeList *Attr);
OwningStmtResult ParseDoStatement(AttributeList *Attr);
OwningStmtResult ParseForStatement(AttributeList *Attr);
OwningStmtResult ParseGotoStatement(AttributeList *Attr);
OwningStmtResult ParseContinueStatement(AttributeList *Attr);
OwningStmtResult ParseBreakStatement(AttributeList *Attr);
OwningStmtResult ParseReturnStatement(AttributeList *Attr);
OwningStmtResult ParseAsmStatement(bool &msAsm);
OwningStmtResult FuzzyParseMicrosoftAsmStatement();
bool ParseAsmOperandsOpt(llvm::SmallVectorImpl<IdentifierInfo *> &Names,
llvm::SmallVectorImpl<ExprTy *> &Constraints,
llvm::SmallVectorImpl<ExprTy *> &Exprs);
//===--------------------------------------------------------------------===//
// C++ 6: Statements and Blocks
OwningStmtResult ParseCXXTryBlock(AttributeList *Attr);
OwningStmtResult ParseCXXTryBlockCommon(SourceLocation TryLoc);
OwningStmtResult ParseCXXCatchBlock();
//===--------------------------------------------------------------------===//
// Objective-C Statements
OwningStmtResult ParseObjCAtStatement(SourceLocation atLoc);
OwningStmtResult ParseObjCTryStmt(SourceLocation atLoc);
OwningStmtResult ParseObjCThrowStmt(SourceLocation atLoc);
OwningStmtResult ParseObjCSynchronizedStmt(SourceLocation atLoc);
//===--------------------------------------------------------------------===//
// C99 6.7: Declarations.
/// A context for parsing declaration specifiers. TODO: flesh this
/// out, there are other significant restrictions on specifiers than
/// would be best implemented in the parser.
enum DeclSpecContext {
DSC_normal, // normal context
DSC_class, // class context, enables 'friend'
DSC_top_level // top-level/namespace declaration context
};
DeclGroupPtrTy ParseDeclaration(unsigned Context, SourceLocation &DeclEnd,
CXX0XAttributeList Attr);
DeclGroupPtrTy ParseSimpleDeclaration(unsigned Context,
SourceLocation &DeclEnd,
AttributeList *Attr);
DeclGroupPtrTy ParseDeclGroup(ParsingDeclSpec &DS, unsigned Context,
bool AllowFunctionDefinitions,
SourceLocation *DeclEnd = 0);
DeclPtrTy ParseDeclarationAfterDeclarator(Declarator &D,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo());
DeclPtrTy ParseFunctionStatementBody(DeclPtrTy Decl);
DeclPtrTy ParseFunctionTryBlock(DeclPtrTy Decl);
bool ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS);
DeclSpecContext getDeclSpecContextFromDeclaratorContext(unsigned Context);
void ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
AccessSpecifier AS = AS_none,
DeclSpecContext DSC = DSC_normal);
bool ParseOptionalTypeSpecifier(DeclSpec &DS, bool &isInvalid,
const char *&PrevSpec,
unsigned &DiagID,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
bool SuppressDeclarations = false);
void ParseSpecifierQualifierList(DeclSpec &DS);
void ParseObjCTypeQualifierList(ObjCDeclSpec &DS);
void ParseEnumSpecifier(SourceLocation TagLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(), AccessSpecifier AS = AS_none);
void ParseEnumBody(SourceLocation StartLoc, DeclPtrTy TagDecl);
void ParseStructUnionBody(SourceLocation StartLoc, unsigned TagType,
DeclPtrTy TagDecl);
struct FieldCallback {
virtual DeclPtrTy invoke(FieldDeclarator &Field) = 0;
virtual ~FieldCallback() {}
private:
virtual void _anchor();
};
struct ObjCPropertyCallback;
void ParseStructDeclaration(DeclSpec &DS, FieldCallback &Callback);
bool isDeclarationSpecifier();
bool isTypeSpecifierQualifier();
bool isTypeQualifier() const;
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool isKnownToBeTypeSpecifier(const Token &Tok) const;
/// isDeclarationStatement - Disambiguates between a declaration or an
/// expression statement, when parsing function bodies.
/// Returns true for declaration, false for expression.
bool isDeclarationStatement() {
if (getLang().CPlusPlus)
return isCXXDeclarationStatement();
return isDeclarationSpecifier();
}
/// isSimpleDeclaration - Disambiguates between a declaration or an
/// expression, mainly used for the C 'clause-1' or the C++
// 'for-init-statement' part of a 'for' statement.
/// Returns true for declaration, false for expression.
bool isSimpleDeclaration() {
if (getLang().CPlusPlus)
return isCXXSimpleDeclaration();
return isDeclarationSpecifier();
}
/// \brief Starting with a scope specifier, identifier, or
/// template-id that refers to the current class, determine whether
/// this is a constructor declarator.
bool isConstructorDeclarator();
/// \brief Specifies the context in which type-id/expression
/// disambiguation will occur.
enum TentativeCXXTypeIdContext {
TypeIdInParens,
TypeIdAsTemplateArgument
};
/// isTypeIdInParens - Assumes that a '(' was parsed and now we want to know
/// whether the parens contain an expression or a type-id.
/// Returns true for a type-id and false for an expression.
bool isTypeIdInParens(bool &isAmbiguous) {
if (getLang().CPlusPlus)
return isCXXTypeId(TypeIdInParens, isAmbiguous);
isAmbiguous = false;
return isTypeSpecifierQualifier();
}
bool isTypeIdInParens() {
bool isAmbiguous;
return isTypeIdInParens(isAmbiguous);
}
/// isCXXDeclarationStatement - C++-specialized function that disambiguates
/// between a declaration or an expression statement, when parsing function
/// bodies. Returns true for declaration, false for expression.
bool isCXXDeclarationStatement();
/// isCXXSimpleDeclaration - C++-specialized function that disambiguates
/// between a simple-declaration or an expression-statement.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
/// Returns false if the statement is disambiguated as expression.
bool isCXXSimpleDeclaration();
/// isCXXFunctionDeclarator - Disambiguates between a function declarator or
/// a constructor-style initializer, when parsing declaration statements.
/// Returns true for function declarator and false for constructor-style
/// initializer. If 'warnIfAmbiguous' is true a warning will be emitted to
/// indicate that the parens were disambiguated as function declarator.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
bool isCXXFunctionDeclarator(bool warnIfAmbiguous);
/// isCXXConditionDeclaration - Disambiguates between a declaration or an
/// expression for a condition of a if/switch/while/for statement.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
bool isCXXConditionDeclaration();
bool isCXXTypeId(TentativeCXXTypeIdContext Context, bool &isAmbiguous);
bool isCXXTypeId(TentativeCXXTypeIdContext Context) {
bool isAmbiguous;
return isCXXTypeId(Context, isAmbiguous);
}
/// TPResult - Used as the result value for functions whose purpose is to
/// disambiguate C++ constructs by "tentatively parsing" them.
/// This is a class instead of a simple enum because the implicit enum-to-bool
/// conversions may cause subtle bugs.
class TPResult {
enum Result {
TPR_true,
TPR_false,
TPR_ambiguous,
TPR_error
};
Result Res;
TPResult(Result result) : Res(result) {}
public:
static TPResult True() { return TPR_true; }
static TPResult False() { return TPR_false; }
static TPResult Ambiguous() { return TPR_ambiguous; }
static TPResult Error() { return TPR_error; }
bool operator==(const TPResult &RHS) const { return Res == RHS.Res; }
bool operator!=(const TPResult &RHS) const { return Res != RHS.Res; }
};
/// isCXXDeclarationSpecifier - Returns TPResult::True() if it is a
/// declaration specifier, TPResult::False() if it is not,
/// TPResult::Ambiguous() if it could be either a decl-specifier or a
/// function-style cast, and TPResult::Error() if a parsing error was
/// encountered.
/// Doesn't consume tokens.
TPResult isCXXDeclarationSpecifier();
// "Tentative parsing" functions, used for disambiguation. If a parsing error
// is encountered they will return TPResult::Error().
// Returning TPResult::True()/False() indicates that the ambiguity was
// resolved and tentative parsing may stop. TPResult::Ambiguous() indicates
// that more tentative parsing is necessary for disambiguation.
// They all consume tokens, so backtracking should be used after calling them.
TPResult TryParseDeclarationSpecifier();
TPResult TryParseSimpleDeclaration();
TPResult TryParseTypeofSpecifier();
TPResult TryParseInitDeclaratorList();
TPResult TryParseDeclarator(bool mayBeAbstract, bool mayHaveIdentifier=true);
TPResult TryParseParameterDeclarationClause();
TPResult TryParseFunctionDeclarator();
TPResult TryParseBracketDeclarator();
TypeResult ParseTypeName(SourceRange *Range = 0);
void ParseBlockId();
// EndLoc, if non-NULL, is filled with the location of the last token of
// the attribute list.
CXX0XAttributeList ParseCXX0XAttributes(SourceLocation *EndLoc = 0);
AttributeList *ParseGNUAttributes(SourceLocation *EndLoc = 0);
AttributeList *ParseMicrosoftDeclSpec(AttributeList* CurrAttr = 0);
AttributeList *ParseMicrosoftTypeAttributes(AttributeList* CurrAttr = 0);
void ParseTypeofSpecifier(DeclSpec &DS);
void ParseDecltypeSpecifier(DeclSpec &DS);
OwningExprResult ParseCXX0XAlignArgument(SourceLocation Start);
/// DeclaratorScopeObj - RAII object used in Parser::ParseDirectDeclarator to
/// enter a new C++ declarator scope and exit it when the function is
/// finished.
class DeclaratorScopeObj {
Parser &P;
CXXScopeSpec &SS;
bool EnteredScope;
bool CreatedScope;
public:
DeclaratorScopeObj(Parser &p, CXXScopeSpec &ss)
: P(p), SS(ss), EnteredScope(false), CreatedScope(false) {}
void EnterDeclaratorScope() {
assert(!EnteredScope && "Already entered the scope!");
assert(SS.isSet() && "C++ scope was not set!");
CreatedScope = true;
P.EnterScope(0); // Not a decl scope.
if (!P.Actions.ActOnCXXEnterDeclaratorScope(P.CurScope, SS))
EnteredScope = true;
}
~DeclaratorScopeObj() {
if (EnteredScope) {
assert(SS.isSet() && "C++ scope was cleared ?");
P.Actions.ActOnCXXExitDeclaratorScope(P.CurScope, SS);
}
if (CreatedScope)
P.ExitScope();
}
};
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
void ParseDeclarator(Declarator &D);
/// A function that parses a variant of direct-declarator.
typedef void (Parser::*DirectDeclParseFunction)(Declarator&);
void ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser);
void ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed = true,
bool CXX0XAttributesAllowed = true);
void ParseDirectDeclarator(Declarator &D);
void ParseParenDeclarator(Declarator &D);
void ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
AttributeList *AttrList = 0,
bool RequiresArg = false);
void ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
Declarator &D);
void ParseBracketDeclarator(Declarator &D);
//===--------------------------------------------------------------------===//
// C++ 7: Declarations [dcl.dcl]
bool isCXX0XAttributeSpecifier(bool FullLookahead = false,
tok::TokenKind *After = 0);
DeclPtrTy ParseNamespace(unsigned Context, SourceLocation &DeclEnd);
DeclPtrTy ParseLinkage(ParsingDeclSpec &DS, unsigned Context);
DeclPtrTy ParseUsingDirectiveOrDeclaration(unsigned Context,
SourceLocation &DeclEnd,
CXX0XAttributeList Attrs);
DeclPtrTy ParseUsingDirective(unsigned Context, SourceLocation UsingLoc,
SourceLocation &DeclEnd,
AttributeList *Attr);
DeclPtrTy ParseUsingDeclaration(unsigned Context, SourceLocation UsingLoc,
SourceLocation &DeclEnd,
AccessSpecifier AS = AS_none);
DeclPtrTy ParseStaticAssertDeclaration(SourceLocation &DeclEnd);
DeclPtrTy ParseNamespaceAlias(SourceLocation NamespaceLoc,
SourceLocation AliasLoc, IdentifierInfo *Alias,
SourceLocation &DeclEnd);
//===--------------------------------------------------------------------===//
// C++ 9: classes [class] and C structs/unions.
TypeResult ParseClassName(SourceLocation &EndLocation,
const CXXScopeSpec *SS = 0);
void ParseClassSpecifier(tok::TokenKind TagTokKind, SourceLocation TagLoc,
DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
AccessSpecifier AS = AS_none,
bool SuppressDeclarations = false);
void ParseCXXMemberSpecification(SourceLocation StartLoc, unsigned TagType,
DeclPtrTy TagDecl);
void ParseCXXClassMemberDeclaration(AccessSpecifier AS,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo());
void ParseConstructorInitializer(DeclPtrTy ConstructorDecl);
MemInitResult ParseMemInitializer(DeclPtrTy ConstructorDecl);
void HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo,
DeclPtrTy ThisDecl);
//===--------------------------------------------------------------------===//
// C++ 10: Derived classes [class.derived]
void ParseBaseClause(DeclPtrTy ClassDecl);
BaseResult ParseBaseSpecifier(DeclPtrTy ClassDecl);
AccessSpecifier getAccessSpecifierIfPresent() const;
bool ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool EnteringContext,
TypeTy *ObjectType,
UnqualifiedId &Id,
bool AssumeTemplateId = false);
bool ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
TypeTy *ObjectType,
UnqualifiedId &Result);
bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
TypeTy *ObjectType,
UnqualifiedId &Result);
//===--------------------------------------------------------------------===//
// C++ 14: Templates [temp]
typedef llvm::SmallVector<DeclPtrTy, 4> TemplateParameterList;
// C++ 14.1: Template Parameters [temp.param]
DeclPtrTy ParseDeclarationStartingWithTemplate(unsigned Context,
SourceLocation &DeclEnd,
AccessSpecifier AS = AS_none);
DeclPtrTy ParseTemplateDeclarationOrSpecialization(unsigned Context,
SourceLocation &DeclEnd,
AccessSpecifier AS);
DeclPtrTy ParseSingleDeclarationAfterTemplate(
unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation &DeclEnd,
AccessSpecifier AS=AS_none);
bool ParseTemplateParameters(unsigned Depth,
TemplateParameterList &TemplateParams,
SourceLocation &LAngleLoc,
SourceLocation &RAngleLoc);
bool ParseTemplateParameterList(unsigned Depth,
TemplateParameterList &TemplateParams);
bool isStartOfTemplateTypeParameter();
DeclPtrTy ParseTemplateParameter(unsigned Depth, unsigned Position);
DeclPtrTy ParseTypeParameter(unsigned Depth, unsigned Position);
DeclPtrTy ParseTemplateTemplateParameter(unsigned Depth, unsigned Position);
DeclPtrTy ParseNonTypeTemplateParameter(unsigned Depth, unsigned Position);
// C++ 14.3: Template arguments [temp.arg]
typedef llvm::SmallVector<ParsedTemplateArgument, 16> TemplateArgList;
bool ParseTemplateIdAfterTemplateName(TemplateTy Template,
SourceLocation TemplateNameLoc,
const CXXScopeSpec *SS,
bool ConsumeLastToken,
SourceLocation &LAngleLoc,
TemplateArgList &TemplateArgs,
SourceLocation &RAngleLoc);
bool AnnotateTemplateIdToken(TemplateTy Template, TemplateNameKind TNK,
const CXXScopeSpec *SS,
UnqualifiedId &TemplateName,
SourceLocation TemplateKWLoc = SourceLocation(),
bool AllowTypeAnnotation = true);
void AnnotateTemplateIdTokenAsType(const CXXScopeSpec *SS = 0);
bool ParseTemplateArgumentList(TemplateArgList &TemplateArgs);
ParsedTemplateArgument ParseTemplateTemplateArgument();
ParsedTemplateArgument ParseTemplateArgument();
DeclPtrTy ParseExplicitInstantiation(SourceLocation ExternLoc,
SourceLocation TemplateLoc,
SourceLocation &DeclEnd);
//===--------------------------------------------------------------------===//
// GNU G++: Type Traits [Type-Traits.html in the GCC manual]
OwningExprResult ParseUnaryTypeTrait();
};
} // end namespace clang
#endif