blob: 0bdc6f54b7ca1562b76e0362b86c269e7fe89935 [file] [log] [blame]
//===-- DeclBase.h - Base Classes for representing declarations -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl and DeclContext interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLBASE_H
#define LLVM_CLANG_AST_DECLBASE_H
#include "clang/AST/Attr.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/ADT/PointerUnion.h"
namespace clang {
class DeclContext;
class TranslationUnitDecl;
class NamespaceDecl;
class UsingDirectiveDecl;
class NamedDecl;
class FunctionDecl;
class CXXRecordDecl;
class EnumDecl;
class ObjCMethodDecl;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCCategoryDecl;
class ObjCProtocolDecl;
class ObjCImplementationDecl;
class ObjCCategoryImplDecl;
class ObjCImplDecl;
class LinkageSpecDecl;
class BlockDecl;
class DeclarationName;
class CompoundStmt;
}
namespace llvm {
// DeclContext* is only 4-byte aligned on 32-bit systems.
template<>
class PointerLikeTypeTraits<clang::DeclContext*> {
typedef clang::DeclContext* PT;
public:
static inline void *getAsVoidPointer(PT P) { return P; }
static inline PT getFromVoidPointer(void *P) {
return static_cast<PT>(P);
}
enum { NumLowBitsAvailable = 2 };
};
}
namespace clang {
/// Decl - This represents one declaration (or definition), e.g. a variable,
/// typedef, function, struct, etc.
///
class Decl {
public:
/// \brief Lists the kind of concrete classes of Decl.
enum Kind {
#define DECL(Derived, Base) Derived,
#define DECL_RANGE(CommonBase, Start, End) \
CommonBase##First = Start, CommonBase##Last = End,
#define LAST_DECL_RANGE(CommonBase, Start, End) \
CommonBase##First = Start, CommonBase##Last = End
#include "clang/AST/DeclNodes.def"
};
/// IdentifierNamespace - According to C99 6.2.3, there are four
/// namespaces, labels, tags, members and ordinary
/// identifiers. These are meant as bitmasks, so that searches in
/// C++ can look into the "tag" namespace during ordinary lookup. We
/// use additional namespaces for Objective-C entities. We also put
/// C++ friend declarations (of previously-undeclared entities) in
/// shadow namespaces, and 'using' declarations (as opposed to their
/// implicit shadow declarations) can be found in their own
/// namespace.
enum IdentifierNamespace {
IDNS_Label = 0x1,
IDNS_Tag = 0x2,
IDNS_Member = 0x4,
IDNS_Ordinary = 0x8,
IDNS_ObjCProtocol = 0x10,
IDNS_ObjCImplementation = 0x20,
IDNS_ObjCCategoryName = 0x40,
IDNS_OrdinaryFriend = 0x80,
IDNS_TagFriend = 0x100,
IDNS_Using = 0x200
};
/// ObjCDeclQualifier - Qualifier used on types in method declarations
/// for remote messaging. They are meant for the arguments though and
/// applied to the Decls (ObjCMethodDecl and ParmVarDecl).
enum ObjCDeclQualifier {
OBJC_TQ_None = 0x0,
OBJC_TQ_In = 0x1,
OBJC_TQ_Inout = 0x2,
OBJC_TQ_Out = 0x4,
OBJC_TQ_Bycopy = 0x8,
OBJC_TQ_Byref = 0x10,
OBJC_TQ_Oneway = 0x20
};
private:
/// NextDeclInContext - The next declaration within the same lexical
/// DeclContext. These pointers form the linked list that is
/// traversed via DeclContext's decls_begin()/decls_end().
Decl *NextDeclInContext;
friend class DeclContext;
struct MultipleDC {
DeclContext *SemanticDC;
DeclContext *LexicalDC;
};
/// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
/// For declarations that don't contain C++ scope specifiers, it contains
/// the DeclContext where the Decl was declared.
/// For declarations with C++ scope specifiers, it contains a MultipleDC*
/// with the context where it semantically belongs (SemanticDC) and the
/// context where it was lexically declared (LexicalDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
inline bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
inline bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
inline MultipleDC *getMultipleDC() const {
return DeclCtx.get<MultipleDC*>();
}
inline DeclContext *getSemanticDC() const {
return DeclCtx.get<DeclContext*>();
}
/// Loc - The location that this decl.
SourceLocation Loc;
/// DeclKind - This indicates which class this is.
Kind DeclKind : 8;
/// InvalidDecl - This indicates a semantic error occurred.
unsigned int InvalidDecl : 1;
/// HasAttrs - This indicates whether the decl has attributes or not.
unsigned int HasAttrs : 1;
/// Implicit - Whether this declaration was implicitly generated by
/// the implementation rather than explicitly written by the user.
bool Implicit : 1;
/// \brief Whether this declaration was "used", meaning that a definition is
/// required.
bool Used : 1;
protected:
/// Access - Used by C++ decls for the access specifier.
// NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
unsigned Access : 2;
friend class CXXClassMemberWrapper;
// PCHLevel - the "level" of precompiled header/AST file from which this
// declaration was built.
unsigned PCHLevel : 2;
/// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
unsigned IdentifierNamespace : 16;
private:
#ifndef NDEBUG
void CheckAccessDeclContext() const;
#else
void CheckAccessDeclContext() const { }
#endif
protected:
Decl(Kind DK, DeclContext *DC, SourceLocation L)
: NextDeclInContext(0), DeclCtx(DC),
Loc(L), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false), Used(false),
Access(AS_none), PCHLevel(0),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)) {
if (Decl::CollectingStats()) addDeclKind(DK);
}
virtual ~Decl();
public:
/// \brief Source range that this declaration covers.
virtual SourceRange getSourceRange() const {
return SourceRange(getLocation(), getLocation());
}
SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
Kind getKind() const { return DeclKind; }
const char *getDeclKindName() const;
Decl *getNextDeclInContext() { return NextDeclInContext; }
const Decl *getNextDeclInContext() const { return NextDeclInContext; }
DeclContext *getDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->SemanticDC;
}
const DeclContext *getDeclContext() const {
return const_cast<Decl*>(this)->getDeclContext();
}
TranslationUnitDecl *getTranslationUnitDecl();
const TranslationUnitDecl *getTranslationUnitDecl() const {
return const_cast<Decl*>(this)->getTranslationUnitDecl();
}
bool isInAnonymousNamespace() const;
ASTContext &getASTContext() const;
void setAccess(AccessSpecifier AS) {
Access = AS;
CheckAccessDeclContext();
}
AccessSpecifier getAccess() const {
CheckAccessDeclContext();
return AccessSpecifier(Access);
}
bool hasAttrs() const { return HasAttrs; }
void addAttr(Attr *attr);
const Attr *getAttrs() const {
if (!HasAttrs) return 0; // common case, no attributes.
return getAttrsImpl(); // Uncommon case, out of line hash lookup.
}
void swapAttrs(Decl *D);
void invalidateAttrs();
template<typename T> const T *getAttr() const {
for (const Attr *attr = getAttrs(); attr; attr = attr->getNext())
if (const T *V = dyn_cast<T>(attr))
return V;
return 0;
}
template<typename T> bool hasAttr() const {
return getAttr<T>() != 0;
}
/// setInvalidDecl - Indicates the Decl had a semantic error. This
/// allows for graceful error recovery.
void setInvalidDecl(bool Invalid = true);
bool isInvalidDecl() const { return (bool) InvalidDecl; }
/// isImplicit - Indicates whether the declaration was implicitly
/// generated by the implementation. If false, this declaration
/// was written explicitly in the source code.
bool isImplicit() const { return Implicit; }
void setImplicit(bool I = true) { Implicit = I; }
/// \brief Whether this declaration was used, meaning that a definition
/// is required.
bool isUsed() const;
void setUsed(bool U = true) { Used = U; }
/// \brief Retrieve the level of precompiled header from which this
/// declaration was generated.
///
/// The PCH level of a declaration describes where the declaration originated
/// from. A PCH level of 0 indicates that the declaration was not from a
/// precompiled header. A PCH level of 1 indicates that the declaration was
/// from a top-level precompiled header; 2 indicates that the declaration
/// comes from a precompiled header on which the top-level precompiled header
/// depends, and so on.
unsigned getPCHLevel() const { return PCHLevel; }
/// \brief The maximum PCH level that any declaration may have.
static const unsigned MaxPCHLevel = 3;
/// \brief Set the PCH level of this declaration.
void setPCHLevel(unsigned Level) {
assert(Level < MaxPCHLevel && "PCH level exceeds the maximum");
PCHLevel = Level;
}
unsigned getIdentifierNamespace() const {
return IdentifierNamespace;
}
bool isInIdentifierNamespace(unsigned NS) const {
return getIdentifierNamespace() & NS;
}
static unsigned getIdentifierNamespaceForKind(Kind DK);
/// getLexicalDeclContext - The declaration context where this Decl was
/// lexically declared (LexicalDC). May be different from
/// getDeclContext() (SemanticDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
DeclContext *getLexicalDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->LexicalDC;
}
const DeclContext *getLexicalDeclContext() const {
return const_cast<Decl*>(this)->getLexicalDeclContext();
}
virtual bool isOutOfLine() const {
return getLexicalDeclContext() != getDeclContext();
}
/// setDeclContext - Set both the semantic and lexical DeclContext
/// to DC.
void setDeclContext(DeclContext *DC);
void setLexicalDeclContext(DeclContext *DC);
// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
// scoped decl is defined outside the current function or method. This is
// roughly global variables and functions, but also handles enums (which could
// be defined inside or outside a function etc).
bool isDefinedOutsideFunctionOrMethod() const;
/// \brief Retrieves the "canonical" declaration of the given declaration.
virtual Decl *getCanonicalDecl() { return this; }
const Decl *getCanonicalDecl() const {
return const_cast<Decl*>(this)->getCanonicalDecl();
}
/// \brief Whether this particular Decl is a canonical one.
bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
protected:
/// \brief Returns the next redeclaration or itself if this is the only decl.
///
/// Decl subclasses that can be redeclared should override this method so that
/// Decl::redecl_iterator can iterate over them.
virtual Decl *getNextRedeclaration() { return this; }
public:
/// \brief Iterates through all the redeclarations of the same decl.
class redecl_iterator {
/// Current - The current declaration.
Decl *Current;
Decl *Starter;
public:
typedef Decl* value_type;
typedef Decl* reference;
typedef Decl* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
redecl_iterator() : Current(0) { }
explicit redecl_iterator(Decl *C) : Current(C), Starter(C) { }
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
redecl_iterator& operator++() {
assert(Current && "Advancing while iterator has reached end");
// Get either previous decl or latest decl.
Decl *Next = Current->getNextRedeclaration();
assert(Next && "Should return next redeclaration or itself, never null!");
Current = (Next != Starter ? Next : 0);
return *this;
}
redecl_iterator operator++(int) {
redecl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(redecl_iterator x, redecl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(redecl_iterator x, redecl_iterator y) {
return x.Current != y.Current;
}
};
/// \brief Returns iterator for all the redeclarations of the same decl.
/// It will iterate at least once (when this decl is the only one).
redecl_iterator redecls_begin() const {
return redecl_iterator(const_cast<Decl*>(this));
}
redecl_iterator redecls_end() const { return redecl_iterator(); }
/// getBody - If this Decl represents a declaration for a body of code,
/// such as a function or method definition, this method returns the
/// top-level Stmt* of that body. Otherwise this method returns null.
virtual Stmt* getBody() const { return 0; }
/// getCompoundBody - Returns getBody(), dyn_casted to a CompoundStmt.
CompoundStmt* getCompoundBody() const;
/// getBodyRBrace - Gets the right brace of the body, if a body exists.
/// This works whether the body is a CompoundStmt or a CXXTryStmt.
SourceLocation getBodyRBrace() const;
// global temp stats (until we have a per-module visitor)
static void addDeclKind(Kind k);
static bool CollectingStats(bool Enable = false);
static void PrintStats();
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter.
bool isTemplateParameter() const;
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter pack.
bool isTemplateParameterPack() const;
/// \brief Whether this declaration is a function or function template.
bool isFunctionOrFunctionTemplate() const;
/// \brief Changes the namespace of this declaration to reflect that it's
/// the object of a friend declaration.
///
/// These declarations appear in the lexical context of the friending
/// class, but in the semantic context of the actual entity. This property
/// applies only to a specific decl object; other redeclarations of the
/// same entity may not (and probably don't) share this property.
void setObjectOfFriendDecl(bool PreviouslyDeclared) {
unsigned OldNS = IdentifierNamespace;
assert((OldNS == IDNS_Tag || OldNS == IDNS_Ordinary ||
OldNS == (IDNS_Tag | IDNS_Ordinary))
&& "unsupported namespace for undeclared friend");
if (!PreviouslyDeclared) IdentifierNamespace = 0;
if (OldNS == IDNS_Tag)
IdentifierNamespace |= IDNS_TagFriend;
else
IdentifierNamespace |= IDNS_OrdinaryFriend;
}
enum FriendObjectKind {
FOK_None, // not a friend object
FOK_Declared, // a friend of a previously-declared entity
FOK_Undeclared // a friend of a previously-undeclared entity
};
/// \brief Determines whether this declaration is the object of a
/// friend declaration and, if so, what kind.
///
/// There is currently no direct way to find the associated FriendDecl.
FriendObjectKind getFriendObjectKind() const {
unsigned mask
= (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
if (!mask) return FOK_None;
return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ?
FOK_Declared : FOK_Undeclared);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *) { return true; }
static bool classofKind(Kind K) { return true; }
static DeclContext *castToDeclContext(const Decl *);
static Decl *castFromDeclContext(const DeclContext *);
/// Destroy - Call destructors and release memory.
virtual void Destroy(ASTContext& C);
void print(llvm::raw_ostream &Out, unsigned Indentation = 0) const;
void print(llvm::raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0) const;
static void printGroup(Decl** Begin, unsigned NumDecls,
llvm::raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0);
void dump() const;
private:
const Attr *getAttrsImpl() const;
};
/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
/// doing something to a specific decl.
class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
const Decl *TheDecl;
SourceLocation Loc;
SourceManager &SM;
const char *Message;
public:
PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
SourceManager &sm, const char *Msg)
: TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
virtual void print(llvm::raw_ostream &OS) const;
};
/// DeclContext - This is used only as base class of specific decl types that
/// can act as declaration contexts. These decls are (only the top classes
/// that directly derive from DeclContext are mentioned, not their subclasses):
///
/// TranslationUnitDecl
/// NamespaceDecl
/// FunctionDecl
/// TagDecl
/// ObjCMethodDecl
/// ObjCContainerDecl
/// LinkageSpecDecl
/// BlockDecl
///
class DeclContext {
/// DeclKind - This indicates which class this is.
Decl::Kind DeclKind : 8;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are lexically
/// part of this context.
mutable bool ExternalLexicalStorage : 1;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are visible
/// in this context.
mutable bool ExternalVisibleStorage : 1;
/// \brief Pointer to the data structure used to lookup declarations
/// within this context, which is a DenseMap<DeclarationName,
/// StoredDeclsList>.
mutable void* LookupPtr;
/// FirstDecl - The first declaration stored within this declaration
/// context.
mutable Decl *FirstDecl;
/// LastDecl - The last declaration stored within this declaration
/// context. FIXME: We could probably cache this value somewhere
/// outside of the DeclContext, to reduce the size of DeclContext by
/// another pointer.
mutable Decl *LastDecl;
protected:
DeclContext(Decl::Kind K)
: DeclKind(K), ExternalLexicalStorage(false),
ExternalVisibleStorage(false), LookupPtr(0), FirstDecl(0),
LastDecl(0) { }
void DestroyDecls(ASTContext &C);
public:
~DeclContext();
Decl::Kind getDeclKind() const {
return DeclKind;
}
const char *getDeclKindName() const;
/// getParent - Returns the containing DeclContext.
DeclContext *getParent() {
return cast<Decl>(this)->getDeclContext();
}
const DeclContext *getParent() const {
return const_cast<DeclContext*>(this)->getParent();
}
/// getLexicalParent - Returns the containing lexical DeclContext. May be
/// different from getParent, e.g.:
///
/// namespace A {
/// struct S;
/// }
/// struct A::S {}; // getParent() == namespace 'A'
/// // getLexicalParent() == translation unit
///
DeclContext *getLexicalParent() {
return cast<Decl>(this)->getLexicalDeclContext();
}
const DeclContext *getLexicalParent() const {
return const_cast<DeclContext*>(this)->getLexicalParent();
}
DeclContext *getLookupParent();
const DeclContext *getLookupParent() const {
return const_cast<DeclContext*>(this)->getLookupParent();
}
ASTContext &getParentASTContext() const {
return cast<Decl>(this)->getASTContext();
}
bool isFunctionOrMethod() const {
switch (DeclKind) {
case Decl::Block:
case Decl::ObjCMethod:
return true;
default:
return DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast;
}
}
bool isFileContext() const {
return DeclKind == Decl::TranslationUnit || DeclKind == Decl::Namespace;
}
bool isTranslationUnit() const {
return DeclKind == Decl::TranslationUnit;
}
bool isRecord() const {
return DeclKind >= Decl::RecordFirst && DeclKind <= Decl::RecordLast;
}
bool isNamespace() const {
return DeclKind == Decl::Namespace;
}
/// \brief Determines whether this context is dependent on a
/// template parameter.
bool isDependentContext() const;
/// isTransparentContext - Determines whether this context is a
/// "transparent" context, meaning that the members declared in this
/// context are semantically declared in the nearest enclosing
/// non-transparent (opaque) context but are lexically declared in
/// this context. For example, consider the enumerators of an
/// enumeration type:
/// @code
/// enum E {
/// Val1
/// };
/// @endcode
/// Here, E is a transparent context, so its enumerator (Val1) will
/// appear (semantically) that it is in the same context of E.
/// Examples of transparent contexts include: enumerations (except for
/// C++0x scoped enums), C++ linkage specifications, and C++0x
/// inline namespaces.
bool isTransparentContext() const;
/// \brief Determine whether this declaration context is equivalent
/// to the declaration context DC.
bool Equals(DeclContext *DC) {
return this->getPrimaryContext() == DC->getPrimaryContext();
}
/// \brief Determine whether this declaration context encloses the
/// declaration context DC.
bool Encloses(DeclContext *DC);
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
/// a different set of declarations. This routine returns the
/// "primary" DeclContext structure, which will contain the
/// information needed to perform name lookup into this context.
DeclContext *getPrimaryContext();
/// getLookupContext - Retrieve the innermost non-transparent
/// context of this context, which corresponds to the innermost
/// location from which name lookup can find the entities in this
/// context.
DeclContext *getLookupContext();
const DeclContext *getLookupContext() const {
return const_cast<DeclContext *>(this)->getLookupContext();
}
/// \brief Retrieve the nearest enclosing namespace context.
DeclContext *getEnclosingNamespaceContext();
const DeclContext *getEnclosingNamespaceContext() const {
return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
}
/// getNextContext - If this is a DeclContext that may have other
/// DeclContexts that are semantically connected but syntactically
/// different, such as C++ namespaces, this routine retrieves the
/// next DeclContext in the link. Iteration through the chain of
/// DeclContexts should begin at the primary DeclContext and
/// continue until this function returns NULL. For example, given:
/// @code
/// namespace N {
/// int x;
/// }
/// namespace N {
/// int y;
/// }
/// @endcode
/// The first occurrence of namespace N will be the primary
/// DeclContext. Its getNextContext will return the second
/// occurrence of namespace N.
DeclContext *getNextContext();
/// decl_iterator - Iterates through the declarations stored
/// within this context.
class decl_iterator {
/// Current - The current declaration.
Decl *Current;
public:
typedef Decl* value_type;
typedef Decl* reference;
typedef Decl* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
decl_iterator() : Current(0) { }
explicit decl_iterator(Decl *C) : Current(C) { }
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
decl_iterator& operator++() {
Current = Current->getNextDeclInContext();
return *this;
}
decl_iterator operator++(int) {
decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(decl_iterator x, decl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(decl_iterator x, decl_iterator y) {
return x.Current != y.Current;
}
};
/// decls_begin/decls_end - Iterate over the declarations stored in
/// this context.
decl_iterator decls_begin() const;
decl_iterator decls_end() const;
bool decls_empty() const;
/// specific_decl_iterator - Iterates over a subrange of
/// declarations stored in a DeclContext, providing only those that
/// are of type SpecificDecl (or a class derived from it). This
/// iterator is used, for example, to provide iteration over just
/// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
template<typename SpecificDecl>
class specific_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current && !isa<SpecificDecl>(*Current))
++Current;
}
public:
typedef SpecificDecl* value_type;
typedef SpecificDecl* reference;
typedef SpecificDecl* pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
specific_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
reference operator*() const { return cast<SpecificDecl>(*Current); }
pointer operator->() const { return cast<SpecificDecl>(*Current); }
specific_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
specific_decl_iterator operator++(int) {
specific_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool
operator==(const specific_decl_iterator& x, const specific_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool
operator!=(const specific_decl_iterator& x, const specific_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// \brief Iterates over a filtered subrange of declarations stored
/// in a DeclContext.
///
/// This iterator visits only those declarations that are of type
/// SpecificDecl (or a class derived from it) and that meet some
/// additional run-time criteria. This iterator is used, for
/// example, to provide access to the instance methods within an
/// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
/// Acceptable = ObjCMethodDecl::isInstanceMethod).
template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
class filtered_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current &&
(!isa<SpecificDecl>(*Current) ||
(Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
++Current;
}
public:
typedef SpecificDecl* value_type;
typedef SpecificDecl* reference;
typedef SpecificDecl* pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
filtered_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
reference operator*() const { return cast<SpecificDecl>(*Current); }
pointer operator->() const { return cast<SpecificDecl>(*Current); }
filtered_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
filtered_decl_iterator operator++(int) {
filtered_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool
operator==(const filtered_decl_iterator& x, const filtered_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool
operator!=(const filtered_decl_iterator& x, const filtered_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// @brief Add the declaration D into this context.
///
/// This routine should be invoked when the declaration D has first
/// been declared, to place D into the context where it was
/// (lexically) defined. Every declaration must be added to one
/// (and only one!) context, where it can be visited via
/// [decls_begin(), decls_end()). Once a declaration has been added
/// to its lexical context, the corresponding DeclContext owns the
/// declaration.
///
/// If D is also a NamedDecl, it will be made visible within its
/// semantic context via makeDeclVisibleInContext.
void addDecl(Decl *D);
/// @brief Add the declaration D to this context without modifying
/// any lookup tables.
///
/// This is useful for some operations in dependent contexts where
/// the semantic context might not be dependent; this basically
/// only happens with friends.
void addHiddenDecl(Decl *D);
/// @brief Removes a declaration from this context.
void removeDecl(Decl *D);
/// lookup_iterator - An iterator that provides access to the results
/// of looking up a name within this context.
typedef NamedDecl **lookup_iterator;
/// lookup_const_iterator - An iterator that provides non-mutable
/// access to the results of lookup up a name within this context.
typedef NamedDecl * const * lookup_const_iterator;
typedef std::pair<lookup_iterator, lookup_iterator> lookup_result;
typedef std::pair<lookup_const_iterator, lookup_const_iterator>
lookup_const_result;
/// lookup - Find the declarations (if any) with the given Name in
/// this context. Returns a range of iterators that contains all of
/// the declarations with this name, with object, function, member,
/// and enumerator names preceding any tag name. Note that this
/// routine will not look into parent contexts.
lookup_result lookup(DeclarationName Name);
lookup_const_result lookup(DeclarationName Name) const;
/// @brief Makes a declaration visible within this context.
///
/// This routine makes the declaration D visible to name lookup
/// within this context and, if this is a transparent context,
/// within its parent contexts up to the first enclosing
/// non-transparent context. Making a declaration visible within a
/// context does not transfer ownership of a declaration, and a
/// declaration can be visible in many contexts that aren't its
/// lexical context.
///
/// If D is a redeclaration of an existing declaration that is
/// visible from this context, as determined by
/// NamedDecl::declarationReplaces, the previous declaration will be
/// replaced with D.
///
/// @param Recoverable true if it's okay to not add this decl to
/// the lookup tables because it can be easily recovered by walking
/// the declaration chains.
void makeDeclVisibleInContext(NamedDecl *D, bool Recoverable = true);
/// udir_iterator - Iterates through the using-directives stored
/// within this context.
typedef UsingDirectiveDecl * const * udir_iterator;
typedef std::pair<udir_iterator, udir_iterator> udir_iterator_range;
udir_iterator_range getUsingDirectives() const;
udir_iterator using_directives_begin() const {
return getUsingDirectives().first;
}
udir_iterator using_directives_end() const {
return getUsingDirectives().second;
}
// Low-level accessors
/// \brief Retrieve the internal representation of the lookup structure.
void* getLookupPtr() const { return LookupPtr; }
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are lexically in this context.
bool hasExternalLexicalStorage() const { return ExternalLexicalStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations lexically in this context.
void setHasExternalLexicalStorage(bool ES = true) {
ExternalLexicalStorage = ES;
}
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are visible in this context.
bool hasExternalVisibleStorage() const { return ExternalVisibleStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations visible in this context.
void setHasExternalVisibleStorage(bool ES = true) {
ExternalVisibleStorage = ES;
}
static bool classof(const Decl *D);
static bool classof(const DeclContext *D) { return true; }
#define DECL_CONTEXT(Name) \
static bool classof(const Name##Decl *D) { return true; }
#include "clang/AST/DeclNodes.def"
void dumpDeclContext() const;
private:
void LoadLexicalDeclsFromExternalStorage() const;
void LoadVisibleDeclsFromExternalStorage() const;
void buildLookup(DeclContext *DCtx);
void makeDeclVisibleInContextImpl(NamedDecl *D);
};
inline bool Decl::isTemplateParameter() const {
return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
getKind() == TemplateTemplateParm;
}
// Specialization selected when ToTy is not a known subclass of DeclContext.
template <class ToTy,
bool IsKnownSubtype = ::llvm::is_base_of< DeclContext, ToTy>::value>
struct cast_convert_decl_context {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
}
};
// Specialization selected when ToTy is a known subclass of DeclContext.
template <class ToTy>
struct cast_convert_decl_context<ToTy, true> {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Val);
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Val);
}
};
} // end clang.
namespace llvm {
/// isa<T>(DeclContext*)
template<class ToTy>
struct isa_impl_wrap<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static bool doit(const ::clang::DeclContext &Val) {
return ToTy::classofKind(Val.getDeclKind());
}
};
template<class ToTy>
struct isa_impl_wrap<ToTy, ::clang::DeclContext, ::clang::DeclContext>
: public isa_impl_wrap<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {};
/// cast<T>(DeclContext*)
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static const ToTy &doit(const ::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
static ToTy &doit(::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext*, const ::clang::DeclContext*> {
static const ToTy *doit(const ::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
static ToTy *doit(::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
/// Implement cast_convert_val for Decl -> DeclContext conversions.
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
static ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
static ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
static const ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
static const ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
} // end namespace llvm
#endif