blob: bf506415ac645b83c237b3475addec1c8e3296e5 [file] [log] [blame]
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
bool QualType::isConstant(ASTContext &Ctx) const {
if (isConstQualified())
return true;
if (getTypePtr()->isArrayType())
return Ctx.getAsArrayType(*this)->getElementType().isConstant(Ctx);
return false;
}
void Type::Destroy(ASTContext& C) {
this->~Type();
C.Deallocate(this);
}
void ConstantArrayWithExprType::Destroy(ASTContext& C) {
// FIXME: destruction of SizeExpr commented out due to resource contention.
// SizeExpr->Destroy(C);
// See FIXME in SemaDecl.cpp:1536: if we were able to either steal
// or clone the SizeExpr there, then here we could freely delete it.
// Since we do not know how to steal or clone, we keep a pointer to
// a shared resource, but we cannot free it.
// (There probably is a trivial solution ... for people knowing clang!).
this->~ConstantArrayWithExprType();
C.Deallocate(this);
}
void VariableArrayType::Destroy(ASTContext& C) {
if (SizeExpr)
SizeExpr->Destroy(C);
this->~VariableArrayType();
C.Deallocate(this);
}
void DependentSizedArrayType::Destroy(ASTContext& C) {
// FIXME: Resource contention like in ConstantArrayWithExprType ?
// May crash, depending on platform or a particular build.
// SizeExpr->Destroy(C);
this->~DependentSizedArrayType();
C.Deallocate(this);
}
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
QualType ET,
ArraySizeModifier SizeMod,
unsigned TypeQuals,
Expr *E) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
E->Profile(ID, Context, true);
}
void
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
QualType ElementType, Expr *SizeExpr) {
ID.AddPointer(ElementType.getAsOpaquePtr());
SizeExpr->Profile(ID, Context, true);
}
void DependentSizedExtVectorType::Destroy(ASTContext& C) {
// FIXME: Deallocate size expression, once we're cloning properly.
// if (SizeExpr)
// SizeExpr->Destroy(C);
this->~DependentSizedExtVectorType();
C.Deallocate(this);
}
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType().getTypePtr();
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType)) {
// Look through type qualifiers
if (ArrayType *AT = dyn_cast<ArrayType>(CanonicalType.getUnqualifiedType()))
return AT->getElementType().getTypePtr();
return 0;
}
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getDesugaredType())->getElementType().getTypePtr();
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// \param ForDisplay When true, the desugaring is provided for
/// display purposes only. In this case, we apply more heuristics to
/// decide whether it is worth providing a desugared form of the type
/// or not.
QualType QualType::getDesugaredType(bool ForDisplay) const {
return getTypePtr()->getDesugaredType(ForDisplay)
.getWithAdditionalQualifiers(getCVRQualifiers());
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// type type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it return "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// \param ForDisplay When true, the desugaring is provided for
/// display purposes only. In this case, we apply more heuristics to
/// decide whether it is worth providing a desugared form of the type
/// or not.
QualType Type::getDesugaredType(bool ForDisplay) const {
if (const TypedefType *TDT = dyn_cast<TypedefType>(this))
return TDT->LookThroughTypedefs().getDesugaredType();
if (const TypeOfExprType *TOE = dyn_cast<TypeOfExprType>(this))
return TOE->getUnderlyingExpr()->getType().getDesugaredType();
if (const TypeOfType *TOT = dyn_cast<TypeOfType>(this))
return TOT->getUnderlyingType().getDesugaredType();
if (const DecltypeType *DTT = dyn_cast<DecltypeType>(this)) {
if (!DTT->getUnderlyingType()->isDependentType())
return DTT->getUnderlyingType().getDesugaredType();
}
if (const TemplateSpecializationType *Spec
= dyn_cast<TemplateSpecializationType>(this)) {
if (ForDisplay)
return QualType(this, 0);
QualType Canon = Spec->getCanonicalTypeInternal();
if (Canon->getAsTemplateSpecializationType())
return QualType(this, 0);
return Canon->getDesugaredType();
}
if (const QualifiedNameType *QualName = dyn_cast<QualifiedNameType>(this)) {
if (ForDisplay) {
// If desugaring the type that the qualified name is referring to
// produces something interesting, that's our desugared type.
QualType NamedType = QualName->getNamedType().getDesugaredType();
if (NamedType != QualName->getNamedType())
return NamedType;
} else
return QualName->getNamedType().getDesugaredType();
}
return QualType(this, 0);
}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isVoidType();
return false;
}
bool Type::isObjectType() const {
if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
isa<IncompleteArrayType>(CanonicalType) || isVoidType())
return false;
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isObjectType();
return true;
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isDerivedType();
case Pointer:
case VariableArray:
case ConstantArray:
case ConstantArrayWithExpr:
case ConstantArrayWithoutExpr:
case IncompleteArray:
case FunctionProto:
case FunctionNoProto:
case LValueReference:
case RValueReference:
case Record:
return true;
default:
return false;
}
}
bool Type::isClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isClass();
return false;
}
bool Type::isStructureType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct();
return false;
}
bool Type::isVoidPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVoidType();
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isUnion();
return false;
}
bool Type::isComplexType() const {
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isComplexType();
return false;
}
bool Type::isComplexIntegerType() const {
// Check for GCC complex integer extension.
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isIntegerType();
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isComplexIntegerType();
return false;
}
const ComplexType *Type::getAsComplexIntegerType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this)) {
if (CTy->getElementType()->isIntegerType())
return CTy;
return 0;
}
// If the canonical form of this type isn't what we want, reject it.
if (!isa<ComplexType>(CanonicalType)) {
// Look through type qualifiers (e.g. ExtQualType's).
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsComplexIntegerType();
return 0;
}
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
return cast<ComplexType>(getDesugaredType());
}
const BuiltinType *Type::getAsBuiltinType() const {
// If this is directly a builtin type, return it.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
return BTy;
// If the canonical form of this type isn't a builtin type, reject it.
if (!isa<BuiltinType>(CanonicalType)) {
// Look through type qualifiers (e.g. ExtQualType's).
if (isa<BuiltinType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsBuiltinType();
return 0;
}
// If this is a typedef for a builtin type, strip the typedef off without
// losing all typedef information.
return cast<BuiltinType>(getDesugaredType());
}
const FunctionType *Type::getAsFunctionType() const {
// If this is directly a function type, return it.
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
return FTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<FunctionType>(CanonicalType)) {
// Look through type qualifiers
if (isa<FunctionType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsFunctionType();
return 0;
}
// If this is a typedef for a function type, strip the typedef off without
// losing all typedef information.
return cast<FunctionType>(getDesugaredType());
}
const FunctionNoProtoType *Type::getAsFunctionNoProtoType() const {
return dyn_cast_or_null<FunctionNoProtoType>(getAsFunctionType());
}
const FunctionProtoType *Type::getAsFunctionProtoType() const {
return dyn_cast_or_null<FunctionProtoType>(getAsFunctionType());
}
QualType Type::getPointeeType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
return OPT->getPointeeType();
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
return BPT->getPointeeType();
return QualType();
}
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
/// array types and types that contain variable array types in their
/// declarator
bool Type::isVariablyModifiedType() const {
// A VLA is a variably modified type.
if (isVariableArrayType())
return true;
// An array can contain a variably modified type
if (const Type *T = getArrayElementTypeNoTypeQual())
return T->isVariablyModifiedType();
// A pointer can point to a variably modified type.
// Also, C++ references and member pointers can point to a variably modified
// type, where VLAs appear as an extension to C++, and should be treated
// correctly.
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVariablyModifiedType();
if (const ReferenceType *RT = getAs<ReferenceType>())
return RT->getPointeeType()->isVariablyModifiedType();
if (const MemberPointerType *PT = getAs<MemberPointerType>())
return PT->getPointeeType()->isVariablyModifiedType();
// A function can return a variably modified type
// This one isn't completely obvious, but it follows from the
// definition in C99 6.7.5p3. Because of this rule, it's
// illegal to declare a function returning a variably modified type.
if (const FunctionType *FT = getAsFunctionType())
return FT->getResultType()->isVariablyModifiedType();
return false;
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isStruct())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isStruct())
return 0;
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getDesugaredType());
}
// Look through type qualifiers
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsStructureType();
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isUnion())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isUnion())
return 0;
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getDesugaredType());
}
// Look through type qualifiers
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsUnionType();
return 0;
}
const EnumType *Type::getAsEnumType() const {
// Check the canonicalized unqualified type directly; the more complex
// version is unnecessary because there isn't any typedef information
// to preserve.
return dyn_cast<EnumType>(CanonicalType.getUnqualifiedType());
}
const ComplexType *Type::getAsComplexType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
return CTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ComplexType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsComplexType();
return 0;
}
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
return cast<ComplexType>(getDesugaredType());
}
const VectorType *Type::getAsVectorType() const {
// Are we directly a vector type?
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<VectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<VectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsVectorType();
return 0;
}
// If this is a typedef for a vector type, strip the typedef off without
// losing all typedef information.
return cast<VectorType>(getDesugaredType());
}
const ExtVectorType *Type::getAsExtVectorType() const {
// Are we directly an OpenCU vector type?
if (const ExtVectorType *VTy = dyn_cast<ExtVectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ExtVectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ExtVectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsExtVectorType();
return 0;
}
// If this is a typedef for an extended vector type, strip the typedef off
// without losing all typedef information.
return cast<ExtVectorType>(getDesugaredType());
}
const ObjCInterfaceType *Type::getAsObjCInterfaceType() const {
// There is no sugar for ObjCInterfaceType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
return dyn_cast<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
}
const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCInterfaceType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
if (const ObjCInterfaceType *OIT = getAsObjCInterfaceType())
if (OIT->getNumProtocols())
return OIT;
return 0;
}
bool Type::isObjCQualifiedInterfaceType() const {
return getAsObjCQualifiedInterfaceType() != 0;
}
const ObjCObjectPointerType *Type::getAsObjCObjectPointerType() const {
// There is no sugar for ObjCObjectPointerType's, just return the
// canonical type pointer if it is the right class.
return dyn_cast<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
if (OPT->isObjCQualifiedIdType())
return OPT;
}
return 0;
}
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
if (OPT->getInterfaceType())
return OPT;
}
return 0;
}
const TemplateTypeParmType *Type::getAsTemplateTypeParmType() const {
// There is no sugar for template type parameters, so just return
// the canonical type pointer if it is the right class.
// FIXME: can these be address-space qualified?
return dyn_cast<TemplateTypeParmType>(CanonicalType);
}
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
return 0;
}
const TemplateSpecializationType *
Type::getAsTemplateSpecializationType() const {
// There is no sugar for class template specialization types, so
// just return the canonical type pointer if it is the right class.
return dyn_cast<TemplateSpecializationType>(CanonicalType);
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isIntegerType();
return false;
}
bool Type::isIntegralType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongLong;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true; // Complete enum types are integral.
// FIXME: In C++, enum types are never integral.
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isIntegralType();
return false;
}
bool Type::isEnumeralType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isEnumeralType();
return false;
}
bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isBooleanType();
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S ||
BT->getKind() == BuiltinType::SChar;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isCharType();
return false;
}
bool Type::isWideCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::WChar;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isWideCharType();
return false;
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation, or a vector of signed
/// integer element type.
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::LongLong;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
if (const FixedWidthIntType *FWIT =
dyn_cast<FixedWidthIntType>(CanonicalType))
return FWIT->isSigned();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isSignedIntegerType();
return false;
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation, or a vector of unsigned integer
/// element type.
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::ULongLong;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
if (const FixedWidthIntType *FWIT =
dyn_cast<FixedWidthIntType>(CanonicalType))
return !FWIT->isSigned();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isUnsignedIntegerType();
return false;
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isFloatingType();
return false;
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealFloatingType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isRealFloatingType();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isRealType();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
// If a body isn't seen by the time we get here, return false.
return ET->getDecl()->isDefinition();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isArithmeticType();
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}
bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
// Enums are scalar types, but only if they are defined. Incomplete enums
// are not treated as scalar types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
return false;
}
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isScalarType();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
return isa<PointerType>(CanonicalType) ||
isa<BlockPointerType>(CanonicalType) ||
isa<MemberPointerType>(CanonicalType) ||
isa<ComplexType>(CanonicalType) ||
isa<ObjCObjectPointerType>(CanonicalType);
}
/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
return ClassDecl->isAggregate();
return true;
}
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isAggregateType();
return isa<ArrayType>(CanonicalType);
}
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isConstantSizeType();
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
assert(!isDependentType() && "This doesn't make sense for dependent types");
// The VAT must have a size, as it is known to be complete.
return !isa<VariableArrayType>(CanonicalType);
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isIncompleteType();
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Record:
case Enum:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case IncompleteArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return true;
case ObjCInterface:
// ObjC interfaces are incomplete if they are @class, not @interface.
return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
}
}
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
bool Type::isPODType() const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case.
if (isIncompleteType())
return false;
switch (CanonicalType->getTypeClass()) {
// Everything not explicitly mentioned is not POD.
default: return false;
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isPODType();
case VariableArray:
case ConstantArray:
// IncompleteArray is caught by isIncompleteType() above.
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
case Builtin:
case Complex:
case Pointer:
case MemberPointer:
case Vector:
case ExtVector:
case ObjCObjectPointer:
return true;
case Enum:
return true;
case Record:
if (CXXRecordDecl *ClassDecl
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
return ClassDecl->isPOD();
// C struct/union is POD.
return true;
}
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAsBuiltinType())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
return true;
default:
return false;
}
return false;
}
bool Type::isNullPtrType() const {
if (const BuiltinType *BT = getAsBuiltinType())
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
bool Type::isSpecifierType() const {
// Note that this intentionally does not use the canonical type.
switch (getTypeClass()) {
case Builtin:
case Record:
case Enum:
case Typedef:
case Complex:
case TypeOfExpr:
case TypeOf:
case TemplateTypeParm:
case TemplateSpecialization:
case QualifiedName:
case Typename:
case ObjCInterface:
case ObjCObjectPointer:
return true;
default:
return false;
}
}
const char *BuiltinType::getName(const LangOptions &LO) const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return LO.Bool ? "bool" : "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case Int128: return "__int128_t";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case UInt128: return "__uint128_t";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case WChar: return "wchar_t";
case Char16: return "char16_t";
case Char32: return "char32_t";
case NullPtr: return "nullptr_t";
case Overload: return "<overloaded function type>";
case Dependent: return "<dependent type>";
case UndeducedAuto: return "auto";
case ObjCId: return "id";
case ObjCClass: return "Class";
}
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals, bool hasExceptionSpec,
bool anyExceptionSpec, unsigned NumExceptions,
exception_iterator Exs, bool NoReturn) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
ID.AddInteger(TypeQuals);
ID.AddInteger(hasExceptionSpec);
if (hasExceptionSpec) {
ID.AddInteger(anyExceptionSpec);
for(unsigned i = 0; i != NumExceptions; ++i)
ID.AddPointer(Exs[i].getAsOpaquePtr());
}
ID.AddInteger(NoReturn);
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
getNumExceptions(), exception_begin(), getNoReturnAttr());
}
void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
QualType OIT, ObjCProtocolDecl **protocols,
unsigned NumProtocols) {
ID.AddPointer(OIT.getAsOpaquePtr());
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(protocols[i]);
}
void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
if (getNumProtocols())
Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
else
Profile(ID, getPointeeType(), 0, 0);
}
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
// Usually, there is only a single level of typedefs, be fast in that case.
QualType FirstType = getDecl()->getUnderlyingType();
if (!isa<TypedefType>(FirstType))
return FirstType;
// Otherwise, do the fully general loop.
unsigned TypeQuals = 0;
const TypedefType *TDT = this;
while (1) {
QualType CurType = TDT->getDecl()->getUnderlyingType();
/// FIXME:
/// FIXME: This is incorrect for ExtQuals!
/// FIXME:
TypeQuals |= CurType.getCVRQualifiers();
TDT = dyn_cast<TypedefType>(CurType);
if (TDT == 0)
return QualType(CurType.getTypePtr(), TypeQuals);
}
}
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
: Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
}
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
: Type(Decltype, can, E->isTypeDependent()), E(E),
UnderlyingType(underlyingType) {
}
DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
: DecltypeType(E, Context.DependentTy), Context(Context) { }
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
: Type(TC, can, D->isDependentType()), decl(D, 0) {}
bool RecordType::classof(const TagType *TT) {
return isa<RecordDecl>(TT->getDecl());
}
bool EnumType::classof(const TagType *TT) {
return isa<EnumDecl>(TT->getDecl());
}
bool
TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned NumArgs) {
for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
switch (Args[Idx].getKind()) {
case TemplateArgument::Null:
assert(false && "Should not have a NULL template argument");
break;
case TemplateArgument::Type:
if (Args[Idx].getAsType()->isDependentType())
return true;
break;
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
// Never dependent
break;
case TemplateArgument::Expression:
if (Args[Idx].getAsExpr()->isTypeDependent() ||
Args[Idx].getAsExpr()->isValueDependent())
return true;
break;
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
}
return false;
}
TemplateSpecializationType::
TemplateSpecializationType(ASTContext &Context, TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs, QualType Canon)
: Type(TemplateSpecialization,
Canon.isNull()? QualType(this, 0) : Canon,
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
Context(Context),
Template(T), NumArgs(NumArgs)
{
assert((!Canon.isNull() ||
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
"No canonical type for non-dependent class template specialization");
TemplateArgument *TemplateArgs
= reinterpret_cast<TemplateArgument *>(this + 1);
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
}
void TemplateSpecializationType::Destroy(ASTContext& C) {
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
// FIXME: Not all expressions get cloned, so we can't yet perform
// this destruction.
// if (Expr *E = getArg(Arg).getAsExpr())
// E->Destroy(C);
}
}
TemplateSpecializationType::iterator
TemplateSpecializationType::end() const {
return begin() + getNumArgs();
}
const TemplateArgument &
TemplateSpecializationType::getArg(unsigned Idx) const {
assert(Idx < getNumArgs() && "Template argument out of range");
return getArgs()[Idx];
}
void
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
ASTContext &Context) {
T.Profile(ID);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
const Type *QualifierSet::strip(const Type* T) {
QualType DT = T->getDesugaredType();
addCVR(DT.getCVRQualifiers());
if (const ExtQualType* EQT = dyn_cast<ExtQualType>(DT)) {
if (EQT->getAddressSpace())
addAddressSpace(EQT->getAddressSpace());
if (EQT->getObjCGCAttr())
addObjCGCAttrType(EQT->getObjCGCAttr());
return EQT->getBaseType();
} else {
// Use the sugared type unless desugaring found extra qualifiers.
return (DT.getCVRQualifiers() ? DT.getTypePtr() : T);
}
}
QualType QualifierSet::apply(QualType QT, ASTContext& C) {
QT = QT.getWithAdditionalQualifiers(getCVRMask());
if (hasObjCGCAttrType()) QT = C.getObjCGCQualType(QT, getObjCGCAttrType());
if (hasAddressSpace()) QT = C.getAddrSpaceQualType(QT, getAddressSpace());
return QT;
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
void QualType::dump(const char *msg) const {
std::string R = "identifier";
LangOptions LO;
getAsStringInternal(R, PrintingPolicy(LO));
if (msg)
fprintf(stderr, "%s: %s\n", msg, R.c_str());
else
fprintf(stderr, "%s\n", R.c_str());
}
void QualType::dump() const {
dump("");
}
void Type::dump() const {
std::string S = "identifier";
LangOptions LO;
getAsStringInternal(S, PrintingPolicy(LO));
fprintf(stderr, "%s\n", S.c_str());
}
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
// Note: funkiness to ensure we get a space only between quals.
bool NonePrinted = true;
if (TypeQuals & QualType::Const)
S += "const", NonePrinted = false;
if (TypeQuals & QualType::Volatile)
S += (NonePrinted+" volatile"), NonePrinted = false;
if (TypeQuals & QualType::Restrict)
S += (NonePrinted+" restrict"), NonePrinted = false;
}
std::string QualType::getAsString() const {
std::string S;
LangOptions LO;
getAsStringInternal(S, PrintingPolicy(LO));
return S;
}
void
QualType::getAsStringInternal(std::string &S,
const PrintingPolicy &Policy) const {
if (isNull()) {
S += "NULL TYPE";
return;
}
if (Policy.SuppressSpecifiers && getTypePtr()->isSpecifierType())
return;
// Print qualifiers as appropriate.
if (unsigned Tq = getCVRQualifiers()) {
std::string TQS;
AppendTypeQualList(TQS, Tq);
if (!S.empty())
S = TQS + ' ' + S;
else
S = TQS;
}
getTypePtr()->getAsStringInternal(S, Policy);
}
void BuiltinType::getAsStringInternal(std::string &S,
const PrintingPolicy &Policy) const {
if (S.empty()) {
S = getName(Policy.LangOpts);
} else {
// Prefix the basic type, e.g. 'int X'.
S = ' ' + S;
S = getName(Policy.LangOpts) + S;
}
}
void FixedWidthIntType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
// FIXME: Once we get bitwidth attribute, write as
// "int __attribute__((bitwidth(x)))".
std::string prefix = "__clang_fixedwidth";
prefix += llvm::utostr_32(Width);
prefix += (char)(Signed ? 'S' : 'U');
if (S.empty()) {
S = prefix;
} else {
// Prefix the basic type, e.g. 'int X'.
S = prefix + S;
}
}
void ComplexType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
ElementType->getAsStringInternal(S, Policy);
S = "_Complex " + S;
}
void ExtQualType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
bool NeedsSpace = false;
if (AddressSpace) {
S = "__attribute__((address_space("+llvm::utostr_32(AddressSpace)+")))" + S;
NeedsSpace = true;
}
if (GCAttrType != QualType::GCNone) {
if (NeedsSpace)
S += ' ';
S += "__attribute__((objc_gc(";
if (GCAttrType == QualType::Weak)
S += "weak";
else
S += "strong";
S += ")))";
}
BaseType->getAsStringInternal(S, Policy);
}
void PointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S = '*' + S;
// Handle things like 'int (*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S, Policy);
}
void BlockPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S = '^' + S;
PointeeType.getAsStringInternal(S, Policy);
}
void LValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S = '&' + S;
// Handle things like 'int (&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S, Policy);
}
void RValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S = "&&" + S;
// Handle things like 'int (&&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S, Policy);
}
void MemberPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
std::string C;
Class->getAsStringInternal(C, Policy);
C += "::*";
S = C + S;
// Handle things like 'int (Cls::*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S, Policy);
}
void ConstantArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S += '[';
S += llvm::utostr(getSize().getZExtValue());
S += ']';
getElementType().getAsStringInternal(S, Policy);
}
void ConstantArrayWithExprType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
if (Policy.ConstantArraySizeAsWritten) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s, 0, Policy);
S += '[';
S += s.str();
S += ']';
getElementType().getAsStringInternal(S, Policy);
}
else
ConstantArrayType::getAsStringInternal(S, Policy);
}
void ConstantArrayWithoutExprType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
if (Policy.ConstantArraySizeAsWritten) {
S += "[]";
getElementType().getAsStringInternal(S, Policy);
}
else
ConstantArrayType::getAsStringInternal(S, Policy);
}
void IncompleteArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S += "[]";
getElementType().getAsStringInternal(S, Policy);
}
void VariableArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S += '[';
if (getIndexTypeQualifier()) {
AppendTypeQualList(S, getIndexTypeQualifier());
S += ' ';
}
if (getSizeModifier() == Static)
S += "static";
else if (getSizeModifier() == Star)
S += '*';
if (getSizeExpr()) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s, 0, Policy);
S += s.str();
}
S += ']';
getElementType().getAsStringInternal(S, Policy);
}
void DependentSizedArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S += '[';
if (getIndexTypeQualifier()) {
AppendTypeQualList(S, getIndexTypeQualifier());
S += ' ';
}
if (getSizeModifier() == Static)
S += "static";
else if (getSizeModifier() == Star)
S += '*';
if (getSizeExpr()) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s, 0, Policy);
S += s.str();
}
S += ']';
getElementType().getAsStringInternal(S, Policy);
}
void DependentSizedExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
getElementType().getAsStringInternal(S, Policy);
S += " __attribute__((ext_vector_type(";
if (getSizeExpr()) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s, 0, Policy);
S += s.str();
}
S += ")))";
}
void VectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
// FIXME: We prefer to print the size directly here, but have no way
// to get the size of the type.
S += " __attribute__((__vector_size__(";
S += llvm::utostr_32(NumElements); // convert back to bytes.
S += " * sizeof(" + ElementType.getAsString() + "))))";
ElementType.getAsStringInternal(S, Policy);
}
void ExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
S += " __attribute__((ext_vector_type(";
S += llvm::utostr_32(NumElements);
S += ")))";
ElementType.getAsStringInternal(S, Policy);
}
void TypeOfExprType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
InnerString = ' ' + InnerString;
std::string Str;
llvm::raw_string_ostream s(Str);
getUnderlyingExpr()->printPretty(s, 0, Policy);
InnerString = "typeof " + s.str() + InnerString;
}
void TypeOfType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
InnerString = ' ' + InnerString;
std::string Tmp;
getUnderlyingType().getAsStringInternal(Tmp, Policy);
InnerString = "typeof(" + Tmp + ")" + InnerString;
}
void DecltypeType::getAsStringInternal(std::string &InnerString,
const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'decltype(t) X'.
InnerString = ' ' + InnerString;
std::string Str;
llvm::raw_string_ostream s(Str);
getUnderlyingExpr()->printPretty(s, 0, Policy);
InnerString = "decltype(" + s.str() + ")" + InnerString;
}
void FunctionNoProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "()";
if (getNoReturnAttr())
S += " __attribute__((noreturn))";
getResultType().getAsStringInternal(S, Policy);
}
void FunctionProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "(";
std::string Tmp;
PrintingPolicy ParamPolicy(Policy);
ParamPolicy.SuppressSpecifiers = false;
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
if (i) S += ", ";
getArgType(i).getAsStringInternal(Tmp, ParamPolicy);
S += Tmp;
Tmp.clear();
}
if (isVariadic()) {
if (getNumArgs())
S += ", ";
S += "...";
} else if (getNumArgs() == 0 && !Policy.LangOpts.CPlusPlus) {
// Do not emit int() if we have a proto, emit 'int(void)'.
S += "void";
}
S += ")";
if (getNoReturnAttr())
S += " __attribute__((noreturn))";
getResultType().getAsStringInternal(S, Policy);
}
void TypedefType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void TemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'parmname X'.
InnerString = ' ' + InnerString;
if (!Name)
InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
llvm::utostr_32(Index) + InnerString;
else
InnerString = Name->getName() + InnerString;
}
std::string
TemplateSpecializationType::PrintTemplateArgumentList(
const TemplateArgument *Args,
unsigned NumArgs,
const PrintingPolicy &Policy) {
std::string SpecString;
SpecString += '<';
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
if (Arg)
SpecString += ", ";
// Print the argument into a string.
std::string ArgString;
switch (Args[Arg].getKind()) {
case TemplateArgument::Null:
assert(false && "Null template argument");
break;
case TemplateArgument::Type:
Args[Arg].getAsType().getAsStringInternal(ArgString, Policy);
break;
case TemplateArgument::Declaration:
ArgString = cast<NamedDecl>(Args[Arg].getAsDecl())->getNameAsString();
break;
case TemplateArgument::Integral:
ArgString = Args[Arg].getAsIntegral()->toString(10, true);
break;
case TemplateArgument::Expression: {
llvm::raw_string_ostream s(ArgString);
Args[Arg].getAsExpr()->printPretty(s, 0, Policy);
break;
}
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
// If this is the first argument and its string representation
// begins with the global scope specifier ('::foo'), add a space
// to avoid printing the diagraph '<:'.
if (!Arg && !ArgString.empty() && ArgString[0] == ':')
SpecString += ' ';
SpecString += ArgString;
}
// If the last character of our string is '>', add another space to
// keep the two '>''s separate tokens. We don't *have* to do this in
// C++0x, but it's still good hygiene.
if (SpecString[SpecString.size() - 1] == '>')
SpecString += ' ';
SpecString += '>';
return SpecString;
}
void
TemplateSpecializationType::
getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
std::string SpecString;
{
llvm::raw_string_ostream OS(SpecString);
Template.print(OS, Policy);
}
SpecString += PrintTemplateArgumentList(getArgs(), getNumArgs(), Policy);
if (InnerString.empty())
InnerString.swap(SpecString);
else
InnerString = SpecString + ' ' + InnerString;
}
void QualifiedNameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
std::string MyString;
{
llvm::raw_string_ostream OS(MyString);
NNS->print(OS, Policy);
}
std::string TypeStr;
PrintingPolicy InnerPolicy(Policy);
InnerPolicy.SuppressTagKind = true;
NamedType.getAsStringInternal(TypeStr, InnerPolicy);
MyString += TypeStr;
if (InnerString.empty())
InnerString.swap(MyString);
else
InnerString = MyString + ' ' + InnerString;
}
void TypenameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
std::string MyString;
{
llvm::raw_string_ostream OS(MyString);
OS << "typename ";
NNS->print(OS, Policy);
if (const IdentifierInfo *Ident = getIdentifier())
OS << Ident->getName();
else if (const TemplateSpecializationType *Spec = getTemplateId()) {
Spec->getTemplateName().print(OS, Policy, true);
OS << TemplateSpecializationType::PrintTemplateArgumentList(
Spec->getArgs(),
Spec->getNumArgs(),
Policy);
}
}
if (InnerString.empty())
InnerString.swap(MyString);
else
InnerString = MyString + ' ' + InnerString;
}
void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
const ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **protocols,
unsigned NumProtocols) {
ID.AddPointer(Decl);
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(protocols[i]);
}
void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
if (getNumProtocols())
Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
else
Profile(ID, getDecl(), 0, 0);
}
void ObjCInterfaceType::getAsStringInternal(std::string &InnerString,
const PrintingPolicy &Policy) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
std::string ObjCQIString = getDecl()->getNameAsString();
if (getNumProtocols()) {
ObjCQIString += '<';
bool isFirst = true;
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
if (isFirst)
isFirst = false;
else
ObjCQIString += ',';
ObjCQIString += (*I)->getNameAsString();
}
ObjCQIString += '>';
}
InnerString = ObjCQIString + InnerString;
}
void ObjCObjectPointerType::getAsStringInternal(std::string &InnerString,
const PrintingPolicy &Policy) const {
std::string ObjCQIString;
if (isObjCIdType() || isObjCQualifiedIdType())
ObjCQIString = "id";
else if (isObjCClassType() || isObjCQualifiedClassType())
ObjCQIString = "Class";
else
ObjCQIString = getInterfaceDecl()->getNameAsString();
if (!qual_empty()) {
ObjCQIString += '<';
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
ObjCQIString += (*I)->getNameAsString();
if (I+1 != E)
ObjCQIString += ',';
}
ObjCQIString += '>';
}
if (!isObjCIdType() && !isObjCQualifiedIdType())
ObjCQIString += " *"; // Don't forget the implicit pointer.
else if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = ObjCQIString + InnerString;
}
void TagType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
if (Policy.SuppressTag)
return;
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
const char *Kind = Policy.SuppressTagKind? 0 : getDecl()->getKindName();
const char *ID;
if (const IdentifierInfo *II = getDecl()->getIdentifier())
ID = II->getName();
else if (TypedefDecl *Typedef = getDecl()->getTypedefForAnonDecl()) {
Kind = 0;
assert(Typedef->getIdentifier() && "Typedef without identifier?");
ID = Typedef->getIdentifier()->getName();
} else
ID = "<anonymous>";
// If this is a class template specialization, print the template
// arguments.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(getDecl())) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size(),
Policy);
InnerString = TemplateArgsStr + InnerString;
}
if (Kind) {
// Compute the full nested-name-specifier for this type. In C,
// this will always be empty.
std::string ContextStr;
for (DeclContext *DC = getDecl()->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
std::string MyPart;
if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
if (NS->getIdentifier())
MyPart = NS->getNameAsString();
} else if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size(),
Policy);
MyPart = Spec->getIdentifier()->getName() + TemplateArgsStr;
} else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
if (TypedefDecl *Typedef = Tag->getTypedefForAnonDecl())
MyPart = Typedef->getIdentifier()->getName();
else if (Tag->getIdentifier())
MyPart = Tag->getIdentifier()->getName();
}
if (!MyPart.empty())
ContextStr = MyPart + "::" + ContextStr;
}
InnerString = std::string(Kind) + " " + ContextStr + ID + InnerString;
} else
InnerString = ID + InnerString;
}