blob: 1d8a77b73e5c27b287760f7f62701765aa8ba8cf [file] [log] [blame]
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY32_H_
#define SCUDO_PRIMARY32_H_
#include "allocator_common.h"
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "options.h"
#include "release.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
#include "thread_annotations.h"
namespace scudo {
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
//
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
// boundary, and keeps a bytemap of the mappable address space to track the size
// class they are associated with.
//
// Mapped regions are split into equally sized Blocks according to the size
// class they belong to, and the associated pointers are shuffled to prevent any
// predictable address pattern (the predictability increases with the block
// size).
//
// Regions for size class 0 are special and used to hold TransferBatches, which
// allow to transfer arrays of pointers from the global size class freelist to
// the thread specific freelist for said class, and back.
//
// Memory used by this allocator is never unmapped but can be partially
// reclaimed if the platform allows for it.
template <typename Config> class SizeClassAllocator32 {
public:
typedef typename Config::CompactPtrT CompactPtrT;
typedef typename Config::SizeClassMap SizeClassMap;
static const uptr GroupSizeLog = Config::getGroupSizeLog();
// The bytemap can only track UINT8_MAX - 1 classes.
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
// Regions should be large enough to hold the largest Block.
static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize,
"");
typedef SizeClassAllocator32<Config> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef TransferBatch<ThisT> TransferBatchT;
typedef BatchGroup<ThisT> BatchGroupT;
static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
"BatchGroupT uses the same class size as TransferBatchT");
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? sizeof(TransferBatchT)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
if (SCUDO_FUCHSIA)
reportError("SizeClassAllocator32 is not supported on Fuchsia");
if (SCUDO_TRUSTY)
reportError("SizeClassAllocator32 is not supported on Trusty");
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
PossibleRegions.init();
u32 Seed;
const u64 Time = getMonotonicTimeFast();
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
Seed = static_cast<u32>(
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
Sci->RandState = getRandomU32(&Seed);
// Sci->MaxRegionIndex is already initialized to 0.
Sci->MinRegionIndex = NumRegions;
Sci->ReleaseInfo.LastReleaseAtNs = Time;
}
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void unmapTestOnly() {
{
ScopedLock L(RegionsStashMutex);
while (NumberOfStashedRegions > 0) {
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
RegionSize);
}
}
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
if (Sci->MinRegionIndex < MinRegionIndex)
MinRegionIndex = Sci->MinRegionIndex;
if (Sci->MaxRegionIndex > MaxRegionIndex)
MaxRegionIndex = Sci->MaxRegionIndex;
*Sci = {};
}
ScopedLock L(ByteMapMutex);
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
if (PossibleRegions[I])
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
PossibleRegions.unmapTestOnly();
}
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
void verifyAllBlocksAreReleasedTestOnly() {
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
uptr BatchClassUsedInFreeLists = 0;
for (uptr I = 0; I < NumClasses; I++) {
// We have to count BatchClassUsedInFreeLists in other regions first.
if (I == SizeClassMap::BatchClassId)
continue;
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L1(Sci->Mutex);
uptr TotalBlocks = 0;
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
}
const uptr BlockSize = getSizeByClassId(I);
DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
}
SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
ScopedLock L1(Sci->Mutex);
uptr TotalBlocks = 0;
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
if (LIKELY(!BG.Batches.empty())) {
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
} else {
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
// itself.
++TotalBlocks;
}
}
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
Sci->AllocatedUser / BlockSize);
const uptr BlocksInUse =
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
}
CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
return static_cast<CompactPtrT>(Ptr);
}
void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
}
uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
return CompactPtr & ~Mask;
}
uptr decompactGroupBase(uptr CompactPtrGroupBase) {
return CompactPtrGroupBase;
}
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize < PageSize / 16U;
}
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize > PageSize;
}
u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
const u16 MaxBlockCount) {
DCHECK_LT(ClassId, NumClasses);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
ScopedLock L(Sci->Mutex);
u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
if (UNLIKELY(PopCount == 0)) {
if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
return 0U;
PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
DCHECK_NE(PopCount, 0U);
}
return PopCount;
}
// Push the array of free blocks to the designated batch group.
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(Size, 0);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
if (ClassId == SizeClassMap::BatchClassId) {
ScopedLock L(Sci->Mutex);
pushBatchClassBlocks(Sci, Array, Size);
return;
}
// TODO(chiahungduan): Consider not doing grouping if the group size is not
// greater than the block size with a certain scale.
// Sort the blocks so that blocks belonging to the same group can be pushed
// together.
bool SameGroup = true;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
SameGroup = false;
CompactPtrT Cur = Array[I];
u32 J = I;
while (J > 0 &&
compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
Array[J] = Array[J - 1];
--J;
}
Array[J] = Cur;
}
ScopedLock L(Sci->Mutex);
pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
}
void disable() NO_THREAD_SAFETY_ANALYSIS {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
}
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
RegionsStashMutex.lock();
ByteMapMutex.lock();
}
void enable() NO_THREAD_SAFETY_ANALYSIS {
ByteMapMutex.unlock();
RegionsStashMutex.unlock();
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(I)->Mutex.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
// TODO: The call of `iterateOverBlocks` requires disabling
// SizeClassAllocator32. We may consider locking each region on demand
// only.
Sci->Mutex.assertHeld();
if (Sci->MinRegionIndex < MinRegionIndex)
MinRegionIndex = Sci->MinRegionIndex;
if (Sci->MaxRegionIndex > MaxRegionIndex)
MaxRegionIndex = Sci->MaxRegionIndex;
}
// SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
ByteMapMutex.assertHeld();
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
if (PossibleRegions[I] &&
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
const uptr From = I * RegionSize;
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
TotalMapped += Sci->AllocatedUser;
PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
PushedBlocks += Sci->FreeListInfo.PushedBlocks;
}
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
"remains %zu\n",
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
getStats(Str, I, Sci);
}
}
void getFragmentationInfo(ScopedString *Str) {
Str->append(
"Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
getPageSizeCached());
for (uptr I = 1; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
getSizeClassFragmentationInfo(Sci, I, Str);
}
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval = Max(
Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
Config::getMinReleaseToOsIntervalMs());
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
// TODO: Once we have separate locks like primary64, we may consider using
// tryLock() as well.
ScopedLock L(Sci->Mutex);
return releaseToOSMaybe(Sci, ClassId, ReleaseType);
}
uptr releaseToOS(ReleaseToOS ReleaseType) {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
}
return TotalReleasedBytes;
}
const char *getRegionInfoArrayAddress() const { return nullptr; }
static uptr getRegionInfoArraySize() { return 0; }
static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
UNUSED uptr Ptr) {
return {};
}
AtomicOptions Options;
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr RegionSize = 1UL << Config::getRegionSizeLog();
static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >>
Config::getRegionSizeLog();
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
typedef FlatByteMap<NumRegions> ByteMap;
struct ReleaseToOsInfo {
uptr BytesInFreeListAtLastCheckpoint;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct BlocksInfo {
SinglyLinkedList<BatchGroupT> BlockList = {};
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
};
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
HybridMutex Mutex;
BlocksInfo FreeListInfo GUARDED_BY(Mutex);
uptr CurrentRegion GUARDED_BY(Mutex);
uptr CurrentRegionAllocated GUARDED_BY(Mutex);
u32 RandState;
uptr AllocatedUser GUARDED_BY(Mutex);
// Lowest & highest region index allocated for this size class, to avoid
// looping through the whole NumRegions.
uptr MinRegionIndex GUARDED_BY(Mutex);
uptr MaxRegionIndex GUARDED_BY(Mutex);
ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
};
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
uptr computeRegionId(uptr Mem) {
const uptr Id = Mem >> Config::getRegionSizeLog();
CHECK_LT(Id, NumRegions);
return Id;
}
uptr allocateRegionSlow() {
uptr MapSize = 2 * RegionSize;
const uptr MapBase = reinterpret_cast<uptr>(
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
if (!MapBase)
return 0;
const uptr MapEnd = MapBase + MapSize;
uptr Region = MapBase;
if (isAligned(Region, RegionSize)) {
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions < MaxStashedRegions)
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
else
MapSize = RegionSize;
} else {
Region = roundUp(MapBase, RegionSize);
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
MapSize = RegionSize;
}
const uptr End = Region + MapSize;
if (End != MapEnd)
unmap(reinterpret_cast<void *>(End), MapEnd - End);
DCHECK_EQ(Region % RegionSize, 0U);
static_assert(Config::getRegionSizeLog() == GroupSizeLog,
"Memory group should be the same size as Region");
return Region;
}
uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
DCHECK_LT(ClassId, NumClasses);
uptr Region = 0;
{
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions > 0)
Region = RegionsStash[--NumberOfStashedRegions];
}
if (!Region)
Region = allocateRegionSlow();
if (LIKELY(Region)) {
// Sci->Mutex is held by the caller, updating the Min/Max is safe.
const uptr RegionIndex = computeRegionId(Region);
if (RegionIndex < Sci->MinRegionIndex)
Sci->MinRegionIndex = RegionIndex;
if (RegionIndex > Sci->MaxRegionIndex)
Sci->MaxRegionIndex = RegionIndex;
ScopedLock L(ByteMapMutex);
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
}
return Region;
}
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &SizeClassInfoArray[ClassId];
}
void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
REQUIRES(Sci->Mutex) {
DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
// Free blocks are recorded by TransferBatch in freelist for all
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
// In order not to use additional block to record the free blocks in
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
// block address of itself. See the figure below:
//
// TransferBatch at 0xABCD
// +----------------------------+
// | Free blocks' addr |
// | +------+------+------+ |
// | |0xABCD|... |... | |
// | +------+------+------+ |
// +----------------------------+
//
// When we allocate all the free blocks in the TransferBatch, the block used
// by TransferBatch is also free for use. We don't need to recycle the
// TransferBatch. Note that the correctness is maintained by the invariant,
//
// Each popBlocks() request returns the entire TransferBatch. Returning
// part of the blocks in a TransferBatch is invalid.
//
// This ensures that TransferBatch won't leak the address itself while it's
// still holding other valid data.
//
// Besides, BatchGroup is also allocated from BatchClassId and has its
// address recorded in the TransferBatch too. To maintain the correctness,
//
// The address of BatchGroup is always recorded in the last TransferBatch
// in the freelist (also imply that the freelist should only be
// updated with push_front). Once the last TransferBatch is popped,
// the block used by BatchGroup is also free for use.
//
// With this approach, the blocks used by BatchGroup and TransferBatch are
// reusable and don't need additional space for them.
Sci->FreeListInfo.PushedBlocks += Size;
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
if (BG == nullptr) {
// Construct `BatchGroup` on the last element.
BG = reinterpret_cast<BatchGroupT *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
--Size;
BG->Batches.clear();
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
// memory group here.
BG->CompactPtrGroupBase = 0;
// `BG` is also the block of BatchClassId. Note that this is different
// from `CreateGroup` in `pushBlocksImpl`
BG->PushedBlocks = 1;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch =
CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
Sci->FreeListInfo.BlockList.push_front(BG);
}
if (UNLIKELY(Size == 0))
return;
// This happens under 2 cases.
// 1. just allocated a new `BatchGroup`.
// 2. Only 1 block is pushed when the freelist is empty.
if (BG->Batches.empty()) {
// Construct the `TransferBatch` on the last element.
TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
TB->clear();
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
// recorded in the TransferBatch.
TB->add(Array[Size - 1]);
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
--Size;
DCHECK_EQ(BG->PushedBlocks, 1U);
// `TB` is also the block of BatchClassId.
BG->PushedBlocks += 1;
BG->Batches.push_front(TB);
}
TransferBatchT *CurBatch = BG->Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = reinterpret_cast<TransferBatchT *>(
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
CurBatch->clear();
// Self-contained
CurBatch->add(Array[I]);
++I;
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
// BatchClassId.
BG->Batches.push_front(CurBatch);
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
}
// Push the blocks to their batch group. The layout will be like,
//
// FreeListInfo.BlockList - > BG -> BG -> BG
// | | |
// v v v
// TB TB TB
// |
// v
// TB
//
// Each BlockGroup(BG) will associate with unique group id and the free blocks
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
// that we can get better performance of maintaining sorted property.
// Use `SameGroup=true` to indicate that all blocks in the array are from the
// same group then we will skip checking the group id of each block.
//
// The region mutex needs to be held while calling this method.
void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
CompactPtrT *Array, u32 Size, bool SameGroup = false)
REQUIRES(Sci->Mutex) {
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
DCHECK_GT(Size, 0U);
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
BatchGroupT *BG =
reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
BG->Batches.clear();
TransferBatchT *TB =
reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
TB->clear();
BG->CompactPtrGroupBase = CompactPtrGroupBase;
BG->Batches.push_front(TB);
BG->PushedBlocks = 0;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
return BG;
};
auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
TransferBatchT *CurBatch = Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch =
reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
CurBatch->clear();
Batches.push_front(CurBatch);
UnusedSlots = BG->MaxCachedPerBatch;
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
};
Sci->FreeListInfo.PushedBlocks += Size;
BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
// In the following, `Cur` always points to the BatchGroup for blocks that
// will be pushed next. `Prev` is the element right before `Cur`.
BatchGroupT *Prev = nullptr;
while (Cur != nullptr &&
compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroupBase(Array[0]));
if (Prev == nullptr)
Sci->FreeListInfo.BlockList.push_front(Cur);
else
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
}
// All the blocks are from the same group, just push without checking group
// id.
if (SameGroup) {
for (u32 I = 0; I < Size; ++I)
DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array, Size);
return;
}
// The blocks are sorted by group id. Determine the segment of group and
// push them to their group together.
u32 Count = 1;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array + I - Count, Count);
while (Cur != nullptr &&
compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroupBase(Array[I]));
DCHECK_NE(Prev, nullptr);
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
}
Count = 1;
} else {
++Count;
}
}
InsertBlocks(Cur, Array + Size - Count, Count);
}
u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
CompactPtrT *ToArray, const u16 MaxBlockCount)
REQUIRES(Sci->Mutex) {
if (Sci->FreeListInfo.BlockList.empty())
return 0U;
SinglyLinkedList<TransferBatchT> &Batches =
Sci->FreeListInfo.BlockList.front()->Batches;
if (Batches.empty()) {
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
Sci->FreeListInfo.BlockList.pop_front();
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
// `TransferBatch` with single block.
TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
ToArray[0] =
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
Sci->FreeListInfo.PoppedBlocks += 1;
return 1U;
}
// So far, instead of always filling the blocks to `MaxBlockCount`, we only
// examine single `TransferBatch` to minimize the time spent on the primary
// allocator. Besides, the sizes of `TransferBatch` and
// `CacheT::getMaxCached()` may also impact the time spent on accessing the
// primary allocator.
// TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
// blocks and/or adjust the size of `TransferBatch` according to
// `CacheT::getMaxCached()`.
TransferBatchT *B = Batches.front();
DCHECK_NE(B, nullptr);
DCHECK_GT(B->getCount(), 0U);
// BachClassId should always take all blocks in the TransferBatch. Read the
// comment in `pushBatchClassBlocks()` for more details.
const u16 PopCount = ClassId == SizeClassMap::BatchClassId
? B->getCount()
: Min(MaxBlockCount, B->getCount());
B->moveNToArray(ToArray, PopCount);
// TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
// done without holding `Mutex`.
if (B->empty()) {
Batches.pop_front();
// `TransferBatch` of BatchClassId is self-contained, no need to
// deallocate. Read the comment in `pushBatchClassBlocks()` for more
// details.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, B);
if (Batches.empty()) {
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
Sci->FreeListInfo.BlockList.pop_front();
// We don't keep BatchGroup with zero blocks to avoid empty-checking
// while allocating. Note that block used for constructing BatchGroup is
// recorded as free blocks in the last element of BatchGroup::Batches.
// Which means, once we pop the last TransferBatch, the block is
// implicitly deallocated.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, BG);
}
}
Sci->FreeListInfo.PoppedBlocks += PopCount;
return PopCount;
}
NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
REQUIRES(Sci->Mutex) {
uptr Region;
uptr Offset;
// If the size-class currently has a region associated to it, use it. The
// newly created blocks will be located after the currently allocated memory
// for that region (up to RegionSize). Otherwise, create a new region, where
// the new blocks will be carved from the beginning.
if (Sci->CurrentRegion) {
Region = Sci->CurrentRegion;
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
Offset = Sci->CurrentRegionAllocated;
} else {
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
Region = allocateRegion(Sci, ClassId);
if (UNLIKELY(!Region))
return false;
C->getStats().add(StatMapped, RegionSize);
Sci->CurrentRegion = Region;
Offset = 0;
}
const uptr Size = getSizeByClassId(ClassId);
const u16 MaxCount = CacheT::getMaxCached(Size);
DCHECK_GT(MaxCount, 0U);
// The maximum number of blocks we should carve in the region is dictated
// by the maximum number of batches we want to fill, and the amount of
// memory left in the current region (we use the lowest of the two). This
// will not be 0 as we ensure that a region can at least hold one block (via
// static_assert and at the end of this function).
const u32 NumberOfBlocks =
Min(MaxNumBatches * MaxCount,
static_cast<u32>((RegionSize - Offset) / Size));
DCHECK_GT(NumberOfBlocks, 0U);
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatchT::MaxNumCached;
// Fill the transfer batches and put them in the size-class freelist. We
// need to randomize the blocks for security purposes, so we first fill a
// local array that we then shuffle before populating the batches.
CompactPtrT ShuffleArray[ShuffleArraySize];
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
uptr P = Region + Offset;
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
if (ClassId != SizeClassMap::BatchClassId) {
u32 N = 1;
uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
for (u32 I = 1; I < NumberOfBlocks; I++) {
if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
shuffle(ShuffleArray + I - N, N, &Sci->RandState);
pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
/*SameGroup=*/true);
N = 1;
CurGroup = compactPtrGroupBase(ShuffleArray[I]);
} else {
++N;
}
}
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
/*SameGroup=*/true);
} else {
pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
}
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
// the requests from `PushBlocks` and `PopBatch` which are external
// interfaces. `populateFreeList` is the internal interface so we should set
// the values back to avoid incorrectly setting the stats.
Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
const uptr AllocatedUser = Size * NumberOfBlocks;
C->getStats().add(StatFree, AllocatedUser);
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
// If there is not enough room in the region currently associated to fit
// more blocks, we deassociate the region by resetting CurrentRegion and
// CurrentRegionAllocated. Otherwise, update the allocated amount.
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
Sci->CurrentRegion = 0;
Sci->CurrentRegionAllocated = 0;
} else {
Sci->CurrentRegionAllocated += AllocatedUser;
}
Sci->AllocatedUser += AllocatedUser;
return true;
}
void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
REQUIRES(Sci->Mutex) {
if (Sci->AllocatedUser == 0)
return;
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr InUse =
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
uptr PushedBytesDelta = 0;
if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
PushedBytesDelta =
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
}
const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
"latest pushed bytes: %6zuK\n",
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
Sci->ReleaseInfo.LastReleasedBytes >> 10,
PushedBytesDelta >> 10);
}
void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
ScopedString *Str) REQUIRES(Sci->Mutex) {
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr First = Sci->MinRegionIndex;
const uptr Last = Sci->MaxRegionIndex;
const uptr Base = First * RegionSize;
const uptr NumberOfRegions = Last - First + 1U;
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
ScopedLock L(ByteMapMutex);
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
};
FragmentationRecorder Recorder;
if (!Sci->FreeListInfo.BlockList.empty()) {
PageReleaseContext Context =
markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
ReleaseToOS::ForceAll);
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
}
const uptr PageSize = getPageSizeCached();
const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
const uptr InUseBlocks =
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
uptr AllocatedPagesCount = 0;
if (TotalBlocks != 0U) {
for (uptr I = 0; I < NumberOfRegions; ++I) {
if (SkipRegion(I))
continue;
AllocatedPagesCount += RegionSize / PageSize;
}
DCHECK_NE(AllocatedPagesCount, 0U);
}
DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
const uptr InUsePages =
AllocatedPagesCount - Recorder.getReleasedPagesCount();
const uptr InUseBytes = InUsePages * PageSize;
uptr Integral;
uptr Fractional;
computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
&Fractional);
Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
"pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
}
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
REQUIRES(Sci->Mutex) {
const uptr BlockSize = getSizeByClassId(ClassId);
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
const uptr BytesInFreeList =
Sci->AllocatedUser -
(Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
BlockSize;
if (UNLIKELY(BytesInFreeList == 0))
return 0;
// ====================================================================== //
// 1. Check if we have enough free blocks and if it's worth doing a page
// release.
// ====================================================================== //
if (ReleaseType != ReleaseToOS::ForceAll &&
!hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
ReleaseType)) {
return 0;
}
const uptr First = Sci->MinRegionIndex;
const uptr Last = Sci->MaxRegionIndex;
DCHECK_NE(Last, 0U);
DCHECK_LE(First, Last);
uptr TotalReleasedBytes = 0;
const uptr Base = First * RegionSize;
const uptr NumberOfRegions = Last - First + 1U;
// ==================================================================== //
// 2. Mark the free blocks and we can tell which pages are in-use by
// querying `PageReleaseContext`.
// ==================================================================== //
PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
NumberOfRegions, ReleaseType);
if (!Context.hasBlockMarked())
return 0;
// ==================================================================== //
// 3. Release the unused physical pages back to the OS.
// ==================================================================== //
ReleaseRecorder Recorder(Base);
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
ScopedLock L(ByteMapMutex);
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
};
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
}
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
return TotalReleasedBytes;
}
bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
uptr BytesInFreeList, ReleaseToOS ReleaseType)
REQUIRES(Sci->Mutex) {
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
const uptr PageSize = getPageSizeCached();
if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
// so that we won't underestimate the releasable pages. For example, the
// following is the region usage,
//
// BytesInFreeListAtLastCheckpoint AllocatedUser
// v v
// |--------------------------------------->
// ^ ^
// BytesInFreeList ReleaseThreshold
//
// In general, if we have collected enough bytes and the amount of free
// bytes meets the ReleaseThreshold, we will try to do page release. If we
// don't update `BytesInFreeListAtLastCheckpoint` when the current
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
// freed blocks because we miss the bytes between
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
const uptr PushedBytesDelta =
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
if (PushedBytesDelta < PageSize)
return false;
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
if (PushedBytesDelta < Sci->AllocatedUser / 16U)
return false;
if (ReleaseType == ReleaseToOS::Normal) {
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
if (IntervalMs < 0)
return false;
// The constant 8 here is selected from profiling some apps and the number
// of unreleased pages in the large size classes is around 16 pages or
// more. Choose half of it as a heuristic and which also avoids page
// release every time for every pushBlocks() attempt by large blocks.
const bool ByPassReleaseInterval =
isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
if (!ByPassReleaseInterval) {
if (Sci->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTimeFast()) {
// Memory was returned recently.
return false;
}
}
} // if (ReleaseType == ReleaseToOS::Normal)
return true;
}
PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
const uptr BlockSize, const uptr Base,
const uptr NumberOfRegions,
ReleaseToOS ReleaseType)
REQUIRES(Sci->Mutex) {
const uptr PageSize = getPageSizeCached();
const uptr GroupSize = (1UL << GroupSizeLog);
const uptr CurGroupBase =
compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
PageReleaseContext Context(BlockSize, NumberOfRegions,
/*ReleaseSize=*/RegionSize);
auto DecompactPtr = [](CompactPtrT CompactPtr) {
return reinterpret_cast<uptr>(CompactPtr);
};
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
// The `GroupSize` may not be divided by `BlockSize`, which means there is
// an unused space at the end of Region. Exclude that space to avoid
// unused page map entry.
uptr AllocatedGroupSize = GroupBase == CurGroupBase
? Sci->CurrentRegionAllocated
: roundDownSlow(GroupSize, BlockSize);
if (AllocatedGroupSize == 0)
continue;
// TransferBatches are pushed in front of BG.Batches. The first one may
// not have all caches used.
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
BG.Batches.front()->getCount();
const uptr BytesInBG = NumBlocks * BlockSize;
if (ReleaseType != ReleaseToOS::ForceAll) {
if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
BG.BytesInBGAtLastCheckpoint = BytesInBG;
continue;
}
const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
if (PushedBytesDelta < PageSize)
continue;
// Given the randomness property, we try to release the pages only if
// the bytes used by free blocks exceed certain proportion of allocated
// spaces.
if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
(100U - 1U - BlockSize / 16U)) {
continue;
}
}
// TODO: Consider updating this after page release if `ReleaseRecorder`
// can tell the released bytes in each group.
BG.BytesInBGAtLastCheckpoint = BytesInBG;
const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
const uptr RegionIndex = (GroupBase - Base) / RegionSize;
if (NumBlocks == MaxContainedBlocks) {
for (const auto &It : BG.Batches)
for (u16 I = 0; I < It.getCount(); ++I)
DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
const uptr To = GroupBase + AllocatedGroupSize;
Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
AllocatedGroupSize);
} else {
DCHECK_LT(NumBlocks, MaxContainedBlocks);
// Note that we don't always visit blocks in each BatchGroup so that we
// may miss the chance of releasing certain pages that cross
// BatchGroups.
Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
RegionIndex, AllocatedGroupSize,
/*MayContainLastBlockInRegion=*/true);
}
// We may not be able to do the page release In a rare case that we may
// fail on PageMap allocation.
if (UNLIKELY(!Context.hasBlockMarked()))
break;
}
return Context;
}
SizeClassInfo SizeClassInfoArray[NumClasses] = {};
HybridMutex ByteMapMutex;
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
atomic_s32 ReleaseToOsIntervalMs = {};
// Unless several threads request regions simultaneously from different size
// classes, the stash rarely contains more than 1 entry.
static constexpr uptr MaxStashedRegions = 4;
HybridMutex RegionsStashMutex;
uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
};
} // namespace scudo
#endif // SCUDO_PRIMARY32_H_