blob: 53874933e7ac3e07e8817521e47bae131e0ef139 [file] [log] [blame]
//===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "allocator_config.h"
#include "combined.h"
#include <condition_variable>
#include <memory>
#include <mutex>
#include <set>
#include <thread>
#include <vector>
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready;
static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;
// Fuchsia complains that the function is not used.
UNUSED static void disableDebuggerdMaybe() {
#if SCUDO_ANDROID
// Disable the debuggerd signal handler on Android, without this we can end
// up spending a significant amount of time creating tombstones.
signal(SIGSEGV, SIG_DFL);
#endif
}
template <class AllocatorT>
bool isPrimaryAllocation(scudo::uptr Size, scudo::uptr Alignment) {
const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
if (Alignment < MinAlignment)
Alignment = MinAlignment;
const scudo::uptr NeededSize =
scudo::roundUpTo(Size, MinAlignment) +
((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize());
return AllocatorT::PrimaryT::canAllocate(NeededSize);
}
template <class AllocatorT>
bool isTaggedAllocation(AllocatorT *Allocator, scudo::uptr Size,
scudo::uptr Alignment) {
return Allocator->useMemoryTagging() &&
scudo::systemDetectsMemoryTagFaultsTestOnly() &&
isPrimaryAllocation<AllocatorT>(Size, Alignment);
}
template <class AllocatorT>
void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size,
scudo::uptr Alignment) {
if (!isTaggedAllocation(Allocator, Size, Alignment))
return;
Size = scudo::roundUpTo(Size, scudo::archMemoryTagGranuleSize());
EXPECT_DEATH(
{
disableDebuggerdMaybe();
reinterpret_cast<char *>(P)[-1] = 0xaa;
},
"");
EXPECT_DEATH(
{
disableDebuggerdMaybe();
reinterpret_cast<char *>(P)[Size] = 0xaa;
},
"");
}
template <typename Config> struct TestAllocator : scudo::Allocator<Config> {
TestAllocator() {
this->reset();
this->initThreadMaybe();
}
~TestAllocator() { this->unmapTestOnly(); }
};
template <class Config> static void testAllocator() {
using AllocatorT = TestAllocator<Config>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
static scudo::u8 StaticBuffer[scudo::Chunk::getHeaderSize() + 1];
EXPECT_FALSE(
Allocator->isOwned(&StaticBuffer[scudo::Chunk::getHeaderSize()]));
scudo::u8 StackBuffer[scudo::Chunk::getHeaderSize() + 1];
for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
StackBuffer[I] = 0x42U;
EXPECT_FALSE(Allocator->isOwned(&StackBuffer[scudo::Chunk::getHeaderSize()]));
for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
EXPECT_EQ(StackBuffer[I], 0x42U);
constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
// This allocates and deallocates a bunch of chunks, with a wide range of
// sizes and alignments, with a focus on sizes that could trigger weird
// behaviors (plus or minus a small delta of a power of two for example).
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr Size = (1U << SizeLog) + Delta;
void *P = Allocator->allocate(Size, Origin, Align);
EXPECT_NE(P, nullptr);
EXPECT_TRUE(Allocator->isOwned(P));
EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
EXPECT_LE(Size, Allocator->getUsableSize(P));
memset(P, 0xaa, Size);
checkMemoryTaggingMaybe(Allocator.get(), P, Size, Align);
Allocator->deallocate(P, Origin, Size);
}
}
}
Allocator->releaseToOS();
// Ensure that specifying ZeroContents returns a zero'd out block.
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++)
ASSERT_EQ((reinterpret_cast<char *>(P))[I], 0);
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
Allocator->releaseToOS();
// Ensure that specifying ZeroContents returns a zero'd out block.
Allocator->setFillContents(scudo::ZeroFill);
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++)
ASSERT_EQ((reinterpret_cast<char *>(P))[I], 0);
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
Allocator->releaseToOS();
// Ensure that specifying PatternOrZeroFill returns a pattern or zero filled
// block. The primary allocator only produces pattern filled blocks if MTE
// is disabled, so we only require pattern filled blocks in that case.
Allocator->setFillContents(scudo::PatternOrZeroFill);
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
EXPECT_NE(P, nullptr);
for (scudo::uptr I = 0; I < Size; I++) {
unsigned char V = (reinterpret_cast<unsigned char *>(P))[I];
if (isPrimaryAllocation<AllocatorT>(Size, 1U << MinAlignLog) &&
!Allocator->useMemoryTagging())
ASSERT_EQ(V, scudo::PatternFillByte);
else
ASSERT_TRUE(V == scudo::PatternFillByte || V == 0);
}
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
Allocator->releaseToOS();
// Verify that a chunk will end up being reused, at some point.
const scudo::uptr NeedleSize = 1024U;
void *NeedleP = Allocator->allocate(NeedleSize, Origin);
Allocator->deallocate(NeedleP, Origin);
bool Found = false;
for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
void *P = Allocator->allocate(NeedleSize, Origin);
if (Allocator->untagPointerMaybe(P) ==
Allocator->untagPointerMaybe(NeedleP))
Found = true;
Allocator->deallocate(P, Origin);
}
EXPECT_TRUE(Found);
constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize;
// Reallocate a large chunk all the way down to a byte, verifying that we
// preserve the data in the process.
scudo::uptr Size = MaxSize * 2;
const scudo::uptr DataSize = 2048U;
void *P = Allocator->allocate(Size, Origin);
const char Marker = 0xab;
memset(P, Marker, scudo::Min(Size, DataSize));
while (Size > 1U) {
Size /= 2U;
void *NewP = Allocator->reallocate(P, Size);
EXPECT_NE(NewP, nullptr);
for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
P = NewP;
}
Allocator->deallocate(P, Origin);
// Check that reallocating a chunk to a slightly smaller or larger size
// returns the same chunk. This requires that all the sizes we iterate on use
// the same block size, but that should be the case for MaxSize - 64 with our
// default class size maps.
constexpr scudo::uptr ReallocSize = MaxSize - 64;
P = Allocator->allocate(ReallocSize, Origin);
memset(P, Marker, ReallocSize);
for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
const scudo::uptr NewSize = ReallocSize + Delta;
void *NewP = Allocator->reallocate(P, NewSize);
EXPECT_EQ(NewP, P);
for (scudo::uptr I = 0; I < ReallocSize - 32; I++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
checkMemoryTaggingMaybe(Allocator.get(), NewP, NewSize, 0);
}
Allocator->deallocate(P, Origin);
// Allocates a bunch of chunks, then iterate over all the chunks, ensuring
// they are the ones we allocated. This requires the allocator to not have any
// other allocated chunk at this point (eg: won't work with the Quarantine).
if (!UseQuarantine) {
std::vector<void *> V;
for (scudo::uptr I = 0; I < 64U; I++)
V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin));
Allocator->disable();
Allocator->iterateOverChunks(
0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
[](uintptr_t Base, size_t Size, void *Arg) {
std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
void *P = reinterpret_cast<void *>(Base);
EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
},
reinterpret_cast<void *>(&V));
Allocator->enable();
while (!V.empty()) {
Allocator->deallocate(V.back(), Origin);
V.pop_back();
}
}
Allocator->releaseToOS();
if (Allocator->useMemoryTagging() &&
scudo::systemDetectsMemoryTagFaultsTestOnly()) {
// Check that use-after-free is detected.
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
const scudo::uptr Size = 1U << SizeLog;
if (!isTaggedAllocation(Allocator.get(), Size, 1))
continue;
// UAF detection is probabilistic, so we repeat the test up to 256 times
// if necessary. With 15 possible tags this means a 1 in 15^256 chance of
// a false positive.
EXPECT_DEATH(
{
disableDebuggerdMaybe();
for (unsigned I = 0; I != 256; ++I) {
void *P = Allocator->allocate(Size, Origin);
Allocator->deallocate(P, Origin);
reinterpret_cast<char *>(P)[0] = 0xaa;
}
},
"");
EXPECT_DEATH(
{
disableDebuggerdMaybe();
for (unsigned I = 0; I != 256; ++I) {
void *P = Allocator->allocate(Size, Origin);
Allocator->deallocate(P, Origin);
reinterpret_cast<char *>(P)[Size - 1] = 0xaa;
}
},
"");
}
// Check that disabling memory tagging works correctly.
void *P = Allocator->allocate(2048, Origin);
EXPECT_DEATH(reinterpret_cast<char *>(P)[2048] = 0xaa, "");
scudo::disableMemoryTagChecksTestOnly();
Allocator->disableMemoryTagging();
reinterpret_cast<char *>(P)[2048] = 0xaa;
Allocator->deallocate(P, Origin);
P = Allocator->allocate(2048, Origin);
EXPECT_EQ(Allocator->untagPointerMaybe(P), P);
reinterpret_cast<char *>(P)[2048] = 0xaa;
Allocator->deallocate(P, Origin);
Allocator->releaseToOS();
// Disabling memory tag checks may interfere with subsequent tests.
// Re-enable them now.
scudo::enableMemoryTagChecksTestOnly();
}
scudo::uptr BufferSize = 8192;
std::vector<char> Buffer(BufferSize);
scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
while (ActualSize > BufferSize) {
BufferSize = ActualSize + 1024;
Buffer.resize(BufferSize);
ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
}
std::string Stats(Buffer.begin(), Buffer.end());
// Basic checks on the contents of the statistics output, which also allows us
// to verify that we got it all.
EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
}
// Test that multiple instantiations of the allocator have not messed up the
// process's signal handlers (GWP-ASan used to do this).
void testSEGV() {
const scudo::uptr Size = 4 * scudo::getPageSizeCached();
scudo::MapPlatformData Data = {};
void *P = scudo::map(nullptr, Size, "testSEGV", MAP_NOACCESS, &Data);
EXPECT_NE(P, nullptr);
EXPECT_DEATH(memset(P, 0xaa, Size), "");
scudo::unmap(P, Size, UNMAP_ALL, &Data);
}
TEST(ScudoCombinedTest, BasicCombined) {
UseQuarantine = false;
testAllocator<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
testAllocator<scudo::FuchsiaConfig>();
#else
testAllocator<scudo::DefaultConfig>();
UseQuarantine = true;
testAllocator<scudo::AndroidConfig>();
testSEGV();
#endif
}
template <typename AllocatorT> static void stressAllocator(AllocatorT *A) {
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
std::vector<std::pair<void *, scudo::uptr>> V;
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size = std::rand() % 4096U;
void *P = A->allocate(Size, Origin);
// A region could have ran out of memory, resulting in a null P.
if (P)
V.push_back(std::make_pair(P, Size));
}
while (!V.empty()) {
auto Pair = V.back();
A->deallocate(Pair.first, Origin, Pair.second);
V.pop_back();
}
}
template <class Config> static void testAllocatorThreaded() {
Ready = false;
using AllocatorT = TestAllocator<Config>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(stressAllocator<AllocatorT>, Allocator.get());
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS();
}
TEST(ScudoCombinedTest, ThreadedCombined) {
UseQuarantine = false;
testAllocatorThreaded<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
testAllocatorThreaded<scudo::FuchsiaConfig>();
#else
testAllocatorThreaded<scudo::DefaultConfig>();
UseQuarantine = true;
testAllocatorThreaded<scudo::AndroidConfig>();
#endif
}
struct DeathSizeClassConfig {
static const scudo::uptr NumBits = 1;
static const scudo::uptr MinSizeLog = 10;
static const scudo::uptr MidSizeLog = 10;
static const scudo::uptr MaxSizeLog = 13;
static const scudo::u32 MaxNumCachedHint = 4;
static const scudo::uptr MaxBytesCachedLog = 12;
};
static const scudo::uptr DeathRegionSizeLog = 20U;
struct DeathConfig {
static const bool MaySupportMemoryTagging = false;
// Tiny allocator, its Primary only serves chunks of four sizes.
using SizeClassMap = scudo::FixedSizeClassMap<DeathSizeClassConfig>;
typedef scudo::SizeClassAllocator64<DeathConfig> Primary;
static const scudo::uptr PrimaryRegionSizeLog = DeathRegionSizeLog;
static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX;
typedef scudo::MapAllocatorNoCache SecondaryCache;
template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U, 1U>;
};
TEST(ScudoCombinedTest, DeathCombined) {
using AllocatorT = TestAllocator<DeathConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
const scudo::uptr Size = 1000U;
void *P = Allocator->allocate(Size, Origin);
EXPECT_NE(P, nullptr);
// Invalid sized deallocation.
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");
// Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
UNUSED void *MisalignedP =
reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");
// Header corruption.
scudo::u64 *H =
reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
*H ^= 0x42U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420042U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420000U;
// Invalid chunk state.
Allocator->deallocate(P, Origin, Size);
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
EXPECT_DEATH(Allocator->getUsableSize(P), "");
}
// Ensure that releaseToOS can be called prior to any other allocator
// operation without issue.
TEST(ScudoCombinedTest, ReleaseToOS) {
using AllocatorT = TestAllocator<DeathConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
Allocator->releaseToOS();
}
// Verify that when a region gets full, the allocator will still manage to
// fulfill the allocation through a larger size class.
TEST(ScudoCombinedTest, FullRegion) {
using AllocatorT = TestAllocator<DeathConfig>;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
std::vector<void *> V;
scudo::uptr FailedAllocationsCount = 0;
for (scudo::uptr ClassId = 1U;
ClassId <= DeathConfig::SizeClassMap::LargestClassId; ClassId++) {
const scudo::uptr Size =
DeathConfig::SizeClassMap::getSizeByClassId(ClassId);
// Allocate enough to fill all of the regions above this one.
const scudo::uptr MaxNumberOfChunks =
((1U << DeathRegionSizeLog) / Size) *
(DeathConfig::SizeClassMap::LargestClassId - ClassId + 1);
void *P;
for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) {
P = Allocator->allocate(Size - 64U, Origin);
if (!P)
FailedAllocationsCount++;
else
V.push_back(P);
}
while (!V.empty()) {
Allocator->deallocate(V.back(), Origin);
V.pop_back();
}
}
EXPECT_EQ(FailedAllocationsCount, 0U);
}
TEST(ScudoCombinedTest, OddEven) {
using AllocatorT = TestAllocator<scudo::AndroidConfig>;
using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
if (!Allocator->useMemoryTagging())
return;
auto CheckOddEven = [](scudo::uptr P1, scudo::uptr P2) {
scudo::uptr Tag1 = scudo::extractTag(scudo::loadTag(P1));
scudo::uptr Tag2 = scudo::extractTag(scudo::loadTag(P2));
EXPECT_NE(Tag1 % 2, Tag2 % 2);
};
for (scudo::uptr ClassId = 1U; ClassId <= SizeClassMap::LargestClassId;
ClassId++) {
const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId);
std::set<scudo::uptr> Ptrs;
bool Found = false;
for (unsigned I = 0; I != 65536; ++I) {
scudo::uptr P = scudo::untagPointer(reinterpret_cast<scudo::uptr>(
Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin)));
if (Ptrs.count(P - Size)) {
Found = true;
CheckOddEven(P, P - Size);
break;
}
if (Ptrs.count(P + Size)) {
Found = true;
CheckOddEven(P, P + Size);
break;
}
Ptrs.insert(P);
}
EXPECT_TRUE(Found);
}
}
TEST(ScudoCombinedTest, DisableMemInit) {
using AllocatorT = TestAllocator<scudo::AndroidConfig>;
using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap;
auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
std::vector<void *> Ptrs(65536, nullptr);
Allocator->setOption(scudo::Option::ThreadDisableMemInit, 1);
constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
// Test that if mem-init is disabled on a thread, calloc should still work as
// expected. This is tricky to ensure when MTE is enabled, so this test tries
// to exercise the relevant code on our MTE path.
for (scudo::uptr ClassId = 1U; ClassId <= 8; ClassId++) {
const scudo::uptr Size =
SizeClassMap::getSizeByClassId(ClassId) - scudo::Chunk::getHeaderSize();
if (Size < 8)
continue;
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size, Origin);
memset(Ptrs[I], 0xaa, Size);
}
for (unsigned I = 0; I != Ptrs.size(); ++I)
Allocator->deallocate(Ptrs[I], Origin, Size);
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size - 8, Origin);
memset(Ptrs[I], 0xbb, Size - 8);
}
for (unsigned I = 0; I != Ptrs.size(); ++I)
Allocator->deallocate(Ptrs[I], Origin, Size - 8);
for (unsigned I = 0; I != Ptrs.size(); ++I) {
Ptrs[I] = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
for (scudo::uptr J = 0; J < Size; ++J)
ASSERT_EQ((reinterpret_cast<char *>(Ptrs[I]))[J], 0);
}
}
Allocator->setOption(scudo::Option::ThreadDisableMemInit, 0);
}