| //===-- primary32.h ---------------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SCUDO_PRIMARY32_H_ |
| #define SCUDO_PRIMARY32_H_ |
| |
| #include "allocator_common.h" |
| #include "bytemap.h" |
| #include "common.h" |
| #include "list.h" |
| #include "local_cache.h" |
| #include "options.h" |
| #include "release.h" |
| #include "report.h" |
| #include "stats.h" |
| #include "string_utils.h" |
| #include "thread_annotations.h" |
| |
| namespace scudo { |
| |
| // SizeClassAllocator32 is an allocator for 32 or 64-bit address space. |
| // |
| // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes |
| // boundary, and keeps a bytemap of the mappable address space to track the size |
| // class they are associated with. |
| // |
| // Mapped regions are split into equally sized Blocks according to the size |
| // class they belong to, and the associated pointers are shuffled to prevent any |
| // predictable address pattern (the predictability increases with the block |
| // size). |
| // |
| // Regions for size class 0 are special and used to hold TransferBatches, which |
| // allow to transfer arrays of pointers from the global size class freelist to |
| // the thread specific freelist for said class, and back. |
| // |
| // Memory used by this allocator is never unmapped but can be partially |
| // reclaimed if the platform allows for it. |
| |
| template <typename Config> class SizeClassAllocator32 { |
| public: |
| typedef typename Config::CompactPtrT CompactPtrT; |
| typedef typename Config::SizeClassMap SizeClassMap; |
| static const uptr GroupSizeLog = Config::getGroupSizeLog(); |
| // The bytemap can only track UINT8_MAX - 1 classes. |
| static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), ""); |
| // Regions should be large enough to hold the largest Block. |
| static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize, |
| ""); |
| typedef SizeClassAllocator32<Config> ThisT; |
| typedef SizeClassAllocatorLocalCache<ThisT> CacheT; |
| typedef TransferBatch<ThisT> TransferBatchT; |
| typedef BatchGroup<ThisT> BatchGroupT; |
| |
| static uptr getSizeByClassId(uptr ClassId) { |
| return (ClassId == SizeClassMap::BatchClassId) |
| ? Max(sizeof(BatchGroupT), sizeof(TransferBatchT)) |
| : SizeClassMap::getSizeByClassId(ClassId); |
| } |
| |
| static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } |
| |
| void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS { |
| if (SCUDO_FUCHSIA) |
| reportError("SizeClassAllocator32 is not supported on Fuchsia"); |
| |
| if (SCUDO_TRUSTY) |
| reportError("SizeClassAllocator32 is not supported on Trusty"); |
| |
| DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); |
| PossibleRegions.init(); |
| u32 Seed; |
| const u64 Time = getMonotonicTimeFast(); |
| if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))) |
| Seed = static_cast<u32>( |
| Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6)); |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| Sci->RandState = getRandomU32(&Seed); |
| // Sci->MaxRegionIndex is already initialized to 0. |
| Sci->MinRegionIndex = NumRegions; |
| Sci->ReleaseInfo.LastReleaseAtNs = Time; |
| } |
| |
| // The default value in the primary config has the higher priority. |
| if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN) |
| ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs(); |
| setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval)); |
| } |
| |
| void unmapTestOnly() { |
| { |
| ScopedLock L(RegionsStashMutex); |
| while (NumberOfStashedRegions > 0) { |
| unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]), |
| RegionSize); |
| } |
| } |
| |
| uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| if (Sci->MinRegionIndex < MinRegionIndex) |
| MinRegionIndex = Sci->MinRegionIndex; |
| if (Sci->MaxRegionIndex > MaxRegionIndex) |
| MaxRegionIndex = Sci->MaxRegionIndex; |
| *Sci = {}; |
| } |
| |
| ScopedLock L(ByteMapMutex); |
| for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) |
| if (PossibleRegions[I]) |
| unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize); |
| PossibleRegions.unmapTestOnly(); |
| } |
| |
| // When all blocks are freed, it has to be the same size as `AllocatedUser`. |
| void verifyAllBlocksAreReleasedTestOnly() { |
| // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass. |
| uptr BatchClassUsedInFreeLists = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| // We have to count BatchClassUsedInFreeLists in other regions first. |
| if (I == SizeClassMap::BatchClassId) |
| continue; |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L1(Sci->Mutex); |
| uptr TotalBlocks = 0; |
| for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`. |
| BatchClassUsedInFreeLists += BG.Batches.size() + 1; |
| for (const auto &It : BG.Batches) |
| TotalBlocks += It.getCount(); |
| } |
| |
| const uptr BlockSize = getSizeByClassId(I); |
| DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize); |
| DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks); |
| } |
| |
| SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId); |
| ScopedLock L1(Sci->Mutex); |
| uptr TotalBlocks = 0; |
| for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| if (LIKELY(!BG.Batches.empty())) { |
| for (const auto &It : BG.Batches) |
| TotalBlocks += It.getCount(); |
| } else { |
| // `BatchGroup` with empty freelist doesn't have `TransferBatch` record |
| // itself. |
| ++TotalBlocks; |
| } |
| } |
| |
| const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId); |
| DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists, |
| Sci->AllocatedUser / BlockSize); |
| const uptr BlocksInUse = |
| Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists); |
| } |
| |
| CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const { |
| return static_cast<CompactPtrT>(Ptr); |
| } |
| |
| void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const { |
| return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr)); |
| } |
| |
| uptr compactPtrGroupBase(CompactPtrT CompactPtr) { |
| const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1; |
| return CompactPtr & ~Mask; |
| } |
| |
| uptr decompactGroupBase(uptr CompactPtrGroupBase) { |
| return CompactPtrGroupBase; |
| } |
| |
| ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) { |
| const uptr PageSize = getPageSizeCached(); |
| return BlockSize < PageSize / 16U; |
| } |
| |
| ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) { |
| const uptr PageSize = getPageSizeCached(); |
| return BlockSize > PageSize; |
| } |
| |
| u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray, |
| const u16 MaxBlockCount) { |
| DCHECK_LT(ClassId, NumClasses); |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| ScopedLock L(Sci->Mutex); |
| |
| u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); |
| if (UNLIKELY(PopCount == 0)) { |
| if (UNLIKELY(!populateFreeList(C, ClassId, Sci))) |
| return 0U; |
| PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); |
| DCHECK_NE(PopCount, 0U); |
| } |
| |
| return PopCount; |
| } |
| |
| // Push the array of free blocks to the designated batch group. |
| void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { |
| DCHECK_LT(ClassId, NumClasses); |
| DCHECK_GT(Size, 0); |
| |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| if (ClassId == SizeClassMap::BatchClassId) { |
| ScopedLock L(Sci->Mutex); |
| pushBatchClassBlocks(Sci, Array, Size); |
| return; |
| } |
| |
| // TODO(chiahungduan): Consider not doing grouping if the group size is not |
| // greater than the block size with a certain scale. |
| |
| // Sort the blocks so that blocks belonging to the same group can be pushed |
| // together. |
| bool SameGroup = true; |
| for (u32 I = 1; I < Size; ++I) { |
| if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) |
| SameGroup = false; |
| CompactPtrT Cur = Array[I]; |
| u32 J = I; |
| while (J > 0 && |
| compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) { |
| Array[J] = Array[J - 1]; |
| --J; |
| } |
| Array[J] = Cur; |
| } |
| |
| ScopedLock L(Sci->Mutex); |
| pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup); |
| } |
| |
| void disable() NO_THREAD_SAFETY_ANALYSIS { |
| // The BatchClassId must be locked last since other classes can use it. |
| for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { |
| if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) |
| continue; |
| getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock(); |
| } |
| getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock(); |
| RegionsStashMutex.lock(); |
| ByteMapMutex.lock(); |
| } |
| |
| void enable() NO_THREAD_SAFETY_ANALYSIS { |
| ByteMapMutex.unlock(); |
| RegionsStashMutex.unlock(); |
| getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); |
| for (uptr I = 0; I < NumClasses; I++) { |
| if (I == SizeClassMap::BatchClassId) |
| continue; |
| getSizeClassInfo(I)->Mutex.unlock(); |
| } |
| } |
| |
| template <typename F> void iterateOverBlocks(F Callback) { |
| uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| // TODO: The call of `iterateOverBlocks` requires disabling |
| // SizeClassAllocator32. We may consider locking each region on demand |
| // only. |
| Sci->Mutex.assertHeld(); |
| if (Sci->MinRegionIndex < MinRegionIndex) |
| MinRegionIndex = Sci->MinRegionIndex; |
| if (Sci->MaxRegionIndex > MaxRegionIndex) |
| MaxRegionIndex = Sci->MaxRegionIndex; |
| } |
| |
| // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held. |
| ByteMapMutex.assertHeld(); |
| |
| for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) { |
| if (PossibleRegions[I] && |
| (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) { |
| const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U); |
| const uptr From = I * RegionSize; |
| const uptr To = From + (RegionSize / BlockSize) * BlockSize; |
| for (uptr Block = From; Block < To; Block += BlockSize) |
| Callback(Block); |
| } |
| } |
| } |
| |
| void getStats(ScopedString *Str) { |
| // TODO(kostyak): get the RSS per region. |
| uptr TotalMapped = 0; |
| uptr PoppedBlocks = 0; |
| uptr PushedBlocks = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| TotalMapped += Sci->AllocatedUser; |
| PoppedBlocks += Sci->FreeListInfo.PoppedBlocks; |
| PushedBlocks += Sci->FreeListInfo.PushedBlocks; |
| } |
| Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; " |
| "remains %zu\n", |
| TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks); |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| getStats(Str, I, Sci); |
| } |
| } |
| |
| void getFragmentationInfo(ScopedString *Str) { |
| Str->append( |
| "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n", |
| getPageSizeCached()); |
| |
| for (uptr I = 1; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| getSizeClassFragmentationInfo(Sci, I, Str); |
| } |
| } |
| |
| void getMemoryGroupFragmentationInfo(ScopedString *Str) { |
| // Each region is also a memory group because region size is the same as |
| // group size. |
| getFragmentationInfo(Str); |
| } |
| |
| bool setOption(Option O, sptr Value) { |
| if (O == Option::ReleaseInterval) { |
| const s32 Interval = Max( |
| Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()), |
| Config::getMinReleaseToOsIntervalMs()); |
| atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); |
| return true; |
| } |
| // Not supported by the Primary, but not an error either. |
| return true; |
| } |
| |
| uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) { |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| // TODO: Once we have separate locks like primary64, we may consider using |
| // tryLock() as well. |
| ScopedLock L(Sci->Mutex); |
| return releaseToOSMaybe(Sci, ClassId, ReleaseType); |
| } |
| |
| uptr releaseToOS(ReleaseToOS ReleaseType) { |
| uptr TotalReleasedBytes = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| if (I == SizeClassMap::BatchClassId) |
| continue; |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType); |
| } |
| return TotalReleasedBytes; |
| } |
| |
| const char *getRegionInfoArrayAddress() const { return nullptr; } |
| static uptr getRegionInfoArraySize() { return 0; } |
| |
| static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData, |
| UNUSED uptr Ptr) { |
| return {}; |
| } |
| |
| AtomicOptions Options; |
| |
| private: |
| static const uptr NumClasses = SizeClassMap::NumClasses; |
| static const uptr RegionSize = 1UL << Config::getRegionSizeLog(); |
| static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> |
| Config::getRegionSizeLog(); |
| static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; |
| typedef FlatByteMap<NumRegions> ByteMap; |
| |
| struct ReleaseToOsInfo { |
| uptr BytesInFreeListAtLastCheckpoint; |
| uptr RangesReleased; |
| uptr LastReleasedBytes; |
| u64 LastReleaseAtNs; |
| }; |
| |
| struct BlocksInfo { |
| SinglyLinkedList<BatchGroupT> BlockList = {}; |
| uptr PoppedBlocks = 0; |
| uptr PushedBlocks = 0; |
| }; |
| |
| struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo { |
| HybridMutex Mutex; |
| BlocksInfo FreeListInfo GUARDED_BY(Mutex); |
| uptr CurrentRegion GUARDED_BY(Mutex); |
| uptr CurrentRegionAllocated GUARDED_BY(Mutex); |
| u32 RandState; |
| uptr AllocatedUser GUARDED_BY(Mutex); |
| // Lowest & highest region index allocated for this size class, to avoid |
| // looping through the whole NumRegions. |
| uptr MinRegionIndex GUARDED_BY(Mutex); |
| uptr MaxRegionIndex GUARDED_BY(Mutex); |
| ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex); |
| }; |
| static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); |
| |
| uptr computeRegionId(uptr Mem) { |
| const uptr Id = Mem >> Config::getRegionSizeLog(); |
| CHECK_LT(Id, NumRegions); |
| return Id; |
| } |
| |
| uptr allocateRegionSlow() { |
| uptr MapSize = 2 * RegionSize; |
| const uptr MapBase = reinterpret_cast<uptr>( |
| map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM)); |
| if (!MapBase) |
| return 0; |
| const uptr MapEnd = MapBase + MapSize; |
| uptr Region = MapBase; |
| if (isAligned(Region, RegionSize)) { |
| ScopedLock L(RegionsStashMutex); |
| if (NumberOfStashedRegions < MaxStashedRegions) |
| RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize; |
| else |
| MapSize = RegionSize; |
| } else { |
| Region = roundUp(MapBase, RegionSize); |
| unmap(reinterpret_cast<void *>(MapBase), Region - MapBase); |
| MapSize = RegionSize; |
| } |
| const uptr End = Region + MapSize; |
| if (End != MapEnd) |
| unmap(reinterpret_cast<void *>(End), MapEnd - End); |
| |
| DCHECK_EQ(Region % RegionSize, 0U); |
| static_assert(Config::getRegionSizeLog() == GroupSizeLog, |
| "Memory group should be the same size as Region"); |
| |
| return Region; |
| } |
| |
| uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) { |
| DCHECK_LT(ClassId, NumClasses); |
| uptr Region = 0; |
| { |
| ScopedLock L(RegionsStashMutex); |
| if (NumberOfStashedRegions > 0) |
| Region = RegionsStash[--NumberOfStashedRegions]; |
| } |
| if (!Region) |
| Region = allocateRegionSlow(); |
| if (LIKELY(Region)) { |
| // Sci->Mutex is held by the caller, updating the Min/Max is safe. |
| const uptr RegionIndex = computeRegionId(Region); |
| if (RegionIndex < Sci->MinRegionIndex) |
| Sci->MinRegionIndex = RegionIndex; |
| if (RegionIndex > Sci->MaxRegionIndex) |
| Sci->MaxRegionIndex = RegionIndex; |
| ScopedLock L(ByteMapMutex); |
| PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U)); |
| } |
| return Region; |
| } |
| |
| SizeClassInfo *getSizeClassInfo(uptr ClassId) { |
| DCHECK_LT(ClassId, NumClasses); |
| return &SizeClassInfoArray[ClassId]; |
| } |
| |
| void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size) |
| REQUIRES(Sci->Mutex) { |
| DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId)); |
| |
| // Free blocks are recorded by TransferBatch in freelist for all |
| // size-classes. In addition, TransferBatch is allocated from BatchClassId. |
| // In order not to use additional block to record the free blocks in |
| // BatchClassId, they are self-contained. I.e., A TransferBatch records the |
| // block address of itself. See the figure below: |
| // |
| // TransferBatch at 0xABCD |
| // +----------------------------+ |
| // | Free blocks' addr | |
| // | +------+------+------+ | |
| // | |0xABCD|... |... | | |
| // | +------+------+------+ | |
| // +----------------------------+ |
| // |
| // When we allocate all the free blocks in the TransferBatch, the block used |
| // by TransferBatch is also free for use. We don't need to recycle the |
| // TransferBatch. Note that the correctness is maintained by the invariant, |
| // |
| // Each popBlocks() request returns the entire TransferBatch. Returning |
| // part of the blocks in a TransferBatch is invalid. |
| // |
| // This ensures that TransferBatch won't leak the address itself while it's |
| // still holding other valid data. |
| // |
| // Besides, BatchGroup is also allocated from BatchClassId and has its |
| // address recorded in the TransferBatch too. To maintain the correctness, |
| // |
| // The address of BatchGroup is always recorded in the last TransferBatch |
| // in the freelist (also imply that the freelist should only be |
| // updated with push_front). Once the last TransferBatch is popped, |
| // the block used by BatchGroup is also free for use. |
| // |
| // With this approach, the blocks used by BatchGroup and TransferBatch are |
| // reusable and don't need additional space for them. |
| |
| Sci->FreeListInfo.PushedBlocks += Size; |
| BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| |
| if (BG == nullptr) { |
| // Construct `BatchGroup` on the last element. |
| BG = reinterpret_cast<BatchGroupT *>( |
| decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); |
| --Size; |
| BG->Batches.clear(); |
| // BatchClass hasn't enabled memory group. Use `0` to indicate there's no |
| // memory group here. |
| BG->CompactPtrGroupBase = 0; |
| BG->BytesInBGAtLastCheckpoint = 0; |
| BG->MaxCachedPerBatch = |
| CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId)); |
| |
| Sci->FreeListInfo.BlockList.push_front(BG); |
| } |
| |
| if (UNLIKELY(Size == 0)) |
| return; |
| |
| // This happens under 2 cases. |
| // 1. just allocated a new `BatchGroup`. |
| // 2. Only 1 block is pushed when the freelist is empty. |
| if (BG->Batches.empty()) { |
| // Construct the `TransferBatch` on the last element. |
| TransferBatchT *TB = reinterpret_cast<TransferBatchT *>( |
| decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); |
| TB->clear(); |
| // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are |
| // recorded in the TransferBatch. |
| TB->add(Array[Size - 1]); |
| TB->add( |
| compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG))); |
| --Size; |
| BG->Batches.push_front(TB); |
| } |
| |
| TransferBatchT *CurBatch = BG->Batches.front(); |
| DCHECK_NE(CurBatch, nullptr); |
| |
| for (u32 I = 0; I < Size;) { |
| u16 UnusedSlots = |
| static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
| if (UnusedSlots == 0) { |
| CurBatch = reinterpret_cast<TransferBatchT *>( |
| decompactPtr(SizeClassMap::BatchClassId, Array[I])); |
| CurBatch->clear(); |
| // Self-contained |
| CurBatch->add(Array[I]); |
| ++I; |
| // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of |
| // BatchClassId. |
| BG->Batches.push_front(CurBatch); |
| UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1); |
| } |
| // `UnusedSlots` is u16 so the result will be also fit in u16. |
| const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); |
| CurBatch->appendFromArray(&Array[I], AppendSize); |
| I += AppendSize; |
| } |
| } |
| // Push the blocks to their batch group. The layout will be like, |
| // |
| // FreeListInfo.BlockList - > BG -> BG -> BG |
| // | | | |
| // v v v |
| // TB TB TB |
| // | |
| // v |
| // TB |
| // |
| // Each BlockGroup(BG) will associate with unique group id and the free blocks |
| // are managed by a list of TransferBatch(TB). To reduce the time of inserting |
| // blocks, BGs are sorted and the input `Array` are supposed to be sorted so |
| // that we can get better performance of maintaining sorted property. |
| // Use `SameGroup=true` to indicate that all blocks in the array are from the |
| // same group then we will skip checking the group id of each block. |
| // |
| // The region mutex needs to be held while calling this method. |
| void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, |
| CompactPtrT *Array, u32 Size, bool SameGroup = false) |
| REQUIRES(Sci->Mutex) { |
| DCHECK_NE(ClassId, SizeClassMap::BatchClassId); |
| DCHECK_GT(Size, 0U); |
| |
| auto CreateGroup = [&](uptr CompactPtrGroupBase) { |
| BatchGroupT *BG = |
| reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock()); |
| BG->Batches.clear(); |
| TransferBatchT *TB = |
| reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); |
| TB->clear(); |
| |
| BG->CompactPtrGroupBase = CompactPtrGroupBase; |
| BG->Batches.push_front(TB); |
| BG->BytesInBGAtLastCheckpoint = 0; |
| BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached; |
| |
| return BG; |
| }; |
| |
| auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) { |
| SinglyLinkedList<TransferBatchT> &Batches = BG->Batches; |
| TransferBatchT *CurBatch = Batches.front(); |
| DCHECK_NE(CurBatch, nullptr); |
| |
| for (u32 I = 0; I < Size;) { |
| DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); |
| u16 UnusedSlots = |
| static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
| if (UnusedSlots == 0) { |
| CurBatch = |
| reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); |
| CurBatch->clear(); |
| Batches.push_front(CurBatch); |
| UnusedSlots = BG->MaxCachedPerBatch; |
| } |
| // `UnusedSlots` is u16 so the result will be also fit in u16. |
| u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); |
| CurBatch->appendFromArray(&Array[I], AppendSize); |
| I += AppendSize; |
| } |
| }; |
| |
| Sci->FreeListInfo.PushedBlocks += Size; |
| BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front(); |
| |
| // In the following, `Cur` always points to the BatchGroup for blocks that |
| // will be pushed next. `Prev` is the element right before `Cur`. |
| BatchGroupT *Prev = nullptr; |
| |
| while (Cur != nullptr && |
| compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) { |
| Prev = Cur; |
| Cur = Cur->Next; |
| } |
| |
| if (Cur == nullptr || |
| compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) { |
| Cur = CreateGroup(compactPtrGroupBase(Array[0])); |
| if (Prev == nullptr) |
| Sci->FreeListInfo.BlockList.push_front(Cur); |
| else |
| Sci->FreeListInfo.BlockList.insert(Prev, Cur); |
| } |
| |
| // All the blocks are from the same group, just push without checking group |
| // id. |
| if (SameGroup) { |
| for (u32 I = 0; I < Size; ++I) |
| DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase); |
| |
| InsertBlocks(Cur, Array, Size); |
| return; |
| } |
| |
| // The blocks are sorted by group id. Determine the segment of group and |
| // push them to their group together. |
| u32 Count = 1; |
| for (u32 I = 1; I < Size; ++I) { |
| if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) { |
| DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase); |
| InsertBlocks(Cur, Array + I - Count, Count); |
| |
| while (Cur != nullptr && |
| compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) { |
| Prev = Cur; |
| Cur = Cur->Next; |
| } |
| |
| if (Cur == nullptr || |
| compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) { |
| Cur = CreateGroup(compactPtrGroupBase(Array[I])); |
| DCHECK_NE(Prev, nullptr); |
| Sci->FreeListInfo.BlockList.insert(Prev, Cur); |
| } |
| |
| Count = 1; |
| } else { |
| ++Count; |
| } |
| } |
| |
| InsertBlocks(Cur, Array + Size - Count, Count); |
| } |
| |
| u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, |
| CompactPtrT *ToArray, const u16 MaxBlockCount) |
| REQUIRES(Sci->Mutex) { |
| if (Sci->FreeListInfo.BlockList.empty()) |
| return 0U; |
| |
| SinglyLinkedList<TransferBatchT> &Batches = |
| Sci->FreeListInfo.BlockList.front()->Batches; |
| |
| if (Batches.empty()) { |
| DCHECK_EQ(ClassId, SizeClassMap::BatchClassId); |
| BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| Sci->FreeListInfo.BlockList.pop_front(); |
| |
| // Block used by `BatchGroup` is from BatchClassId. Turn the block into |
| // `TransferBatch` with single block. |
| TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG); |
| ToArray[0] = |
| compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)); |
| Sci->FreeListInfo.PoppedBlocks += 1; |
| return 1U; |
| } |
| |
| // So far, instead of always filling the blocks to `MaxBlockCount`, we only |
| // examine single `TransferBatch` to minimize the time spent on the primary |
| // allocator. Besides, the sizes of `TransferBatch` and |
| // `CacheT::getMaxCached()` may also impact the time spent on accessing the |
| // primary allocator. |
| // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount` |
| // blocks and/or adjust the size of `TransferBatch` according to |
| // `CacheT::getMaxCached()`. |
| TransferBatchT *B = Batches.front(); |
| DCHECK_NE(B, nullptr); |
| DCHECK_GT(B->getCount(), 0U); |
| |
| // BachClassId should always take all blocks in the TransferBatch. Read the |
| // comment in `pushBatchClassBlocks()` for more details. |
| const u16 PopCount = ClassId == SizeClassMap::BatchClassId |
| ? B->getCount() |
| : Min(MaxBlockCount, B->getCount()); |
| B->moveNToArray(ToArray, PopCount); |
| |
| // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be |
| // done without holding `Mutex`. |
| if (B->empty()) { |
| Batches.pop_front(); |
| // `TransferBatch` of BatchClassId is self-contained, no need to |
| // deallocate. Read the comment in `pushBatchClassBlocks()` for more |
| // details. |
| if (ClassId != SizeClassMap::BatchClassId) |
| C->deallocate(SizeClassMap::BatchClassId, B); |
| |
| if (Batches.empty()) { |
| BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); |
| Sci->FreeListInfo.BlockList.pop_front(); |
| |
| // We don't keep BatchGroup with zero blocks to avoid empty-checking |
| // while allocating. Note that block used for constructing BatchGroup is |
| // recorded as free blocks in the last element of BatchGroup::Batches. |
| // Which means, once we pop the last TransferBatch, the block is |
| // implicitly deallocated. |
| if (ClassId != SizeClassMap::BatchClassId) |
| C->deallocate(SizeClassMap::BatchClassId, BG); |
| } |
| } |
| |
| Sci->FreeListInfo.PoppedBlocks += PopCount; |
| return PopCount; |
| } |
| |
| NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci) |
| REQUIRES(Sci->Mutex) { |
| uptr Region; |
| uptr Offset; |
| // If the size-class currently has a region associated to it, use it. The |
| // newly created blocks will be located after the currently allocated memory |
| // for that region (up to RegionSize). Otherwise, create a new region, where |
| // the new blocks will be carved from the beginning. |
| if (Sci->CurrentRegion) { |
| Region = Sci->CurrentRegion; |
| DCHECK_GT(Sci->CurrentRegionAllocated, 0U); |
| Offset = Sci->CurrentRegionAllocated; |
| } else { |
| DCHECK_EQ(Sci->CurrentRegionAllocated, 0U); |
| Region = allocateRegion(Sci, ClassId); |
| if (UNLIKELY(!Region)) |
| return false; |
| C->getStats().add(StatMapped, RegionSize); |
| Sci->CurrentRegion = Region; |
| Offset = 0; |
| } |
| |
| const uptr Size = getSizeByClassId(ClassId); |
| const u16 MaxCount = CacheT::getMaxCached(Size); |
| DCHECK_GT(MaxCount, 0U); |
| // The maximum number of blocks we should carve in the region is dictated |
| // by the maximum number of batches we want to fill, and the amount of |
| // memory left in the current region (we use the lowest of the two). This |
| // will not be 0 as we ensure that a region can at least hold one block (via |
| // static_assert and at the end of this function). |
| const u32 NumberOfBlocks = |
| Min(MaxNumBatches * MaxCount, |
| static_cast<u32>((RegionSize - Offset) / Size)); |
| DCHECK_GT(NumberOfBlocks, 0U); |
| |
| constexpr u32 ShuffleArraySize = |
| MaxNumBatches * TransferBatchT::MaxNumCached; |
| // Fill the transfer batches and put them in the size-class freelist. We |
| // need to randomize the blocks for security purposes, so we first fill a |
| // local array that we then shuffle before populating the batches. |
| CompactPtrT ShuffleArray[ShuffleArraySize]; |
| DCHECK_LE(NumberOfBlocks, ShuffleArraySize); |
| |
| uptr P = Region + Offset; |
| for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) |
| ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P); |
| |
| if (ClassId != SizeClassMap::BatchClassId) { |
| u32 N = 1; |
| uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]); |
| for (u32 I = 1; I < NumberOfBlocks; I++) { |
| if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) { |
| shuffle(ShuffleArray + I - N, N, &Sci->RandState); |
| pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N, |
| /*SameGroup=*/true); |
| N = 1; |
| CurGroup = compactPtrGroupBase(ShuffleArray[I]); |
| } else { |
| ++N; |
| } |
| } |
| |
| shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState); |
| pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N, |
| /*SameGroup=*/true); |
| } else { |
| pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks); |
| } |
| |
| // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record |
| // the requests from `PushBlocks` and `PopBatch` which are external |
| // interfaces. `populateFreeList` is the internal interface so we should set |
| // the values back to avoid incorrectly setting the stats. |
| Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks; |
| |
| const uptr AllocatedUser = Size * NumberOfBlocks; |
| C->getStats().add(StatFree, AllocatedUser); |
| DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize); |
| // If there is not enough room in the region currently associated to fit |
| // more blocks, we deassociate the region by resetting CurrentRegion and |
| // CurrentRegionAllocated. Otherwise, update the allocated amount. |
| if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) { |
| Sci->CurrentRegion = 0; |
| Sci->CurrentRegionAllocated = 0; |
| } else { |
| Sci->CurrentRegionAllocated += AllocatedUser; |
| } |
| Sci->AllocatedUser += AllocatedUser; |
| |
| return true; |
| } |
| |
| void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci) |
| REQUIRES(Sci->Mutex) { |
| if (Sci->AllocatedUser == 0) |
| return; |
| const uptr BlockSize = getSizeByClassId(ClassId); |
| const uptr InUse = |
| Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize; |
| uptr PushedBytesDelta = 0; |
| if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { |
| PushedBytesDelta = |
| BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
| } |
| const uptr AvailableChunks = Sci->AllocatedUser / BlockSize; |
| Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " |
| "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK " |
| "latest pushed bytes: %6zuK\n", |
| ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10, |
| Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks, |
| InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased, |
| Sci->ReleaseInfo.LastReleasedBytes >> 10, |
| PushedBytesDelta >> 10); |
| } |
| |
| void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId, |
| ScopedString *Str) REQUIRES(Sci->Mutex) { |
| const uptr BlockSize = getSizeByClassId(ClassId); |
| const uptr First = Sci->MinRegionIndex; |
| const uptr Last = Sci->MaxRegionIndex; |
| const uptr Base = First * RegionSize; |
| const uptr NumberOfRegions = Last - First + 1U; |
| auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { |
| ScopedLock L(ByteMapMutex); |
| return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; |
| }; |
| |
| FragmentationRecorder Recorder; |
| if (!Sci->FreeListInfo.BlockList.empty()) { |
| PageReleaseContext Context = |
| markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions, |
| ReleaseToOS::ForceAll); |
| releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
| } |
| |
| const uptr PageSize = getPageSizeCached(); |
| const uptr TotalBlocks = Sci->AllocatedUser / BlockSize; |
| const uptr InUseBlocks = |
| Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; |
| uptr AllocatedPagesCount = 0; |
| if (TotalBlocks != 0U) { |
| for (uptr I = 0; I < NumberOfRegions; ++I) { |
| if (SkipRegion(I)) |
| continue; |
| AllocatedPagesCount += RegionSize / PageSize; |
| } |
| |
| DCHECK_NE(AllocatedPagesCount, 0U); |
| } |
| |
| DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount()); |
| const uptr InUsePages = |
| AllocatedPagesCount - Recorder.getReleasedPagesCount(); |
| const uptr InUseBytes = InUsePages * PageSize; |
| |
| uptr Integral; |
| uptr Fractional; |
| computePercentage(BlockSize * InUseBlocks, InUseBytes, &Integral, |
| &Fractional); |
| Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total " |
| "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n", |
| ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages, |
| AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional); |
| } |
| |
| NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId, |
| ReleaseToOS ReleaseType = ReleaseToOS::Normal) |
| REQUIRES(Sci->Mutex) { |
| const uptr BlockSize = getSizeByClassId(ClassId); |
| |
| DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); |
| const uptr BytesInFreeList = |
| Sci->AllocatedUser - |
| (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) * |
| BlockSize; |
| |
| if (UNLIKELY(BytesInFreeList == 0)) |
| return 0; |
| |
| // ====================================================================== // |
| // 1. Check if we have enough free blocks and if it's worth doing a page |
| // release. |
| // ====================================================================== // |
| if (ReleaseType != ReleaseToOS::ForceAll && |
| !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList, |
| ReleaseType)) { |
| return 0; |
| } |
| |
| const uptr First = Sci->MinRegionIndex; |
| const uptr Last = Sci->MaxRegionIndex; |
| DCHECK_NE(Last, 0U); |
| DCHECK_LE(First, Last); |
| uptr TotalReleasedBytes = 0; |
| const uptr Base = First * RegionSize; |
| const uptr NumberOfRegions = Last - First + 1U; |
| |
| // ==================================================================== // |
| // 2. Mark the free blocks and we can tell which pages are in-use by |
| // querying `PageReleaseContext`. |
| // ==================================================================== // |
| PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base, |
| NumberOfRegions, ReleaseType); |
| if (!Context.hasBlockMarked()) |
| return 0; |
| |
| // ==================================================================== // |
| // 3. Release the unused physical pages back to the OS. |
| // ==================================================================== // |
| ReleaseRecorder Recorder(Base); |
| auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { |
| ScopedLock L(ByteMapMutex); |
| return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; |
| }; |
| releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
| |
| if (Recorder.getReleasedRangesCount() > 0) { |
| Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
| Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); |
| Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); |
| TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes; |
| } |
| Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast(); |
| |
| return TotalReleasedBytes; |
| } |
| |
| bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize, |
| uptr BytesInFreeList, ReleaseToOS ReleaseType) |
| REQUIRES(Sci->Mutex) { |
| DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); |
| const uptr PageSize = getPageSizeCached(); |
| |
| if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) |
| Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
| |
| // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value |
| // so that we won't underestimate the releasable pages. For example, the |
| // following is the region usage, |
| // |
| // BytesInFreeListAtLastCheckpoint AllocatedUser |
| // v v |
| // |---------------------------------------> |
| // ^ ^ |
| // BytesInFreeList ReleaseThreshold |
| // |
| // In general, if we have collected enough bytes and the amount of free |
| // bytes meets the ReleaseThreshold, we will try to do page release. If we |
| // don't update `BytesInFreeListAtLastCheckpoint` when the current |
| // `BytesInFreeList` is smaller, we may take longer time to wait for enough |
| // freed blocks because we miss the bytes between |
| // (BytesInFreeListAtLastCheckpoint - BytesInFreeList). |
| const uptr PushedBytesDelta = |
| BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
| if (PushedBytesDelta < PageSize) |
| return false; |
| |
| // Releasing smaller blocks is expensive, so we want to make sure that a |
| // significant amount of bytes are free, and that there has been a good |
| // amount of batches pushed to the freelist before attempting to release. |
| if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal) |
| if (PushedBytesDelta < Sci->AllocatedUser / 16U) |
| return false; |
| |
| if (ReleaseType == ReleaseToOS::Normal) { |
| const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); |
| if (IntervalMs < 0) |
| return false; |
| |
| // The constant 8 here is selected from profiling some apps and the number |
| // of unreleased pages in the large size classes is around 16 pages or |
| // more. Choose half of it as a heuristic and which also avoids page |
| // release every time for every pushBlocks() attempt by large blocks. |
| const bool ByPassReleaseInterval = |
| isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize; |
| if (!ByPassReleaseInterval) { |
| if (Sci->ReleaseInfo.LastReleaseAtNs + |
| static_cast<u64>(IntervalMs) * 1000000 > |
| getMonotonicTimeFast()) { |
| // Memory was returned recently. |
| return false; |
| } |
| } |
| } // if (ReleaseType == ReleaseToOS::Normal) |
| |
| return true; |
| } |
| |
| PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId, |
| const uptr BlockSize, const uptr Base, |
| const uptr NumberOfRegions, |
| ReleaseToOS ReleaseType) |
| REQUIRES(Sci->Mutex) { |
| const uptr PageSize = getPageSizeCached(); |
| const uptr GroupSize = (1UL << GroupSizeLog); |
| const uptr CurGroupBase = |
| compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion)); |
| |
| PageReleaseContext Context(BlockSize, NumberOfRegions, |
| /*ReleaseSize=*/RegionSize); |
| |
| auto DecompactPtr = [](CompactPtrT CompactPtr) { |
| return reinterpret_cast<uptr>(CompactPtr); |
| }; |
| for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { |
| const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase); |
| // The `GroupSize` may not be divided by `BlockSize`, which means there is |
| // an unused space at the end of Region. Exclude that space to avoid |
| // unused page map entry. |
| uptr AllocatedGroupSize = GroupBase == CurGroupBase |
| ? Sci->CurrentRegionAllocated |
| : roundDownSlow(GroupSize, BlockSize); |
| if (AllocatedGroupSize == 0) |
| continue; |
| |
| // TransferBatches are pushed in front of BG.Batches. The first one may |
| // not have all caches used. |
| const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + |
| BG.Batches.front()->getCount(); |
| const uptr BytesInBG = NumBlocks * BlockSize; |
| |
| if (ReleaseType != ReleaseToOS::ForceAll) { |
| if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) { |
| BG.BytesInBGAtLastCheckpoint = BytesInBG; |
| continue; |
| } |
| |
| const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint; |
| if (PushedBytesDelta < PageSize) |
| continue; |
| |
| // Given the randomness property, we try to release the pages only if |
| // the bytes used by free blocks exceed certain proportion of allocated |
| // spaces. |
| if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize < |
| (100U - 1U - BlockSize / 16U)) { |
| continue; |
| } |
| } |
| |
| // TODO: Consider updating this after page release if `ReleaseRecorder` |
| // can tell the released bytes in each group. |
| BG.BytesInBGAtLastCheckpoint = BytesInBG; |
| |
| const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize; |
| const uptr RegionIndex = (GroupBase - Base) / RegionSize; |
| |
| if (NumBlocks == MaxContainedBlocks) { |
| for (const auto &It : BG.Batches) |
| for (u16 I = 0; I < It.getCount(); ++I) |
| DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase); |
| |
| const uptr To = GroupBase + AllocatedGroupSize; |
| Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex, |
| AllocatedGroupSize); |
| } else { |
| DCHECK_LT(NumBlocks, MaxContainedBlocks); |
| |
| // Note that we don't always visit blocks in each BatchGroup so that we |
| // may miss the chance of releasing certain pages that cross |
| // BatchGroups. |
| Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase, |
| RegionIndex, AllocatedGroupSize, |
| /*MayContainLastBlockInRegion=*/true); |
| } |
| |
| // We may not be able to do the page release In a rare case that we may |
| // fail on PageMap allocation. |
| if (UNLIKELY(!Context.hasBlockMarked())) |
| break; |
| } |
| |
| return Context; |
| } |
| |
| SizeClassInfo SizeClassInfoArray[NumClasses] = {}; |
| |
| HybridMutex ByteMapMutex; |
| // Track the regions in use, 0 is unused, otherwise store ClassId + 1. |
| ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {}; |
| atomic_s32 ReleaseToOsIntervalMs = {}; |
| // Unless several threads request regions simultaneously from different size |
| // classes, the stash rarely contains more than 1 entry. |
| static constexpr uptr MaxStashedRegions = 4; |
| HybridMutex RegionsStashMutex; |
| uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0; |
| uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {}; |
| }; |
| |
| } // namespace scudo |
| |
| #endif // SCUDO_PRIMARY32_H_ |