blob: bdfe68c3fc9c6bfc7c1c9c7d95842d10d1e30578 [file] [log] [blame]
/** @file kmp_stats_timing.cpp
* Timing functions
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <stdlib.h>
#include <unistd.h>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "kmp.h"
#include "kmp_stats_timing.h"
using namespace std;
#if KMP_HAVE_TICK_TIME
#if KMP_MIC
double tsc_tick_count::tick_time() {
// pretty bad assumption of 1GHz clock for MIC
return 1 / ((double)1000 * 1.e6);
}
#elif KMP_ARCH_X86 || KMP_ARCH_X86_64
#include <string.h>
// Extract the value from the CPUID information
double tsc_tick_count::tick_time() {
static double result = 0.0;
if (result == 0.0) {
kmp_cpuid_t cpuinfo;
char brand[256];
__kmp_x86_cpuid(0x80000000, 0, &cpuinfo);
memset(brand, 0, sizeof(brand));
int ids = cpuinfo.eax;
for (unsigned int i = 2; i < (ids ^ 0x80000000) + 2; i++)
__kmp_x86_cpuid(i | 0x80000000, 0,
(kmp_cpuid_t *)(brand + (i - 2) * sizeof(kmp_cpuid_t)));
char *start = &brand[0];
for (; *start == ' '; start++)
;
char *end = brand + KMP_STRLEN(brand) - 3;
uint64_t multiplier;
if (*end == 'M')
multiplier = 1000LL * 1000LL;
else if (*end == 'G')
multiplier = 1000LL * 1000LL * 1000LL;
else if (*end == 'T')
multiplier = 1000LL * 1000LL * 1000LL * 1000LL;
else {
cout << "Error determining multiplier '" << *end << "'\n";
exit(-1);
}
*end = 0;
while (*end != ' ')
end--;
end++;
double freq = strtod(end, &start);
if (freq == 0.0) {
cout << "Error calculating frequency " << end << "\n";
exit(-1);
}
result = ((double)1.0) / (freq * multiplier);
}
return result;
}
#endif
#endif
static bool useSI = true;
// Return a formatted string after normalising the value into
// engineering style and using a suitable unit prefix (e.g. ms, us, ns).
std::string formatSI(double interval, int width, char unit) {
std::stringstream os;
if (useSI) {
// Preserve accuracy for small numbers, since we only multiply and the
// positive powers of ten are precisely representable.
static struct {
double scale;
char prefix;
} ranges[] = {{1.e21, 'y'}, {1.e18, 'z'}, {1.e15, 'a'}, {1.e12, 'f'},
{1.e9, 'p'}, {1.e6, 'n'}, {1.e3, 'u'}, {1.0, 'm'},
{1.e-3, ' '}, {1.e-6, 'k'}, {1.e-9, 'M'}, {1.e-12, 'G'},
{1.e-15, 'T'}, {1.e-18, 'P'}, {1.e-21, 'E'}, {1.e-24, 'Z'},
{1.e-27, 'Y'}};
if (interval == 0.0) {
os << std::setw(width - 3) << std::right << "0.00" << std::setw(3)
<< unit;
return os.str();
}
bool negative = false;
if (interval < 0.0) {
negative = true;
interval = -interval;
}
for (int i = 0; i < (int)(sizeof(ranges) / sizeof(ranges[0])); i++) {
if (interval * ranges[i].scale < 1.e0) {
interval = interval * 1000.e0 * ranges[i].scale;
os << std::fixed << std::setprecision(2) << std::setw(width - 3)
<< std::right << (negative ? -interval : interval) << std::setw(2)
<< ranges[i].prefix << std::setw(1) << unit;
return os.str();
}
}
}
os << std::setprecision(2) << std::fixed << std::right << std::setw(width - 3)
<< interval << std::setw(3) << unit;
return os.str();
}