blob: f14cdf68c08649d819d3dba6fb34bc4aa25300d3 [file] [log] [blame]
/*
* kmp_affinity.cpp -- affinity management
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
#if KMP_USE_HIER_SCHED
#include "kmp_dispatch_hier.h"
#endif
// Store the real or imagined machine hierarchy here
static hierarchy_info machine_hierarchy;
void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
kmp_uint32 depth;
// The test below is true if affinity is available, but set to "none". Need to
// init on first use of hierarchical barrier.
if (TCR_1(machine_hierarchy.uninitialized))
machine_hierarchy.init(NULL, nproc);
// Adjust the hierarchy in case num threads exceeds original
if (nproc > machine_hierarchy.base_num_threads)
machine_hierarchy.resize(nproc);
depth = machine_hierarchy.depth;
KMP_DEBUG_ASSERT(depth > 0);
thr_bar->depth = depth;
thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
}
#if KMP_AFFINITY_SUPPORTED
bool KMPAffinity::picked_api = false;
void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
void KMPAffinity::pick_api() {
KMPAffinity *affinity_dispatch;
if (picked_api)
return;
#if KMP_USE_HWLOC
// Only use Hwloc if affinity isn't explicitly disabled and
// user requests Hwloc topology method
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
__kmp_affinity_type != affinity_disabled) {
affinity_dispatch = new KMPHwlocAffinity();
} else
#endif
{
affinity_dispatch = new KMPNativeAffinity();
}
__kmp_affinity_dispatch = affinity_dispatch;
picked_api = true;
}
void KMPAffinity::destroy_api() {
if (__kmp_affinity_dispatch != NULL) {
delete __kmp_affinity_dispatch;
__kmp_affinity_dispatch = NULL;
picked_api = false;
}
}
#define KMP_ADVANCE_SCAN(scan) \
while (*scan != '\0') { \
scan++; \
}
// Print the affinity mask to the character array in a pretty format.
// The format is a comma separated list of non-negative integers or integer
// ranges: e.g., 1,2,3-5,7,9-15
// The format can also be the string "{<empty>}" if no bits are set in mask
char *__kmp_affinity_print_mask(char *buf, int buf_len,
kmp_affin_mask_t *mask) {
int start = 0, finish = 0, previous = 0;
bool first_range;
KMP_ASSERT(buf);
KMP_ASSERT(buf_len >= 40);
KMP_ASSERT(mask);
char *scan = buf;
char *end = buf + buf_len - 1;
// Check for empty set.
if (mask->begin() == mask->end()) {
KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
KMP_ADVANCE_SCAN(scan);
KMP_ASSERT(scan <= end);
return buf;
}
first_range = true;
start = mask->begin();
while (1) {
// Find next range
// [start, previous] is inclusive range of contiguous bits in mask
for (finish = mask->next(start), previous = start;
finish == previous + 1 && finish != mask->end();
finish = mask->next(finish)) {
previous = finish;
}
// The first range does not need a comma printed before it, but the rest
// of the ranges do need a comma beforehand
if (!first_range) {
KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
KMP_ADVANCE_SCAN(scan);
} else {
first_range = false;
}
// Range with three or more contiguous bits in the affinity mask
if (previous - start > 1) {
KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
static_cast<int>(previous));
} else {
// Range with one or two contiguous bits in the affinity mask
KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
KMP_ADVANCE_SCAN(scan);
if (previous - start > 0) {
KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
}
}
KMP_ADVANCE_SCAN(scan);
// Start over with new start point
start = finish;
if (start == mask->end())
break;
// Check for overflow
if (end - scan < 2)
break;
}
// Check for overflow
KMP_ASSERT(scan <= end);
return buf;
}
#undef KMP_ADVANCE_SCAN
// Print the affinity mask to the string buffer object in a pretty format
// The format is a comma separated list of non-negative integers or integer
// ranges: e.g., 1,2,3-5,7,9-15
// The format can also be the string "{<empty>}" if no bits are set in mask
kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
kmp_affin_mask_t *mask) {
int start = 0, finish = 0, previous = 0;
bool first_range;
KMP_ASSERT(buf);
KMP_ASSERT(mask);
__kmp_str_buf_clear(buf);
// Check for empty set.
if (mask->begin() == mask->end()) {
__kmp_str_buf_print(buf, "%s", "{<empty>}");
return buf;
}
first_range = true;
start = mask->begin();
while (1) {
// Find next range
// [start, previous] is inclusive range of contiguous bits in mask
for (finish = mask->next(start), previous = start;
finish == previous + 1 && finish != mask->end();
finish = mask->next(finish)) {
previous = finish;
}
// The first range does not need a comma printed before it, but the rest
// of the ranges do need a comma beforehand
if (!first_range) {
__kmp_str_buf_print(buf, "%s", ",");
} else {
first_range = false;
}
// Range with three or more contiguous bits in the affinity mask
if (previous - start > 1) {
__kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
static_cast<int>(previous));
} else {
// Range with one or two contiguous bits in the affinity mask
__kmp_str_buf_print(buf, "%d", static_cast<int>(start));
if (previous - start > 0) {
__kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
}
}
// Start over with new start point
start = finish;
if (start == mask->end())
break;
}
return buf;
}
void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
KMP_CPU_ZERO(mask);
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
int group;
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
for (group = 0; group < __kmp_num_proc_groups; group++) {
int i;
int num = __kmp_GetActiveProcessorCount(group);
for (i = 0; i < num; i++) {
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
}
}
} else
#endif /* KMP_GROUP_AFFINITY */
{
int proc;
for (proc = 0; proc < __kmp_xproc; proc++) {
KMP_CPU_SET(proc, mask);
}
}
}
// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
// called to renumber the labels from [0..n] and place them into the child_num
// vector of the address object. This is done in case the labels used for
// the children at one node of the hierarchy differ from those used for
// another node at the same level. Example: suppose the machine has 2 nodes
// with 2 packages each. The first node contains packages 601 and 602, and
// second node contains packages 603 and 604. If we try to sort the table
// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
// because we are paying attention to the labels themselves, not the ordinal
// child numbers. By using the child numbers in the sort, the result is
// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
int numAddrs) {
KMP_DEBUG_ASSERT(numAddrs > 0);
int depth = address2os->first.depth;
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
int labCt;
for (labCt = 0; labCt < depth; labCt++) {
address2os[0].first.childNums[labCt] = counts[labCt] = 0;
lastLabel[labCt] = address2os[0].first.labels[labCt];
}
int i;
for (i = 1; i < numAddrs; i++) {
for (labCt = 0; labCt < depth; labCt++) {
if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
int labCt2;
for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
counts[labCt2] = 0;
lastLabel[labCt2] = address2os[i].first.labels[labCt2];
}
counts[labCt]++;
lastLabel[labCt] = address2os[i].first.labels[labCt];
break;
}
}
for (labCt = 0; labCt < depth; labCt++) {
address2os[i].first.childNums[labCt] = counts[labCt];
}
for (; labCt < (int)Address::maxDepth; labCt++) {
address2os[i].first.childNums[labCt] = 0;
}
}
__kmp_free(lastLabel);
__kmp_free(counts);
}
// All of the __kmp_affinity_create_*_map() routines should set
// __kmp_affinity_masks to a vector of affinity mask objects of length
// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
// the number of levels in the machine topology tree (zero if
// __kmp_affinity_type == affinity_none).
//
// All of the __kmp_affinity_create_*_map() routines should set
// *__kmp_affin_fullMask to the affinity mask for the initialization thread.
// They need to save and restore the mask, and it could be needed later, so
// saving it is just an optimization to avoid calling kmp_get_system_affinity()
// again.
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
static int nCoresPerPkg, nPackages;
static int __kmp_nThreadsPerCore;
#ifndef KMP_DFLT_NTH_CORES
static int __kmp_ncores;
#endif
static int *__kmp_pu_os_idx = NULL;
// __kmp_affinity_uniform_topology() doesn't work when called from
// places which support arbitrarily many levels in the machine topology
// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
// __kmp_affinity_create_x2apicid_map().
inline static bool __kmp_affinity_uniform_topology() {
return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
}
// Print out the detailed machine topology map, i.e. the physical locations
// of each OS proc.
static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
int depth, int pkgLevel,
int coreLevel, int threadLevel) {
int proc;
KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
for (proc = 0; proc < len; proc++) {
int level;
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
for (level = 0; level < depth; level++) {
if (level == threadLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
} else if (level == coreLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
} else if (level == pkgLevel) {
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
} else if (level > pkgLevel) {
__kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
level - pkgLevel - 1);
} else {
__kmp_str_buf_print(&buf, "L%d ", level);
}
__kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
}
KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
buf.str);
__kmp_str_buf_free(&buf);
}
}
#if KMP_USE_HWLOC
static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
int depth, int *levels) {
int proc;
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
for (proc = 0; proc < len; proc++) {
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
addrP[proc].first.labels[0]);
if (depth > 1) {
int level = 1; // iterate over levels
int label = 1; // iterate over labels
if (__kmp_numa_detected)
// node level follows package
if (levels[level++] > 0)
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
addrP[proc].first.labels[label++]);
if (__kmp_tile_depth > 0)
// tile level follows node if any, or package
if (levels[level++] > 0)
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
addrP[proc].first.labels[label++]);
if (levels[level++] > 0)
// core level follows
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
addrP[proc].first.labels[label++]);
if (levels[level++] > 0)
// thread level is the latest
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
addrP[proc].first.labels[label++]);
KMP_DEBUG_ASSERT(label == depth);
}
KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
__kmp_str_buf_clear(&buf);
}
__kmp_str_buf_free(&buf);
}
static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
// This function removes the topology levels that are radix 1 and don't offer
// further information about the topology. The most common example is when you
// have one thread context per core, we don't want the extra thread context
// level if it offers no unique labels. So they are removed.
// return value: the new depth of address2os
static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
int depth, int *levels) {
int level;
int i;
int radix1_detected;
int new_depth = depth;
for (level = depth - 1; level > 0; --level) {
// Detect if this level is radix 1
radix1_detected = 1;
for (i = 1; i < nTh; ++i) {
if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
// There are differing label values for this level so it stays
radix1_detected = 0;
break;
}
}
if (!radix1_detected)
continue;
// Radix 1 was detected
--new_depth;
levels[level] = -1; // mark level as not present in address2os array
if (level == new_depth) {
// "turn off" deepest level, just decrement the depth that removes
// the level from address2os array
for (i = 0; i < nTh; ++i) {
addrP[i].first.depth--;
}
} else {
// For other levels, we move labels over and also reduce the depth
int j;
for (j = level; j < new_depth; ++j) {
for (i = 0; i < nTh; ++i) {
addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
addrP[i].first.depth--;
}
levels[j + 1] -= 1;
}
}
}
return new_depth;
}
// Returns the number of objects of type 'type' below 'obj' within the topology
// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
// object.
static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
hwloc_obj_type_t type) {
int retval = 0;
hwloc_obj_t first;
for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
obj->logical_index, type, 0);
first != NULL &&
hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
obj;
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
first)) {
++retval;
}
return retval;
}
static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
hwloc_obj_t o, unsigned depth,
hwloc_obj_t *f) {
if (o->depth == depth) {
if (*f == NULL)
*f = o; // output first descendant found
return 1;
}
int sum = 0;
for (unsigned i = 0; i < o->arity; i++)
sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
return sum; // will be 0 if no one found (as PU arity is 0)
}
static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
hwloc_obj_type_t type,
hwloc_obj_t *f) {
if (!hwloc_compare_types(o->type, type)) {
if (*f == NULL)
*f = o; // output first descendant found
return 1;
}
int sum = 0;
for (unsigned i = 0; i < o->arity; i++)
sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
return sum; // will be 0 if no one found (as PU arity is 0)
}
static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
int &nActiveThreads,
int &num_active_cores,
hwloc_obj_t obj, int depth,
int *labels) {
hwloc_obj_t core = NULL;
hwloc_topology_t &tp = __kmp_hwloc_topology;
int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
hwloc_obj_t pu = NULL;
KMP_DEBUG_ASSERT(core != NULL);
int num_active_threads = 0;
int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
// int NT = core->arity; pu = core->first_child; // faster?
for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
KMP_DEBUG_ASSERT(pu != NULL);
if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
continue; // skip inactive (inaccessible) unit
Address addr(depth + 2);
KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
obj->os_index, obj->logical_index, core->os_index,
core->logical_index, pu->os_index, pu->logical_index));
for (int i = 0; i < depth; ++i)
addr.labels[i] = labels[i]; // package, etc.
addr.labels[depth] = core_id; // core
addr.labels[depth + 1] = pu_id; // pu
addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
__kmp_pu_os_idx[nActiveThreads] = pu->os_index;
nActiveThreads++;
++num_active_threads; // count active threads per core
}
if (num_active_threads) { // were there any active threads on the core?
++__kmp_ncores; // count total active cores
++num_active_cores; // count active cores per socket
if (num_active_threads > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = num_active_threads; // calc maximum
}
}
return 0;
}
// Check if NUMA node detected below the package,
// and if tile object is detected and return its depth
static int __kmp_hwloc_check_numa() {
hwloc_topology_t &tp = __kmp_hwloc_topology;
hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
int depth;
// Get some PU
hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
if (hT == NULL) // something has gone wrong
return 1;
// check NUMA node below PACKAGE
hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
KMP_DEBUG_ASSERT(hS != NULL);
if (hN != NULL && hN->depth > hS->depth) {
__kmp_numa_detected = TRUE; // socket includes node(s)
if (__kmp_affinity_gran == affinity_gran_node) {
__kmp_affinity_gran == affinity_gran_numa;
}
}
// check tile, get object by depth because of multiple caches possible
depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
hC = NULL; // not used, but reset it here just in case
if (hL != NULL &&
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
__kmp_tile_depth = depth; // tile consists of multiple cores
return 0;
}
static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id) {
hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
*address2os = NULL;
*msg_id = kmp_i18n_null;
// Save the affinity mask for the current thread.
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
__kmp_get_system_affinity(oldMask, TRUE);
__kmp_hwloc_check_numa();
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_CPU_FREE(oldMask);
return 0;
}
int depth = 3;
int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
int labels[3] = {0}; // package [,node] [,tile] - head of lables array
if (__kmp_numa_detected)
++depth;
if (__kmp_tile_depth)
++depth;
// Allocate the data structure to be returned.
AddrUnsPair *retval =
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
// nCoresPerPkg, & nPackages. Make sure all these vars are set
// correctly, and return if affinity is not enabled.
hwloc_obj_t socket, node, tile;
int nActiveThreads = 0;
int socket_id = 0;
// re-calculate globals to count only accessible resources
__kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
socket_id++) {
labels[0] = socket_id;
if (__kmp_numa_detected) {
int NN;
int n_active_nodes = 0;
node = NULL;
NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
&node);
for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
labels[1] = node_id;
if (__kmp_tile_depth) {
// NUMA + tiles
int NT;
int n_active_tiles = 0;
tile = NULL;
NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
&tile);
for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
labels[2] = tl_id;
int n_active_cores = 0;
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
n_active_cores, tile, 3, labels);
if (n_active_cores) { // were there any active cores on the socket?
++n_active_tiles; // count active tiles per node
if (n_active_cores > nCorePerTile)
nCorePerTile = n_active_cores; // calc maximum
}
}
if (n_active_tiles) { // were there any active tiles on the socket?
++n_active_nodes; // count active nodes per package
if (n_active_tiles > nTilePerNode)
nTilePerNode = n_active_tiles; // calc maximum
}
} else {
// NUMA, no tiles
int n_active_cores = 0;
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
n_active_cores, node, 2, labels);
if (n_active_cores) { // were there any active cores on the socket?
++n_active_nodes; // count active nodes per package
if (n_active_cores > nCorePerNode)
nCorePerNode = n_active_cores; // calc maximum
}
}
}
if (n_active_nodes) { // were there any active nodes on the socket?
++nPackages; // count total active packages
if (n_active_nodes > nNodePerPkg)
nNodePerPkg = n_active_nodes; // calc maximum
}
} else {
if (__kmp_tile_depth) {
// no NUMA, tiles
int NT;
int n_active_tiles = 0;
tile = NULL;
NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
&tile);
for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
labels[1] = tl_id;
int n_active_cores = 0;
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
n_active_cores, tile, 2, labels);
if (n_active_cores) { // were there any active cores on the socket?
++n_active_tiles; // count active tiles per package
if (n_active_cores > nCorePerTile)
nCorePerTile = n_active_cores; // calc maximum
}
}
if (n_active_tiles) { // were there any active tiles on the socket?
++nPackages; // count total active packages
if (n_active_tiles > nTilePerPkg)
nTilePerPkg = n_active_tiles; // calc maximum
}
} else {
// no NUMA, no tiles
int n_active_cores = 0;
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
socket, 1, labels);
if (n_active_cores) { // were there any active cores on the socket?
++nPackages; // count total active packages
if (n_active_cores > nCoresPerPkg)
nCoresPerPkg = n_active_cores; // calc maximum
}
}
}
}
// If there's only one thread context to bind to, return now.
KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
KMP_ASSERT(nActiveThreads > 0);
if (nActiveThreads == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
// Form an Address object which only includes the package level.
Address addr(1);
addr.labels[0] = retval[0].first.labels[0];
retval[0].first = addr;
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
}
*address2os = retval;
KMP_CPU_FREE(oldMask);
return 1;
}
// Sort the table by physical Id.
qsort(retval, nActiveThreads, sizeof(*retval),
__kmp_affinity_cmp_Address_labels);
// Check to see if the machine topology is uniform
int nPUs = nPackages * __kmp_nThreadsPerCore;
if (__kmp_numa_detected) {
if (__kmp_tile_depth) { // NUMA + tiles
nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
} else { // NUMA, no tiles
nPUs *= (nNodePerPkg * nCorePerNode);
}
} else {
if (__kmp_tile_depth) { // no NUMA, tiles
nPUs *= (nTilePerPkg * nCorePerTile);
} else { // no NUMA, no tiles
nPUs *= nCoresPerPkg;
}
}
unsigned uniform = (nPUs == nActiveThreads);
// Print the machine topology summary.
if (__kmp_affinity_verbose) {
char mask[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
if (__kmp_numa_detected) {
if (__kmp_tile_depth) { // NUMA + tiles
KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
__kmp_ncores);
} else { // NUMA, no tiles
KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
nPUs *= (nNodePerPkg * nCorePerNode);
}
} else {
if (__kmp_tile_depth) { // no NUMA, tiles
KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
} else { // no NUMA, no tiles
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", nPackages);
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
__kmp_str_buf_free(&buf);
}
}
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
int depth_full = depth; // number of levels before compressing
// Find any levels with radiix 1, and remove them from the map
// (except for the package level).
depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
levels);
KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
if (__kmp_affinity_gran_levels < 0) {
// Set the granularity level based on what levels are modeled
// in the machine topology map.
__kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
if (__kmp_affinity_gran > affinity_gran_thread) {
for (int i = 1; i <= depth_full; ++i) {
if (__kmp_affinity_gran <= i) // only count deeper levels
break;
if (levels[depth_full - i] > 0)
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_gran > affinity_gran_package)
__kmp_affinity_gran_levels++; // e.g. granularity = group
}
if (__kmp_affinity_verbose)
__kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
KMP_CPU_FREE(oldMask);
*address2os = retval;
return depth;
}
#endif // KMP_USE_HWLOC
// If we don't know how to retrieve the machine's processor topology, or
// encounter an error in doing so, this routine is called to form a "flat"
// mapping of os thread id's <-> processor id's.
static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id) {
*address2os = NULL;
*msg_id = kmp_i18n_null;
// Even if __kmp_affinity_type == affinity_none, this routine might still
// called to set __kmp_ncores, as well as
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_ncores = nPackages = __kmp_xproc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return now if affinity is
// not enabled.
__kmp_ncores = nPackages = __kmp_avail_proc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
if (__kmp_affinity_type == affinity_none) {
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
continue;
__kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
}
return 0;
}
// Contruct the data structure to be returned.
*address2os =
(AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Address addr(1);
addr.labels[0] = i;
(*address2os)[avail_ct++] = AddrUnsPair(addr, i);
}
if (__kmp_affinity_verbose) {
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
}
if (__kmp_affinity_gran_levels < 0) {
// Only the package level is modeled in the machine topology map,
// so the #levels of granularity is either 0 or 1.
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels = 1;
} else {
__kmp_affinity_gran_levels = 0;
}
}
return 1;
}
#if KMP_GROUP_AFFINITY
// If multiple Windows* OS processor groups exist, we can create a 2-level
// topology map with the groups at level 0 and the individual procs at level 1.
// This facilitates letting the threads float among all procs in a group,
// if granularity=group (the default when there are multiple groups).
static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id) {
*address2os = NULL;
*msg_id = kmp_i18n_null;
// If we aren't affinity capable, then return now.
// The flat mapping will be used.
if (!KMP_AFFINITY_CAPABLE()) {
// FIXME set *msg_id
return -1;
}
// Contruct the data structure to be returned.
*address2os =
(AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
int avail_ct = 0;
int i;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Address addr(2);
addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
(*address2os)[avail_ct++] = AddrUnsPair(addr, i);
if (__kmp_affinity_verbose) {
KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
addr.labels[1]);
}
}
if (__kmp_affinity_gran_levels < 0) {
if (__kmp_affinity_gran == affinity_gran_group) {
__kmp_affinity_gran_levels = 1;
} else if ((__kmp_affinity_gran == affinity_gran_fine) ||
(__kmp_affinity_gran == affinity_gran_thread)) {
__kmp_affinity_gran_levels = 0;
} else {
const char *gran_str = NULL;
if (__kmp_affinity_gran == affinity_gran_core) {
gran_str = "core";
} else if (__kmp_affinity_gran == affinity_gran_package) {
gran_str = "package";
} else if (__kmp_affinity_gran == affinity_gran_node) {
gran_str = "node";
} else {
KMP_ASSERT(0);
}
// Warning: can't use affinity granularity \"gran\" with group topology
// method, using "thread"
__kmp_affinity_gran_levels = 0;
}
}
return 2;
}
#endif /* KMP_GROUP_AFFINITY */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
static int __kmp_cpuid_mask_width(int count) {
int r = 0;
while ((1 << r) < count)
++r;
return r;
}
class apicThreadInfo {
public:
unsigned osId; // param to __kmp_affinity_bind_thread
unsigned apicId; // from cpuid after binding
unsigned maxCoresPerPkg; // ""
unsigned maxThreadsPerPkg; // ""
unsigned pkgId; // inferred from above values
unsigned coreId; // ""
unsigned threadId; // ""
};
static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
const void *b) {
const apicThreadInfo *aa = (const apicThreadInfo *)a;
const apicThreadInfo *bb = (const apicThreadInfo *)b;
if (aa->pkgId < bb->pkgId)
return -1;
if (aa->pkgId > bb->pkgId)
return 1;
if (aa->coreId < bb->coreId)
return -1;
if (aa->coreId > bb->coreId)
return 1;
if (aa->threadId < bb->threadId)
return -1;
if (aa->threadId > bb->threadId)
return 1;
return 0;
}
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
// an algorithm which cycles through the available os threads, setting
// the current thread's affinity mask to that thread, and then retrieves
// the Apic Id for each thread context using the cpuid instruction.
static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id) {
kmp_cpuid buf;
*address2os = NULL;
*msg_id = kmp_i18n_null;
// Check if cpuid leaf 4 is supported.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax < 4) {
*msg_id = kmp_i18n_str_NoLeaf4Support;
return -1;
}
// The algorithm used starts by setting the affinity to each available thread
// and retrieving info from the cpuid instruction, so if we are not capable of
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
// need to do something else - use the defaults that we calculated from
// issuing cpuid without binding to each proc.
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
// Get an upper bound on the number of threads per package using cpuid(1).
// On some OS/chps combinations where HT is supported by the chip but is
// disabled, this value will be 2 on a single core chip. Usually, it will be
// 2 if HT is enabled and 1 if HT is disabled.
__kmp_x86_cpuid(1, 0, &buf);
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (maxThreadsPerPkg == 0) {
maxThreadsPerPkg = 1;
}
// The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
// value.
//
// The author of cpu_count.cpp treated this only an upper bound on the
// number of cores, but I haven't seen any cases where it was greater than
// the actual number of cores, so we will treat it as exact in this block of
// code.
//
// First, we need to check if cpuid(4) is supported on this chip. To see if
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
// greater.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
} else {
nCoresPerPkg = 1;
}
// There is no way to reliably tell if HT is enabled without issuing the
// cpuid instruction from every thread, can correlating the cpuid info, so
// if the machine is not affinity capable, we assume that HT is off. We have
// seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
// does not support HT.
//
// - Older OSes are usually found on machines with older chips, which do not
// support HT.
// - The performance penalty for mistakenly identifying a machine as HT when
// it isn't (which results in blocktime being incorrecly set to 0) is
// greater than the penalty when for mistakenly identifying a machine as
// being 1 thread/core when it is really HT enabled (which results in
// blocktime being incorrectly set to a positive value).
__kmp_ncores = __kmp_xproc;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
__kmp_nThreadsPerCore = 1;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
// __kmp_affinity_type = affinity_none.
// Save the affinity mask for the current thread.
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
KMP_ASSERT(oldMask != NULL);
__kmp_get_system_affinity(oldMask, TRUE);
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
//
// The relevant information is:
// - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
// - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
// of this field determines the width of the core# + thread# fields in the
// Apic Id. It is also an upper bound on the number of threads per
// package, but it has been verified that situations happen were it is not
// exact. In particular, on certain OS/chip combinations where Intel(R)
// Hyper-Threading Technology is supported by the chip but has been
// disabled, the value of this field will be 2 (for a single core chip).
// On other OS/chip combinations supporting Intel(R) Hyper-Threading
// Technology, the value of this field will be 1 when Intel(R)
// Hyper-Threading Technology is disabled and 2 when it is enabled.
// - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
// of this field (+1) determines the width of the core# field in the Apic
// Id. The comments in "cpucount.cpp" say that this value is an upper
// bound, but the IA-32 architecture manual says that it is exactly the
// number of cores per package, and I haven't seen any case where it
// wasn't.
//
// From this information, deduce the package Id, core Id, and thread Id,
// and set the corresponding fields in the apicThreadInfo struct.
unsigned i;
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
__kmp_avail_proc * sizeof(apicThreadInfo));
unsigned nApics = 0;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
__kmp_affinity_dispatch->bind_thread(i);
threadInfo[nApics].osId = i;
// The apic id and max threads per pkg come from cpuid(1).
__kmp_x86_cpuid(1, 0, &buf);
if (((buf.edx >> 9) & 1) == 0) {
__kmp_set_system_affinity(oldMask, TRUE);
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_ApicNotPresent;
return -1;
}
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
threadInfo[nApics].maxThreadsPerPkg = 1;
}
// Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
// value.
//
// First, we need to check if cpuid(4) is supported on this chip. To see if
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
// or greater.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax >= 4) {
__kmp_x86_cpuid(4, 0, &buf);
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
} else {
threadInfo[nApics].maxCoresPerPkg = 1;
}
// Infer the pkgId / coreId / threadId using only the info obtained locally.
int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
int widthT = widthCT - widthC;
if (widthT < 0) {
// I've never seen this one happen, but I suppose it could, if the cpuid
// instruction on a chip was really screwed up. Make sure to restore the
// affinity mask before the tail call.
__kmp_set_system_affinity(oldMask, TRUE);
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
int maskC = (1 << widthC) - 1;
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
int maskT = (1 << widthT) - 1;
threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
nApics++;
}
// We've collected all the info we need.
// Restore the old affinity mask for this thread.
__kmp_set_system_affinity(oldMask, TRUE);
// If there's only one thread context to bind to, form an Address object
// with depth 1 and return immediately (or, if affinity is off, set
// address2os to NULL and return).
//
// If it is configured to omit the package level when there is only a single
// package, the logic at the end of this routine won't work if there is only
// a single thread - it would try to form an Address object with depth 0.
KMP_ASSERT(nApics > 0);
if (nApics == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 0;
}
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
Address addr(1);
addr.labels[0] = threadInfo[0].pkgId;
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
}
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 1;
}
// Sort the threadInfo table by physical Id.
qsort(threadInfo, nApics, sizeof(*threadInfo),
__kmp_affinity_cmp_apicThreadInfo_phys_id);
// The table is now sorted by pkgId / coreId / threadId, but we really don't
// know the radix of any of the fields. pkgId's may be sparsely assigned among
// the chips on a system. Although coreId's are usually assigned
// [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
// total # packages) are at this point - we want to determine that now. We
// only have an upper bound on the first two figures.
//
// We also perform a consistency check at this point: the values returned by
// the cpuid instruction for any thread bound to a given package had better
// return the same info for maxThreadsPerPkg and maxCoresPerPkg.
nPackages = 1;
nCoresPerPkg = 1;
__kmp_nThreadsPerCore = 1;
unsigned nCores = 1;
unsigned pkgCt = 1; // to determine radii
unsigned lastPkgId = threadInfo[0].pkgId;
unsigned coreCt = 1;
unsigned lastCoreId = threadInfo[0].coreId;
unsigned threadCt = 1;
unsigned lastThreadId = threadInfo[0].threadId;
// intra-pkg consist checks
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
for (i = 1; i < nApics; i++) {
if (threadInfo[i].pkgId != lastPkgId) {
nCores++;
pkgCt++;
lastPkgId = threadInfo[i].pkgId;
if ((int)coreCt > nCoresPerPkg)
nCoresPerPkg = coreCt;
coreCt = 1;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
// This is a different package, so go on to the next iteration without
// doing any consistency checks. Reset the consistency check vars, though.
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
continue;
}
if (threadInfo[i].coreId != lastCoreId) {
nCores++;
coreCt++;
lastCoreId = threadInfo[i].coreId;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
threadCt = 1;
lastThreadId = threadInfo[i].threadId;
} else if (threadInfo[i].threadId != lastThreadId) {
threadCt++;
lastThreadId = threadInfo[i].threadId;
} else {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
return -1;
}
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
// fields agree between all the threads bounds to a given package.
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
(prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
}
nPackages = pkgCt;
if ((int)coreCt > nCoresPerPkg)
nCoresPerPkg = coreCt;
if ((int)threadCt > __kmp_nThreadsPerCore)
__kmp_nThreadsPerCore = threadCt;
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return now if affinity is
// not enabled.
__kmp_ncores = nCores;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (i = 0; i < nApics; ++i) {
__kmp_pu_os_idx[i] = threadInfo[i].osId;
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return 0;
}
// Now that we've determined the number of packages, the number of cores per
// package, and the number of threads per core, we can construct the data
// structure that is to be returned.
int pkgLevel = 0;
int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
int threadLevel =
(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
KMP_ASSERT(depth > 0);
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
for (i = 0; i < nApics; ++i) {
Address addr(depth);
unsigned os = threadInfo[i].osId;
int d = 0;
if (pkgLevel >= 0) {
addr.labels[d++] = threadInfo[i].pkgId;
}
if (coreLevel >= 0) {
addr.labels[d++] = threadInfo[i].coreId;
}
if (threadLevel >= 0) {
addr.labels[d++] = threadInfo[i].threadId;
}
(*address2os)[i] = AddrUnsPair(addr, os);
}
if (__kmp_affinity_gran_levels < 0) {
// Set the granularity level based on what levels are modeled in the machine
// topology map.
__kmp_affinity_gran_levels = 0;
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
__kmp_affinity_gran_levels++;
}
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
__kmp_affinity_gran_levels++;
}
if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
coreLevel, threadLevel);
}
__kmp_free(threadInfo);
KMP_CPU_FREE(oldMask);
return depth;
}
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
// architectures support a newer interface for specifying the x2APIC Ids,
// based on cpuid leaf 11.
static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
kmp_i18n_id_t *const msg_id) {
kmp_cpuid buf;
*address2os = NULL;
*msg_id = kmp_i18n_null;
// Check to see if cpuid leaf 11 is supported.
__kmp_x86_cpuid(0, 0, &buf);
if (buf.eax < 11) {
*msg_id = kmp_i18n_str_NoLeaf11Support;
return -1;
}
__kmp_x86_cpuid(11, 0, &buf);
if (buf.ebx == 0) {
*msg_id = kmp_i18n_str_NoLeaf11Support;
return -1;
}
// Find the number of levels in the machine topology. While we're at it, get
// the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
// get more accurate values later by explicitly counting them, but get
// reasonable defaults now, in case we return early.
int level;
int threadLevel = -1;
int coreLevel = -1;
int pkgLevel = -1;
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
for (level = 0;; level++) {
if (level > 31) {
// FIXME: Hack for DPD200163180
//
// If level is big then something went wrong -> exiting
//
// There could actually be 32 valid levels in the machine topology, but so
// far, the only machine we have seen which does not exit this loop before
// iteration 32 has fubar x2APIC settings.
//
// For now, just reject this case based upon loop trip count.
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
__kmp_x86_cpuid(11, level, &buf);
if (buf.ebx == 0) {
if (pkgLevel < 0) {
// Will infer nPackages from __kmp_xproc
pkgLevel = level;
level++;
}
break;
}
int kind = (buf.ecx >> 8) & 0xff;
if (kind == 1) {
// SMT level
threadLevel = level;
coreLevel = -1;
pkgLevel = -1;
__kmp_nThreadsPerCore = buf.ebx & 0xffff;
if (__kmp_nThreadsPerCore == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
} else if (kind == 2) {
// core level
coreLevel = level;
pkgLevel = -1;
nCoresPerPkg = buf.ebx & 0xffff;
if (nCoresPerPkg == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
} else {
if (level <= 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
if (pkgLevel >= 0) {
continue;
}
pkgLevel = level;
nPackages = buf.ebx & 0xffff;
if (nPackages == 0) {
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
return -1;
}
}
}
int depth = level;
// In the above loop, "level" was counted from the finest level (usually
// thread) to the coarsest. The caller expects that we will place the labels
// in (*address2os)[].first.labels[] in the inverse order, so we need to
// invert the vars saying which level means what.
if (threadLevel >= 0) {
threadLevel = depth - threadLevel - 1;
}
if (coreLevel >= 0) {
coreLevel = depth - coreLevel - 1;
}
KMP_DEBUG_ASSERT(pkgLevel >= 0);
pkgLevel = depth - pkgLevel - 1;
// The algorithm used starts by setting the affinity to each available thread
// and retrieving info from the cpuid instruction, so if we are not capable of
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
// need to do something else - use the defaults that we calculated from
// issuing cpuid without binding to each proc.
if (!KMP_AFFINITY_CAPABLE()) {
// Hack to try and infer the machine topology using only the data
// available from cpuid on the current thread, and __kmp_xproc.
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
if (__kmp_affinity_verbose) {
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (__kmp_affinity_uniform_topology()) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
return 0;
}
// From here on, we can assume that it is safe to call
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
// __kmp_affinity_type = affinity_none.
// Save the affinity mask for the current thread.
kmp_affin_mask_t *oldMask;
KMP_CPU_ALLOC(oldMask);
__kmp_get_system_affinity(oldMask, TRUE);
// Allocate the data structure to be returned.
AddrUnsPair *retval =
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
// Run through each of the available contexts, binding the current thread
// to it, and obtaining the pertinent information using the cpuid instr.
unsigned int proc;
int nApics = 0;
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
continue;
}
KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
__kmp_affinity_dispatch->bind_thread(proc);
// Extract labels for each level in the machine topology map from Apic ID.
Address addr(depth);
int prev_shift = 0;
for (level = 0; level < depth; level++) {
__kmp_x86_cpuid(11, level, &buf);
unsigned apicId = buf.edx;
if (buf.ebx == 0) {
if (level != depth - 1) {
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
addr.labels[depth - level - 1] = apicId >> prev_shift;
level++;
break;
}
int shift = buf.eax & 0x1f;
int mask = (1 << shift) - 1;
addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
prev_shift = shift;
}
if (level != depth) {
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
return -1;
}
retval[nApics] = AddrUnsPair(addr, proc);
nApics++;
}
// We've collected all the info we need.
// Restore the old affinity mask for this thread.
__kmp_set_system_affinity(oldMask, TRUE);
// If there's only one thread context to bind to, return now.
KMP_ASSERT(nApics > 0);
if (nApics == 1) {
__kmp_ncores = nPackages = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
// Form an Address object which only includes the package level.
Address addr(1);
addr.labels[0] = retval[0].first.labels[pkgLevel];
retval[0].first = addr;
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
}
*address2os = retval;
KMP_CPU_FREE(oldMask);
return 1;
}
// Sort the table by physical Id.
qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
// Find the radix at each of the levels.
unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
for (level = 0; level < depth; level++) {
totals[level] = 1;
maxCt[level] = 1;
counts[level] = 1;
last[level] = retval[0].first.labels[level];
}
// From here on, the iteration variable "level" runs from the finest level to
// the coarsest, i.e. we iterate forward through
// (*address2os)[].first.labels[] - in the previous loops, we iterated
// backwards.
for (proc = 1; (int)proc < nApics; proc++) {
int level;
for (level = 0; level < depth; level++) {
if (retval[proc].first.labels[level] != last[level]) {
int j;
for (j = level + 1; j < depth; j++) {
totals[j]++;
counts[j] = 1;
// The line below causes printing incorrect topology information in
// case the max value for some level (maxCt[level]) is encountered
// earlier than some less value while going through the array. For
// example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
// maxCt[1] == 2
// whereas it must be 4.
// TODO!!! Check if it can be commented safely
// maxCt[j] = 1;
last[j] = retval[proc].first.labels[j];
}
totals[level]++;
counts[level]++;
if (counts[level] > maxCt[level]) {
maxCt[level] = counts[level];
}
last[level] = retval[proc].first.labels[level];
break;
} else if (level == depth - 1) {
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
return -1;
}
}
}
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return if affinity is not
// enabled.
if (threadLevel >= 0) {
__kmp_nThreadsPerCore = maxCt[threadLevel];
} else {
__kmp_nThreadsPerCore = 1;
}
nPackages = totals[pkgLevel];
if (coreLevel >= 0) {
__kmp_ncores = totals[coreLevel];
nCoresPerPkg = maxCt[coreLevel];
} else {
__kmp_ncores = nPackages;
nCoresPerPkg = 1;
}
// Check to see if the machine topology is uniform
unsigned prod = maxCt[0];
for (level = 1; level < depth; level++) {
prod *= maxCt[level];
}
bool uniform = (prod == totals[level - 1]);
// Print the machine topology summary.
if (__kmp_affinity_verbose) {
char mask[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", totals[0]);
for (level = 1; level <= pkgLevel; level++) {
__kmp_str_buf_print(&buf, " x %d", maxCt[level]);
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
__kmp_str_buf_free(&buf);
}
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (proc = 0; (int)proc < nApics; ++proc) {
__kmp_pu_os_idx[proc] = retval[proc].second;
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
__kmp_free(retval);
KMP_CPU_FREE(oldMask);
return 0;
}
// Find any levels with radiix 1, and remove them from the map
// (except for the package level).
int new_depth = 0;
for (level = 0; level < depth; level++) {
if ((maxCt[level] == 1) && (level != pkgLevel)) {
continue;
}
new_depth++;
}
// If we are removing any levels, allocate a new vector to return,
// and copy the relevant information to it.
if (new_depth != depth) {
AddrUnsPair *new_retval =
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
for (proc = 0; (int)proc < nApics; proc++) {
Address addr(new_depth);
new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
}
int new_level = 0;
int newPkgLevel = -1;
int newCoreLevel = -1;
int newThreadLevel = -1;
for (level = 0; level < depth; level++) {
if ((maxCt[level] == 1) && (level != pkgLevel)) {
// Remove this level. Never remove the package level
continue;
}
if (level == pkgLevel) {
newPkgLevel = new_level;
}
if (level == coreLevel) {
newCoreLevel = new_level;
}
if (level == threadLevel) {
newThreadLevel = new_level;
}
for (proc = 0; (int)proc < nApics; proc++) {
new_retval[proc].first.labels[new_level] =
retval[proc].first.labels[level];
}
new_level++;
}
__kmp_free(retval);
retval = new_retval;
depth = new_depth;
pkgLevel = newPkgLevel;
coreLevel = newCoreLevel;
threadLevel = newThreadLevel;
}
if (__kmp_affinity_gran_levels < 0) {
// Set the granularity level based on what levels are modeled
// in the machine topology map.
__kmp_affinity_gran_levels = 0;
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
__kmp_affinity_gran_levels++;
}
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
__kmp_affinity_gran_levels++;
}
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels++;
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
threadLevel);
}
__kmp_free(last);
__kmp_free(maxCt);
__kmp_free(counts);
__kmp_free(totals);
KMP_CPU_FREE(oldMask);
*address2os = retval;
return depth;
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#define osIdIndex 0
#define threadIdIndex 1
#define coreIdIndex 2
#define pkgIdIndex 3
#define nodeIdIndex 4
typedef unsigned *ProcCpuInfo;
static unsigned maxIndex = pkgIdIndex;
static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
const void *b) {
unsigned i;
const unsigned *aa = *(unsigned *const *)a;
const unsigned *bb = *(unsigned *const *)b;
for (i = maxIndex;; i--) {
if (aa[i] < bb[i])
return -1;
if (aa[i] > bb[i])
return 1;
if (i == osIdIndex)
break;
}
return 0;
}
#if KMP_USE_HIER_SCHED
// Set the array sizes for the hierarchy layers
static void __kmp_dispatch_set_hierarchy_values() {
// Set the maximum number of L1's to number of cores
// Set the maximum number of L2's to to either number of cores / 2 for
// Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
// Or the number of cores for Intel(R) Xeon(R) processors
// Set the maximum number of NUMA nodes and L3's to number of packages
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
if (__kmp_mic_type >= mic3)
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
else
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
// Set the number of threads per unit
// Number of hardware threads per L1/L2/L3/NUMA/LOOP
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
__kmp_nThreadsPerCore;
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
if (__kmp_mic_type >= mic3)
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2 * __kmp_nThreadsPerCore;
else
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
__kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
nCoresPerPkg * __kmp_nThreadsPerCore;
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
}
// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
// i.e., this thread's L1 or this thread's L2, etc.
int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
int index = type + 1;
int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
if (type == kmp_hier_layer_e::LAYER_THREAD)
return tid;
else if (type == kmp_hier_layer_e::LAYER_LOOP)
return 0;
KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
if (tid >= num_hw_threads)
tid = tid % num_hw_threads;
return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
}
// Return the number of t1's per t2
int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
int i1 = t1 + 1;
int i2 = t2 + 1;
KMP_DEBUG_ASSERT(i1 <= i2);
KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
// (nthreads/t2) / (nthreads/t1) = t1 / t2
return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
}
#endif // KMP_USE_HIER_SCHED
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
// affinity map.
static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
int *line,
kmp_i18n_id_t *const msg_id,
FILE *f) {
*address2os = NULL;
*msg_id = kmp_i18n_null;
// Scan of the file, and count the number of "processor" (osId) fields,
// and find the highest value of <n> for a node_<n> field.
char buf[256];
unsigned num_records = 0;
while (!feof(f)) {
buf[sizeof(buf) - 1] = 1;
if (!fgets(buf, sizeof(buf), f)) {
// Read errors presumably because of EOF
break;
}
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
num_records++;
continue;
}
// FIXME - this will match "node_<n> <garbage>"
unsigned level;
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
if (nodeIdIndex + level >= maxIndex) {
maxIndex = nodeIdIndex + level;
}
continue;
}
}
// Check for empty file / no valid processor records, or too many. The number
// of records can't exceed the number of valid bits in the affinity mask.
if (num_records == 0) {
*line = 0;
*msg_id = kmp_i18n_str_NoProcRecords;
return -1;
}
if (num_records > (unsigned)__kmp_xproc) {
*line = 0;
*msg_id = kmp_i18n_str_TooManyProcRecords;
return -1;
}
// Set the file pointer back to the begginning, so that we can scan the file
// again, this time performing a full parse of the data. Allocate a vector of
// ProcCpuInfo object, where we will place the data. Adding an extra element
// at the end allows us to remove a lot of extra checks for termination
// conditions.
if (fseek(f, 0, SEEK_SET) != 0) {
*line = 0;
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
return -1;
}
// Allocate the array of records to store the proc info in. The dummy
// element at the end makes the logic in filling them out easier to code.
unsigned **threadInfo =
(unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
unsigned i;
for (i = 0; i <= num_records; i++) {
threadInfo[i] =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
}
#define CLEANUP_THREAD_INFO \
for (i = 0; i <= num_records; i++) { \
__kmp_free(threadInfo[i]); \
} \
__kmp_free(threadInfo);
// A value of UINT_MAX means that we didn't find the field
unsigned __index;
#define INIT_PROC_INFO(p) \
for (__index = 0; __index <= maxIndex; __index++) { \
(p)[__index] = UINT_MAX; \
}
for (i = 0; i <= num_records; i++) {
INIT_PROC_INFO(threadInfo[i]);
}
unsigned num_avail = 0;
*line = 0;
while (!feof(f)) {
// Create an inner scoping level, so that all the goto targets at the end of
// the loop appear in an outer scoping level. This avoids warnings about
// jumping past an initialization to a target in the same block.
{
buf[sizeof(buf) - 1] = 1;
bool long_line = false;
if (!fgets(buf, sizeof(buf), f)) {
// Read errors presumably because of EOF
// If there is valid data in threadInfo[num_avail], then fake
// a blank line in ensure that the last address gets parsed.
bool valid = false;
for (i = 0; i <= maxIndex; i++) {
if (threadInfo[num_avail][i] != UINT_MAX) {
valid = true;
}
}
if (!valid) {
break;
}
buf[0] = 0;
} else if (!buf[sizeof(buf) - 1]) {
// The line is longer than the buffer. Set a flag and don't
// emit an error if we were going to ignore the line, anyway.
long_line = true;
#define CHECK_LINE \
if (long_line) { \
CLEANUP_THREAD_INFO; \
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
return -1; \
}
}
(*line)++;
char s1[] = "processor";
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s1) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
#if KMP_ARCH_AARCH64
// Handle the old AArch64 /proc/cpuinfo layout differently,
// it contains all of the 'processor' entries listed in a
// single 'Processor' section, therefore the normal looking
// for duplicates in that section will always fail.
num_avail++;
#else
goto dup_field;
#endif
threadInfo[num_avail][osIdIndex] = val;
#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
char path[256];
KMP_SNPRINTF(
path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
KMP_SNPRINTF(path, sizeof(path),
"/sys/devices/system/cpu/cpu%u/topology/core_id",
threadInfo[num_avail][osIdIndex]);
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
continue;
#else
}
char s2[] = "physical id";
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s2) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][pkgIdIndex] = val;
continue;
}
char s3[] = "core id";
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s3) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][coreIdIndex] = val;
continue;
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
}
char s4[] = "thread id";
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][threadIdIndex] = val;
continue;
}
unsigned level;
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
CHECK_LINE;
char *p = strchr(buf + sizeof(s4) - 1, ':');
unsigned val;
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
goto no_val;
KMP_ASSERT(nodeIdIndex + level <= maxIndex);
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
goto dup_field;
threadInfo[num_avail][nodeIdIndex + level] = val;
continue;
}
// We didn't recognize the leading token on the line. There are lots of
// leading tokens that we don't recognize - if the line isn't empty, go on
// to the next line.
if ((*buf != 0) && (*buf != '\n')) {
// If the line is longer than the buffer, read characters
// until we find a newline.
if (long_line) {
int ch;
while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
;
}
continue;
}
// A newline has signalled the end of the processor record.
// Check that there aren't too many procs specified.
if ((int)num_avail == __kmp_xproc) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_TooManyEntries;
return -1;
}
// Check for missing fields. The osId field must be there, and we
// currently require that the physical id field is specified, also.
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingProcField;
return -1;
}
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
return -1;
}
// Skip this proc if it is not included in the machine model.
if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
__kmp_affin_fullMask)) {
INIT_PROC_INFO(threadInfo[num_avail]);
continue;
}
// We have a successful parse of this proc's info.
// Increment the counter, and prepare for the next proc.
num_avail++;
KMP_ASSERT(num_avail <= num_records);
INIT_PROC_INFO(threadInfo[num_avail]);
}
continue;
no_val:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_MissingValCpuinfo;
return -1;
dup_field:
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
return -1;
}
*line = 0;
#if KMP_MIC && REDUCE_TEAM_SIZE
unsigned teamSize = 0;
#endif // KMP_MIC && REDUCE_TEAM_SIZE
// check for num_records == __kmp_xproc ???
// If there's only one thread context to bind to, form an Address object with
// depth 1 and return immediately (or, if affinity is off, set address2os to
// NULL and return).
//
// If it is configured to omit the package level when there is only a single
// package, the logic at the end of this routine won't work if there is only a
// single thread - it would try to form an Address object with depth 0.
KMP_ASSERT(num_avail > 0);
KMP_ASSERT(num_avail <= num_records);
if (num_avail == 1) {
__kmp_ncores = 1;
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
if (__kmp_affinity_verbose) {
if (!KMP_AFFINITY_CAPABLE()) {
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
KMP_INFORM(Uniform, "KMP_AFFINITY");
}
int index;
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "1");
for (index = maxIndex - 1; index > pkgIdIndex; index--) {
__kmp_str_buf_print(&buf, " x 1");
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
__kmp_str_buf_free(&buf);
}
if (__kmp_affinity_type == affinity_none) {
CLEANUP_THREAD_INFO;
return 0;
}
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
Address addr(1);
addr.labels[0] = threadInfo[0][pkgIdIndex];
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
if (__kmp_affinity_gran_levels < 0) {
__kmp_affinity_gran_levels = 0;
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
}
CLEANUP_THREAD_INFO;
return 1;
}
// Sort the threadInfo table by physical Id.
qsort(threadInfo, num_avail, sizeof(*threadInfo),
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
// The table is now sorted by pkgId / coreId / threadId, but we really don't
// know the radix of any of the fields. pkgId's may be sparsely assigned among
// the chips on a system. Although coreId's are usually assigned
// [0 .. coresPerPkg-1] and threadId's are usually assigned
// [0..threadsPerCore-1], we don't want to make any such assumptions.
//
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
// total # packages) are at this point - we want to determine that now. We
// only have an upper bound on the first two figures.
unsigned *counts =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *maxCt =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *totals =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
unsigned *lastId =
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
bool assign_thread_ids = false;
unsigned threadIdCt;
unsigned index;
restart_radix_check:
threadIdCt = 0;
// Initialize the counter arrays with data from threadInfo[0].
if (assign_thread_ids) {
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
threadInfo[0][threadIdIndex] = threadIdCt++;
} else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
threadIdCt = threadInfo[0][threadIdIndex] + 1;
}
}
for (index = 0; index <= maxIndex; index++) {
counts[index] = 1;
maxCt[index] = 1;
totals[index] = 1;
lastId[index] = threadInfo[0][index];
;
}
// Run through the rest of the OS procs.
for (i = 1; i < num_avail; i++) {
// Find the most significant index whose id differs from the id for the
// previous OS proc.
for (index = maxIndex; index >= threadIdIndex; index--) {
if (assign_thread_ids && (index == threadIdIndex)) {
// Auto-assign the thread id field if it wasn't specified.
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
// Apparently the thread id field was specified for some entries and not
// others. Start the thread id counter off at the next higher thread id.
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
if (threadInfo[i][index] != lastId[index]) {
// Run through all indices which are less significant, and reset the
// counts to 1. At all levels up to and including index, we need to
// increment the totals and record the last id.
unsigned index2;
for (index2 = threadIdIndex; index2 < index; index2++) {
totals[index2]++;
if (counts[index2] > maxCt[index2]) {
maxCt[index2] = counts[index2];
}
counts[index2] = 1;
lastId[index2] = threadInfo[i][index2];
}
counts[index]++;
totals[index]++;
lastId[index] = threadInfo[i][index];
if (assign_thread_ids && (index > threadIdIndex)) {
#if KMP_MIC && REDUCE_TEAM_SIZE
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
#endif // KMP_MIC && REDUCE_TEAM_SIZE
// Restart the thread counter, as we are on a new core.
threadIdCt = 0;
// Auto-assign the thread id field if it wasn't specified.
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
threadInfo[i][threadIdIndex] = threadIdCt++;
}
// Aparrently the thread id field was specified for some entries and
// not others. Start the thread id counter off at the next higher
// thread id.
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
threadIdCt = threadInfo[i][threadIdIndex] + 1;
}
}
break;
}
}
if (index < threadIdIndex) {
// If thread ids were specified, it is an error if they are not unique.
// Also, check that we waven't already restarted the loop (to be safe -
// shouldn't need to).
if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
return -1;
}
// If the thread ids were not specified and we see entries entries that
// are duplicates, start the loop over and assign the thread ids manually.
assign_thread_ids = true;
goto restart_radix_check;
}
}
#if KMP_MIC && REDUCE_TEAM_SIZE
// The default team size is the total #threads in the machine
// minus 1 thread for every core that has 3 or more threads.
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
#endif // KMP_MIC && REDUCE_TEAM_SIZE
for (index = threadIdIndex; index <= maxIndex; index++) {
if (counts[index] > maxCt[index]) {
maxCt[index] = counts[index];
}
}
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
nCoresPerPkg = maxCt[coreIdIndex];
nPackages = totals[pkgIdIndex];
// Check to see if the machine topology is uniform
unsigned prod = totals[maxIndex];
for (index = threadIdIndex; index < maxIndex; index++) {
prod *= maxCt[index];
}
bool uniform = (prod == totals[threadIdIndex]);
// When affinity is off, this routine will still be called to set
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
// Make sure all these vars are set correctly, and return now if affinity is
// not enabled.
__kmp_ncores = totals[coreIdIndex];
if (__kmp_affinity_verbose) {
if (!KMP_AFFINITY_CAPABLE()) {
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
} else {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
}
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
if (uniform) {
KMP_INFORM(Uniform, "KMP_AFFINITY");
} else {
KMP_INFORM(NonUniform, "KMP_AFFINITY");
}
}
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
__kmp_str_buf_print(&buf, " x %d", maxCt[index]);
}
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
maxCt[threadIdIndex], __kmp_ncores);
__kmp_str_buf_free(&buf);
}
#if KMP_MIC && REDUCE_TEAM_SIZE
// Set the default team size.
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
__kmp_dflt_team_nth = teamSize;
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
"__kmp_dflt_team_nth = %d\n",
__kmp_dflt_team_nth));
}
#endif // KMP_MIC && REDUCE_TEAM_SIZE
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
for (i = 0; i < num_avail; ++i) { // fill the os indices
__kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
}
if (__kmp_affinity_type == affinity_none) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
return 0;
}
// Count the number of levels which have more nodes at that level than at the
// parent's level (with there being an implicit root node of the top level).
// This is equivalent to saying that there is at least one node at this level
// which has a sibling. These levels are in the map, and the package level is
// always in the map.
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
for (index = threadIdIndex; index < maxIndex; index++) {
KMP_ASSERT(totals[index] >= totals[index + 1]);
inMap[index] = (totals[index] > totals[index + 1]);
}
inMap[maxIndex] = (totals[maxIndex] > 1);
inMap[pkgIdIndex] = true;
int depth = 0;
for (index = threadIdIndex; index <= maxIndex; index++) {
if (inMap[index]) {
depth++;
}
}
KMP_ASSERT(depth > 0);
// Construct the data structure that is to be returned.
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
int pkgLevel = -1;
int coreLevel = -1;
int threadLevel = -1;
for (i = 0; i < num_avail; ++i) {
Address addr(depth);
unsigned os = threadInfo[i][osIdIndex];
int src_index;
int dst_index = 0;
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
if (!inMap[src_index]) {
continue;
}
addr.labels[dst_index] = threadInfo[i][src_index];
if (src_index == pkgIdIndex) {
pkgLevel = dst_index;
} else if (src_index == coreIdIndex) {
coreLevel = dst_index;
} else if (src_index == threadIdIndex) {
threadLevel = dst_index;
}
dst_index++;
}
(*address2os)[i] = AddrUnsPair(addr, os);
}
if (__kmp_affinity_gran_levels < 0) {
// Set the granularity level based on what levels are modeled
// in the machine topology map.
unsigned src_index;
__kmp_affinity_gran_levels = 0;
for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
if (!inMap[src_index]) {
continue;
}
switch (src_index) {
case threadIdIndex:
if (__kmp_affinity_gran > affinity_gran_thread) {
__kmp_affinity_gran_levels++;
}
break;
case coreIdIndex:
if (__kmp_affinity_gran > affinity_gran_core) {
__kmp_affinity_gran_levels++;
}
break;
case pkgIdIndex:
if (__kmp_affinity_gran > affinity_gran_package) {
__kmp_affinity_gran_levels++;
}
break;
}
}
}
if (__kmp_affinity_verbose) {
__kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
coreLevel, threadLevel);
}
__kmp_free(inMap);
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
return depth;
}
// Create and return a table of affinity masks, indexed by OS thread ID.
// This routine handles OR'ing together all the affinity masks of threads
// that are sufficiently close, if granularity > fine.
static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
unsigned *numUnique,
AddrUnsPair *address2os,
unsigned numAddrs) {
// First form a table of affinity masks in order of OS thread id.
unsigned depth;
unsigned maxOsId;
unsigned i;
KMP_ASSERT(numAddrs > 0);
depth = address2os[0].first.depth;
maxOsId = 0;
for (i = numAddrs - 1;; --i) {
unsigned osId = address2os[i].second;
if (osId > maxOsId) {
maxOsId = osId;
}
if (i == 0)
break;
}
kmp_affin_mask_t *osId2Mask;
KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
// Sort the address2os table according to physical order. Doing so will put
// all threads on the same core/package/node in consecutive locations.
qsort(address2os, numAddrs, sizeof(*address2os),
__kmp_affinity_cmp_Address_labels);
KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
}
if (__kmp_affinity_gran_levels >= (int)depth) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffThreadsMayMigrate);
}
}
// Run through the table, forming the masks for all threads on each core.
// Threads on the same core will have identical "Address" objects, not
// considering the last level, which must be the thread id. All threads on a
// core will appear consecutively.
unsigned unique = 0;
unsigned j = 0; // index of 1st thread on core
unsigned leader = 0;
Address *leaderAddr = &(address2os[0].first);
kmp_affin_mask_t *sum;
KMP_CPU_ALLOC_ON_STACK(sum);
KMP_CPU_ZERO(sum);
KMP_CPU_SET(address2os[0].second, sum);
for (i = 1; i < numAddrs; i++) {
// If this thread is sufficiently close to the leader (within the
// granularity setting), then set the bit for this os thread in the
// affinity mask for this group, and go on to the next thread.
if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
KMP_CPU_SET(address2os[i].second, sum);
continue;
}
// For every thread in this group, copy the mask to the thread's entry in
// the osId2Mask table. Mark the first address as a leader.
for (; j < i; j++) {
unsigned osId = address2os[j].second;
KMP_DEBUG_ASSERT(osId <= maxOsId);
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
KMP_CPU_COPY(mask, sum);
address2os[j].first.leader = (j == leader);
}
unique++;
// Start a new mask.
leader = i;
leaderAddr = &(address2os[i].first);
KMP_CPU_ZERO(sum);
KMP_CPU_SET(address2os[i].second, sum);
}
// For every thread in last group, copy the mask to the thread's
// entry in the osId2Mask table.
for (; j < i; j++) {
unsigned osId = address2os[j].second;
KMP_DEBUG_ASSERT(osId <= maxOsId);
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
KMP_CPU_COPY(mask, sum);
address2os[j].first.leader = (j == leader);
}
unique++;
KMP_CPU_FREE_FROM_STACK(sum);
*maxIndex = maxOsId;
*numUnique = unique;
return osId2Mask;
}
// Stuff for the affinity proclist parsers. It's easier to declare these vars
// as file-static than to try and pass them through the calling sequence of
// the recursive-descent OMP_PLACES parser.
static kmp_affin_mask_t *newMasks;
static int numNewMasks;
static int nextNewMask;
#define ADD_MASK(_mask) \
{ \
if (nextNewMask >= numNewMasks) { \
int i; \
numNewMasks *= 2; \
kmp_affin_mask_t *temp; \
KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
for (i = 0; i < numNewMasks / 2; i++) { \
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
KMP_CPU_COPY(dest, src); \
} \
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
newMasks = temp; \
} \
KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
nextNewMask++; \
}
#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
{ \
if (((_osId) > _maxOsId) || \
(!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
if (__kmp_affinity_verbose || \
(__kmp_affinity_warnings && \
(__kmp_affinity_type != affinity_none))) { \
KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
} \
} else { \
ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
} \
}
// Re-parse the proclist (for the explicit affinity type), and form the list
// of affinity newMasks indexed by gtid.
static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
unsigned int *out_numMasks,
const char *proclist,
kmp_affin_mask_t *osId2Mask,
int maxOsId) {
int i;
const char *scan = proclist;
const char *next = proclist;
// We use malloc() for the temporary mask vector, so that we can use
// realloc() to extend it.
numNewMasks = 2;
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
nextNewMask = 0;
kmp_affin_mask_t *sumMask;
KMP_CPU_ALLOC(sumMask);
int setSize = 0;
for (;;) {
int start, end, stride;
SKIP_WS(scan);
next = scan;
if (*next == '\0') {
break;
}
if (*next == '{') {
int num;
setSize = 0;
next++; // skip '{'
SKIP_WS(next);
scan = next;
// Read the first integer in the set.
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(num >= 0, "bad explicit proc list");
// Copy the mask for that osId to the sum (union) mask.
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
KMP_CPU_ZERO(sumMask);
} else {
KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
setSize = 1;
}
for (;;) {
// Check for end of set.
SKIP_WS(next);
if (*next == '}') {
next++; // skip '}'
break;
}
// Skip optional comma.
if (*next == ',') {
next++;
}
SKIP_WS(next);
// Read the next integer in the set.
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(num >= 0, "bad explicit proc list");
// Add the mask for that osId to the sum mask.
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
} else {
KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
setSize++;
}
}
if (setSize > 0) {
ADD_MASK(sumMask);
}
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// Read the first integer.
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
start = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(start >= 0, "bad explicit proc list");
SKIP_WS(next);
// If this isn't a range, then add a mask to the list and go on.
if (*next != '-') {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
// Skip optional comma.
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// This is a range. Skip over the '-' and read in the 2nd int.
next++; // skip '-'
SKIP_WS(next);
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
end = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(end >= 0, "bad explicit proc list");
// Check for a stride parameter
stride = 1;
SKIP_WS(next);
if (*next == ':') {
// A stride is specified. Skip over the ':" and read the 3rd int.
int sign = +1;
next++; // skip ':'
SKIP_WS(next);
scan = next;
if (*next == '-') {
sign = -1;
next++;
SKIP_WS(next);
scan = next;
}
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_ASSERT2(stride >= 0, "bad explicit proc list");
stride *= sign;
}
// Do some range checks.
KMP_ASSERT2(stride != 0, "bad explicit proc list");
if (stride > 0) {
KMP_ASSERT2(start <= end, "bad explicit proc list");
} else {
KMP_ASSERT2(start >= end, "bad explicit proc list");
}
KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
// Add the mask for each OS proc # to the list.
if (stride > 0) {
do {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
start += stride;
} while (start <= end);
} else {
do {
ADD_MASK_OSID(start, osId2Mask, maxOsId);
start += stride;
} while (start >= end);
}
// Skip optional comma.
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
}
*out_numMasks = nextNewMask;
if (nextNewMask == 0) {
*out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
return;
}
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
for (i = 0; i < nextNewMask; i++) {
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
KMP_CPU_COPY(dest, src);
}
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
KMP_CPU_FREE(sumMask);
}
#if OMP_40_ENABLED
/*-----------------------------------------------------------------------------
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
places. Again, Here is the grammar:
place_list := place
place_list := place , place_list
place := num
place := place : num
place := place : num : signed
place := { subplacelist }
place := ! place // (lowest priority)
subplace_list := subplace
subplace_list := subplace , subplace_list
subplace := num
subplace := num : num
subplace := num : num : signed
signed := num
signed := + signed
signed := - signed
-----------------------------------------------------------------------------*/
static void __kmp_process_subplace_list(const char **scan,
kmp_affin_mask_t *osId2Mask,
int maxOsId, kmp_affin_mask_t *tempMask,
int *setSize) {
const char *next;
for (;;) {
int start, count, stride, i;
// Read in the starting proc id
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
start = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(start >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
(*setSize)++;
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(**scan == ':', "bad explicit places list");
(*scan)++; // skip ':'
// Read count parameter
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(count >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
for (i = 0; i < count; i++) {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
break; // don't proliferate warnings for large count
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
start++;
(*setSize)++;
}
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(**scan == ':', "bad explicit places list");
(*scan)++; // skip ':'
// Read stride parameter
int sign = +1;
for (;;) {
SKIP_WS(*scan);
if (**scan == '+') {
(*scan)++; // skip '+'
continue;
}
if (**scan == '-') {
sign *= -1;
(*scan)++; // skip '-'
continue;
}
break;
}
SKIP_WS(*scan);
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
next = *scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(stride >= 0);
*scan = next;
stride *= sign;
// valid follow sets are ',' and '}'
SKIP_WS(*scan);
if (**scan == '}' || **scan == ',') {
for (i = 0; i < count; i++) {
if ((start > maxOsId) ||
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, start);
}
break; // don't proliferate warnings for large count
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
start += stride;
(*setSize)++;
}
}
if (**scan == '}') {
break;
}
(*scan)++; // skip ','
continue;
}
KMP_ASSERT2(0, "bad explicit places list");
}
}
static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
int maxOsId, kmp_affin_mask_t *tempMask,
int *setSize) {
const char *next;
// valid follow sets are '{' '!' and num
SKIP_WS(*scan);
if (**scan == '{') {
(*scan)++; // skip '{'
__kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
KMP_ASSERT2(**scan == '}', "bad explicit places list");
(*scan)++; // skip '}'
} else if (**scan == '!') {
(*scan)++; // skip '!'
__kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
KMP_CPU_COMPLEMENT(maxOsId, tempMask);
} else if ((**scan >= '0') && (**scan <= '9')) {
next = *scan;
SKIP_DIGITS(next);
int num = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(num >= 0);
if ((num > maxOsId) ||
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffIgnoreInvalidProcID, num);
}
} else {
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
(*setSize)++;
}
*scan = next; // skip num
} else {
KMP_ASSERT2(0, "bad explicit places list");
}
}
// static void
void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
unsigned int *out_numMasks,
const char *placelist,
kmp_affin_mask_t *osId2Mask,
int maxOsId) {
int i, j, count, stride, sign;
const char *scan = placelist;
const char *next = placelist;
numNewMasks = 2;
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
nextNewMask = 0;
// tempMask is modified based on the previous or initial
// place to form the current place
// previousMask contains the previous place
kmp_affin_mask_t *tempMask;
kmp_affin_mask_t *previousMask;
KMP_CPU_ALLOC(tempMask);
KMP_CPU_ZERO(tempMask);
KMP_CPU_ALLOC(previousMask);
KMP_CPU_ZERO(previousMask);
int setSize = 0;
for (;;) {
__kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0' || *scan == ',') {
if (setSize > 0) {
ADD_MASK(tempMask);
}
KMP_CPU_ZERO(tempMask);
setSize = 0;
if (*scan == '\0') {
break;
}
scan++; // skip ','
continue;
}
KMP_ASSERT2(*scan == ':', "bad explicit places list");
scan++; // skip ':'
// Read count parameter
SKIP_WS(scan);
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
next = scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(scan, *next);
KMP_ASSERT(count >= 0);
scan = next;
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0' || *scan == ',') {
stride = +1;
} else {
KMP_ASSERT2(*scan == ':', "bad explicit places list");
scan++; // skip ':'
// Read stride parameter
sign = +1;
for (;;) {
SKIP_WS(scan);
if (*scan == '+') {
scan++; // skip '+'
continue;
}
if (*scan == '-') {
sign *= -1;
scan++; // skip '-'
continue;
}
break;
}
SKIP_WS(scan);
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
next = scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_DEBUG_ASSERT(stride >= 0);
scan = next;
stride *= sign;
}
// Add places determined by initial_place : count : stride
for (i = 0; i < count; i++) {
if (setSize == 0) {
break;
}
// Add the current place, then build the next place (tempMask) from that
KMP_CPU_COPY(previousMask, tempMask);
ADD_MASK(previousMask);
KMP_CPU_ZERO(tempMask);
setSize = 0;
KMP_CPU_SET_ITERATE(j, previousMask) {
if (!KMP_CPU_ISSET(j, previousMask)) {
continue;
}
if ((j + stride > maxOsId) || (j + stride < 0) ||
(!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
(!KMP_CPU_ISSET(j + stride,
KMP_CPU_INDEX(osId2Mask, j + stride)))) {
if ((__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) &&
i < count - 1) {
KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
}
continue;
}
KMP_CPU_SET(j + stride, tempMask);
setSize++;
}
}
KMP_CPU_ZERO(tempMask);
setSize = 0;
// valid follow sets are ',' and EOL
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
if (*scan == ',') {
scan++; // skip ','
continue;
}
KMP_ASSERT2(0, "bad explicit places list");
}
*out_numMasks = nextNewMask;
if (nextNewMask == 0) {
*out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
return;
}
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
KMP_CPU_FREE(tempMask);
KMP_CPU_FREE(previousMask);
for (i = 0; i < nextNewMask; i++) {
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
KMP_CPU_COPY(dest, src);
}
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
}
#endif /* OMP_40_ENABLED */
#undef ADD_MASK
#undef ADD_MASK_OSID
#if KMP_USE_HWLOC
static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
// skip PUs descendants of the object o
int skipped = 0;
hwloc_obj_t hT = NULL;
int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
for (int i = 0; i < N; ++i) {
KMP_DEBUG_ASSERT(hT);
unsigned idx = hT->os_index;
if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
++skipped;
}
hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
}
return skipped; // count number of skipped units
}
static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
// check if obj has PUs present in fullMask
hwloc_obj_t hT = NULL;
int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
for (int i = 0; i < N; ++i) {
KMP_DEBUG_ASSERT(hT);
unsigned idx = hT->os_index;
if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
return 1; // found PU
hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
}
return 0; // no PUs found
}
#endif // KMP_USE_HWLOC
static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
AddrUnsPair *newAddr;
if (__kmp_hws_requested == 0)
goto _exit; // no topology limiting actions requested, exit
#if KMP_USE_HWLOC
if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
// Number of subobjects calculated dynamically, this works fine for
// any non-uniform topology.
// L2 cache objects are determined by depth, other objects - by type.
hwloc_topology_t tp = __kmp_hwloc_topology;
int nS = 0, nN = 0, nL = 0, nC = 0,
nT = 0; // logical index including skipped
int nCr = 0, nTr = 0; // number of requested units
int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
int L2depth, idx;
// check support of extensions ----------------------------------
int numa_support = 0, tile_support = 0;
if (__kmp_pu_os_idx)
hT = hwloc_get_pu_obj_by_os_index(tp,
__kmp_pu_os_idx[__kmp_avail_proc - 1]);
else
hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
if (hT == NULL) { // something's gone wrong
KMP_WARNING(AffHWSubsetUnsupported);
goto _exit;
}
// check NUMA node
hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
if (hN != NULL && hN->depth > hS->depth) {
numa_support = 1; // 1 in case socket includes node(s)
} else if (__kmp_hws_node.num > 0) {
// don't support sockets inside NUMA node (no such HW found for testing)
KMP_WARNING(AffHWSubsetUnsupported);
goto _exit;
}
// check L2 cahce, get object by depth because of multiple caches
L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
if (hL != NULL &&
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
tile_support = 1; // no sense to count L2 if it includes single core
} else if (__kmp_hws_tile.num > 0) {
if (__kmp_hws_core.num == 0) {
__kmp_hws_core = __kmp_hws_tile; // replace L2 with core
__kmp_hws_tile.num = 0;
} else {
// L2 and core are both requested, but represent same object
KMP_WARNING(AffHWSubsetInvalid);
goto _exit;
}
}
// end of check of extensions -----------------------------------
// fill in unset items, validate settings -----------------------
if (__kmp_hws_socket.num == 0)
__kmp_hws_socket.num = nPackages; // use all available sockets
if (__kmp_hws_socket.offset >= nPackages) {
KMP_WARNING(AffHWSubsetManySockets);
goto _exit;
}
if (numa_support) {
hN = NULL;
int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
&hN); // num nodes in socket
if (__kmp_hws_node.num == 0)
__kmp_hws_node.num = NN; // use all available nodes
if (__kmp_hws_node.offset >= NN) {
KMP_WARNING(AffHWSubsetManyNodes);
goto _exit;
}
if (tile_support) {
// get num tiles in node
int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
if (__kmp_hws_tile.num == 0) {
__kmp_hws_tile.num = NL + 1;
} // use all available tiles, some node may have more tiles, thus +1
if (__kmp_hws_tile.offset >= NL) {
KMP_WARNING(AffHWSubsetManyTiles);
goto _exit;
}
int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
&hC); // num cores in tile
if (__kmp_hws_core.num == 0)
__kmp_hws_core.num = NC; // use all available cores
if (__kmp_hws_core.offset >= NC) {
KMP_WARNING(AffHWSubsetManyCores);
goto _exit;
}
} else { // tile_support
int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
&hC); // num cores in node
if (__kmp_hws_core.num == 0)
__kmp_hws_core.num = NC; // use all available cores
if (__kmp_hws_core.offset >= NC) {
KMP_WARNING(AffHWSubsetManyCores);
goto _exit;
}
} // tile_support
} else { // numa_support
if (tile_support) {
// get num tiles in socket
int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
if (__kmp_hws_tile.num == 0)
__kmp_hws_tile.num = NL; // use all available tiles
if (__kmp_hws_tile.offset >= NL) {
KMP_WARNING(AffHWSubsetManyTiles);
goto _exit;
}
int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
&hC); // num cores in tile
if (__kmp_hws_core.num == 0)
__kmp_hws_core.num = NC; // use all available cores
if (__kmp_hws_core.offset >= NC) {
KMP_WARNING(AffHWSubsetManyCores);
goto _exit;
}
} else { // tile_support
int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
&hC); // num cores in socket
if (__kmp_hws_core.num == 0)
__kmp_hws_core.num = NC; // use all available cores
if (__kmp_hws_core.offset >= NC) {
KMP_WARNING(AffHWSubsetManyCores);
goto _exit;
}
} // tile_support
}
if (__kmp_hws_proc.num == 0)
__kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
KMP_WARNING(AffHWSubsetManyProcs);
goto _exit;
}
// end of validation --------------------------------------------
if (pAddr) // pAddr is NULL in case of affinity_none
newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
__kmp_avail_proc); // max size
// main loop to form HW subset ----------------------------------
hS = NULL;
int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
for (int s = 0; s < NP; ++s) {
// Check Socket -----------------------------------------------
hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
if (!__kmp_hwloc_obj_has_PUs(tp, hS))
continue; // skip socket if all PUs are out of fullMask
++nS; // only count objects those have PUs in affinity mask
if (nS <= __kmp_hws_socket.offset ||
nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
continue; // move to next socket
}
nCr = 0; // count number of cores per socket
// socket requested, go down the topology tree
// check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
if (numa_support) {
nN = 0;
hN = NULL;
// num nodes in current socket
int NN =
__kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
for (int n = 0; n < NN; ++n) {
// Check NUMA Node ----------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
continue; // skip node if all PUs are out of fullMask
}
++nN;
if (nN <= __kmp_hws_node.offset ||
nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
// skip node as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
continue; // move to next node
}
// node requested, go down the topology tree
if (tile_support) {
nL = 0;
hL = NULL;
int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
for (int l = 0; l < NL; ++l) {
// Check L2 (tile) ------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
continue; // skip tile if all PUs are out of fullMask
}
++nL;
if (nL <= __kmp_hws_tile.offset ||
nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
// skip tile as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
continue; // move to next tile
}
// tile requested, go down the topology tree
nC = 0;
hC = NULL;
// num cores in current tile
int NC = __kmp_hwloc_count_children_by_type(tp, hL,
HWLOC_OBJ_CORE, &hC);
for (int c = 0; c < NC; ++c) {
// Check Core ---------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // skip core if all PUs are out of fullMask
}
++nC;
if (nC <= __kmp_hws_core.offset ||
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
// skip node as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // move to next node
}
// core requested, go down to PUs
nT = 0;
nTr = 0;
hT = NULL;
// num procs in current core
int NT = __kmp_hwloc_count_children_by_type(tp, hC,
HWLOC_OBJ_PU, &hT);
for (int t = 0; t < NT; ++t) {
// Check PU ---------------------------------------
idx = hT->os_index;
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // skip PU if not in fullMask
}
++nT;
if (nT <= __kmp_hws_proc.offset ||
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
// skip PU
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
++n_old;
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // move to next node
}
++nTr;
if (pAddr) // collect requested thread's data
newAddr[n_new] = (*pAddr)[n_old];
++n_new;
++n_old;
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
} // threads loop
if (nTr > 0) {
++nCr; // num cores per socket
++nCo; // total num cores
if (nTr > nTpC)
nTpC = nTr; // calc max threads per core
}
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
} // cores loop
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
} // tiles loop
} else { // tile_support
// no tiles, check cores
nC = 0;
hC = NULL;
// num cores in current node
int NC =
__kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
for (int c = 0; c < NC; ++c) {
// Check Core ---------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // skip core if all PUs are out of fullMask
}
++nC;
if (nC <= __kmp_hws_core.offset ||
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
// skip node as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // move to next node
}
// core requested, go down to PUs
nT = 0;
nTr = 0;
hT = NULL;
int NT =
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
for (int t = 0; t < NT; ++t) {
// Check PU ---------------------------------------
idx = hT->os_index;
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // skip PU if not in fullMask
}
++nT;
if (nT <= __kmp_hws_proc.offset ||
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
// skip PU
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
++n_old;
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // move to next node
}
++nTr;
if (pAddr) // collect requested thread's data
newAddr[n_new] = (*pAddr)[n_old];
++n_new;
++n_old;
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
} // threads loop
if (nTr > 0) {
++nCr; // num cores per socket
++nCo; // total num cores
if (nTr > nTpC)
nTpC = nTr; // calc max threads per core
}
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
} // cores loop
} // tiles support
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
} // nodes loop
} else { // numa_support
// no NUMA support
if (tile_support) {
nL = 0;
hL = NULL;
// num tiles in current socket
int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
for (int l = 0; l < NL; ++l) {
// Check L2 (tile) ------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
continue; // skip tile if all PUs are out of fullMask
}
++nL;
if (nL <= __kmp_hws_tile.offset ||
nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
// skip tile as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
continue; // move to next tile
}
// tile requested, go down the topology tree
nC = 0;
hC = NULL;
// num cores per tile
int NC =
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
for (int c = 0; c < NC; ++c) {
// Check Core ---------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // skip core if all PUs are out of fullMask
}
++nC;
if (nC <= __kmp_hws_core.offset ||
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
// skip node as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // move to next node
}
// core requested, go down to PUs
nT = 0;
nTr = 0;
hT = NULL;
// num procs per core
int NT =
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
for (int t = 0; t < NT; ++t) {
// Check PU ---------------------------------------
idx = hT->os_index;
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // skip PU if not in fullMask
}
++nT;
if (nT <= __kmp_hws_proc.offset ||
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
// skip PU
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
++n_old;
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // move to next node
}
++nTr;
if (pAddr) // collect requested thread's data
newAddr[n_new] = (*pAddr)[n_old];
++n_new;
++n_old;
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
} // threads loop
if (nTr > 0) {
++nCr; // num cores per socket
++nCo; // total num cores
if (nTr > nTpC)
nTpC = nTr; // calc max threads per core
}
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
} // cores loop
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
} // tiles loop
} else { // tile_support
// no tiles, check cores
nC = 0;
hC = NULL;
// num cores in socket
int NC =
__kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
for (int c = 0; c < NC; ++c) {
// Check Core -------------------------------------------
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // skip core if all PUs are out of fullMask
}
++nC;
if (nC <= __kmp_hws_core.offset ||
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
// skip node as not requested
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
continue; // move to next node
}
// core requested, go down to PUs
nT = 0;
nTr = 0;
hT = NULL;
// num procs per core
int NT =
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
for (int t = 0; t < NT; ++t) {
// Check PU ---------------------------------------
idx = hT->os_index;
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // skip PU if not in fullMask
}
++nT;
if (nT <= __kmp_hws_proc.offset ||
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
// skip PU
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
++n_old;
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
continue; // move to next node
}
++nTr;
if (pAddr) // collect requested thread's data
newAddr[n_new] = (*pAddr)[n_old];
++n_new;
++n_old;
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
} // threads loop
if (nTr > 0) {
++nCr; // num cores per socket
++nCo; // total num cores
if (nTr > nTpC)
nTpC = nTr; // calc max threads per core
}
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
} // cores loop
} // tiles support
} // numa_support
if (nCr > 0) { // found cores?
++nPkg; // num sockets
if (nCr > nCpP)
nCpP = nCr; // calc max cores per socket
}
} // sockets loop
// check the subset is valid
KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
KMP_DEBUG_ASSERT(nPkg > 0);
KMP_DEBUG_ASSERT(nCpP > 0);
KMP_DEBUG_ASSERT(nTpC > 0);
KMP_DEBUG_ASSERT(nCo > 0);
KMP_DEBUG_ASSERT(nPkg <= nPackages);
KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
nPackages = nPkg; // correct num sockets
nCoresPerPkg = nCpP; // correct num cores per socket
__kmp_nThreadsPerCore = nTpC; // correct num threads per core
__kmp_avail_proc = n_new; // correct num procs
__kmp_ncores = nCo; // correct num cores
// hwloc topology method end
} else
#endif // KMP_USE_HWLOC
{
int n_old = 0, n_new = 0, proc_num = 0;
if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
KMP_WARNING(AffHWSubsetNoHWLOC);
goto _exit;
}
if (__kmp_hws_socket.num == 0)
__kmp_hws_socket.num = nPackages; // use all available sockets
if (__kmp_hws_core.num == 0)
__kmp_hws_core.num = nCoresPerPkg; // use all available cores
if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
__kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
if (!__kmp_affinity_uniform_topology()) {
KMP_WARNING(AffHWSubsetNonUniform);
goto _exit; // don't support non-uniform topology
}
if (depth > 3) {
KMP_WARNING(AffHWSubsetNonThreeLevel);
goto _exit; // don't support not-3-level topology
}
if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
KMP_WARNING(AffHWSubsetManySockets);
goto _exit;
}
if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
KMP_WARNING(AffHWSubsetManyCores);
goto _exit;
}
// Form the requested subset
if (pAddr) // pAddr is NULL in case of affinity_none
newAddr = (AddrUnsPair *)__kmp_allocate(
sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
__kmp_hws_proc.num);
for (int i = 0; i < nPackages; ++i) {
if (i < __kmp_hws_socket.offset ||
i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
// skip not-requested socket
n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
if (__kmp_pu_os_idx != NULL) {
// walk through skipped socket
for (int j = 0; j < nCoresPerPkg; ++j) {
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
++proc_num;
}
}
}
} else {
// walk through requested socket
for (int j = 0; j < nCoresPerPkg; ++j) {
if (j < __kmp_hws_core.offset ||
j >= __kmp_hws_core.offset +
__kmp_hws_core.num) { // skip not-requested core
n_old += __kmp_nThreadsPerCore;
if (__kmp_pu_os_idx != NULL) {
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
++proc_num;
}
}
} else {
// walk through requested core
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
if (k < __kmp_hws_proc.num) {
if (pAddr) // collect requested thread's data
newAddr[n_new] = (*pAddr)[n_old];
n_new++;
} else {
if (__kmp_pu_os_idx != NULL)
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
}
n_old++;
++proc_num;
}
}
}
}
}
KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
KMP_DEBUG_ASSERT(n_new ==
__kmp_hws_socket.num * __kmp_hws_core.num *
__kmp_hws_proc.num);
nPackages = __kmp_hws_socket.num; // correct nPackages
nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
__kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
__kmp_avail_proc = n_new; // correct avail_proc
__kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
} // non-hwloc topology method
if (pAddr) {
__kmp_free(*pAddr);
*pAddr = newAddr; // replace old topology with new one
}
if (__kmp_affinity_verbose) {
char m[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
__kmp_affin_fullMask);
if (__kmp_affinity_respect_mask) {
KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
} else {
KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
}
KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%d", nPackages);
KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
__kmp_nThreadsPerCore, __kmp_ncores);
__kmp_str_buf_free(&buf);
}
_exit:
if (__kmp_pu_os_idx != NULL) {
__kmp_free(__kmp_pu_os_idx);
__kmp_pu_os_idx = NULL;
}
}
// This function figures out the deepest level at which there is at least one
// cluster/core with more than one processing unit bound to it.
static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
int nprocs, int bottom_level) {
int core_level = 0;
for (int i = 0; i < nprocs; i++) {
for (int j = bottom_level; j > 0; j--) {
if (address2os[i].first.labels[j] > 0) {
if (core_level < (j - 1)) {
core_level = j - 1;
}
}
}
}
return core_level;
}
// This function counts number of clusters/cores at given level.
static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
int nprocs, int bottom_level,
int core_level) {
int ncores = 0;
int i, j;
j = bottom_level;
for (i = 0; i < nprocs; i++) {
for (j = bottom_level; j > core_level; j--) {
if ((i + 1) < nprocs) {
if (address2os[i + 1].first.labels[j] > 0) {
break;
}
}
}
if (j == core_level) {
ncores++;
}
}
if (j > core_level) {
// In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
// core. May occur when called from __kmp_affinity_find_core().
ncores++;
}
return ncores;
}
// This function finds to which cluster/core given processing unit is bound.
static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
int bottom_level, int core_level) {
return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
core_level) -
1;
}
// This function finds maximal number of processing units bound to a
// cluster/core at given level.
static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
int nprocs, int bottom_level,
int core_level) {
int maxprocpercore = 0;
if (core_level < bottom_level) {
for (int i = 0; i < nprocs; i++) {
int percore = address2os[i].first.labels[core_level + 1] + 1;
if (percore > maxprocpercore) {
maxprocpercore = percore;
}
}
} else {
maxprocpercore = 1;
}
return maxprocpercore;
}
static AddrUnsPair *address2os = NULL;
static int *procarr = NULL;
static int __kmp_aff_depth = 0;
#if KMP_USE_HIER_SCHED
#define KMP_EXIT_AFF_NONE \
KMP_ASSERT(__kmp_affinity_type == affinity_none); \
KMP_ASSERT(address2os == NULL); \
__kmp_apply_thread_places(NULL, 0); \
__kmp_create_affinity_none_places(); \
__kmp_dispatch_set_hierarchy_values(); \
return;
#else
#define KMP_EXIT_AFF_NONE \
KMP_ASSERT(__kmp_affinity_type == affinity_none); \
KMP_ASSERT(address2os == NULL); \
__kmp_apply_thread_places(NULL, 0); \
__kmp_create_affinity_none_places(); \
return;
#endif
// Create a one element mask array (set of places) which only contains the
// initial process's affinity mask
static void __kmp_create_affinity_none_places() {
KMP_ASSERT(__kmp_affin_fullMask != NULL);
KMP_ASSERT(__kmp_affinity_type == affinity_none);
__kmp_affinity_num_masks = 1;
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
KMP_CPU_COPY(dest, __kmp_affin_fullMask);
}
static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
const Address *aa = &(((const AddrUnsPair *)a)->first);
const Address *bb = &(((const AddrUnsPair *)b)->first);
unsigned depth = aa->depth;
unsigned i;
KMP_DEBUG_ASSERT(depth == bb->depth);
KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
int j = depth - i - 1;
if (aa->childNums[j] < bb->childNums[j])
return -1;
if (aa->childNums[j] > bb->childNums[j])
return 1;
}
for (; i < depth; i++) {
int j = i - __kmp_affinity_compact;
if (aa->childNums[j] < bb->childNums[j])
return -1;
if (aa->childNums[j] > bb->childNums[j])
return 1;
}
return 0;
}
static void __kmp_aux_affinity_initialize(void) {
if (__kmp_affinity_masks != NULL) {
KMP_ASSERT(__kmp_affin_fullMask != NULL);
return;
}
// Create the "full" mask - this defines all of the processors that we
// consider to be in the machine model. If respect is set, then it is the
// initialization thread's affinity mask. Otherwise, it is all processors that
// we know about on the machine.
if (__kmp_affin_fullMask == NULL) {
KMP_CPU_ALLOC(__kmp_affin_fullMask);
}
if (KMP_AFFINITY_CAPABLE()) {
if (__kmp_affinity_respect_mask) {
__kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
// Count the number of available processors.
unsigned i;
__kmp_avail_proc = 0;
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
continue;
}
__kmp_avail_proc++;
}
if (__kmp_avail_proc > __kmp_xproc) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_none))) {
KMP_WARNING(ErrorInitializeAffinity);
}
__kmp_affinity_type = affinity_none;
KMP_AFFINITY_DISABLE();
return;
}
} else {
__kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
__kmp_avail_proc = __kmp_xproc;
}
}
if (__kmp_affinity_gran == affinity_gran_tile &&
// check if user's request is valid
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
__kmp_affinity_gran = affinity_gran_package;
}
int depth = -1;
kmp_i18n_id_t msg_id = kmp_i18n_null;
// For backward compatibility, setting KMP_CPUINFO_FILE =>
// KMP_TOPOLOGY_METHOD=cpuinfo
if ((__kmp_cpuinfo_file != NULL) &&
(__kmp_affinity_top_method == affinity_top_method_all)) {
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
}
if (__kmp_affinity_top_method == affinity_top_method_all) {
// In the default code path, errors are not fatal - we just try using
// another method. We only emit a warning message if affinity is on, or the
// verbose flag is set, an the nowarnings flag was not set.
const char *file_name = NULL;
int line = 0;
#if KMP_USE_HWLOC
if (depth < 0 &&
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
}
if (!__kmp_hwloc_error) {
depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
} else if (depth < 0 && __kmp_affinity_verbose) {
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
}
} else if (__kmp_affinity_verbose) {
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
}
}
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
if (depth < 0) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
}
file_name = NULL;
depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
if (depth < 0) {
if (__kmp_affinity_verbose) {
if (msg_id != kmp_i18n_null) {
KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
__kmp_i18n_catgets(msg_id),
KMP_I18N_STR(DecodingLegacyAPIC));
} else {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
KMP_I18N_STR(DecodingLegacyAPIC));
}
}
file_name = NULL;
depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
}
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#if KMP_OS_LINUX
if (depth < 0) {
if (__kmp_affinity_verbose) {
if (msg_id != kmp_i18n_null) {
KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
__kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
} else {
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
}
}
FILE *f = fopen("/proc/cpuinfo", "r");
if (f == NULL) {
msg_id = kmp_i18n_str_CantOpenCpuinfo;
} else {
file_name = "/proc/cpuinfo";
depth =
__kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
fclose(f);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
}
}
#endif /* KMP_OS_LINUX */
#if KMP_GROUP_AFFINITY
if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
}
depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
KMP_ASSERT(depth != 0);
}
#endif /* KMP_GROUP_AFFINITY */
if (depth < 0) {
if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
if (file_name == NULL) {
KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
} else if (line == 0) {
KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
} else {
KMP_INFORM(UsingFlatOSFileLine, file_name, line,
__kmp_i18n_catgets(msg_id));
}
}
// FIXME - print msg if msg_id = kmp_i18n_null ???
file_name = "";
depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
KMP_ASSERT(depth > 0);
KMP_ASSERT(address2os != NULL);
}
}
#if KMP_USE_HWLOC
else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
if (__kmp_affinity_verbose) {
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
}
depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
}
#endif // KMP_USE_HWLOC
// If the user has specified that a paricular topology discovery method is to be
// used, then we abort if that method fails. The exception is group affinity,
// which might have been implicitly set.
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
}
depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
if (depth < 0) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
} else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
}
depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
if (depth < 0) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
const char *filename;
if (__kmp_cpuinfo_file != NULL) {
filename = __kmp_cpuinfo_file;
} else {
filename = "/proc/cpuinfo";
}
if (__kmp_affinity_verbose) {
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
}
FILE *f = fopen(filename, "r");
if (f == NULL) {
int code = errno;
if (__kmp_cpuinfo_file != NULL) {
__kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
} else {
__kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
__kmp_msg_null);
}
}
int line = 0;
depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
fclose(f);
if (depth < 0) {
KMP_ASSERT(msg_id != kmp_i18n_null);
if (line > 0) {
KMP_FATAL(FileLineMsgExiting, filename, line,
__kmp_i18n_catgets(msg_id));
} else {
KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
}
}
if (__kmp_affinity_type == affinity_none) {
KMP_ASSERT(depth == 0);
KMP_EXIT_AFF_NONE;
}
}
#if KMP_GROUP_AFFINITY
else if (__kmp_affinity_top_method == affinity_top_method_group) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
}
depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
KMP_ASSERT(depth != 0);
if (depth < 0) {
KMP_ASSERT(msg_id != kmp_i18n_null);
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
}
}
#endif /* KMP_GROUP_AFFINITY */
else if (__kmp_affinity_top_method == affinity_top_method_flat) {
if (__kmp_affinity_verbose) {
KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
}
depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
if (depth == 0) {
KMP_EXIT_AFF_NONE;
}
// should not fail
KMP_ASSERT(depth > 0);
KMP_ASSERT(address2os != NULL);
}
#if KMP_USE_HIER_SCHED
__kmp_dispatch_set_hierarchy_values();
#endif
if (address2os == NULL) {
if (KMP_AFFINITY_CAPABLE() &&
(__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
KMP_WARNING(ErrorInitializeAffinity);
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
KMP_AFFINITY_DISABLE();
return;
}
if (__kmp_affinity_gran == affinity_gran_tile
#if KMP_USE_HWLOC
&& __kmp_tile_depth == 0
#endif
) {
// tiles requested but not detected, warn user on this
KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
}
__kmp_apply_thread_places(&address2os, depth);
// Create the table of masks, indexed by thread Id.
unsigned maxIndex;
unsigned numUnique;
kmp_affin_mask_t *osId2Mask =
__kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
if (__kmp_affinity_gran_levels == 0) {
KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
}
// Set the childNums vector in all Address objects. This must be done before
// we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
// account the setting of __kmp_affinity_compact.
__kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
switch (__kmp_affinity_type) {
case affinity_explicit:
KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
#if OMP_40_ENABLED
if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
#endif
{
__kmp_affinity_process_proclist(
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
__kmp_affinity_proclist, osId2Mask, maxIndex);
}
#if OMP_40_ENABLED
else {
__kmp_affinity_process_placelist(
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
__kmp_affinity_proclist, osId2Mask, maxIndex);
}
#endif
if (__kmp_affinity_num_masks == 0) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
KMP_WARNING(AffNoValidProcID);
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
return;
}
break;
// The other affinity types rely on sorting the Addresses according to some
// permutation of the machine topology tree. Set __kmp_affinity_compact and
// __kmp_affinity_offset appropriately, then jump to a common code fragment
// to do the sort and create the array of affinity masks.
case affinity_logical:
__kmp_affinity_compact = 0;
if (__kmp_affinity_offset) {
__kmp_affinity_offset =
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
}
goto sortAddresses;
case affinity_physical:
if (__kmp_nThreadsPerCore > 1) {
__kmp_affinity_compact = 1;
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = 0;
}
} else {
__kmp_affinity_compact = 0;
}
if (__kmp_affinity_offset) {
__kmp_affinity_offset =
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
}
goto sortAddresses;
case affinity_scatter:
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = 0;
} else {
__kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
}
goto sortAddresses;
case affinity_compact:
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = depth - 1;
}
goto sortAddresses;
case affinity_balanced:
if (depth <= 1) {
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
}
__kmp_affinity_type = affinity_none;
__kmp_create_affinity_none_places();
return;
} else if (!__kmp_affinity_uniform_topology()) {
// Save the depth for further usage
__kmp_aff_depth = depth;
int core_level = __kmp_affinity_find_core_level(
address2os, __kmp_avail_proc, depth - 1);
int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
depth - 1, core_level);
int maxprocpercore = __kmp_affinity_max_proc_per_core(
address2os, __kmp_avail_proc, depth - 1, core_level);
int nproc = ncores * maxprocpercore;
if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
}
__kmp_affinity_type = affinity_none;
return;
}
procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
for (int i = 0; i < nproc; i++) {
procarr[i] = -1;
}
int lastcore = -1;
int inlastcore = 0;
for (int i = 0; i < __kmp_avail_proc; i++) {
int proc = address2os[i].second;
int core =
__kmp_affinity_find_core(address2os, i, depth - 1, core_level);
if (core == lastcore) {
inlastcore++;
} else {
inlastcore = 0;
}
lastcore = core;
procarr[core * maxprocpercore + inlastcore] = proc;
}
}
if (__kmp_affinity_compact >= depth) {
__kmp_affinity_compact = depth - 1;
}
sortAddresses:
// Allocate the gtid->affinity mask table.
if (__kmp_affinity_dups) {
__kmp_affinity_num_masks = __kmp_avail_proc;
} else {
__kmp_affinity_num_masks = numUnique;
}
#if OMP_40_ENABLED
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
(__kmp_affinity_num_places > 0) &&
((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
__kmp_affinity_num_masks = __kmp_affinity_num_places;
}
#endif
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
// Sort the address2os table according to the current setting of
// __kmp_affinity_compact, then fill out __kmp_affinity_masks.
qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
__kmp_affinity_cmp_Address_child_num);
{
int i;
unsigned j;
for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
continue;
}
unsigned osId = address2os[i].second;
kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
KMP_ASSERT(KMP_CPU_ISSET(osId, src));
KMP_CPU_COPY(dest, src);
if (++j >= __kmp_affinity_num_masks) {
break;
}
}
KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
}
break;
default:
KMP_ASSERT2(0, "Unexpected affinity setting");
}
KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
machine_hierarchy.init(address2os, __kmp_avail_proc);
}
#undef KMP_EXIT_AFF_NONE
void __kmp_affinity_initialize(void) {
// Much of the code above was written assumming that if a machine was not
// affinity capable, then __kmp_affinity_type == affinity_none. We now
// explicitly represent this as __kmp_affinity_type == affinity_disabled.
// There are too many checks for __kmp_affinity_type == affinity_none
// in this code. Instead of trying to change them all, check if
// __kmp_affinity_type == affinity_disabled, and if so, slam it with
// affinity_none, call the real initialization routine, then restore
// __kmp_affinity_type to affinity_disabled.
int disabled = (__kmp_affinity_type == affinity_disabled);
if (!KMP_AFFINITY_CAPABLE()) {
KMP_ASSERT(disabled);
}
if (disabled) {
__kmp_affinity_type = affinity_none;
}
__kmp_aux_affinity_initialize();
if (disabled) {
__kmp_affinity_type = affinity_disabled;
}
}
void __kmp_affinity_uninitialize(void) {
if (__kmp_affinity_masks != NULL) {
KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
__kmp_affinity_masks = NULL;
}
if (__kmp_affin_fullMask != NULL) {
KMP_CPU_FREE(__kmp_affin_fullMask);
__kmp_affin_fullMask = NULL;
}
__kmp_affinity_num_masks = 0;
__kmp_affinity_type = affinity_default;
#if OMP_40_ENABLED
__kmp_affinity_num_places = 0;
#endif
if (__kmp_affinity_proclist != NULL) {
__kmp_free(__kmp_affinity_proclist);
__kmp_affinity_proclist = NULL;
}
if (address2os != NULL) {
__kmp_free(address2os);
address2os = NULL;
}
if (procarr != NULL) {
__kmp_free(procarr);
procarr = NULL;
}
#if KMP_USE_HWLOC
if (__kmp_hwloc_topology != NULL) {
hwloc_topology_destroy(__kmp_hwloc_topology);
__kmp_hwloc_topology = NULL;
}
#endif
KMPAffinity::destroy_api();
}
void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
if (!KMP_AFFINITY_CAPABLE()) {
return;
}
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
if (th->th.th_affin_mask == NULL) {
KMP_CPU_ALLOC(th->th.th_affin_mask);
} else {
KMP_CPU_ZERO(th->th.th_affin_mask);
}
// Copy the thread mask to the kmp_info_t strucuture. If
// __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
// has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
// then the full mask is the same as the mask of the initialization thread.
kmp_affin_mask_t *mask;
int i;
#if OMP_40_ENABLED
if (KMP_AFFINITY_NON_PROC_BIND)
#endif
{
if ((__kmp_affinity_type == affinity_none) ||
(__kmp_affinity_type == affinity_balanced)) {
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return;
}
#endif
KMP_ASSERT(__kmp_affin_fullMask != NULL);
i = 0;
mask = __kmp_affin_fullMask;
} else {
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
}
}
#if OMP_40_ENABLED
else {
if ((!isa_root) ||
(__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return;
}
#endif
KMP_ASSERT(__kmp_affin_fullMask != NULL);
i = KMP_PLACE_ALL;
mask = __kmp_affin_fullMask;
} else {
// int i = some hash function or just a counter that doesn't
// always start at 0. Use gtid for now.
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
}
}
#endif
#if OMP_40_ENABLED
th->th.th_current_place = i;
if (isa_root) {
th->th.th_new_place = i;
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
} else if (KMP_AFFINITY_NON_PROC_BIND) {
// When using a Non-OMP_PROC_BIND affinity method,
// set all threads' place-partition-var to the entire place list
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
}
if (i == KMP_PLACE_ALL) {
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
gtid));
} else {
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
gtid, i));
}
#else
if (i == -1) {
KA_TRACE(
100,
("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
gtid));
} else {
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
gtid, i));
}
#endif /* OMP_40_ENABLED */
KMP_CPU_COPY(th->th.th_affin_mask, mask);
if (__kmp_affinity_verbose
/* to avoid duplicate printing (will be correctly printed on barrier) */
&& (__kmp_affinity_type == affinity_none ||
(i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), gtid, buf);
}
#if KMP_OS_WINDOWS
// On Windows* OS, the process affinity mask might have changed. If the user
// didn't request affinity and this call fails, just continue silently.
// See CQ171393.
if (__kmp_affinity_type == affinity_none) {
__kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
} else
#endif
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
#if OMP_40_ENABLED
void __kmp_affinity_set_place(int gtid) {
if (!KMP_AFFINITY_CAPABLE()) {
return;
}
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
"place = %d)\n",
gtid, th->th.th_new_place, th->th.th_current_place));
// Check that the new place is within this thread's partition.
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
KMP_ASSERT(th->th.th_new_place >= 0);
KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
if (th->th.th_first_place <= th->th.th_last_place) {
KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
(th->th.th_new_place <= th->th.th_last_place));
} else {
KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
(th->th.th_new_place >= th->th.th_last_place));
}
// Copy the thread mask to the kmp_info_t strucuture,
// and set this thread's affinity.
kmp_affin_mask_t *mask =
KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
KMP_CPU_COPY(th->th.th_affin_mask, mask);
th->th.th_current_place = th->th.th_new_place;
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
__kmp_gettid(), gtid, buf);
}
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
#endif /* OMP_40_ENABLED */
int __kmp_aux_set_affinity(void **mask) {
int gtid;
kmp_info_t *th;
int retval;
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
gtid = __kmp_entry_gtid();
KA_TRACE(1000, ; {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf(
"kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
} else {
unsigned proc;
int num_procs = 0;
KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
continue;
}
num_procs++;
}
if (num_procs == 0) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
#if KMP_GROUP_AFFINITY
if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
}
#endif /* KMP_GROUP_AFFINITY */
}
}
th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
if (retval == 0) {
KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
}
#if OMP_40_ENABLED
th->th.th_current_place = KMP_PLACE_UNDEFINED;
th->th.th_new_place = KMP_PLACE_UNDEFINED;
th->th.th_first_place = 0;
th->th.th_last_place = __kmp_affinity_num_masks - 1;
// Turn off 4.0 affinity for the current tread at this parallel level.
th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
#endif
return retval;
}
int __kmp_aux_get_affinity(void **mask) {
int gtid;
int retval;
kmp_info_t *th;
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
gtid = __kmp_entry_gtid();
th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
KA_TRACE(1000, ; {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
th->th.th_affin_mask);
__kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
}
}
#if !KMP_OS_WINDOWS
retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
KA_TRACE(1000, ; {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
gtid, buf);
});
return retval;
#else
KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
return 0;
#endif /* KMP_OS_WINDOWS */
}
int __kmp_aux_get_affinity_max_proc() {
if (!KMP_AFFINITY_CAPABLE()) {
return 0;
}
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1) {
return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
}
#endif
return __kmp_xproc;
}
int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(1000, ; {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return -2;
}
KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
return 0;
}
int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(1000, ; {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return -2;
}
KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
return 0;
}
int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
if (!KMP_AFFINITY_CAPABLE()) {
return -1;
}
KA_TRACE(1000, ; {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
(kmp_affin_mask_t *)(*mask));
__kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
"affinity mask for thread %d = %s\n",
proc, gtid, buf);
});
if (__kmp_env_consistency_check) {
if ((mask == NULL) || (*mask == NULL)) {
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
}
}
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
return -1;
}
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
return 0;
}
return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
}
// Dynamic affinity settings - Affinity balanced
void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
KMP_DEBUG_ASSERT(th);
bool fine_gran = true;
int tid = th->th.th_info.ds.ds_tid;
switch (__kmp_affinity_gran) {
case affinity_gran_fine:
case affinity_gran_thread:
break;
case affinity_gran_core:
if (__kmp_nThreadsPerCore > 1) {
fine_gran = false;
}
break;
case affinity_gran_package:
if (nCoresPerPkg > 1) {
fine_gran = false;
}
break;
default:
fine_gran = false;
}
if (__kmp_affinity_uniform_topology()) {
int coreID;
int threadID;
// Number of hyper threads per core in HT machine
int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
// Number of cores
int ncores = __kmp_ncores;
if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
__kmp_nth_per_core = __kmp_avail_proc / nPackages;
ncores = nPackages;
}
// How many threads will be bound to each core
int chunk = nthreads / ncores;
// How many cores will have an additional thread bound to it - "big cores"
int big_cores = nthreads % ncores;
// Number of threads on the big cores
int big_nth = (chunk + 1) * big_cores;
if (tid < big_nth) {
coreID = tid / (chunk + 1);
threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
} else { // tid >= big_nth
coreID = (tid - big_cores) / chunk;
threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
}
KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
"Illegal set affinity operation when not capable");
kmp_affin_mask_t *mask = th->th.th_affin_mask;
KMP_CPU_ZERO(mask);
if (fine_gran) {
int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
KMP_CPU_SET(osID, mask);
} else {
for (int i = 0; i < __kmp_nth_per_core; i++) {
int osID;
osID = address2os[coreID * __kmp_nth_per_core + i].second;
KMP_CPU_SET(osID, mask);
}
}
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), tid, buf);
}
__kmp_set_system_affinity(mask, TRUE);
} else { // Non-uniform topology
kmp_affin_mask_t *mask = th->th.th_affin_mask;
KMP_CPU_ZERO(mask);
int core_level = __kmp_affinity_find_core_level(
address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
__kmp_aff_depth - 1, core_level);
int nth_per_core = __kmp_affinity_max_proc_per_core(
address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
// For performance gain consider the special case nthreads ==
// __kmp_avail_proc
if (nthreads == __kmp_avail_proc) {
if (fine_gran) {
int osID = address2os[tid].second;
KMP_CPU_SET(osID, mask);
} else {
int core = __kmp_affinity_find_core(address2os, tid,
__kmp_aff_depth - 1, core_level);
for (int i = 0; i < __kmp_avail_proc; i++) {
int osID = address2os[i].second;
if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
core_level) == core) {
KMP_CPU_SET(osID, mask);
}
}
}
} else if (nthreads <= ncores) {
int core = 0;
for (int i = 0; i < ncores; i++) {
// Check if this core from procarr[] is in the mask
int in_mask = 0;
for (int j = 0; j < nth_per_core; j++) {
if (procarr[i * nth_per_core + j] != -1) {
in_mask = 1;
break;
}
}
if (in_mask) {
if (tid == core) {
for (int j = 0; j < nth_per_core; j++) {
int osID = procarr[i * nth_per_core + j];
if (osID != -1) {
KMP_CPU_SET(osID, mask);
// For fine granularity it is enough to set the first available
// osID for this core
if (fine_gran) {
break;
}
}
}
break;
} else {
core++;
}
}
}
} else { // nthreads > ncores
// Array to save the number of processors at each core
int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
// Array to save the number of cores with "x" available processors;
int *ncores_with_x_procs =
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
// Array to save the number of cores with # procs from x to nth_per_core
int *ncores_with_x_to_max_procs =
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
for (int i = 0; i <= nth_per_core; i++) {
ncores_with_x_procs[i] = 0;
ncores_with_x_to_max_procs[i] = 0;
}
for (int i = 0; i < ncores; i++) {
int cnt = 0;
for (int j = 0; j < nth_per_core; j++) {
if (procarr[i * nth_per_core + j] != -1) {
cnt++;
}
}
nproc_at_core[i] = cnt;
ncores_with_x_procs[cnt]++;
}
for (int i = 0; i <= nth_per_core; i++) {
for (int j = i; j <= nth_per_core; j++) {
ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
}
}
// Max number of processors
int nproc = nth_per_core * ncores;
// An array to keep number of threads per each context
int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
for (int i = 0; i < nproc; i++) {
newarr[i] = 0;
}
int nth = nthreads;
int flag = 0;
while (nth > 0) {
for (int j = 1; j <= nth_per_core; j++) {
int cnt = ncores_with_x_to_max_procs[j];
for (int i = 0; i < ncores; i++) {
// Skip the core with 0 processors
if (nproc_at_core[i] == 0) {
continue;
}
for (int k = 0; k < nth_per_core; k++) {
if (procarr[i * nth_per_core + k] != -1) {
if (newarr[i * nth_per_core + k] == 0) {
newarr[i * nth_per_core + k] = 1;
cnt--;
nth--;
break;
} else {
if (flag != 0) {
newarr[i * nth_per_core + k]++;
cnt--;
nth--;
break;
}
}
}
}
if (cnt == 0 || nth == 0) {
break;
}
}
if (nth == 0) {
break;
}
}
flag = 1;
}
int sum = 0;
for (int i = 0; i < nproc; i++) {
sum += newarr[i];
if (sum > tid) {
if (fine_gran) {
int osID = procarr[i];
KMP_CPU_SET(osID, mask);
} else {
int coreID = i / nth_per_core;
for (int ii = 0; ii < nth_per_core; ii++) {
int osID = procarr[coreID * nth_per_core + ii];
if (osID != -1) {
KMP_CPU_SET(osID, mask);
}
}
}
break;
}
}
__kmp_free(newarr);
}
if (__kmp_affinity_verbose) {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
__kmp_gettid(), tid, buf);
}
__kmp_set_system_affinity(mask, TRUE);
}
}
#if KMP_OS_LINUX
// We don't need this entry for Windows because
// there is GetProcessAffinityMask() api
//
// The intended usage is indicated by these steps:
// 1) The user gets the current affinity mask
// 2) Then sets the affinity by calling this function
// 3) Error check the return value
// 4) Use non-OpenMP parallelization
// 5) Reset the affinity to what was stored in step 1)
#ifdef __cplusplus
extern "C"
#endif
int
kmp_set_thread_affinity_mask_initial()
// the function returns 0 on success,
// -1 if we cannot bind thread
// >0 (errno) if an error happened during binding
{
int gtid = __kmp_get_gtid();
if (gtid < 0) {
// Do not touch non-omp threads
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"non-omp thread, returning\n"));
return -1;
}
if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"affinity not initialized, returning\n"));
return -1;
}
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
"set full mask for thread %d\n",
gtid));
KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
}
#endif
#endif // KMP_AFFINITY_SUPPORTED