blob: bc3863d89dcb3695245fb489e769cea044e4c3cb [file] [log] [blame]
/*
* kmp_ftn_entry.h -- Fortran entry linkage support for OpenMP.
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#ifndef FTN_STDCALL
#error The support file kmp_ftn_entry.h should not be compiled by itself.
#endif
#ifdef KMP_STUB
#include "kmp_stub.h"
#endif
#include "kmp_i18n.h"
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/* For compatibility with the Gnu/MS Open MP codegen, omp_set_num_threads(),
* omp_set_nested(), and omp_set_dynamic() [in lowercase on MS, and w/o
* a trailing underscore on Linux* OS] take call by value integer arguments.
* + omp_set_max_active_levels()
* + omp_set_schedule()
*
* For backward compatibility with 9.1 and previous Intel compiler, these
* entry points take call by reference integer arguments. */
#ifdef KMP_GOMP_COMPAT
#if (KMP_FTN_ENTRIES == KMP_FTN_PLAIN) || (KMP_FTN_ENTRIES == KMP_FTN_UPPER)
#define PASS_ARGS_BY_VALUE 1
#endif
#endif
#if KMP_OS_WINDOWS
#if (KMP_FTN_ENTRIES == KMP_FTN_PLAIN) || (KMP_FTN_ENTRIES == KMP_FTN_APPEND)
#define PASS_ARGS_BY_VALUE 1
#endif
#endif
// This macro helps to reduce code duplication.
#ifdef PASS_ARGS_BY_VALUE
#define KMP_DEREF
#else
#define KMP_DEREF *
#endif
void FTN_STDCALL FTN_SET_STACKSIZE(int KMP_DEREF arg) {
#ifdef KMP_STUB
__kmps_set_stacksize(KMP_DEREF arg);
#else
// __kmp_aux_set_stacksize initializes the library if needed
__kmp_aux_set_stacksize((size_t)KMP_DEREF arg);
#endif
}
void FTN_STDCALL FTN_SET_STACKSIZE_S(size_t KMP_DEREF arg) {
#ifdef KMP_STUB
__kmps_set_stacksize(KMP_DEREF arg);
#else
// __kmp_aux_set_stacksize initializes the library if needed
__kmp_aux_set_stacksize(KMP_DEREF arg);
#endif
}
int FTN_STDCALL FTN_GET_STACKSIZE(void) {
#ifdef KMP_STUB
return __kmps_get_stacksize();
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
};
return (int)__kmp_stksize;
#endif
}
size_t FTN_STDCALL FTN_GET_STACKSIZE_S(void) {
#ifdef KMP_STUB
return __kmps_get_stacksize();
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
};
return __kmp_stksize;
#endif
}
void FTN_STDCALL FTN_SET_BLOCKTIME(int KMP_DEREF arg) {
#ifdef KMP_STUB
__kmps_set_blocktime(KMP_DEREF arg);
#else
int gtid, tid;
kmp_info_t *thread;
gtid = __kmp_entry_gtid();
tid = __kmp_tid_from_gtid(gtid);
thread = __kmp_thread_from_gtid(gtid);
__kmp_aux_set_blocktime(KMP_DEREF arg, thread, tid);
#endif
}
int FTN_STDCALL FTN_GET_BLOCKTIME(void) {
#ifdef KMP_STUB
return __kmps_get_blocktime();
#else
int gtid, tid;
kmp_info_t *thread;
kmp_team_p *team;
gtid = __kmp_entry_gtid();
tid = __kmp_tid_from_gtid(gtid);
thread = __kmp_thread_from_gtid(gtid);
team = __kmp_threads[gtid]->th.th_team;
/* These must match the settings used in __kmp_wait_sleep() */
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
KF_TRACE(10, ("kmp_get_blocktime: T#%d(%d:%d), blocktime=%d\n", gtid,
team->t.t_id, tid, KMP_MAX_BLOCKTIME));
return KMP_MAX_BLOCKTIME;
}
#ifdef KMP_ADJUST_BLOCKTIME
else if (__kmp_zero_bt && !get__bt_set(team, tid)) {
KF_TRACE(10, ("kmp_get_blocktime: T#%d(%d:%d), blocktime=%d\n", gtid,
team->t.t_id, tid, 0));
return 0;
}
#endif /* KMP_ADJUST_BLOCKTIME */
else {
KF_TRACE(10, ("kmp_get_blocktime: T#%d(%d:%d), blocktime=%d\n", gtid,
team->t.t_id, tid, get__blocktime(team, tid)));
return get__blocktime(team, tid);
};
#endif
}
void FTN_STDCALL FTN_SET_LIBRARY_SERIAL(void) {
#ifdef KMP_STUB
__kmps_set_library(library_serial);
#else
// __kmp_user_set_library initializes the library if needed
__kmp_user_set_library(library_serial);
#endif
}
void FTN_STDCALL FTN_SET_LIBRARY_TURNAROUND(void) {
#ifdef KMP_STUB
__kmps_set_library(library_turnaround);
#else
// __kmp_user_set_library initializes the library if needed
__kmp_user_set_library(library_turnaround);
#endif
}
void FTN_STDCALL FTN_SET_LIBRARY_THROUGHPUT(void) {
#ifdef KMP_STUB
__kmps_set_library(library_throughput);
#else
// __kmp_user_set_library initializes the library if needed
__kmp_user_set_library(library_throughput);
#endif
}
void FTN_STDCALL FTN_SET_LIBRARY(int KMP_DEREF arg) {
#ifdef KMP_STUB
__kmps_set_library(KMP_DEREF arg);
#else
enum library_type lib;
lib = (enum library_type)KMP_DEREF arg;
// __kmp_user_set_library initializes the library if needed
__kmp_user_set_library(lib);
#endif
}
int FTN_STDCALL FTN_GET_LIBRARY(void) {
#ifdef KMP_STUB
return __kmps_get_library();
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
return ((int)__kmp_library);
#endif
}
void FTN_STDCALL FTN_SET_DISP_NUM_BUFFERS(int KMP_DEREF arg) {
#ifdef KMP_STUB
; // empty routine
#else
// ignore after initialization because some teams have already
// allocated dispatch buffers
if (__kmp_init_serial == 0 && (KMP_DEREF arg) > 0)
__kmp_dispatch_num_buffers = KMP_DEREF arg;
#endif
}
int FTN_STDCALL FTN_SET_AFFINITY(void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_set_affinity(mask);
#endif
}
int FTN_STDCALL FTN_GET_AFFINITY(void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_get_affinity(mask);
#endif
}
int FTN_STDCALL FTN_GET_AFFINITY_MAX_PROC(void) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return 0;
#else
// We really only NEED serial initialization here.
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_get_affinity_max_proc();
#endif
}
void FTN_STDCALL FTN_CREATE_AFFINITY_MASK(void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
*mask = NULL;
#else
// We really only NEED serial initialization here.
kmp_affin_mask_t *mask_internals;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
mask_internals = __kmp_affinity_dispatch->allocate_mask();
KMP_CPU_ZERO(mask_internals);
*mask = mask_internals;
#endif
}
void FTN_STDCALL FTN_DESTROY_AFFINITY_MASK(void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
// Nothing
#else
// We really only NEED serial initialization here.
kmp_affin_mask_t *mask_internals;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (__kmp_env_consistency_check) {
if (*mask == NULL) {
KMP_FATAL(AffinityInvalidMask, "kmp_destroy_affinity_mask");
}
}
mask_internals = (kmp_affin_mask_t *)(*mask);
__kmp_affinity_dispatch->deallocate_mask(mask_internals);
*mask = NULL;
#endif
}
int FTN_STDCALL FTN_SET_AFFINITY_MASK_PROC(int KMP_DEREF proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_set_affinity_mask_proc(KMP_DEREF proc, mask);
#endif
}
int FTN_STDCALL FTN_UNSET_AFFINITY_MASK_PROC(int KMP_DEREF proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_unset_affinity_mask_proc(KMP_DEREF proc, mask);
#endif
}
int FTN_STDCALL FTN_GET_AFFINITY_MASK_PROC(int KMP_DEREF proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_get_affinity_mask_proc(KMP_DEREF proc, mask);
#endif
}
/* ------------------------------------------------------------------------ */
/* sets the requested number of threads for the next parallel region */
void FTN_STDCALL xexpand(FTN_SET_NUM_THREADS)(int KMP_DEREF arg) {
#ifdef KMP_STUB
// Nothing.
#else
__kmp_set_num_threads(KMP_DEREF arg, __kmp_entry_gtid());
#endif
}
/* returns the number of threads in current team */
int FTN_STDCALL xexpand(FTN_GET_NUM_THREADS)(void) {
#ifdef KMP_STUB
return 1;
#else
// __kmpc_bound_num_threads initializes the library if needed
return __kmpc_bound_num_threads(NULL);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_MAX_THREADS)(void) {
#ifdef KMP_STUB
return 1;
#else
int gtid;
kmp_info_t *thread;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
gtid = __kmp_entry_gtid();
thread = __kmp_threads[gtid];
// return thread -> th.th_team -> t.t_current_task[
// thread->th.th_info.ds.ds_tid ] -> icvs.nproc;
return thread->th.th_current_task->td_icvs.nproc;
#endif
}
int FTN_STDCALL xexpand(FTN_GET_THREAD_NUM)(void) {
#ifdef KMP_STUB
return 0;
#else
int gtid;
#if KMP_OS_DARWIN || KMP_OS_FREEBSD || KMP_OS_NETBSD
gtid = __kmp_entry_gtid();
#elif KMP_OS_WINDOWS
if (!__kmp_init_parallel ||
(gtid = (int)((kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key))) ==
0) {
// Either library isn't initialized or thread is not registered
// 0 is the correct TID in this case
return 0;
}
--gtid; // We keep (gtid+1) in TLS
#elif KMP_OS_LINUX
#ifdef KMP_TDATA_GTID
if (__kmp_gtid_mode >= 3) {
if ((gtid = __kmp_gtid) == KMP_GTID_DNE) {
return 0;
}
} else {
#endif
if (!__kmp_init_parallel ||
(gtid = (kmp_intptr_t)(
pthread_getspecific(__kmp_gtid_threadprivate_key))) == 0) {
return 0;
}
--gtid;
#ifdef KMP_TDATA_GTID
}
#endif
#else
#error Unknown or unsupported OS
#endif
return __kmp_tid_from_gtid(gtid);
#endif
}
int FTN_STDCALL FTN_GET_NUM_KNOWN_THREADS(void) {
#ifdef KMP_STUB
return 1;
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
/* NOTE: this is not syncronized, so it can change at any moment */
/* NOTE: this number also includes threads preallocated in hot-teams */
return TCR_4(__kmp_nth);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_NUM_PROCS)(void) {
#ifdef KMP_STUB
return 1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_avail_proc;
#endif
}
void FTN_STDCALL xexpand(FTN_SET_NESTED)(int KMP_DEREF flag) {
#ifdef KMP_STUB
__kmps_set_nested(KMP_DEREF flag);
#else
kmp_info_t *thread;
/* For the thread-private internal controls implementation */
thread = __kmp_entry_thread();
__kmp_save_internal_controls(thread);
set__nested(thread, ((KMP_DEREF flag) ? TRUE : FALSE));
#endif
}
int FTN_STDCALL xexpand(FTN_GET_NESTED)(void) {
#ifdef KMP_STUB
return __kmps_get_nested();
#else
kmp_info_t *thread;
thread = __kmp_entry_thread();
return get__nested(thread);
#endif
}
void FTN_STDCALL xexpand(FTN_SET_DYNAMIC)(int KMP_DEREF flag) {
#ifdef KMP_STUB
__kmps_set_dynamic(KMP_DEREF flag ? TRUE : FALSE);
#else
kmp_info_t *thread;
/* For the thread-private implementation of the internal controls */
thread = __kmp_entry_thread();
// !!! What if foreign thread calls it?
__kmp_save_internal_controls(thread);
set__dynamic(thread, KMP_DEREF flag ? TRUE : FALSE);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_DYNAMIC)(void) {
#ifdef KMP_STUB
return __kmps_get_dynamic();
#else
kmp_info_t *thread;
thread = __kmp_entry_thread();
return get__dynamic(thread);
#endif
}
int FTN_STDCALL xexpand(FTN_IN_PARALLEL)(void) {
#ifdef KMP_STUB
return 0;
#else
kmp_info_t *th = __kmp_entry_thread();
#if OMP_40_ENABLED
if (th->th.th_teams_microtask) {
// AC: r_in_parallel does not work inside teams construct where real
// parallel is inactive, but all threads have same root, so setting it in
// one team affects other teams.
// The solution is to use per-team nesting level
return (th->th.th_team->t.t_active_level ? 1 : 0);
} else
#endif /* OMP_40_ENABLED */
return (th->th.th_root->r.r_in_parallel ? FTN_TRUE : FTN_FALSE);
#endif
}
void FTN_STDCALL xexpand(FTN_SET_SCHEDULE)(kmp_sched_t KMP_DEREF kind,
int KMP_DEREF modifier) {
#ifdef KMP_STUB
__kmps_set_schedule(KMP_DEREF kind, KMP_DEREF modifier);
#else
/* TO DO: For the per-task implementation of the internal controls */
__kmp_set_schedule(__kmp_entry_gtid(), KMP_DEREF kind, KMP_DEREF modifier);
#endif
}
void FTN_STDCALL xexpand(FTN_GET_SCHEDULE)(kmp_sched_t *kind, int *modifier) {
#ifdef KMP_STUB
__kmps_get_schedule(kind, modifier);
#else
/* TO DO: For the per-task implementation of the internal controls */
__kmp_get_schedule(__kmp_entry_gtid(), kind, modifier);
#endif
}
void FTN_STDCALL xexpand(FTN_SET_MAX_ACTIVE_LEVELS)(int KMP_DEREF arg) {
#ifdef KMP_STUB
// Nothing.
#else
/* TO DO: We want per-task implementation of this internal control */
__kmp_set_max_active_levels(__kmp_entry_gtid(), KMP_DEREF arg);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_MAX_ACTIVE_LEVELS)(void) {
#ifdef KMP_STUB
return 0;
#else
/* TO DO: We want per-task implementation of this internal control */
return __kmp_get_max_active_levels(__kmp_entry_gtid());
#endif
}
int FTN_STDCALL xexpand(FTN_GET_ACTIVE_LEVEL)(void) {
#ifdef KMP_STUB
return 0; // returns 0 if it is called from the sequential part of the program
#else
/* TO DO: For the per-task implementation of the internal controls */
return __kmp_entry_thread()->th.th_team->t.t_active_level;
#endif
}
int FTN_STDCALL xexpand(FTN_GET_LEVEL)(void) {
#ifdef KMP_STUB
return 0; // returns 0 if it is called from the sequential part of the program
#else
/* TO DO: For the per-task implementation of the internal controls */
return __kmp_entry_thread()->th.th_team->t.t_level;
#endif
}
int FTN_STDCALL xexpand(FTN_GET_ANCESTOR_THREAD_NUM)(int KMP_DEREF level) {
#ifdef KMP_STUB
return (KMP_DEREF level) ? (-1) : (0);
#else
return __kmp_get_ancestor_thread_num(__kmp_entry_gtid(), KMP_DEREF level);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_TEAM_SIZE)(int KMP_DEREF level) {
#ifdef KMP_STUB
return (KMP_DEREF level) ? (-1) : (1);
#else
return __kmp_get_team_size(__kmp_entry_gtid(), KMP_DEREF level);
#endif
}
int FTN_STDCALL xexpand(FTN_GET_THREAD_LIMIT)(void) {
#ifdef KMP_STUB
return 1; // TO DO: clarify whether it returns 1 or 0?
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
};
/* global ICV */
return __kmp_max_nth;
#endif
}
int FTN_STDCALL xexpand(FTN_IN_FINAL)(void) {
#ifdef KMP_STUB
return 0; // TO DO: clarify whether it returns 1 or 0?
#else
if (!TCR_4(__kmp_init_parallel)) {
return 0;
}
return __kmp_entry_thread()->th.th_current_task->td_flags.final;
#endif
}
#if OMP_40_ENABLED
kmp_proc_bind_t FTN_STDCALL xexpand(FTN_GET_PROC_BIND)(void) {
#ifdef KMP_STUB
return __kmps_get_proc_bind();
#else
return get__proc_bind(__kmp_entry_thread());
#endif
}
#if OMP_45_ENABLED
int FTN_STDCALL FTN_GET_NUM_PLACES(void) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return 0;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return 0;
return __kmp_affinity_num_masks;
#endif
}
int FTN_STDCALL FTN_GET_PLACE_NUM_PROCS(int place_num) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return 0;
#else
int i;
int retval = 0;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return 0;
if (place_num < 0 || place_num >= (int)__kmp_affinity_num_masks)
return 0;
kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, place_num);
KMP_CPU_SET_ITERATE(i, mask) {
if ((!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) ||
(!KMP_CPU_ISSET(i, mask))) {
continue;
}
++retval;
}
return retval;
#endif
}
void FTN_STDCALL FTN_GET_PLACE_PROC_IDS(int place_num, int *ids) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
// Nothing.
#else
int i, j;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return;
if (place_num < 0 || place_num >= (int)__kmp_affinity_num_masks)
return;
kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, place_num);
j = 0;
KMP_CPU_SET_ITERATE(i, mask) {
if ((!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) ||
(!KMP_CPU_ISSET(i, mask))) {
continue;
}
ids[j++] = i;
}
#endif
}
int FTN_STDCALL FTN_GET_PLACE_NUM(void) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
int gtid;
kmp_info_t *thread;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return -1;
gtid = __kmp_entry_gtid();
thread = __kmp_thread_from_gtid(gtid);
if (thread->th.th_current_place < 0)
return -1;
return thread->th.th_current_place;
#endif
}
int FTN_STDCALL FTN_GET_PARTITION_NUM_PLACES(void) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return 0;
#else
int gtid, num_places, first_place, last_place;
kmp_info_t *thread;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return 0;
gtid = __kmp_entry_gtid();
thread = __kmp_thread_from_gtid(gtid);
first_place = thread->th.th_first_place;
last_place = thread->th.th_last_place;
if (first_place < 0 || last_place < 0)
return 0;
if (first_place <= last_place)
num_places = last_place - first_place + 1;
else
num_places = __kmp_affinity_num_masks - first_place + last_place + 1;
return num_places;
#endif
}
void FTN_STDCALL FTN_GET_PARTITION_PLACE_NUMS(int *place_nums) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
// Nothing.
#else
int i, gtid, place_num, first_place, last_place, start, end;
kmp_info_t *thread;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
if (!KMP_AFFINITY_CAPABLE())
return;
gtid = __kmp_entry_gtid();
thread = __kmp_thread_from_gtid(gtid);
first_place = thread->th.th_first_place;
last_place = thread->th.th_last_place;
if (first_place < 0 || last_place < 0)
return;
if (first_place <= last_place) {
start = first_place;
end = last_place;
} else {
start = last_place;
end = first_place;
}
for (i = 0, place_num = start; place_num <= end; ++place_num, ++i) {
place_nums[i] = place_num;
}
#endif
}
#endif
int FTN_STDCALL xexpand(FTN_GET_NUM_TEAMS)(void) {
#ifdef KMP_STUB
return 1;
#else
kmp_info_t *thr = __kmp_entry_thread();
if (thr->th.th_teams_microtask) {
kmp_team_t *team = thr->th.th_team;
int tlevel = thr->th.th_teams_level;
int ii = team->t.t_level; // the level of the teams construct
int dd = team->t.t_serialized;
int level = tlevel + 1;
KMP_DEBUG_ASSERT(ii >= tlevel);
while (ii > level) {
for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
}
if (team->t.t_serialized && (!dd)) {
team = team->t.t_parent;
continue;
}
if (ii > level) {
team = team->t.t_parent;
ii--;
}
}
if (dd > 1) {
return 1; // teams region is serialized ( 1 team of 1 thread ).
} else {
return team->t.t_parent->t.t_nproc;
}
} else {
return 1;
}
#endif
}
int FTN_STDCALL xexpand(FTN_GET_TEAM_NUM)(void) {
#ifdef KMP_STUB
return 0;
#else
kmp_info_t *thr = __kmp_entry_thread();
if (thr->th.th_teams_microtask) {
kmp_team_t *team = thr->th.th_team;
int tlevel = thr->th.th_teams_level; // the level of the teams construct
int ii = team->t.t_level;
int dd = team->t.t_serialized;
int level = tlevel + 1;
KMP_DEBUG_ASSERT(ii >= tlevel);
while (ii > level) {
for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
}
if (team->t.t_serialized && (!dd)) {
team = team->t.t_parent;
continue;
}
if (ii > level) {
team = team->t.t_parent;
ii--;
}
}
if (dd > 1) {
return 0; // teams region is serialized ( 1 team of 1 thread ).
} else {
return team->t.t_master_tid;
}
} else {
return 0;
}
#endif
}
int FTN_STDCALL xexpand(FTN_GET_DEFAULT_DEVICE)(void) {
#if KMP_MIC || KMP_OS_DARWIN || defined(KMP_STUB)
return 0;
#else
return __kmp_entry_thread()->th.th_current_task->td_icvs.default_device;
#endif
}
void FTN_STDCALL xexpand(FTN_SET_DEFAULT_DEVICE)(int KMP_DEREF arg) {
#if KMP_MIC || KMP_OS_DARWIN || defined(KMP_STUB)
// Nothing.
#else
__kmp_entry_thread()->th.th_current_task->td_icvs.default_device =
KMP_DEREF arg;
#endif
}
#if KMP_MIC || KMP_OS_DARWIN || defined(KMP_STUB)
int FTN_STDCALL FTN_GET_NUM_DEVICES(void) { return 0; }
#endif // KMP_MIC || KMP_OS_DARWIN || defined(KMP_STUB)
#if !KMP_OS_LINUX
int FTN_STDCALL xexpand(FTN_IS_INITIAL_DEVICE)(void) { return 1; }
#else
// This internal function is used when the entry from the offload library
// is not found.
int _Offload_get_device_number(void) __attribute__((weak));
int FTN_STDCALL xexpand(FTN_IS_INITIAL_DEVICE)(void) {
if (_Offload_get_device_number) {
return _Offload_get_device_number() == -1;
} else {
return 1;
}
}
#endif // ! KMP_OS_LINUX
#endif // OMP_40_ENABLED
#if OMP_45_ENABLED && defined(KMP_STUB)
// OpenMP 4.5 entries for stubs library
int FTN_STDCALL FTN_GET_INITIAL_DEVICE(void) { return -1; }
// As all *target* functions are C-only parameters always passed by value
void *FTN_STDCALL FTN_TARGET_ALLOC(size_t size, int device_num) { return 0; }
void FTN_STDCALL FTN_TARGET_FREE(void *device_ptr, int device_num) {}
int FTN_STDCALL FTN_TARGET_IS_PRESENT(void *ptr, int device_num) { return 0; }
int FTN_STDCALL FTN_TARGET_MEMCPY(void *dst, void *src, size_t length,
size_t dst_offset, size_t src_offset,
int dst_device, int src_device) {
return -1;
}
int FTN_STDCALL FTN_TARGET_MEMCPY_RECT(
void *dst, void *src, size_t element_size, int num_dims,
const size_t *volume, const size_t *dst_offsets, const size_t *src_offsets,
const size_t *dst_dimensions, const size_t *src_dimensions, int dst_device,
int src_device) {
return -1;
}
int FTN_STDCALL FTN_TARGET_ASSOCIATE_PTR(void *host_ptr, void *device_ptr,
size_t size, size_t device_offset,
int device_num) {
return -1;
}
int FTN_STDCALL FTN_TARGET_DISASSOCIATE_PTR(void *host_ptr, int device_num) {
return -1;
}
#endif // OMP_45_ENABLED && defined(KMP_STUB)
#ifdef KMP_STUB
typedef enum { UNINIT = -1, UNLOCKED, LOCKED } kmp_stub_lock_t;
#endif /* KMP_STUB */
#if KMP_USE_DYNAMIC_LOCK
void FTN_STDCALL FTN_INIT_LOCK_WITH_HINT(void **user_lock,
uintptr_t KMP_DEREF hint) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNLOCKED;
#else
__kmpc_init_lock_with_hint(NULL, __kmp_entry_gtid(), user_lock,
KMP_DEREF hint);
#endif
}
void FTN_STDCALL FTN_INIT_NEST_LOCK_WITH_HINT(void **user_lock,
uintptr_t KMP_DEREF hint) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNLOCKED;
#else
__kmpc_init_nest_lock_with_hint(NULL, __kmp_entry_gtid(), user_lock,
KMP_DEREF hint);
#endif
}
#endif
/* initialize the lock */
void FTN_STDCALL xexpand(FTN_INIT_LOCK)(void **user_lock) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNLOCKED;
#else
__kmpc_init_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
/* initialize the lock */
void FTN_STDCALL xexpand(FTN_INIT_NEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNLOCKED;
#else
__kmpc_init_nest_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_DESTROY_LOCK)(void **user_lock) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNINIT;
#else
__kmpc_destroy_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_DESTROY_NEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
*((kmp_stub_lock_t *)user_lock) = UNINIT;
#else
__kmpc_destroy_nest_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_SET_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
if (*((kmp_stub_lock_t *)user_lock) != UNLOCKED) {
// TODO: Issue an error.
}; // if
*((kmp_stub_lock_t *)user_lock) = LOCKED;
#else
__kmpc_set_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_SET_NEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
(*((int *)user_lock))++;
#else
__kmpc_set_nest_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_UNSET_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
if (*((kmp_stub_lock_t *)user_lock) == UNLOCKED) {
// TODO: Issue an error.
}; // if
*((kmp_stub_lock_t *)user_lock) = UNLOCKED;
#else
__kmpc_unset_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
void FTN_STDCALL xexpand(FTN_UNSET_NEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
if (*((kmp_stub_lock_t *)user_lock) == UNLOCKED) {
// TODO: Issue an error.
}; // if
(*((int *)user_lock))--;
#else
__kmpc_unset_nest_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
int FTN_STDCALL xexpand(FTN_TEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
if (*((kmp_stub_lock_t *)user_lock) == LOCKED) {
return 0;
}; // if
*((kmp_stub_lock_t *)user_lock) = LOCKED;
return 1;
#else
return __kmpc_test_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
int FTN_STDCALL xexpand(FTN_TEST_NEST_LOCK)(void **user_lock) {
#ifdef KMP_STUB
if (*((kmp_stub_lock_t *)user_lock) == UNINIT) {
// TODO: Issue an error.
}; // if
return ++(*((int *)user_lock));
#else
return __kmpc_test_nest_lock(NULL, __kmp_entry_gtid(), user_lock);
#endif
}
double FTN_STDCALL xexpand(FTN_GET_WTIME)(void) {
#ifdef KMP_STUB
return __kmps_get_wtime();
#else
double data;
#if !KMP_OS_LINUX
// We don't need library initialization to get the time on Linux* OS. The
// routine can be used to measure library initialization time on Linux* OS now
if (!__kmp_init_serial) {
__kmp_serial_initialize();
};
#endif
__kmp_elapsed(&data);
return data;
#endif
}
double FTN_STDCALL xexpand(FTN_GET_WTICK)(void) {
#ifdef KMP_STUB
return __kmps_get_wtick();
#else
double data;
if (!__kmp_init_serial) {
__kmp_serial_initialize();
};
__kmp_elapsed_tick(&data);
return data;
#endif
}
/* ------------------------------------------------------------------------ */
void *FTN_STDCALL FTN_MALLOC(size_t KMP_DEREF size) {
// kmpc_malloc initializes the library if needed
return kmpc_malloc(KMP_DEREF size);
}
void *FTN_STDCALL FTN_ALIGNED_MALLOC(size_t KMP_DEREF size,
size_t KMP_DEREF alignment) {
// kmpc_aligned_malloc initializes the library if needed
return kmpc_aligned_malloc(KMP_DEREF size, KMP_DEREF alignment);
}
void *FTN_STDCALL FTN_CALLOC(size_t KMP_DEREF nelem, size_t KMP_DEREF elsize) {
// kmpc_calloc initializes the library if needed
return kmpc_calloc(KMP_DEREF nelem, KMP_DEREF elsize);
}
void *FTN_STDCALL FTN_REALLOC(void *KMP_DEREF ptr, size_t KMP_DEREF size) {
// kmpc_realloc initializes the library if needed
return kmpc_realloc(KMP_DEREF ptr, KMP_DEREF size);
}
void FTN_STDCALL FTN_FREE(void *KMP_DEREF ptr) {
// does nothing if the library is not initialized
kmpc_free(KMP_DEREF ptr);
}
void FTN_STDCALL FTN_SET_WARNINGS_ON(void) {
#ifndef KMP_STUB
__kmp_generate_warnings = kmp_warnings_explicit;
#endif
}
void FTN_STDCALL FTN_SET_WARNINGS_OFF(void) {
#ifndef KMP_STUB
__kmp_generate_warnings = FALSE;
#endif
}
void FTN_STDCALL FTN_SET_DEFAULTS(char const *str
#ifndef PASS_ARGS_BY_VALUE
,
int len
#endif
) {
#ifndef KMP_STUB
#ifdef PASS_ARGS_BY_VALUE
int len = (int)KMP_STRLEN(str);
#endif
__kmp_aux_set_defaults(str, len);
#endif
}
/* ------------------------------------------------------------------------ */
#if OMP_40_ENABLED
/* returns the status of cancellation */
int FTN_STDCALL xexpand(FTN_GET_CANCELLATION)(void) {
#ifdef KMP_STUB
return 0 /* false */;
#else
// initialize the library if needed
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
return __kmp_omp_cancellation;
#endif
}
int FTN_STDCALL FTN_GET_CANCELLATION_STATUS(int cancel_kind) {
#ifdef KMP_STUB
return 0 /* false */;
#else
return __kmp_get_cancellation_status(cancel_kind);
#endif
}
#endif // OMP_40_ENABLED
#if OMP_45_ENABLED
/* returns the maximum allowed task priority */
int FTN_STDCALL FTN_GET_MAX_TASK_PRIORITY(void) {
#ifdef KMP_STUB
return 0;
#else
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
return __kmp_max_task_priority;
#endif
}
#endif
// GCC compatibility (versioned symbols)
#ifdef KMP_USE_VERSION_SYMBOLS
/* These following sections create function aliases (dummy symbols) for the
omp_* routines. These aliases will then be versioned according to how
libgomp ``versions'' its symbols (OMP_1.0, OMP_2.0, OMP_3.0, ...) while also
retaining the default version which libomp uses: VERSION (defined in
exports_so.txt). If you want to see the versioned symbols for libgomp.so.1
then just type:
objdump -T /path/to/libgomp.so.1 | grep omp_
Example:
Step 1) Create __kmp_api_omp_set_num_threads_10_alias which is alias of
__kmp_api_omp_set_num_threads
Step 2) Set __kmp_api_omp_set_num_threads_10_alias to version:
omp_set_num_threads@OMP_1.0
Step 2B) Set __kmp_api_omp_set_num_threads to default version:
omp_set_num_threads@@VERSION
*/
// OMP_1.0 aliases
xaliasify(FTN_SET_NUM_THREADS, 10);
xaliasify(FTN_GET_NUM_THREADS, 10);
xaliasify(FTN_GET_MAX_THREADS, 10);
xaliasify(FTN_GET_THREAD_NUM, 10);
xaliasify(FTN_GET_NUM_PROCS, 10);
xaliasify(FTN_IN_PARALLEL, 10);
xaliasify(FTN_SET_DYNAMIC, 10);
xaliasify(FTN_GET_DYNAMIC, 10);
xaliasify(FTN_SET_NESTED, 10);
xaliasify(FTN_GET_NESTED, 10);
xaliasify(FTN_INIT_LOCK, 10);
xaliasify(FTN_INIT_NEST_LOCK, 10);
xaliasify(FTN_DESTROY_LOCK, 10);
xaliasify(FTN_DESTROY_NEST_LOCK, 10);
xaliasify(FTN_SET_LOCK, 10);
xaliasify(FTN_SET_NEST_LOCK, 10);
xaliasify(FTN_UNSET_LOCK, 10);
xaliasify(FTN_UNSET_NEST_LOCK, 10);
xaliasify(FTN_TEST_LOCK, 10);
xaliasify(FTN_TEST_NEST_LOCK, 10);
// OMP_2.0 aliases
xaliasify(FTN_GET_WTICK, 20);
xaliasify(FTN_GET_WTIME, 20);
// OMP_3.0 aliases
xaliasify(FTN_SET_SCHEDULE, 30);
xaliasify(FTN_GET_SCHEDULE, 30);
xaliasify(FTN_GET_THREAD_LIMIT, 30);
xaliasify(FTN_SET_MAX_ACTIVE_LEVELS, 30);
xaliasify(FTN_GET_MAX_ACTIVE_LEVELS, 30);
xaliasify(FTN_GET_LEVEL, 30);
xaliasify(FTN_GET_ANCESTOR_THREAD_NUM, 30);
xaliasify(FTN_GET_TEAM_SIZE, 30);
xaliasify(FTN_GET_ACTIVE_LEVEL, 30);
xaliasify(FTN_INIT_LOCK, 30);
xaliasify(FTN_INIT_NEST_LOCK, 30);
xaliasify(FTN_DESTROY_LOCK, 30);
xaliasify(FTN_DESTROY_NEST_LOCK, 30);
xaliasify(FTN_SET_LOCK, 30);
xaliasify(FTN_SET_NEST_LOCK, 30);
xaliasify(FTN_UNSET_LOCK, 30);
xaliasify(FTN_UNSET_NEST_LOCK, 30);
xaliasify(FTN_TEST_LOCK, 30);
xaliasify(FTN_TEST_NEST_LOCK, 30);
// OMP_3.1 aliases
xaliasify(FTN_IN_FINAL, 31);
#if OMP_40_ENABLED
// OMP_4.0 aliases
xaliasify(FTN_GET_PROC_BIND, 40);
xaliasify(FTN_GET_NUM_TEAMS, 40);
xaliasify(FTN_GET_TEAM_NUM, 40);
xaliasify(FTN_GET_CANCELLATION, 40);
xaliasify(FTN_GET_DEFAULT_DEVICE, 40);
xaliasify(FTN_SET_DEFAULT_DEVICE, 40);
xaliasify(FTN_IS_INITIAL_DEVICE, 40);
#endif /* OMP_40_ENABLED */
#if OMP_45_ENABLED
// OMP_4.5 aliases
#endif
#if OMP_50_ENABLED
// OMP_5.0 aliases
#endif
// OMP_1.0 versioned symbols
xversionify(FTN_SET_NUM_THREADS, 10, "OMP_1.0");
xversionify(FTN_GET_NUM_THREADS, 10, "OMP_1.0");
xversionify(FTN_GET_MAX_THREADS, 10, "OMP_1.0");
xversionify(FTN_GET_THREAD_NUM, 10, "OMP_1.0");
xversionify(FTN_GET_NUM_PROCS, 10, "OMP_1.0");
xversionify(FTN_IN_PARALLEL, 10, "OMP_1.0");
xversionify(FTN_SET_DYNAMIC, 10, "OMP_1.0");
xversionify(FTN_GET_DYNAMIC, 10, "OMP_1.0");
xversionify(FTN_SET_NESTED, 10, "OMP_1.0");
xversionify(FTN_GET_NESTED, 10, "OMP_1.0");
xversionify(FTN_INIT_LOCK, 10, "OMP_1.0");
xversionify(FTN_INIT_NEST_LOCK, 10, "OMP_1.0");
xversionify(FTN_DESTROY_LOCK, 10, "OMP_1.0");
xversionify(FTN_DESTROY_NEST_LOCK, 10, "OMP_1.0");
xversionify(FTN_SET_LOCK, 10, "OMP_1.0");
xversionify(FTN_SET_NEST_LOCK, 10, "OMP_1.0");
xversionify(FTN_UNSET_LOCK, 10, "OMP_1.0");
xversionify(FTN_UNSET_NEST_LOCK, 10, "OMP_1.0");
xversionify(FTN_TEST_LOCK, 10, "OMP_1.0");
xversionify(FTN_TEST_NEST_LOCK, 10, "OMP_1.0");
// OMP_2.0 versioned symbols
xversionify(FTN_GET_WTICK, 20, "OMP_2.0");
xversionify(FTN_GET_WTIME, 20, "OMP_2.0");
// OMP_3.0 versioned symbols
xversionify(FTN_SET_SCHEDULE, 30, "OMP_3.0");
xversionify(FTN_GET_SCHEDULE, 30, "OMP_3.0");
xversionify(FTN_GET_THREAD_LIMIT, 30, "OMP_3.0");
xversionify(FTN_SET_MAX_ACTIVE_LEVELS, 30, "OMP_3.0");
xversionify(FTN_GET_MAX_ACTIVE_LEVELS, 30, "OMP_3.0");
xversionify(FTN_GET_ANCESTOR_THREAD_NUM, 30, "OMP_3.0");
xversionify(FTN_GET_LEVEL, 30, "OMP_3.0");
xversionify(FTN_GET_TEAM_SIZE, 30, "OMP_3.0");
xversionify(FTN_GET_ACTIVE_LEVEL, 30, "OMP_3.0");
// the lock routines have a 1.0 and 3.0 version
xversionify(FTN_INIT_LOCK, 30, "OMP_3.0");
xversionify(FTN_INIT_NEST_LOCK, 30, "OMP_3.0");
xversionify(FTN_DESTROY_LOCK, 30, "OMP_3.0");
xversionify(FTN_DESTROY_NEST_LOCK, 30, "OMP_3.0");
xversionify(FTN_SET_LOCK, 30, "OMP_3.0");
xversionify(FTN_SET_NEST_LOCK, 30, "OMP_3.0");
xversionify(FTN_UNSET_LOCK, 30, "OMP_3.0");
xversionify(FTN_UNSET_NEST_LOCK, 30, "OMP_3.0");
xversionify(FTN_TEST_LOCK, 30, "OMP_3.0");
xversionify(FTN_TEST_NEST_LOCK, 30, "OMP_3.0");
// OMP_3.1 versioned symbol
xversionify(FTN_IN_FINAL, 31, "OMP_3.1");
#if OMP_40_ENABLED
// OMP_4.0 versioned symbols
xversionify(FTN_GET_PROC_BIND, 40, "OMP_4.0");
xversionify(FTN_GET_NUM_TEAMS, 40, "OMP_4.0");
xversionify(FTN_GET_TEAM_NUM, 40, "OMP_4.0");
xversionify(FTN_GET_CANCELLATION, 40, "OMP_4.0");
xversionify(FTN_GET_DEFAULT_DEVICE, 40, "OMP_4.0");
xversionify(FTN_SET_DEFAULT_DEVICE, 40, "OMP_4.0");
xversionify(FTN_IS_INITIAL_DEVICE, 40, "OMP_4.0");
#endif /* OMP_40_ENABLED */
#if OMP_45_ENABLED
// OMP_4.5 versioned symbols
#endif
#if OMP_50_ENABLED
// OMP_5.0 versioned symbols
#endif
#endif // KMP_USE_VERSION_SYMBOLS
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
// end of file //