blob: 3079d45974b0c0a3f0d10f7c10c694b29a807869 [file] [log] [blame]
/*
* kmp_taskq.c -- TASKQ support for OpenMP.
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_error.h"
#define MAX_MESSAGE 512
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/*
* Taskq routines and global variables
*/
#define KMP_DEBUG_REF_CTS(x) KF_TRACE(1, x);
#define THREAD_ALLOC_FOR_TASKQ
static int
in_parallel_context( kmp_team_t *team )
{
return ! team -> t.t_serialized;
}
static void
__kmp_taskq_eo( int *gtid_ref, int *cid_ref, ident_t *loc_ref )
{
int gtid = *gtid_ref;
int tid = __kmp_tid_from_gtid( gtid );
kmp_uint32 my_token;
kmpc_task_queue_t *taskq;
kmp_taskq_t *tq = & __kmp_threads[gtid] -> th.th_team -> t.t_taskq;
if ( __kmp_env_consistency_check )
#if KMP_USE_DYNAMIC_LOCK
__kmp_push_sync( gtid, ct_ordered_in_taskq, loc_ref, NULL, 0 );
#else
__kmp_push_sync( gtid, ct_ordered_in_taskq, loc_ref, NULL );
#endif
if ( ! __kmp_threads[ gtid ]-> th.th_team -> t.t_serialized ) {
KMP_MB(); /* Flush all pending memory write invalidates. */
/* GEH - need check here under stats to make sure */
/* inside task (curr_thunk[*tid_ref] != NULL) */
my_token =tq->tq_curr_thunk[ tid ]-> th_tasknum;
taskq = tq->tq_curr_thunk[ tid ]-> th.th_shareds -> sv_queue;
KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_EQ, NULL);
KMP_MB();
}
}
static void
__kmp_taskq_xo( int *gtid_ref, int *cid_ref, ident_t *loc_ref )
{
int gtid = *gtid_ref;
int tid = __kmp_tid_from_gtid( gtid );
kmp_uint32 my_token;
kmp_taskq_t *tq = & __kmp_threads[gtid] -> th.th_team -> t.t_taskq;
if ( __kmp_env_consistency_check )
__kmp_pop_sync( gtid, ct_ordered_in_taskq, loc_ref );
if ( ! __kmp_threads[ gtid ]-> th.th_team -> t.t_serialized ) {
KMP_MB(); /* Flush all pending memory write invalidates. */
/* GEH - need check here under stats to make sure */
/* inside task (curr_thunk[tid] != NULL) */
my_token = tq->tq_curr_thunk[ tid ]->th_tasknum;
KMP_MB(); /* Flush all pending memory write invalidates. */
tq->tq_curr_thunk[ tid ]-> th.th_shareds -> sv_queue -> tq_tasknum_serving = my_token + 1;
KMP_MB(); /* Flush all pending memory write invalidates. */
}
}
static void
__kmp_taskq_check_ordered( kmp_int32 gtid, kmpc_thunk_t *thunk )
{
kmp_uint32 my_token;
kmpc_task_queue_t *taskq;
/* assume we are always called from an active parallel context */
KMP_MB(); /* Flush all pending memory write invalidates. */
my_token = thunk -> th_tasknum;
taskq = thunk -> th.th_shareds -> sv_queue;
if(taskq->tq_tasknum_serving <= my_token) {
KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_GE, NULL);
KMP_MB();
taskq->tq_tasknum_serving = my_token +1;
KMP_MB();
}
}
#ifdef KMP_DEBUG
static void
__kmp_dump_TQF(kmp_int32 flags)
{
if (flags & TQF_IS_ORDERED)
__kmp_printf("ORDERED ");
if (flags & TQF_IS_LASTPRIVATE)
__kmp_printf("LAST_PRIV ");
if (flags & TQF_IS_NOWAIT)
__kmp_printf("NOWAIT ");
if (flags & TQF_HEURISTICS)
__kmp_printf("HEURIST ");
if (flags & TQF_INTERFACE_RESERVED1)
__kmp_printf("RESERV1 ");
if (flags & TQF_INTERFACE_RESERVED2)
__kmp_printf("RESERV2 ");
if (flags & TQF_INTERFACE_RESERVED3)
__kmp_printf("RESERV3 ");
if (flags & TQF_INTERFACE_RESERVED4)
__kmp_printf("RESERV4 ");
if (flags & TQF_IS_LAST_TASK)
__kmp_printf("LAST_TASK ");
if (flags & TQF_TASKQ_TASK)
__kmp_printf("TASKQ_TASK ");
if (flags & TQF_RELEASE_WORKERS)
__kmp_printf("RELEASE ");
if (flags & TQF_ALL_TASKS_QUEUED)
__kmp_printf("ALL_QUEUED ");
if (flags & TQF_PARALLEL_CONTEXT)
__kmp_printf("PARALLEL ");
if (flags & TQF_DEALLOCATED)
__kmp_printf("DEALLOC ");
if (!(flags & (TQF_INTERNAL_FLAGS|TQF_INTERFACE_FLAGS)))
__kmp_printf("(NONE)");
}
static void
__kmp_dump_thunk( kmp_taskq_t *tq, kmpc_thunk_t *thunk, kmp_int32 global_tid )
{
int i;
int nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc;
__kmp_printf("\tThunk at %p on (%d): ", thunk, global_tid);
if (thunk != NULL) {
for (i = 0; i < nproc; i++) {
if( tq->tq_curr_thunk[i] == thunk ) {
__kmp_printf("[%i] ", i);
}
}
__kmp_printf("th_shareds=%p, ", thunk->th.th_shareds);
__kmp_printf("th_task=%p, ", thunk->th_task);
__kmp_printf("th_encl_thunk=%p, ", thunk->th_encl_thunk);
__kmp_printf("th_status=%d, ", thunk->th_status);
__kmp_printf("th_tasknum=%u, ", thunk->th_tasknum);
__kmp_printf("th_flags="); __kmp_dump_TQF(thunk->th_flags);
}
__kmp_printf("\n");
}
static void
__kmp_dump_thunk_stack(kmpc_thunk_t *thunk, kmp_int32 thread_num)
{
kmpc_thunk_t *th;
__kmp_printf(" Thunk stack for T#%d: ", thread_num);
for (th = thunk; th != NULL; th = th->th_encl_thunk )
__kmp_printf("%p ", th);
__kmp_printf("\n");
}
static void
__kmp_dump_task_queue( kmp_taskq_t *tq, kmpc_task_queue_t *queue, kmp_int32 global_tid )
{
int qs, count, i;
kmpc_thunk_t *thunk;
kmpc_task_queue_t *taskq;
__kmp_printf("Task Queue at %p on (%d):\n", queue, global_tid);
if (queue != NULL) {
int in_parallel = queue->tq_flags & TQF_PARALLEL_CONTEXT;
if ( __kmp_env_consistency_check ) {
__kmp_printf(" tq_loc : ");
}
if (in_parallel) {
//if (queue->tq.tq_parent != 0)
//__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
//__kmp_acquire_lock(& queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
__kmp_printf(" tq_parent : %p\n", queue->tq.tq_parent);
__kmp_printf(" tq_first_child : %p\n", queue->tq_first_child);
__kmp_printf(" tq_next_child : %p\n", queue->tq_next_child);
__kmp_printf(" tq_prev_child : %p\n", queue->tq_prev_child);
__kmp_printf(" tq_ref_count : %d\n", queue->tq_ref_count);
//__kmp_release_lock(& queue->tq_link_lck, global_tid);
//if (queue->tq.tq_parent != 0)
//__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
//__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid);
//__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
__kmp_printf(" tq_shareds : ");
for (i=0; i<((queue == tq->tq_root) ? queue->tq_nproc : 1); i++)
__kmp_printf("%p ", queue->tq_shareds[i].ai_data);
__kmp_printf("\n");
if (in_parallel) {
__kmp_printf(" tq_tasknum_queuing : %u\n", queue->tq_tasknum_queuing);
__kmp_printf(" tq_tasknum_serving : %u\n", queue->tq_tasknum_serving);
}
__kmp_printf(" tq_queue : %p\n", queue->tq_queue);
__kmp_printf(" tq_thunk_space : %p\n", queue->tq_thunk_space);
__kmp_printf(" tq_taskq_slot : %p\n", queue->tq_taskq_slot);
__kmp_printf(" tq_free_thunks : ");
for (thunk = queue->tq_free_thunks; thunk != NULL; thunk = thunk->th.th_next_free )
__kmp_printf("%p ", thunk);
__kmp_printf("\n");
__kmp_printf(" tq_nslots : %d\n", queue->tq_nslots);
__kmp_printf(" tq_head : %d\n", queue->tq_head);
__kmp_printf(" tq_tail : %d\n", queue->tq_tail);
__kmp_printf(" tq_nfull : %d\n", queue->tq_nfull);
__kmp_printf(" tq_hiwat : %d\n", queue->tq_hiwat);
__kmp_printf(" tq_flags : "); __kmp_dump_TQF(queue->tq_flags);
__kmp_printf("\n");
if (in_parallel) {
__kmp_printf(" tq_th_thunks : ");
for (i = 0; i < queue->tq_nproc; i++) {
__kmp_printf("%d ", queue->tq_th_thunks[i].ai_data);
}
__kmp_printf("\n");
}
__kmp_printf("\n");
__kmp_printf(" Queue slots:\n");
qs = queue->tq_tail;
for ( count = 0; count < queue->tq_nfull; ++count ) {
__kmp_printf("(%d)", qs);
__kmp_dump_thunk( tq, queue->tq_queue[qs].qs_thunk, global_tid );
qs = (qs+1) % queue->tq_nslots;
}
__kmp_printf("\n");
if (in_parallel) {
if (queue->tq_taskq_slot != NULL) {
__kmp_printf(" TaskQ slot:\n");
__kmp_dump_thunk( tq, (kmpc_thunk_t *) queue->tq_taskq_slot, global_tid );
__kmp_printf("\n");
}
//__kmp_release_lock(& queue->tq_queue_lck, global_tid);
//__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid);
}
}
__kmp_printf(" Taskq freelist: ");
//__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid );
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
for( taskq = tq->tq_freelist; taskq != NULL; taskq = taskq->tq.tq_next_free )
__kmp_printf("%p ", taskq);
//__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
__kmp_printf("\n\n");
}
static void
__kmp_aux_dump_task_queue_tree( kmp_taskq_t *tq, kmpc_task_queue_t *curr_queue, kmp_int32 level, kmp_int32 global_tid )
{
int i, count, qs;
int nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc;
kmpc_task_queue_t *queue = curr_queue;
if (curr_queue == NULL)
return;
__kmp_printf(" ");
for (i=0; i<level; i++)
__kmp_printf(" ");
__kmp_printf("%p", curr_queue);
for (i = 0; i < nproc; i++) {
if( tq->tq_curr_thunk[i] && tq->tq_curr_thunk[i]->th.th_shareds->sv_queue == curr_queue ) {
__kmp_printf(" [%i]", i);
}
}
__kmp_printf(":");
//__kmp_acquire_lock(& curr_queue->tq_queue_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
qs = curr_queue->tq_tail;
for ( count = 0; count < curr_queue->tq_nfull; ++count ) {
__kmp_printf("%p ", curr_queue->tq_queue[qs].qs_thunk);
qs = (qs+1) % curr_queue->tq_nslots;
}
//__kmp_release_lock(& curr_queue->tq_queue_lck, global_tid);
__kmp_printf("\n");
if (curr_queue->tq_first_child) {
//__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
if (curr_queue->tq_first_child) {
for(queue = (kmpc_task_queue_t *)curr_queue->tq_first_child;
queue != NULL;
queue = queue->tq_next_child) {
__kmp_aux_dump_task_queue_tree( tq, queue, level+1, global_tid );
}
}
//__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
}
}
static void
__kmp_dump_task_queue_tree( kmp_taskq_t *tq, kmpc_task_queue_t *tqroot, kmp_int32 global_tid)
{
__kmp_printf("TaskQ Tree at root %p on (%d):\n", tqroot, global_tid);
__kmp_aux_dump_task_queue_tree( tq, tqroot, 0, global_tid );
__kmp_printf("\n");
}
#endif
/* --------------------------------------------------------------------------- */
/*
New taskq storage routines that try to minimize overhead of mallocs but
still provide cache line alignment.
*/
static void *
__kmp_taskq_allocate(size_t size, kmp_int32 global_tid)
{
void *addr, *orig_addr;
size_t bytes;
KB_TRACE( 5, ("__kmp_taskq_allocate: called size=%d, gtid=%d\n", (int) size, global_tid ) );
bytes = sizeof(void *) + CACHE_LINE + size;
#ifdef THREAD_ALLOC_FOR_TASKQ
orig_addr = (void *) __kmp_thread_malloc( __kmp_thread_from_gtid(global_tid), bytes );
#else
KE_TRACE( 10, ("%%%%%% MALLOC( %d )\n", bytes ) );
orig_addr = (void *) KMP_INTERNAL_MALLOC( bytes );
#endif /* THREAD_ALLOC_FOR_TASKQ */
if (orig_addr == 0)
KMP_FATAL( OutOfHeapMemory );
addr = orig_addr;
if (((kmp_uintptr_t) addr & ( CACHE_LINE - 1 )) != 0) {
KB_TRACE( 50, ("__kmp_taskq_allocate: adjust for cache alignment\n" ) );
addr = (void *) (((kmp_uintptr_t) addr + CACHE_LINE) & ~( CACHE_LINE - 1 ));
}
(* (void **) addr) = orig_addr;
KB_TRACE( 10, ("__kmp_taskq_allocate: allocate: %p, use: %p - %p, size: %d, gtid: %d\n",
orig_addr, ((void **) addr) + 1, ((char *)(((void **) addr) + 1)) + size-1,
(int) size, global_tid ));
return ( ((void **) addr) + 1 );
}
static void
__kmpc_taskq_free(void *p, kmp_int32 global_tid)
{
KB_TRACE( 5, ("__kmpc_taskq_free: called addr=%p, gtid=%d\n", p, global_tid ) );
KB_TRACE(10, ("__kmpc_taskq_free: freeing: %p, gtid: %d\n", (*( ((void **) p)-1)), global_tid ));
#ifdef THREAD_ALLOC_FOR_TASKQ
__kmp_thread_free( __kmp_thread_from_gtid(global_tid), *( ((void **) p)-1) );
#else
KMP_INTERNAL_FREE( *( ((void **) p)-1) );
#endif /* THREAD_ALLOC_FOR_TASKQ */
}
/* --------------------------------------------------------------------------- */
/*
* Keep freed kmpc_task_queue_t on an internal freelist and recycle since
* they're of constant size.
*/
static kmpc_task_queue_t *
__kmp_alloc_taskq ( kmp_taskq_t *tq, int in_parallel, kmp_int32 nslots, kmp_int32 nthunks,
kmp_int32 nshareds, kmp_int32 nproc, size_t sizeof_thunk,
size_t sizeof_shareds, kmpc_thunk_t **new_taskq_thunk, kmp_int32 global_tid )
{
kmp_int32 i;
size_t bytes;
kmpc_task_queue_t *new_queue;
kmpc_aligned_shared_vars_t *shared_var_array;
char *shared_var_storage;
char *pt; /* for doing byte-adjusted address computations */
__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid );
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
if( tq->tq_freelist ) {
new_queue = tq -> tq_freelist;
tq -> tq_freelist = tq -> tq_freelist -> tq.tq_next_free;
KMP_DEBUG_ASSERT(new_queue->tq_flags & TQF_DEALLOCATED);
new_queue->tq_flags = 0;
__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
}
else {
__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
new_queue = (kmpc_task_queue_t *) __kmp_taskq_allocate (sizeof (kmpc_task_queue_t), global_tid);
new_queue->tq_flags = 0;
}
/* space in the task queue for queue slots (allocate as one big chunk */
/* of storage including new_taskq_task space) */
sizeof_thunk += (CACHE_LINE - (sizeof_thunk % CACHE_LINE)); /* pad to cache line size */
pt = (char *) __kmp_taskq_allocate (nthunks * sizeof_thunk, global_tid);
new_queue->tq_thunk_space = (kmpc_thunk_t *)pt;
*new_taskq_thunk = (kmpc_thunk_t *)(pt + (nthunks - 1) * sizeof_thunk);
/* chain the allocated thunks into a freelist for this queue */
new_queue->tq_free_thunks = (kmpc_thunk_t *)pt;
for (i = 0; i < (nthunks - 2); i++) {
((kmpc_thunk_t *)(pt+i*sizeof_thunk))->th.th_next_free = (kmpc_thunk_t *)(pt + (i+1)*sizeof_thunk);
#ifdef KMP_DEBUG
((kmpc_thunk_t *)(pt+i*sizeof_thunk))->th_flags = TQF_DEALLOCATED;
#endif
}
((kmpc_thunk_t *)(pt+(nthunks-2)*sizeof_thunk))->th.th_next_free = NULL;
#ifdef KMP_DEBUG
((kmpc_thunk_t *)(pt+(nthunks-2)*sizeof_thunk))->th_flags = TQF_DEALLOCATED;
#endif
/* initialize the locks */
if (in_parallel) {
__kmp_init_lock( & new_queue->tq_link_lck );
__kmp_init_lock( & new_queue->tq_free_thunks_lck );
__kmp_init_lock( & new_queue->tq_queue_lck );
}
/* now allocate the slots */
bytes = nslots * sizeof (kmpc_aligned_queue_slot_t);
new_queue->tq_queue = (kmpc_aligned_queue_slot_t *) __kmp_taskq_allocate( bytes, global_tid );
/* space for array of pointers to shared variable structures */
sizeof_shareds += sizeof(kmpc_task_queue_t *);
sizeof_shareds += (CACHE_LINE - (sizeof_shareds % CACHE_LINE)); /* pad to cache line size */
bytes = nshareds * sizeof (kmpc_aligned_shared_vars_t);
shared_var_array = (kmpc_aligned_shared_vars_t *) __kmp_taskq_allocate ( bytes, global_tid);
bytes = nshareds * sizeof_shareds;
shared_var_storage = (char *) __kmp_taskq_allocate ( bytes, global_tid);
for (i=0; i<nshareds; i++) {
shared_var_array[i].ai_data = (kmpc_shared_vars_t *) (shared_var_storage + i*sizeof_shareds);
shared_var_array[i].ai_data->sv_queue = new_queue;
}
new_queue->tq_shareds = shared_var_array;
/* array for number of outstanding thunks per thread */
if (in_parallel) {
bytes = nproc * sizeof(kmpc_aligned_int32_t);
new_queue->tq_th_thunks = (kmpc_aligned_int32_t *) __kmp_taskq_allocate ( bytes, global_tid);
new_queue->tq_nproc = nproc;
for (i=0; i<nproc; i++)
new_queue->tq_th_thunks[i].ai_data = 0;
}
return new_queue;
}
static void
__kmp_free_taskq (kmp_taskq_t *tq, kmpc_task_queue_t *p, int in_parallel, kmp_int32 global_tid)
{
__kmpc_taskq_free(p->tq_thunk_space, global_tid);
__kmpc_taskq_free(p->tq_queue, global_tid);
/* free shared var structure storage */
__kmpc_taskq_free((void *) p->tq_shareds[0].ai_data, global_tid);
/* free array of pointers to shared vars storage */
__kmpc_taskq_free(p->tq_shareds, global_tid);
#ifdef KMP_DEBUG
p->tq_first_child = NULL;
p->tq_next_child = NULL;
p->tq_prev_child = NULL;
p->tq_ref_count = -10;
p->tq_shareds = NULL;
p->tq_tasknum_queuing = 0;
p->tq_tasknum_serving = 0;
p->tq_queue = NULL;
p->tq_thunk_space = NULL;
p->tq_taskq_slot = NULL;
p->tq_free_thunks = NULL;
p->tq_nslots = 0;
p->tq_head = 0;
p->tq_tail = 0;
p->tq_nfull = 0;
p->tq_hiwat = 0;
if (in_parallel) {
int i;
for (i=0; i<p->tq_nproc; i++)
p->tq_th_thunks[i].ai_data = 0;
}
if ( __kmp_env_consistency_check )
p->tq_loc = NULL;
KMP_DEBUG_ASSERT( p->tq_flags & TQF_DEALLOCATED );
p->tq_flags = TQF_DEALLOCATED;
#endif /* KMP_DEBUG */
if (in_parallel) {
__kmpc_taskq_free(p->tq_th_thunks, global_tid);
__kmp_destroy_lock(& p->tq_link_lck);
__kmp_destroy_lock(& p->tq_queue_lck);
__kmp_destroy_lock(& p->tq_free_thunks_lck);
}
#ifdef KMP_DEBUG
p->tq_th_thunks = NULL;
#endif /* KMP_DEBUG */
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid );
p->tq.tq_next_free = tq->tq_freelist;
tq->tq_freelist = p;
__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
}
/*
* Once a group of thunks has been allocated for use in a particular queue,
* these are managed via a per-queue freelist.
* We force a check that there's always a thunk free if we need one.
*/
static kmpc_thunk_t *
__kmp_alloc_thunk (kmpc_task_queue_t *queue, int in_parallel, kmp_int32 global_tid)
{
kmpc_thunk_t *fl;
if (in_parallel) {
__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
fl = queue->tq_free_thunks;
KMP_DEBUG_ASSERT (fl != NULL);
queue->tq_free_thunks = fl->th.th_next_free;
fl->th_flags = 0;
if (in_parallel)
__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid);
return fl;
}
static void
__kmp_free_thunk (kmpc_task_queue_t *queue, kmpc_thunk_t *p, int in_parallel, kmp_int32 global_tid)
{
#ifdef KMP_DEBUG
p->th_task = 0;
p->th_encl_thunk = 0;
p->th_status = 0;
p->th_tasknum = 0;
/* Also could zero pointers to private vars */
#endif
if (in_parallel) {
__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
p->th.th_next_free = queue->tq_free_thunks;
queue->tq_free_thunks = p;
#ifdef KMP_DEBUG
p->th_flags = TQF_DEALLOCATED;
#endif
if (in_parallel)
__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid);
}
/* --------------------------------------------------------------------------- */
/* returns nonzero if the queue just became full after the enqueue */
static kmp_int32
__kmp_enqueue_task ( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue, kmpc_thunk_t *thunk, int in_parallel )
{
kmp_int32 ret;
/* dkp: can we get around the lock in the TQF_RELEASE_WORKERS case (only the master is executing then) */
if (in_parallel) {
__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
KMP_DEBUG_ASSERT (queue->tq_nfull < queue->tq_nslots); /* check queue not full */
queue->tq_queue[(queue->tq_head)++].qs_thunk = thunk;
if (queue->tq_head >= queue->tq_nslots)
queue->tq_head = 0;
(queue->tq_nfull)++;
KMP_MB(); /* to assure that nfull is seen to increase before TQF_ALL_TASKS_QUEUED is set */
ret = (in_parallel) ? (queue->tq_nfull == queue->tq_nslots) : FALSE;
if (in_parallel) {
/* don't need to wait until workers are released before unlocking */
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
if( tq->tq_global_flags & TQF_RELEASE_WORKERS ) {
/* If just creating the root queue, the worker threads are waiting at */
/* a join barrier until now, when there's something in the queue for */
/* them to do; release them now to do work. */
/* This should only be done when this is the first task enqueued, */
/* so reset the flag here also. */
tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; /* no lock needed, workers are still in spin mode */
KMP_MB(); /* avoid releasing barrier twice if taskq_task switches threads */
__kmpc_end_barrier_master( NULL, global_tid);
}
}
return ret;
}
static kmpc_thunk_t *
__kmp_dequeue_task (kmp_int32 global_tid, kmpc_task_queue_t *queue, int in_parallel)
{
kmpc_thunk_t *pt;
int tid = __kmp_tid_from_gtid( global_tid );
KMP_DEBUG_ASSERT (queue->tq_nfull > 0); /* check queue not empty */
if (queue->tq.tq_parent != NULL && in_parallel) {
int ct;
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
ct = ++(queue->tq_ref_count);
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n",
__LINE__, global_tid, queue, ct));
}
pt = queue->tq_queue[(queue->tq_tail)++].qs_thunk;
if (queue->tq_tail >= queue->tq_nslots)
queue->tq_tail = 0;
if (in_parallel) {
queue->tq_th_thunks[tid].ai_data++;
KMP_MB(); /* necessary so ai_data increment is propagated to other threads immediately (digital) */
KF_TRACE(200, ("__kmp_dequeue_task: T#%d(:%d) now has %d outstanding thunks from queue %p\n",
global_tid, tid, queue->tq_th_thunks[tid].ai_data, queue));
}
(queue->tq_nfull)--;
#ifdef KMP_DEBUG
KMP_MB();
/* necessary so (queue->tq_nfull > 0) above succeeds after tq_nfull is decremented */
KMP_DEBUG_ASSERT(queue->tq_nfull >= 0);
if (in_parallel) {
KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data <= __KMP_TASKQ_THUNKS_PER_TH);
}
#endif
return pt;
}
/*
* Find the next (non-null) task to dequeue and return it.
* This is never called unless in_parallel=TRUE
*
* Here are the rules for deciding which queue to take the task from:
* 1. Walk up the task queue tree from the current queue's parent and look
* on the way up (for loop, below).
* 2. Do a depth-first search back down the tree from the root and
* look (find_task_in_descendant_queue()).
*
* Here are the rules for deciding which task to take from a queue
* (__kmp_find_task_in_queue ()):
* 1. Never take the last task from a queue if TQF_IS_LASTPRIVATE; this task
* must be staged to make sure we execute the last one with
* TQF_IS_LAST_TASK at the end of task queue execution.
* 2. If the queue length is below some high water mark and the taskq task
* is enqueued, prefer running the taskq task.
* 3. Otherwise, take a (normal) task from the queue.
*
* If we do all this and return pt == NULL at the bottom of this routine,
* this means there are no more tasks to execute (except possibly for
* TQF_IS_LASTPRIVATE).
*/
static kmpc_thunk_t *
__kmp_find_task_in_queue (kmp_int32 global_tid, kmpc_task_queue_t *queue)
{
kmpc_thunk_t *pt = NULL;
int tid = __kmp_tid_from_gtid( global_tid );
/* To prevent deadlock from tq_queue_lck if queue already deallocated */
if ( !(queue->tq_flags & TQF_DEALLOCATED) ) {
__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
/* Check again to avoid race in __kmpc_end_taskq() */
if ( !(queue->tq_flags & TQF_DEALLOCATED) ) {
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
if ((queue->tq_taskq_slot != NULL) && (queue->tq_nfull <= queue->tq_hiwat)) {
/* if there's enough room in the queue and the dispatcher */
/* (taskq task) is available, schedule more tasks */
pt = (kmpc_thunk_t *) queue->tq_taskq_slot;
queue->tq_taskq_slot = NULL;
}
else if (queue->tq_nfull == 0 ||
queue->tq_th_thunks[tid].ai_data >= __KMP_TASKQ_THUNKS_PER_TH) {
/* do nothing if no thunks available or this thread can't */
/* run any because it already is executing too many */
pt = NULL;
}
else if (queue->tq_nfull > 1) {
/* always safe to schedule a task even if TQF_IS_LASTPRIVATE */
pt = __kmp_dequeue_task (global_tid, queue, TRUE);
}
else if (!(queue->tq_flags & TQF_IS_LASTPRIVATE)) {
/* one thing in queue, always safe to schedule if !TQF_IS_LASTPRIVATE */
pt = __kmp_dequeue_task (global_tid, queue, TRUE);
}
else if (queue->tq_flags & TQF_IS_LAST_TASK) {
/* TQF_IS_LASTPRIVATE, one thing in queue, kmpc_end_taskq_task() */
/* has been run so this is last task, run with TQF_IS_LAST_TASK so */
/* instrumentation does copy-out. */
pt = __kmp_dequeue_task (global_tid, queue, TRUE);
pt->th_flags |= TQF_IS_LAST_TASK; /* don't need test_then_or since already locked */
}
}
/* GEH - What happens here if is lastprivate, but not last task? */
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
}
return pt;
}
/*
* Walk a tree of queues starting at queue's first child
* and return a non-NULL thunk if one can be scheduled.
* Must only be called when in_parallel=TRUE
*/
static kmpc_thunk_t *
__kmp_find_task_in_descendant_queue (kmp_int32 global_tid, kmpc_task_queue_t *curr_queue)
{
kmpc_thunk_t *pt = NULL;
kmpc_task_queue_t *queue = curr_queue;
if (curr_queue->tq_first_child != NULL) {
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
queue = (kmpc_task_queue_t *) curr_queue->tq_first_child;
if (queue == NULL) {
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
return NULL;
}
while (queue != NULL) {
int ct;
kmpc_task_queue_t *next;
ct= ++(queue->tq_ref_count);
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n",
__LINE__, global_tid, queue, ct));
pt = __kmp_find_task_in_queue (global_tid, queue);
if (pt != NULL) {
int ct;
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( queue->tq_ref_count >= 0 );
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
return pt;
}
/* although reference count stays active during descendant walk, shouldn't matter */
/* since if children still exist, reference counts aren't being monitored anyway */
pt = __kmp_find_task_in_descendant_queue (global_tid, queue);
if (pt != NULL) {
int ct;
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
return pt;
}
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
next = queue->tq_next_child;
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
queue = next;
}
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
}
return pt;
}
/*
* Walk up the taskq tree looking for a task to execute.
* If we get to the root, search the tree for a descendent queue task.
* Must only be called when in_parallel=TRUE
*/
static kmpc_thunk_t *
__kmp_find_task_in_ancestor_queue (kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue)
{
kmpc_task_queue_t *queue;
kmpc_thunk_t *pt;
pt = NULL;
if (curr_queue->tq.tq_parent != NULL) {
queue = curr_queue->tq.tq_parent;
while (queue != NULL) {
if (queue->tq.tq_parent != NULL) {
int ct;
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
ct = ++(queue->tq_ref_count);
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n",
__LINE__, global_tid, queue, ct));
}
pt = __kmp_find_task_in_queue (global_tid, queue);
if (pt != NULL) {
if (queue->tq.tq_parent != NULL) {
int ct;
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work without this call for digital/alpha, needed for IBM/RS6000 */
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
}
return pt;
}
if (queue->tq.tq_parent != NULL) {
int ct;
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
}
queue = queue->tq.tq_parent;
if (queue != NULL)
__kmp_release_lock(& queue->tq_link_lck, global_tid);
}
}
pt = __kmp_find_task_in_descendant_queue( global_tid, tq->tq_root );
return pt;
}
static int
__kmp_taskq_tasks_finished (kmpc_task_queue_t *queue)
{
int i;
/* KMP_MB(); *//* is this really necessary? */
for (i=0; i<queue->tq_nproc; i++) {
if (queue->tq_th_thunks[i].ai_data != 0)
return FALSE;
}
return TRUE;
}
static int
__kmp_taskq_has_any_children (kmpc_task_queue_t *queue)
{
return (queue->tq_first_child != NULL);
}
static void
__kmp_remove_queue_from_tree( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue, int in_parallel )
{
#ifdef KMP_DEBUG
kmp_int32 i;
kmpc_thunk_t *thunk;
#endif
KF_TRACE(50, ("Before Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
KF_DUMP(50, __kmp_dump_task_queue( tq, queue, global_tid ));
/* sub-queue in a recursion, not the root task queue */
KMP_DEBUG_ASSERT (queue->tq.tq_parent != NULL);
if (in_parallel) {
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
KMP_DEBUG_ASSERT (queue->tq_first_child == NULL);
/* unlink queue from its siblings if any at this level */
if (queue->tq_prev_child != NULL)
queue->tq_prev_child->tq_next_child = queue->tq_next_child;
if (queue->tq_next_child != NULL)
queue->tq_next_child->tq_prev_child = queue->tq_prev_child;
if (queue->tq.tq_parent->tq_first_child == queue)
queue->tq.tq_parent->tq_first_child = queue->tq_next_child;
queue->tq_prev_child = NULL;
queue->tq_next_child = NULL;
if (in_parallel) {
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p waiting for ref_count of %d to reach 1\n",
__LINE__, global_tid, queue, queue->tq_ref_count));
/* wait until all other threads have stopped accessing this queue */
while (queue->tq_ref_count > 1) {
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_WAIT_YIELD((volatile kmp_uint32*)&queue->tq_ref_count, 1, KMP_LE, NULL);
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
}
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
}
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p freeing queue\n",
__LINE__, global_tid, queue));
#ifdef KMP_DEBUG
KMP_DEBUG_ASSERT(queue->tq_flags & TQF_ALL_TASKS_QUEUED);
KMP_DEBUG_ASSERT(queue->tq_nfull == 0);
for (i=0; i<queue->tq_nproc; i++) {
KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
}
i = 0;
for (thunk=queue->tq_free_thunks; thunk != NULL; thunk=thunk->th.th_next_free)
++i;
KMP_ASSERT (i == queue->tq_nslots + (queue->tq_nproc * __KMP_TASKQ_THUNKS_PER_TH));
#endif
/* release storage for queue entry */
__kmp_free_taskq ( tq, queue, TRUE, global_tid );
KF_TRACE(50, ("After Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid ));
}
/*
* Starting from indicated queue, proceed downward through tree and
* remove all taskqs which are finished, but only go down to taskqs
* which have the "nowait" clause present. Assume this is only called
* when in_parallel=TRUE.
*/
static void
__kmp_find_and_remove_finished_child_taskq( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue )
{
kmpc_task_queue_t *queue = curr_queue;
if (curr_queue->tq_first_child != NULL) {
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
queue = (kmpc_task_queue_t *) curr_queue->tq_first_child;
if (queue != NULL) {
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
return;
}
while (queue != NULL) {
kmpc_task_queue_t *next;
int ct = ++(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n",
__LINE__, global_tid, queue, ct));
/* although reference count stays active during descendant walk, */
/* shouldn't matter since if children still exist, reference */
/* counts aren't being monitored anyway */
if (queue->tq_flags & TQF_IS_NOWAIT) {
__kmp_find_and_remove_finished_child_taskq ( tq, global_tid, queue );
if ((queue->tq_flags & TQF_ALL_TASKS_QUEUED) && (queue->tq_nfull == 0) &&
__kmp_taskq_tasks_finished(queue) && ! __kmp_taskq_has_any_children(queue)) {
/*
Only remove this if we have not already marked it for deallocation.
This should prevent multiple threads from trying to free this.
*/
if ( __kmp_test_lock(& queue->tq_queue_lck, global_tid) ) {
if ( !(queue->tq_flags & TQF_DEALLOCATED) ) {
queue->tq_flags |= TQF_DEALLOCATED;
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
__kmp_remove_queue_from_tree( tq, global_tid, queue, TRUE );
/* Can't do any more here since can't be sure where sibling queue is so just exit this level */
return;
}
else {
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
}
}
/* otherwise, just fall through and decrement reference count */
}
}
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
next = queue->tq_next_child;
ct = --(queue->tq_ref_count);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
queue = next;
}
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
}
}
/*
* Starting from indicated queue, proceed downward through tree and
* remove all taskq's assuming all are finished and
* assuming NO other threads are executing at this point.
*/
static void
__kmp_remove_all_child_taskq( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue )
{
kmpc_task_queue_t *next_child;
queue = (kmpc_task_queue_t *) queue->tq_first_child;
while (queue != NULL) {
__kmp_remove_all_child_taskq ( tq, global_tid, queue );
next_child = queue->tq_next_child;
queue->tq_flags |= TQF_DEALLOCATED;
__kmp_remove_queue_from_tree ( tq, global_tid, queue, FALSE );
queue = next_child;
}
}
static void
__kmp_execute_task_from_queue( kmp_taskq_t *tq, ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, int in_parallel )
{
kmpc_task_queue_t *queue = thunk->th.th_shareds->sv_queue;
kmp_int32 tid = __kmp_tid_from_gtid( global_tid );
KF_TRACE(100, ("After dequeueing this Task on (%d):\n", global_tid));
KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid ));
KF_TRACE(100, ("Task Queue: %p looks like this (%d):\n", queue, global_tid));
KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid ));
/*
* For the taskq task, the curr_thunk pushes and pop pairs are set up as follows:
*
* happens exactly once:
* 1) __kmpc_taskq : push (if returning thunk only)
* 4) __kmpc_end_taskq_task : pop
*
* optionally happens *each* time taskq task is dequeued/enqueued:
* 2) __kmpc_taskq_task : pop
* 3) __kmp_execute_task_from_queue : push
*
* execution ordering: 1,(2,3)*,4
*/
if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
kmp_int32 index = (queue == tq->tq_root) ? tid : 0;
thunk->th.th_shareds = (kmpc_shared_vars_t *) queue->tq_shareds[index].ai_data;
if ( __kmp_env_consistency_check ) {
__kmp_push_workshare( global_tid,
(queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered : ct_task,
queue->tq_loc );
}
}
else {
if ( __kmp_env_consistency_check )
__kmp_push_workshare( global_tid, ct_taskq, queue->tq_loc );
}
if (in_parallel) {
thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
tq->tq_curr_thunk[tid] = thunk;
KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid ));
}
KF_TRACE( 50, ("Begin Executing Thunk %p from queue %p on (%d)\n", thunk, queue, global_tid));
thunk->th_task (global_tid, thunk);
KF_TRACE( 50, ("End Executing Thunk %p from queue %p on (%d)\n", thunk, queue, global_tid));
if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
if ( __kmp_env_consistency_check )
__kmp_pop_workshare( global_tid, (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered : ct_task,
queue->tq_loc );
if (in_parallel) {
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
thunk->th_encl_thunk = NULL;
KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid ));
}
if ((thunk->th_flags & TQF_IS_ORDERED) && in_parallel) {
__kmp_taskq_check_ordered(global_tid, thunk);
}
__kmp_free_thunk (queue, thunk, in_parallel, global_tid);
KF_TRACE(100, ("T#%d After freeing thunk: %p, TaskQ looks like this:\n", global_tid, thunk));
KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid ));
if (in_parallel) {
KMP_MB(); /* needed so thunk put on free list before outstanding thunk count is decremented */
KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data >= 1);
KF_TRACE( 200, ("__kmp_execute_task_from_queue: T#%d has %d thunks in queue %p\n",
global_tid, queue->tq_th_thunks[tid].ai_data-1, queue));
queue->tq_th_thunks[tid].ai_data--;
/* KMP_MB(); */ /* is MB really necessary ? */
}
if (queue->tq.tq_parent != NULL && in_parallel) {
int ct;
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
ct = --(queue->tq_ref_count);
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n",
__LINE__, global_tid, queue, ct));
KMP_DEBUG_ASSERT( ct >= 0 );
}
}
}
/* --------------------------------------------------------------------------- */
/* starts a taskq; creates and returns a thunk for the taskq_task */
/* also, returns pointer to shared vars for this thread in "shareds" arg */
kmpc_thunk_t *
__kmpc_taskq( ident_t *loc, kmp_int32 global_tid, kmpc_task_t taskq_task,
size_t sizeof_thunk, size_t sizeof_shareds,
kmp_int32 flags, kmpc_shared_vars_t **shareds )
{
int in_parallel;
kmp_int32 nslots, nthunks, nshareds, nproc;
kmpc_task_queue_t *new_queue, *curr_queue;
kmpc_thunk_t *new_taskq_thunk;
kmp_info_t *th;
kmp_team_t *team;
kmp_taskq_t *tq;
kmp_int32 tid;
KE_TRACE( 10, ("__kmpc_taskq called (%d)\n", global_tid));
th = __kmp_threads[ global_tid ];
team = th -> th.th_team;
tq = & team -> t.t_taskq;
nproc = team -> t.t_nproc;
tid = __kmp_tid_from_gtid( global_tid );
/* find out whether this is a parallel taskq or serialized one. */
in_parallel = in_parallel_context( team );
if( ! tq->tq_root ) {
if (in_parallel) {
/* Vector ORDERED SECTION to taskq version */
th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
/* Vector ORDERED SECTION to taskq version */
th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
}
if (in_parallel) {
/* This shouldn't be a barrier region boundary, it will confuse the user. */
/* Need the boundary to be at the end taskq instead. */
if ( __kmp_barrier( bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL )) {
/* Creating the active root queue, and we are not the master thread. */
/* The master thread below created the queue and tasks have been */
/* enqueued, and the master thread released this barrier. This */
/* worker thread can now proceed and execute tasks. See also the */
/* TQF_RELEASE_WORKERS which is used to handle this case. */
*shareds = (kmpc_shared_vars_t *) tq->tq_root->tq_shareds[tid].ai_data;
KE_TRACE( 10, ("__kmpc_taskq return (%d)\n", global_tid));
return NULL;
}
}
/* master thread only executes this code */
if( tq->tq_curr_thunk_capacity < nproc ) {
if(tq->tq_curr_thunk)
__kmp_free(tq->tq_curr_thunk);
else {
/* only need to do this once at outer level, i.e. when tq_curr_thunk is still NULL */
__kmp_init_lock( & tq->tq_freelist_lck );
}
tq->tq_curr_thunk = (kmpc_thunk_t **) __kmp_allocate( nproc * sizeof(kmpc_thunk_t *) );
tq -> tq_curr_thunk_capacity = nproc;
}
if (in_parallel)
tq->tq_global_flags = TQF_RELEASE_WORKERS;
}
/* dkp: in future, if flags & TQF_HEURISTICS, will choose nslots based */
/* on some heuristics (e.g., depth of queue nesting?). */
nslots = (in_parallel) ? (2 * nproc) : 1;
/* There must be nproc * __KMP_TASKQ_THUNKS_PER_TH extra slots for pending */
/* jobs being executed by other threads, and one extra for taskq slot */
nthunks = (in_parallel) ? (nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH) + 1) : nslots + 2;
/* Only the root taskq gets a per-thread array of shareds. */
/* The rest of the taskq's only get one copy of the shared vars. */
nshareds = ( !tq->tq_root && in_parallel) ? nproc : 1;
/* create overall queue data structure and its components that require allocation */
new_queue = __kmp_alloc_taskq ( tq, in_parallel, nslots, nthunks, nshareds, nproc,
sizeof_thunk, sizeof_shareds, &new_taskq_thunk, global_tid );
/* rest of new_queue initializations */
new_queue->tq_flags = flags & TQF_INTERFACE_FLAGS;
if (in_parallel) {
new_queue->tq_tasknum_queuing = 0;
new_queue->tq_tasknum_serving = 0;
new_queue->tq_flags |= TQF_PARALLEL_CONTEXT;
}
new_queue->tq_taskq_slot = NULL;
new_queue->tq_nslots = nslots;
new_queue->tq_hiwat = HIGH_WATER_MARK (nslots);
new_queue->tq_nfull = 0;
new_queue->tq_head = 0;
new_queue->tq_tail = 0;
new_queue->tq_loc = loc;
if ((new_queue->tq_flags & TQF_IS_ORDERED) && in_parallel) {
/* prepare to serve the first-queued task's ORDERED directive */
new_queue->tq_tasknum_serving = 1;
/* Vector ORDERED SECTION to taskq version */
th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
/* Vector ORDERED SECTION to taskq version */
th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
}
/* create a new thunk for the taskq_task in the new_queue */
*shareds = (kmpc_shared_vars_t *) new_queue->tq_shareds[0].ai_data;
new_taskq_thunk->th.th_shareds = *shareds;
new_taskq_thunk->th_task = taskq_task;
new_taskq_thunk->th_flags = new_queue->tq_flags | TQF_TASKQ_TASK;
new_taskq_thunk->th_status = 0;
KMP_DEBUG_ASSERT (new_taskq_thunk->th_flags & TQF_TASKQ_TASK);
/* KMP_MB(); */ /* make sure these inits complete before threads start using this queue (necessary?) */
/* insert the new task queue into the tree, but only after all fields initialized */
if (in_parallel) {
if( ! tq->tq_root ) {
new_queue->tq.tq_parent = NULL;
new_queue->tq_first_child = NULL;
new_queue->tq_next_child = NULL;
new_queue->tq_prev_child = NULL;
new_queue->tq_ref_count = 1;
tq->tq_root = new_queue;
}
else {
curr_queue = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue;
new_queue->tq.tq_parent = curr_queue;
new_queue->tq_first_child = NULL;
new_queue->tq_prev_child = NULL;
new_queue->tq_ref_count = 1; /* for this the thread that built the queue */
KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p alloc %d\n",
__LINE__, global_tid, new_queue, new_queue->tq_ref_count));
__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
new_queue->tq_next_child = (struct kmpc_task_queue_t *) curr_queue->tq_first_child;
if (curr_queue->tq_first_child != NULL)
curr_queue->tq_first_child->tq_prev_child = new_queue;
curr_queue->tq_first_child = new_queue;
__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
}
/* set up thunk stack only after code that determines curr_queue above */
new_taskq_thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
tq->tq_curr_thunk[tid] = new_taskq_thunk;
KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid ));
}
else {
new_taskq_thunk->th_encl_thunk = 0;
new_queue->tq.tq_parent = NULL;
new_queue->tq_first_child = NULL;
new_queue->tq_next_child = NULL;
new_queue->tq_prev_child = NULL;
new_queue->tq_ref_count = 1;
}
#ifdef KMP_DEBUG
KF_TRACE(150, ("Creating TaskQ Task on (%d):\n", global_tid));
KF_DUMP(150, __kmp_dump_thunk( tq, new_taskq_thunk, global_tid ));
if (in_parallel) {
KF_TRACE(25, ("After TaskQ at %p Creation on (%d):\n", new_queue, global_tid));
} else {
KF_TRACE(25, ("After Serial TaskQ at %p Creation on (%d):\n", new_queue, global_tid));
}
KF_DUMP(25, __kmp_dump_task_queue( tq, new_queue, global_tid ));
if (in_parallel) {
KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid ));
}
#endif /* KMP_DEBUG */
if ( __kmp_env_consistency_check )
__kmp_push_workshare( global_tid, ct_taskq, new_queue->tq_loc );
KE_TRACE( 10, ("__kmpc_taskq return (%d)\n", global_tid));
return new_taskq_thunk;
}
/* ends a taskq; last thread out destroys the queue */
void
__kmpc_end_taskq(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk)
{
#ifdef KMP_DEBUG
kmp_int32 i;
#endif
kmp_taskq_t *tq;
int in_parallel;
kmp_info_t *th;
kmp_int32 is_outermost;
kmpc_task_queue_t *queue;
kmpc_thunk_t *thunk;
int nproc;
KE_TRACE( 10, ("__kmpc_end_taskq called (%d)\n", global_tid));
tq = & __kmp_threads[global_tid] -> th.th_team -> t.t_taskq;
nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc;
/* For the outermost taskq only, all but one thread will have taskq_thunk == NULL */
queue = (taskq_thunk == NULL) ? tq->tq_root : taskq_thunk->th.th_shareds->sv_queue;
KE_TRACE( 50, ("__kmpc_end_taskq queue=%p (%d) \n", queue, global_tid));
is_outermost = (queue == tq->tq_root);
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
if (in_parallel) {
kmp_uint32 spins;
/* this is just a safeguard to release the waiting threads if */
/* the outermost taskq never queues a task */
if (is_outermost && (KMP_MASTER_GTID( global_tid ))) {
if( tq->tq_global_flags & TQF_RELEASE_WORKERS ) {
/* no lock needed, workers are still in spin mode */
tq->tq_global_flags &= ~TQF_RELEASE_WORKERS;
__kmp_end_split_barrier( bs_plain_barrier, global_tid );
}
}
/* keep dequeueing work until all tasks are queued and dequeued */
do {
/* wait until something is available to dequeue */
KMP_INIT_YIELD(spins);
while ( (queue->tq_nfull == 0)
&& (queue->tq_taskq_slot == NULL)
&& (! __kmp_taskq_has_any_children(queue) )
&& (! (queue->tq_flags & TQF_ALL_TASKS_QUEUED) )
) {
KMP_YIELD_WHEN( TRUE, spins );
}
/* check to see if we can execute tasks in the queue */
while ( ( (queue->tq_nfull != 0) || (queue->tq_taskq_slot != NULL) )
&& (thunk = __kmp_find_task_in_queue(global_tid, queue)) != NULL
) {
KF_TRACE(50, ("Found thunk: %p in primary queue %p (%d)\n", thunk, queue, global_tid));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
/* see if work found can be found in a descendant queue */
if ( (__kmp_taskq_has_any_children(queue))
&& (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != NULL
) {
KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n",
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid ));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
} while ( (! (queue->tq_flags & TQF_ALL_TASKS_QUEUED))
|| (queue->tq_nfull != 0)
);
KF_TRACE(50, ("All tasks queued and dequeued in queue: %p (%d)\n", queue, global_tid));
/* wait while all tasks are not finished and more work found
in descendant queues */
while ( (!__kmp_taskq_tasks_finished(queue))
&& (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != NULL
) {
KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n",
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
KF_TRACE(50, ("No work found in descendent queues or all work finished in queue: %p (%d)\n", queue, global_tid));
if (!is_outermost) {
/* need to return if NOWAIT present and not outermost taskq */
if (queue->tq_flags & TQF_IS_NOWAIT) {
__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
queue->tq_ref_count--;
KMP_DEBUG_ASSERT( queue->tq_ref_count >= 0 );
__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
KE_TRACE( 10, ("__kmpc_end_taskq return for nowait case (%d)\n", global_tid));
return;
}
__kmp_find_and_remove_finished_child_taskq( tq, global_tid, queue );
/* WAIT until all tasks are finished and no child queues exist before proceeding */
KMP_INIT_YIELD(spins);
while (!__kmp_taskq_tasks_finished(queue) || __kmp_taskq_has_any_children(queue)) {
thunk = __kmp_find_task_in_ancestor_queue( tq, global_tid, queue );
if (thunk != NULL) {
KF_TRACE(50, ("Stole thunk: %p in ancestor queue: %p while waiting in queue: %p (%d)\n",
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
KMP_YIELD_WHEN( thunk == NULL, spins );
__kmp_find_and_remove_finished_child_taskq( tq, global_tid, queue );
}
__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
if ( !(queue->tq_flags & TQF_DEALLOCATED) ) {
queue->tq_flags |= TQF_DEALLOCATED;
}
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
/* only the allocating thread can deallocate the queue */
if (taskq_thunk != NULL) {
__kmp_remove_queue_from_tree( tq, global_tid, queue, TRUE );
}
KE_TRACE( 10, ("__kmpc_end_taskq return for non_outermost queue, wait case (%d)\n", global_tid));
return;
}
/* Outermost Queue: steal work from descendants until all tasks are finished */
KMP_INIT_YIELD(spins);
while (!__kmp_taskq_tasks_finished(queue)) {
thunk = __kmp_find_task_in_descendant_queue(global_tid, queue);
if (thunk != NULL) {
KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n",
thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
KMP_YIELD_WHEN( thunk == NULL, spins );
}
/* Need this barrier to prevent destruction of queue before threads have all executed above code */
/* This may need to be done earlier when NOWAIT is implemented for the outermost level */
if ( !__kmp_barrier( bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL )) {
/* the queue->tq_flags & TQF_IS_NOWAIT case is not yet handled here; */
/* for right now, everybody waits, and the master thread destroys the */
/* remaining queues. */
__kmp_remove_all_child_taskq( tq, global_tid, queue );
/* Now destroy the root queue */
KF_TRACE(100, ("T#%d Before Deletion of top-level TaskQ at %p:\n", global_tid, queue ));
KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid ));
#ifdef KMP_DEBUG
/* the root queue entry */
KMP_DEBUG_ASSERT ((queue->tq.tq_parent == NULL) && (queue->tq_next_child == NULL));
/* children must all be gone by now because of barrier above */
KMP_DEBUG_ASSERT (queue->tq_first_child == NULL);
for (i=0; i<nproc; i++) {
KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
}
for (i=0, thunk=queue->tq_free_thunks; thunk != NULL; i++, thunk=thunk->th.th_next_free);
KMP_DEBUG_ASSERT (i == queue->tq_nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH));
for (i = 0; i < nproc; i++) {
KMP_DEBUG_ASSERT( ! tq->tq_curr_thunk[i] );
}
#endif
/* unlink the root queue entry */
tq -> tq_root = NULL;
/* release storage for root queue entry */
KF_TRACE(50, ("After Deletion of top-level TaskQ at %p on (%d):\n", queue, global_tid));
queue->tq_flags |= TQF_DEALLOCATED;
__kmp_free_taskq ( tq, queue, in_parallel, global_tid );
KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid ));
/* release the workers now that the data structures are up to date */
__kmp_end_split_barrier( bs_plain_barrier, global_tid );
}
th = __kmp_threads[ global_tid ];
/* Reset ORDERED SECTION to parallel version */
th->th.th_dispatch->th_deo_fcn = 0;
/* Reset ORDERED SECTION to parallel version */
th->th.th_dispatch->th_dxo_fcn = 0;
}
else {
/* in serial execution context, dequeue the last task */
/* and execute it, if there were any tasks encountered */
if (queue->tq_nfull > 0) {
KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
if (queue->tq_flags & TQF_IS_LAST_TASK) {
/* TQF_IS_LASTPRIVATE, one thing in queue, __kmpc_end_taskq_task() */
/* has been run so this is last task, run with TQF_IS_LAST_TASK so */
/* instrumentation does copy-out. */
/* no need for test_then_or call since already locked */
thunk->th_flags |= TQF_IS_LAST_TASK;
}
KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, thunk, queue));
__kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel );
}
/* destroy the unattached serial queue now that there is no more work to do */
KF_TRACE(100, ("Before Deletion of Serialized TaskQ at %p on (%d):\n", queue, global_tid));
KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid ));
#ifdef KMP_DEBUG
i = 0;
for (thunk=queue->tq_free_thunks; thunk != NULL; thunk=thunk->th.th_next_free)
++i;
KMP_DEBUG_ASSERT (i == queue->tq_nslots + 1);
#endif
/* release storage for unattached serial queue */
KF_TRACE(50, ("Serialized TaskQ at %p deleted on (%d).\n", queue, global_tid));
queue->tq_flags |= TQF_DEALLOCATED;
__kmp_free_taskq ( tq, queue, in_parallel, global_tid );
}
KE_TRACE( 10, ("__kmpc_end_taskq return (%d)\n", global_tid));
}
/* Enqueues a task for thunk previously created by __kmpc_task_buffer. */
/* Returns nonzero if just filled up queue */
kmp_int32
__kmpc_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk)
{
kmp_int32 ret;
kmpc_task_queue_t *queue;
int in_parallel;
kmp_taskq_t *tq;
KE_TRACE( 10, ("__kmpc_task called (%d)\n", global_tid));
KMP_DEBUG_ASSERT (!(thunk->th_flags & TQF_TASKQ_TASK)); /* thunk->th_task is a regular task */
tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq;
queue = thunk->th.th_shareds->sv_queue;
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
if (in_parallel && (thunk->th_flags & TQF_IS_ORDERED))
thunk->th_tasknum = ++queue->tq_tasknum_queuing;
/* For serial execution dequeue the preceding task and execute it, if one exists */
/* This cannot be the last task. That one is handled in __kmpc_end_taskq */
if (!in_parallel && queue->tq_nfull > 0) {
kmpc_thunk_t *prev_thunk;
KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
prev_thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, prev_thunk, queue));
__kmp_execute_task_from_queue( tq, loc, global_tid, prev_thunk, in_parallel );
}
/* The instrumentation sequence is: __kmpc_task_buffer(), initialize private */
/* variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the */
/* task queue is not full and allocates a thunk (which is then passed to */
/* __kmpc_task()). So, the enqueue below should never fail due to a full queue. */
KF_TRACE(100, ("After enqueueing this Task on (%d):\n", global_tid));
KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid ));
ret = __kmp_enqueue_task ( tq, global_tid, queue, thunk, in_parallel );
KF_TRACE(100, ("Task Queue looks like this on (%d):\n", global_tid));
KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid ));
KE_TRACE( 10, ("__kmpc_task return (%d)\n", global_tid));
return ret;
}
/* enqueues a taskq_task for thunk previously created by __kmpc_taskq */
/* this should never be called unless in a parallel context */
void
__kmpc_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, kmp_int32 status)
{
kmpc_task_queue_t *queue;
kmp_taskq_t *tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq;
int tid = __kmp_tid_from_gtid( global_tid );
KE_TRACE( 10, ("__kmpc_taskq_task called (%d)\n", global_tid));
KF_TRACE(100, ("TaskQ Task argument thunk on (%d):\n", global_tid));
KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid ));
queue = thunk->th.th_shareds->sv_queue;
if ( __kmp_env_consistency_check )
__kmp_pop_workshare( global_tid, ct_taskq, loc );
/* thunk->th_task is the taskq_task */
KMP_DEBUG_ASSERT (thunk->th_flags & TQF_TASKQ_TASK);
/* not supposed to call __kmpc_taskq_task if it's already enqueued */
KMP_DEBUG_ASSERT (queue->tq_taskq_slot == NULL);
/* dequeue taskq thunk from curr_thunk stack */
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
thunk->th_encl_thunk = NULL;
KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid ));
thunk->th_status = status;
KMP_MB(); /* flush thunk->th_status before taskq_task enqueued to avoid race condition */
/* enqueue taskq_task in thunk into special slot in queue */
/* GEH - probably don't need to lock taskq slot since only one */
/* thread enqueues & already a lock set at dequeue point */
queue->tq_taskq_slot = thunk;
KE_TRACE( 10, ("__kmpc_taskq_task return (%d)\n", global_tid));
}
/* ends a taskq_task; done generating tasks */
void
__kmpc_end_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk)
{
kmp_taskq_t *tq;
kmpc_task_queue_t *queue;
int in_parallel;
int tid;
KE_TRACE( 10, ("__kmpc_end_taskq_task called (%d)\n", global_tid));
tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq;
queue = thunk->th.th_shareds->sv_queue;
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
tid = __kmp_tid_from_gtid( global_tid );
if ( __kmp_env_consistency_check )
__kmp_pop_workshare( global_tid, ct_taskq, loc );
if (in_parallel) {
#if KMP_ARCH_X86 || \
KMP_ARCH_X86_64
KMP_TEST_THEN_OR32( &queue->tq_flags, (kmp_int32) TQF_ALL_TASKS_QUEUED );
#else
{
__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */
queue->tq_flags |= TQF_ALL_TASKS_QUEUED;
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
}
#endif
}
if (thunk->th_flags & TQF_IS_LASTPRIVATE) {
/* Normally, __kmp_find_task_in_queue() refuses to schedule the last task in the */
/* queue if TQF_IS_LASTPRIVATE so we can positively identify that last task */
/* and run it with its TQF_IS_LAST_TASK bit turned on in th_flags. When */
/* __kmpc_end_taskq_task() is called we are done generating all the tasks, so */
/* we know the last one in the queue is the lastprivate task. Mark the queue */
/* as having gotten to this state via tq_flags & TQF_IS_LAST_TASK; when that */
/* task actually executes mark it via th_flags & TQF_IS_LAST_TASK (this th_flags */
/* bit signals the instrumented code to do copy-outs after execution). */
if (! in_parallel) {
/* No synchronization needed for serial context */
queue->tq_flags |= TQF_IS_LAST_TASK;
}
else {
#if KMP_ARCH_X86 || \
KMP_ARCH_X86_64
KMP_TEST_THEN_OR32( &queue->tq_flags, (kmp_int32) TQF_IS_LAST_TASK );
#else
{
__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
KMP_MB(); /* make sure data structures are in consistent state before querying them */
/* Seems to work without this call for digital/alpha, needed for IBM/RS6000 */
queue->tq_flags |= TQF_IS_LAST_TASK;
__kmp_release_lock(& queue->tq_queue_lck, global_tid);
}
#endif
/* to prevent race condition where last task is dequeued but */
/* flag isn't visible yet (not sure about this) */
KMP_MB();
}
}
/* dequeue taskq thunk from curr_thunk stack */
if (in_parallel) {
tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
thunk->th_encl_thunk = NULL;
KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid ));
}
KE_TRACE( 10, ("__kmpc_end_taskq_task return (%d)\n", global_tid));
}
/* returns thunk for a regular task based on taskq_thunk */
/* (__kmpc_taskq_task does the analogous thing for a TQF_TASKQ_TASK) */
kmpc_thunk_t *
__kmpc_task_buffer(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk, kmpc_task_t task)
{
kmp_taskq_t *tq;
kmpc_task_queue_t *queue;
kmpc_thunk_t *new_thunk;
int in_parallel;
KE_TRACE( 10, ("__kmpc_task_buffer called (%d)\n", global_tid));
KMP_DEBUG_ASSERT (taskq_thunk->th_flags & TQF_TASKQ_TASK); /* taskq_thunk->th_task is the taskq_task */
tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq;
queue = taskq_thunk->th.th_shareds->sv_queue;
in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
/* The instrumentation sequence is: __kmpc_task_buffer(), initialize private */
/* variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the */
/* task queue is not full and allocates a thunk (which is then passed to */
/* __kmpc_task()). So, we can pre-allocate a thunk here assuming it will be */
/* the next to be enqueued in __kmpc_task(). */
new_thunk = __kmp_alloc_thunk (queue, in_parallel, global_tid);
new_thunk->th.th_shareds = (kmpc_shared_vars_t *) queue->tq_shareds[0].ai_data;
new_thunk->th_encl_thunk = NULL;
new_thunk->th_task = task;
/* GEH - shouldn't need to lock the read of tq_flags here */
new_thunk->th_flags = queue->tq_flags & TQF_INTERFACE_FLAGS;
new_thunk->th_status = 0;
KMP_DEBUG_ASSERT (!(new_thunk->th_flags & TQF_TASKQ_TASK));
KF_TRACE(100, ("Creating Regular Task on (%d):\n", global_tid));
KF_DUMP(100, __kmp_dump_thunk( tq, new_thunk, global_tid ));
KE_TRACE( 10, ("__kmpc_task_buffer return (%d)\n", global_tid));
return new_thunk;
}
/* --------------------------------------------------------------------------- */