blob: 361dce9aa79343bee3100c7518599edc08b45a56 [file] [log] [blame]
/*
* kmp_atomic.h - ATOMIC header file
* $Revision: 42810 $
* $Date: 2013-11-07 12:06:33 -0600 (Thu, 07 Nov 2013) $
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#ifndef KMP_ATOMIC_H
#define KMP_ATOMIC_H
#include "kmp_os.h"
#include "kmp_lock.h"
// C++ build port.
// Intel compiler does not support _Complex datatype on win.
// Intel compiler supports _Complex datatype on lin and mac.
// On the other side, there is a problem of stack alignment on lin_32 and mac_32
// if the rhs is cmplx80 or cmplx128 typedef'ed datatype.
// The decision is: to use compiler supported _Complex type on lin and mac,
// to use typedef'ed types on win.
// Condition for WIN64 was modified in anticipation of 10.1 build compiler.
#if defined( __cplusplus ) && ( KMP_OS_WINDOWS )
// create shortcuts for c99 complex types
#ifdef _DEBUG
// Workaround for the problem of _DebugHeapTag unresolved external.
// This problem prevented to use our static debug library for C tests
// compiled with /MDd option (the library itself built with /MTd),
#undef _DEBUG
#define _DEBUG_TEMPORARILY_UNSET_
#endif
#include <complex>
template< typename type_lhs, typename type_rhs >
std::complex< type_lhs > __kmp_lhs_div_rhs(
const std::complex< type_lhs >& lhs,
const std::complex< type_rhs >& rhs ) {
type_lhs a = lhs.real();
type_lhs b = lhs.imag();
type_rhs c = rhs.real();
type_rhs d = rhs.imag();
type_rhs den = c*c + d*d;
type_rhs r = ( a*c + b*d );
type_rhs i = ( b*c - a*d );
std::complex< type_lhs > ret( r/den, i/den );
return ret;
}
// complex8
struct __kmp_cmplx64_t : std::complex< double > {
__kmp_cmplx64_t() : std::complex< double > () {}
__kmp_cmplx64_t( const std::complex< double >& cd )
: std::complex< double > ( cd ) {}
void operator /= ( const __kmp_cmplx64_t& rhs ) {
std::complex< double > lhs = *this;
*this = __kmp_lhs_div_rhs( lhs, rhs );
}
__kmp_cmplx64_t operator / ( const __kmp_cmplx64_t& rhs ) {
std::complex< double > lhs = *this;
return __kmp_lhs_div_rhs( lhs, rhs );
}
};
typedef struct __kmp_cmplx64_t kmp_cmplx64;
// complex4
struct __kmp_cmplx32_t : std::complex< float > {
__kmp_cmplx32_t() : std::complex< float > () {}
__kmp_cmplx32_t( const std::complex<float>& cf )
: std::complex< float > ( cf ) {}
__kmp_cmplx32_t operator + ( const __kmp_cmplx32_t& b ) {
std::complex< float > lhs = *this;
std::complex< float > rhs = b;
return ( lhs + rhs );
}
__kmp_cmplx32_t operator - ( const __kmp_cmplx32_t& b ) {
std::complex< float > lhs = *this;
std::complex< float > rhs = b;
return ( lhs - rhs );
}
__kmp_cmplx32_t operator * ( const __kmp_cmplx32_t& b ) {
std::complex< float > lhs = *this;
std::complex< float > rhs = b;
return ( lhs * rhs );
}
__kmp_cmplx32_t operator + ( const kmp_cmplx64& b ) {
kmp_cmplx64 t = kmp_cmplx64( *this ) + b;
std::complex< double > d( t );
std::complex< float > f( d );
__kmp_cmplx32_t r( f );
return r;
}
__kmp_cmplx32_t operator - ( const kmp_cmplx64& b ) {
kmp_cmplx64 t = kmp_cmplx64( *this ) - b;
std::complex< double > d( t );
std::complex< float > f( d );
__kmp_cmplx32_t r( f );
return r;
}
__kmp_cmplx32_t operator * ( const kmp_cmplx64& b ) {
kmp_cmplx64 t = kmp_cmplx64( *this ) * b;
std::complex< double > d( t );
std::complex< float > f( d );
__kmp_cmplx32_t r( f );
return r;
}
void operator /= ( const __kmp_cmplx32_t& rhs ) {
std::complex< float > lhs = *this;
*this = __kmp_lhs_div_rhs( lhs, rhs );
}
__kmp_cmplx32_t operator / ( const __kmp_cmplx32_t& rhs ) {
std::complex< float > lhs = *this;
return __kmp_lhs_div_rhs( lhs, rhs );
}
void operator /= ( const kmp_cmplx64& rhs ) {
std::complex< float > lhs = *this;
*this = __kmp_lhs_div_rhs( lhs, rhs );
}
__kmp_cmplx32_t operator / ( const kmp_cmplx64& rhs ) {
std::complex< float > lhs = *this;
return __kmp_lhs_div_rhs( lhs, rhs );
}
};
typedef struct __kmp_cmplx32_t kmp_cmplx32;
// complex10
struct KMP_DO_ALIGN( 16 ) __kmp_cmplx80_t : std::complex< long double > {
__kmp_cmplx80_t() : std::complex< long double > () {}
__kmp_cmplx80_t( const std::complex< long double >& cld )
: std::complex< long double > ( cld ) {}
void operator /= ( const __kmp_cmplx80_t& rhs ) {
std::complex< long double > lhs = *this;
*this = __kmp_lhs_div_rhs( lhs, rhs );
}
__kmp_cmplx80_t operator / ( const __kmp_cmplx80_t& rhs ) {
std::complex< long double > lhs = *this;
return __kmp_lhs_div_rhs( lhs, rhs );
}
};
typedef KMP_DO_ALIGN( 16 ) struct __kmp_cmplx80_t kmp_cmplx80;
// complex16
#if KMP_HAVE_QUAD
struct __kmp_cmplx128_t : std::complex< _Quad > {
__kmp_cmplx128_t() : std::complex< _Quad > () {}
__kmp_cmplx128_t( const std::complex< _Quad >& cq )
: std::complex< _Quad > ( cq ) {}
void operator /= ( const __kmp_cmplx128_t& rhs ) {
std::complex< _Quad > lhs = *this;
*this = __kmp_lhs_div_rhs( lhs, rhs );
}
__kmp_cmplx128_t operator / ( const __kmp_cmplx128_t& rhs ) {
std::complex< _Quad > lhs = *this;
return __kmp_lhs_div_rhs( lhs, rhs );
}
};
typedef struct __kmp_cmplx128_t kmp_cmplx128;
#endif /* KMP_HAVE_QUAD */
#ifdef _DEBUG_TEMPORARILY_UNSET_
#undef _DEBUG_TEMPORARILY_UNSET_
// Set it back now
#define _DEBUG 1
#endif
#else
// create shortcuts for c99 complex types
typedef float _Complex kmp_cmplx32;
typedef double _Complex kmp_cmplx64;
typedef long double _Complex kmp_cmplx80;
#if KMP_HAVE_QUAD
typedef _Quad _Complex kmp_cmplx128;
#endif
#endif
// Compiler 12.0 changed alignment of 16 and 32-byte arguments (like _Quad
// and kmp_cmplx128) on IA-32 architecture. The following aligned structures
// are implemented to support the old alignment in 10.1, 11.0, 11.1 and
// introduce the new alignment in 12.0. See CQ88405.
#if KMP_ARCH_X86 && KMP_HAVE_QUAD
// 4-byte aligned structures for backward compatibility.
#pragma pack( push, 4 )
struct KMP_DO_ALIGN( 4 ) Quad_a4_t {
_Quad q;
Quad_a4_t( ) : q( ) {}
Quad_a4_t( const _Quad & cq ) : q ( cq ) {}
Quad_a4_t operator + ( const Quad_a4_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a4_t)( lhs + rhs );
}
Quad_a4_t operator - ( const Quad_a4_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a4_t)( lhs - rhs );
}
Quad_a4_t operator * ( const Quad_a4_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a4_t)( lhs * rhs );
}
Quad_a4_t operator / ( const Quad_a4_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a4_t)( lhs / rhs );
}
};
struct KMP_DO_ALIGN( 4 ) kmp_cmplx128_a4_t {
kmp_cmplx128 q;
kmp_cmplx128_a4_t() : q () {}
kmp_cmplx128_a4_t( const kmp_cmplx128 & c128 ) : q ( c128 ) {}
kmp_cmplx128_a4_t operator + ( const kmp_cmplx128_a4_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a4_t)( lhs + rhs );
}
kmp_cmplx128_a4_t operator - ( const kmp_cmplx128_a4_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a4_t)( lhs - rhs );
}
kmp_cmplx128_a4_t operator * ( const kmp_cmplx128_a4_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a4_t)( lhs * rhs );
}
kmp_cmplx128_a4_t operator / ( const kmp_cmplx128_a4_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a4_t)( lhs / rhs );
}
};
#pragma pack( pop )
// New 16-byte aligned structures for 12.0 compiler.
struct KMP_DO_ALIGN( 16 ) Quad_a16_t {
_Quad q;
Quad_a16_t( ) : q( ) {}
Quad_a16_t( const _Quad & cq ) : q ( cq ) {}
Quad_a16_t operator + ( const Quad_a16_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a16_t)( lhs + rhs );
}
Quad_a16_t operator - ( const Quad_a16_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a16_t)( lhs - rhs );
}
Quad_a16_t operator * ( const Quad_a16_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a16_t)( lhs * rhs );
}
Quad_a16_t operator / ( const Quad_a16_t& b ) {
_Quad lhs = (*this).q;
_Quad rhs = b.q;
return (Quad_a16_t)( lhs / rhs );
}
};
struct KMP_DO_ALIGN( 16 ) kmp_cmplx128_a16_t {
kmp_cmplx128 q;
kmp_cmplx128_a16_t() : q () {}
kmp_cmplx128_a16_t( const kmp_cmplx128 & c128 ) : q ( c128 ) {}
kmp_cmplx128_a16_t operator + ( const kmp_cmplx128_a16_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a16_t)( lhs + rhs );
}
kmp_cmplx128_a16_t operator - ( const kmp_cmplx128_a16_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a16_t)( lhs - rhs );
}
kmp_cmplx128_a16_t operator * ( const kmp_cmplx128_a16_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a16_t)( lhs * rhs );
}
kmp_cmplx128_a16_t operator / ( const kmp_cmplx128_a16_t& b ) {
kmp_cmplx128 lhs = (*this).q;
kmp_cmplx128 rhs = b.q;
return (kmp_cmplx128_a16_t)( lhs / rhs );
}
};
#endif
#if ( KMP_ARCH_X86 )
#define QUAD_LEGACY Quad_a4_t
#define CPLX128_LEG kmp_cmplx128_a4_t
#else
#define QUAD_LEGACY _Quad
#define CPLX128_LEG kmp_cmplx128
#endif
#ifdef __cplusplus
extern "C" {
#endif
extern int __kmp_atomic_mode;
//
// Atomic locks can easily become contended, so we use queuing locks for them.
//
typedef kmp_queuing_lock_t kmp_atomic_lock_t;
static inline void
__kmp_acquire_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid )
{
__kmp_acquire_queuing_lock( lck, gtid );
}
static inline int
__kmp_test_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid )
{
return __kmp_test_queuing_lock( lck, gtid );
}
static inline void
__kmp_release_atomic_lock( kmp_atomic_lock_t *lck, kmp_int32 gtid )
{
__kmp_release_queuing_lock( lck, gtid );
}
static inline void
__kmp_init_atomic_lock( kmp_atomic_lock_t *lck )
{
__kmp_init_queuing_lock( lck );
}
static inline void
__kmp_destroy_atomic_lock( kmp_atomic_lock_t *lck )
{
__kmp_destroy_queuing_lock( lck );
}
// Global Locks
extern kmp_atomic_lock_t __kmp_atomic_lock; /* Control access to all user coded atomics in Gnu compat mode */
extern kmp_atomic_lock_t __kmp_atomic_lock_1i; /* Control access to all user coded atomics for 1-byte fixed data types */
extern kmp_atomic_lock_t __kmp_atomic_lock_2i; /* Control access to all user coded atomics for 2-byte fixed data types */
extern kmp_atomic_lock_t __kmp_atomic_lock_4i; /* Control access to all user coded atomics for 4-byte fixed data types */
extern kmp_atomic_lock_t __kmp_atomic_lock_4r; /* Control access to all user coded atomics for kmp_real32 data type */
extern kmp_atomic_lock_t __kmp_atomic_lock_8i; /* Control access to all user coded atomics for 8-byte fixed data types */
extern kmp_atomic_lock_t __kmp_atomic_lock_8r; /* Control access to all user coded atomics for kmp_real64 data type */
extern kmp_atomic_lock_t __kmp_atomic_lock_8c; /* Control access to all user coded atomics for complex byte data type */
extern kmp_atomic_lock_t __kmp_atomic_lock_10r; /* Control access to all user coded atomics for long double data type */
extern kmp_atomic_lock_t __kmp_atomic_lock_16r; /* Control access to all user coded atomics for _Quad data type */
extern kmp_atomic_lock_t __kmp_atomic_lock_16c; /* Control access to all user coded atomics for double complex data type*/
extern kmp_atomic_lock_t __kmp_atomic_lock_20c; /* Control access to all user coded atomics for long double complex type*/
extern kmp_atomic_lock_t __kmp_atomic_lock_32c; /* Control access to all user coded atomics for _Quad complex data type */
//
// Below routines for atomic UPDATE are listed
//
// 1-byte
void __kmpc_atomic_fixed1_add( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_andb( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_div( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1u_div( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs );
void __kmpc_atomic_fixed1_mul( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_orb( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_shl( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_shr( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1u_shr( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs );
void __kmpc_atomic_fixed1_sub( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_xor( ident_t *id_ref, int gtid, char * lhs, char rhs );
// 2-byte
void __kmpc_atomic_fixed2_add( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_andb( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_div( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2u_div( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs );
void __kmpc_atomic_fixed2_mul( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_orb( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_shl( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_shr( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2u_shr( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs );
void __kmpc_atomic_fixed2_sub( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_xor( ident_t *id_ref, int gtid, short * lhs, short rhs );
// 4-byte add / sub fixed
void __kmpc_atomic_fixed4_add( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_sub( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
// 4-byte add / sub float
void __kmpc_atomic_float4_add( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
void __kmpc_atomic_float4_sub( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
// 8-byte add / sub fixed
void __kmpc_atomic_fixed8_add( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_sub( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
// 8-byte add / sub float
void __kmpc_atomic_float8_add( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float8_sub( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
// 4-byte fixed
void __kmpc_atomic_fixed4_andb( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_div( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4u_div( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs );
void __kmpc_atomic_fixed4_mul( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_orb( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_shl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_shr( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4u_shr( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs );
void __kmpc_atomic_fixed4_xor( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
// 8-byte fixed
void __kmpc_atomic_fixed8_andb( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_div( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8u_div( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs );
void __kmpc_atomic_fixed8_mul( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_orb( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_shl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_shr( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8u_shr( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs );
void __kmpc_atomic_fixed8_xor( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
// 4-byte float
void __kmpc_atomic_float4_div( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
void __kmpc_atomic_float4_mul( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
// 8-byte float
void __kmpc_atomic_float8_div( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float8_mul( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
// 1-, 2-, 4-, 8-byte logical (&&, ||)
void __kmpc_atomic_fixed1_andl( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_orl( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed2_andl( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_orl( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed4_andl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_orl( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed8_andl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_orl( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
// MIN / MAX
void __kmpc_atomic_fixed1_max( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_min( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed2_max( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_min( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed4_max( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_min( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed8_max( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_min( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_float4_max( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
void __kmpc_atomic_float4_min( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
void __kmpc_atomic_float8_max( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float8_min( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_float16_max( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
void __kmpc_atomic_float16_min( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary; IA-32 architecture only
void __kmpc_atomic_float16_max_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_float16_min_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
#endif
#endif
// .NEQV. (same as xor)
void __kmpc_atomic_fixed1_neqv( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed2_neqv( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed4_neqv( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed8_neqv( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
// .EQV. (same as ~xor)
void __kmpc_atomic_fixed1_eqv( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed2_eqv( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed4_eqv( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed8_eqv( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
// long double type
void __kmpc_atomic_float10_add( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
void __kmpc_atomic_float10_sub( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
void __kmpc_atomic_float10_mul( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
void __kmpc_atomic_float10_div( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
// _Quad type
#if KMP_HAVE_QUAD
void __kmpc_atomic_float16_add( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
void __kmpc_atomic_float16_sub( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
void __kmpc_atomic_float16_mul( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
void __kmpc_atomic_float16_div( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
void __kmpc_atomic_float16_add_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_float16_sub_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_float16_mul_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_float16_div_a16( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
#endif
#endif
// routines for complex types
void __kmpc_atomic_cmplx4_add( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx4_sub( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx4_mul( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx4_div( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx8_add( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx8_sub( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx8_mul( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx8_div( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx10_add( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
void __kmpc_atomic_cmplx10_sub( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
void __kmpc_atomic_cmplx10_mul( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
void __kmpc_atomic_cmplx10_div( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_cmplx16_add( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
void __kmpc_atomic_cmplx16_sub( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
void __kmpc_atomic_cmplx16_mul( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
void __kmpc_atomic_cmplx16_div( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
void __kmpc_atomic_cmplx16_add_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
void __kmpc_atomic_cmplx16_sub_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
void __kmpc_atomic_cmplx16_mul_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
void __kmpc_atomic_cmplx16_div_a16( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
#endif
#endif
#if OMP_40_ENABLED
// OpenMP 4.0: x = expr binop x for non-commutative operations.
// Supported only on IA-32 architecture and Intel(R) 64
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
void __kmpc_atomic_fixed1_sub_rev( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_div_rev( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1u_div_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs );
void __kmpc_atomic_fixed1_shl_rev( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1_shr_rev( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed1u_shr_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs );
void __kmpc_atomic_fixed2_sub_rev( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_div_rev( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2u_div_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs );
void __kmpc_atomic_fixed2_shl_rev( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2_shr_rev( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed2u_shr_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs );
void __kmpc_atomic_fixed4_sub_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_div_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4u_div_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs );
void __kmpc_atomic_fixed4_shl_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4_shr_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed4u_shr_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs );
void __kmpc_atomic_fixed8_sub_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_div_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8u_div_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs );
void __kmpc_atomic_fixed8_shl_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8_shr_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_fixed8u_shr_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs );
void __kmpc_atomic_float4_sub_rev( ident_t *id_ref, int gtid, float * lhs, float rhs );
void __kmpc_atomic_float4_div_rev( ident_t *id_ref, int gtid, float * lhs, float rhs );
void __kmpc_atomic_float8_sub_rev( ident_t *id_ref, int gtid, double * lhs, double rhs );
void __kmpc_atomic_float8_div_rev( ident_t *id_ref, int gtid, double * lhs, double rhs );
void __kmpc_atomic_float10_sub_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
void __kmpc_atomic_float10_div_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_float16_sub_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
void __kmpc_atomic_float16_div_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
#endif
void __kmpc_atomic_cmplx4_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx4_div_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx8_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx8_div_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx10_sub_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
void __kmpc_atomic_cmplx10_div_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_cmplx16_sub_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
void __kmpc_atomic_cmplx16_div_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
void __kmpc_atomic_float16_sub_a16_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_float16_div_a16_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_cmplx16_sub_a16_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
void __kmpc_atomic_cmplx16_div_a16_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
#endif
#endif // KMP_HAVE_QUAD
#endif //KMP_ARCH_X86 || KMP_ARCH_X86_64
#endif //OMP_40_ENABLED
// routines for mixed types
// RHS=float8
void __kmpc_atomic_fixed1_mul_float8( ident_t *id_ref, int gtid, char * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed1_div_float8( ident_t *id_ref, int gtid, char * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed2_mul_float8( ident_t *id_ref, int gtid, short * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed2_div_float8( ident_t *id_ref, int gtid, short * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed4_mul_float8( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed4_div_float8( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed8_mul_float8( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_fixed8_div_float8( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float4_add_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float4_sub_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float4_mul_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float4_div_float8( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real64 rhs );
// RHS=float16 (deprecated, to be removed when we are sure the compiler does not use them)
#if KMP_HAVE_QUAD
void __kmpc_atomic_fixed1_add_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs );
void __kmpc_atomic_fixed1_sub_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs );
void __kmpc_atomic_fixed1_mul_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs );
void __kmpc_atomic_fixed1_div_fp( ident_t *id_ref, int gtid, char * lhs, _Quad rhs );
void __kmpc_atomic_fixed1u_div_fp( ident_t *id_ref, int gtid, unsigned char * lhs, _Quad rhs );
void __kmpc_atomic_fixed2_add_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs );
void __kmpc_atomic_fixed2_sub_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs );
void __kmpc_atomic_fixed2_mul_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs );
void __kmpc_atomic_fixed2_div_fp( ident_t *id_ref, int gtid, short * lhs, _Quad rhs );
void __kmpc_atomic_fixed2u_div_fp( ident_t *id_ref, int gtid, unsigned short * lhs, _Quad rhs );
void __kmpc_atomic_fixed4_add_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs );
void __kmpc_atomic_fixed4_sub_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs );
void __kmpc_atomic_fixed4_mul_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs );
void __kmpc_atomic_fixed4_div_fp( ident_t *id_ref, int gtid, kmp_int32 * lhs, _Quad rhs );
void __kmpc_atomic_fixed4u_div_fp( ident_t *id_ref, int gtid, kmp_uint32 * lhs, _Quad rhs );
void __kmpc_atomic_fixed8_add_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs );
void __kmpc_atomic_fixed8_sub_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs );
void __kmpc_atomic_fixed8_mul_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs );
void __kmpc_atomic_fixed8_div_fp( ident_t *id_ref, int gtid, kmp_int64 * lhs, _Quad rhs );
void __kmpc_atomic_fixed8u_div_fp( ident_t *id_ref, int gtid, kmp_uint64 * lhs, _Quad rhs );
void __kmpc_atomic_float4_add_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs );
void __kmpc_atomic_float4_sub_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs );
void __kmpc_atomic_float4_mul_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs );
void __kmpc_atomic_float4_div_fp( ident_t *id_ref, int gtid, kmp_real32 * lhs, _Quad rhs );
void __kmpc_atomic_float8_add_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs );
void __kmpc_atomic_float8_sub_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs );
void __kmpc_atomic_float8_mul_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs );
void __kmpc_atomic_float8_div_fp( ident_t *id_ref, int gtid, kmp_real64 * lhs, _Quad rhs );
void __kmpc_atomic_float10_add_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs );
void __kmpc_atomic_float10_sub_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs );
void __kmpc_atomic_float10_mul_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs );
void __kmpc_atomic_float10_div_fp( ident_t *id_ref, int gtid, long double * lhs, _Quad rhs );
#endif // KMP_HAVE_QUAD
// RHS=cmplx8
void __kmpc_atomic_cmplx4_add_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx4_sub_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx4_mul_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx4_div_cmplx8( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx64 rhs );
// generic atomic routines
void __kmpc_atomic_1( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_2( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_4( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_8( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_10( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_16( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_20( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
void __kmpc_atomic_32( ident_t *id_ref, int gtid, void* lhs, void* rhs, void (*f)( void *, void *, void * ) );
// READ, WRITE, CAPTURE are supported only on IA-32 architecture and Intel(R) 64
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
//
// Below routines for atomic READ are listed
//
char __kmpc_atomic_fixed1_rd( ident_t *id_ref, int gtid, char * loc );
short __kmpc_atomic_fixed2_rd( ident_t *id_ref, int gtid, short * loc );
kmp_int32 __kmpc_atomic_fixed4_rd( ident_t *id_ref, int gtid, kmp_int32 * loc );
kmp_int64 __kmpc_atomic_fixed8_rd( ident_t *id_ref, int gtid, kmp_int64 * loc );
kmp_real32 __kmpc_atomic_float4_rd( ident_t *id_ref, int gtid, kmp_real32 * loc );
kmp_real64 __kmpc_atomic_float8_rd( ident_t *id_ref, int gtid, kmp_real64 * loc );
long double __kmpc_atomic_float10_rd( ident_t *id_ref, int gtid, long double * loc );
#if KMP_HAVE_QUAD
QUAD_LEGACY __kmpc_atomic_float16_rd( ident_t *id_ref, int gtid, QUAD_LEGACY * loc );
#endif
// Fix for CQ220361: cmplx4 READ will return void on Windows* OS; read value will be
// returned through an additional parameter
#if ( KMP_OS_WINDOWS )
void __kmpc_atomic_cmplx4_rd( kmp_cmplx32 * out, ident_t *id_ref, int gtid, kmp_cmplx32 * loc );
#else
kmp_cmplx32 __kmpc_atomic_cmplx4_rd( ident_t *id_ref, int gtid, kmp_cmplx32 * loc );
#endif
kmp_cmplx64 __kmpc_atomic_cmplx8_rd( ident_t *id_ref, int gtid, kmp_cmplx64 * loc );
kmp_cmplx80 __kmpc_atomic_cmplx10_rd( ident_t *id_ref, int gtid, kmp_cmplx80 * loc );
#if KMP_HAVE_QUAD
CPLX128_LEG __kmpc_atomic_cmplx16_rd( ident_t *id_ref, int gtid, CPLX128_LEG * loc );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
Quad_a16_t __kmpc_atomic_float16_a16_rd( ident_t * id_ref, int gtid, Quad_a16_t * loc );
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_rd( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * loc );
#endif
#endif
//
// Below routines for atomic WRITE are listed
//
void __kmpc_atomic_fixed1_wr( ident_t *id_ref, int gtid, char * lhs, char rhs );
void __kmpc_atomic_fixed2_wr( ident_t *id_ref, int gtid, short * lhs, short rhs );
void __kmpc_atomic_fixed4_wr( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
void __kmpc_atomic_fixed8_wr( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
void __kmpc_atomic_float4_wr( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs );
void __kmpc_atomic_float8_wr( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs );
void __kmpc_atomic_float10_wr( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_float16_wr( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
#endif
void __kmpc_atomic_cmplx4_wr( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
void __kmpc_atomic_cmplx8_wr( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
void __kmpc_atomic_cmplx10_wr( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
#if KMP_HAVE_QUAD
void __kmpc_atomic_cmplx16_wr( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
void __kmpc_atomic_float16_a16_wr( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
void __kmpc_atomic_cmplx16_a16_wr( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
#endif
#endif
//
// Below routines for atomic CAPTURE are listed
//
// 1-byte
char __kmpc_atomic_fixed1_add_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_andb_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_div_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
unsigned char __kmpc_atomic_fixed1u_div_cpt( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag);
char __kmpc_atomic_fixed1_mul_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_orb_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_shl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_shr_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
unsigned char __kmpc_atomic_fixed1u_shr_cpt( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag);
char __kmpc_atomic_fixed1_sub_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_xor_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
// 2-byte
short __kmpc_atomic_fixed2_add_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_andb_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_div_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
unsigned short __kmpc_atomic_fixed2u_div_cpt( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag);
short __kmpc_atomic_fixed2_mul_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_orb_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_shl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_shr_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
unsigned short __kmpc_atomic_fixed2u_shr_cpt( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag);
short __kmpc_atomic_fixed2_sub_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_xor_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
// 4-byte add / sub fixed
kmp_int32 __kmpc_atomic_fixed4_add_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_sub_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
// 4-byte add / sub float
kmp_real32 __kmpc_atomic_float4_add_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
kmp_real32 __kmpc_atomic_float4_sub_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
// 8-byte add / sub fixed
kmp_int64 __kmpc_atomic_fixed8_add_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_sub_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
// 8-byte add / sub float
kmp_real64 __kmpc_atomic_float8_add_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
kmp_real64 __kmpc_atomic_float8_sub_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
// 4-byte fixed
kmp_int32 __kmpc_atomic_fixed4_andb_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_div_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_uint32 __kmpc_atomic_fixed4u_div_cpt( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_mul_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_orb_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_shl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_shr_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_xor_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
// 8-byte fixed
kmp_int64 __kmpc_atomic_fixed8_andb_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_div_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_uint64 __kmpc_atomic_fixed8u_div_cpt( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_mul_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_orb_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_shl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_shr_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_xor_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
// 4-byte float
kmp_real32 __kmpc_atomic_float4_div_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
kmp_real32 __kmpc_atomic_float4_mul_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
// 8-byte float
kmp_real64 __kmpc_atomic_float8_div_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
kmp_real64 __kmpc_atomic_float8_mul_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
// 1-, 2-, 4-, 8-byte logical (&&, ||)
char __kmpc_atomic_fixed1_andl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_orl_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
short __kmpc_atomic_fixed2_andl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_orl_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_andl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_orl_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_andl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_orl_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
// MIN / MAX
char __kmpc_atomic_fixed1_max_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
char __kmpc_atomic_fixed1_min_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
short __kmpc_atomic_fixed2_max_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
short __kmpc_atomic_fixed2_min_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_max_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_min_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_max_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_min_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
kmp_real32 __kmpc_atomic_float4_max_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
kmp_real32 __kmpc_atomic_float4_min_cpt( ident_t *id_ref, int gtid, kmp_real32 * lhs, kmp_real32 rhs, int flag);
kmp_real64 __kmpc_atomic_float8_max_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
kmp_real64 __kmpc_atomic_float8_min_cpt( ident_t *id_ref, int gtid, kmp_real64 * lhs, kmp_real64 rhs, int flag);
#if KMP_HAVE_QUAD
QUAD_LEGACY __kmpc_atomic_float16_max_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
QUAD_LEGACY __kmpc_atomic_float16_min_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
#endif
// .NEQV. (same as xor)
char __kmpc_atomic_fixed1_neqv_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
short __kmpc_atomic_fixed2_neqv_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_neqv_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_neqv_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
// .EQV. (same as ~xor)
char __kmpc_atomic_fixed1_eqv_cpt( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag);
short __kmpc_atomic_fixed2_eqv_cpt( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag);
kmp_int32 __kmpc_atomic_fixed4_eqv_cpt( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag);
kmp_int64 __kmpc_atomic_fixed8_eqv_cpt( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag);
// long double type
long double __kmpc_atomic_float10_add_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag);
long double __kmpc_atomic_float10_sub_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag);
long double __kmpc_atomic_float10_mul_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag);
long double __kmpc_atomic_float10_div_cpt( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag);
#if KMP_HAVE_QUAD
// _Quad type
QUAD_LEGACY __kmpc_atomic_float16_add_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
QUAD_LEGACY __kmpc_atomic_float16_sub_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
QUAD_LEGACY __kmpc_atomic_float16_mul_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
QUAD_LEGACY __kmpc_atomic_float16_div_cpt( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag);
#endif
// routines for complex types
// Workaround for cmplx4 routines - return void; captured value is returned via the argument
void __kmpc_atomic_cmplx4_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag);
void __kmpc_atomic_cmplx4_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag);
void __kmpc_atomic_cmplx4_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag);
void __kmpc_atomic_cmplx4_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag);
kmp_cmplx64 __kmpc_atomic_cmplx8_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag);
kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag);
kmp_cmplx64 __kmpc_atomic_cmplx8_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag);
kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag);
kmp_cmplx80 __kmpc_atomic_cmplx10_add_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag);
kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag);
kmp_cmplx80 __kmpc_atomic_cmplx10_mul_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag);
kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag);
#if KMP_HAVE_QUAD
CPLX128_LEG __kmpc_atomic_cmplx16_add_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag);
CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag);
CPLX128_LEG __kmpc_atomic_cmplx16_mul_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag);
CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag);
#if ( KMP_ARCH_X86 )
// Routines with 16-byte arguments aligned to 16-byte boundary
Quad_a16_t __kmpc_atomic_float16_add_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
Quad_a16_t __kmpc_atomic_float16_mul_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
Quad_a16_t __kmpc_atomic_float16_div_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
Quad_a16_t __kmpc_atomic_float16_max_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
Quad_a16_t __kmpc_atomic_float16_min_a16_cpt( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag);
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_add_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag);
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag);
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_mul_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag);
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag);
#endif
#endif
void __kmpc_atomic_start(void);
void __kmpc_atomic_end(void);
#if OMP_40_ENABLED
// OpenMP 4.0: v = x = expr binop x; { v = x; x = expr binop x; } { x = expr binop x; v = x; } for non-commutative operations.
char __kmpc_atomic_fixed1_sub_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag );
char __kmpc_atomic_fixed1_div_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag );
unsigned char __kmpc_atomic_fixed1u_div_cpt_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag );
char __kmpc_atomic_fixed1_shl_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs , int flag);
char __kmpc_atomic_fixed1_shr_cpt_rev( ident_t *id_ref, int gtid, char * lhs, char rhs, int flag );
unsigned char __kmpc_atomic_fixed1u_shr_cpt_rev( ident_t *id_ref, int gtid, unsigned char * lhs, unsigned char rhs, int flag );
short __kmpc_atomic_fixed2_sub_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag );
short __kmpc_atomic_fixed2_div_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag );
unsigned short __kmpc_atomic_fixed2u_div_cpt_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag );
short __kmpc_atomic_fixed2_shl_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag );
short __kmpc_atomic_fixed2_shr_cpt_rev( ident_t *id_ref, int gtid, short * lhs, short rhs, int flag );
unsigned short __kmpc_atomic_fixed2u_shr_cpt_rev( ident_t *id_ref, int gtid, unsigned short * lhs, unsigned short rhs, int flag );
kmp_int32 __kmpc_atomic_fixed4_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag );
kmp_int32 __kmpc_atomic_fixed4_div_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag );
kmp_uint32 __kmpc_atomic_fixed4u_div_cpt_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag );
kmp_int32 __kmpc_atomic_fixed4_shl_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag );
kmp_int32 __kmpc_atomic_fixed4_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs, int flag );
kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_uint32 * lhs, kmp_uint32 rhs, int flag );
kmp_int64 __kmpc_atomic_fixed8_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag );
kmp_int64 __kmpc_atomic_fixed8_div_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag );
kmp_uint64 __kmpc_atomic_fixed8u_div_cpt_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag );
kmp_int64 __kmpc_atomic_fixed8_shl_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag );
kmp_int64 __kmpc_atomic_fixed8_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs, int flag );
kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt_rev( ident_t *id_ref, int gtid, kmp_uint64 * lhs, kmp_uint64 rhs, int flag );
float __kmpc_atomic_float4_sub_cpt_rev( ident_t *id_ref, int gtid, float * lhs, float rhs, int flag );
float __kmpc_atomic_float4_div_cpt_rev( ident_t *id_ref, int gtid, float * lhs, float rhs, int flag );
double __kmpc_atomic_float8_sub_cpt_rev( ident_t *id_ref, int gtid, double * lhs, double rhs, int flag );
double __kmpc_atomic_float8_div_cpt_rev( ident_t *id_ref, int gtid, double * lhs, double rhs, int flag );
long double __kmpc_atomic_float10_sub_cpt_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag );
long double __kmpc_atomic_float10_div_cpt_rev( ident_t *id_ref, int gtid, long double * lhs, long double rhs, int flag );
#if KMP_HAVE_QUAD
QUAD_LEGACY __kmpc_atomic_float16_sub_cpt_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag );
QUAD_LEGACY __kmpc_atomic_float16_div_cpt_rev( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs, int flag );
#endif
// Workaround for cmplx4 routines - return void; captured value is returned via the argument
void __kmpc_atomic_cmplx4_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag );
void __kmpc_atomic_cmplx4_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out, int flag );
kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag );
kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs, int flag );
kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag );
kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt_rev( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs, int flag );
#if KMP_HAVE_QUAD
CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag );
CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt_rev( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs, int flag );
#if ( KMP_ARCH_X86 )
Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag );
Quad_a16_t __kmpc_atomic_float16_div_a16_cpt_rev( ident_t * id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs, int flag );
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag );
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt_rev( ident_t * id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs, int flag );
#endif
#endif
// OpenMP 4.0 Capture-write (swap): {v = x; x = expr;}
char __kmpc_atomic_fixed1_swp( ident_t *id_ref, int gtid, char * lhs, char rhs );
short __kmpc_atomic_fixed2_swp( ident_t *id_ref, int gtid, short * lhs, short rhs );
kmp_int32 __kmpc_atomic_fixed4_swp( ident_t *id_ref, int gtid, kmp_int32 * lhs, kmp_int32 rhs );
kmp_int64 __kmpc_atomic_fixed8_swp( ident_t *id_ref, int gtid, kmp_int64 * lhs, kmp_int64 rhs );
float __kmpc_atomic_float4_swp( ident_t *id_ref, int gtid, float * lhs, float rhs );
double __kmpc_atomic_float8_swp( ident_t *id_ref, int gtid, double * lhs, double rhs );
long double __kmpc_atomic_float10_swp( ident_t *id_ref, int gtid, long double * lhs, long double rhs );
#if KMP_HAVE_QUAD
QUAD_LEGACY __kmpc_atomic_float16_swp( ident_t *id_ref, int gtid, QUAD_LEGACY * lhs, QUAD_LEGACY rhs );
#endif
// !!! TODO: check if we need a workaround here
void __kmpc_atomic_cmplx4_swp( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs, kmp_cmplx32 * out );
//kmp_cmplx32 __kmpc_atomic_cmplx4_swp( ident_t *id_ref, int gtid, kmp_cmplx32 * lhs, kmp_cmplx32 rhs );
kmp_cmplx64 __kmpc_atomic_cmplx8_swp( ident_t *id_ref, int gtid, kmp_cmplx64 * lhs, kmp_cmplx64 rhs );
kmp_cmplx80 __kmpc_atomic_cmplx10_swp( ident_t *id_ref, int gtid, kmp_cmplx80 * lhs, kmp_cmplx80 rhs );
#if KMP_HAVE_QUAD
CPLX128_LEG __kmpc_atomic_cmplx16_swp( ident_t *id_ref, int gtid, CPLX128_LEG * lhs, CPLX128_LEG rhs );
#if ( KMP_ARCH_X86 )
Quad_a16_t __kmpc_atomic_float16_a16_swp( ident_t *id_ref, int gtid, Quad_a16_t * lhs, Quad_a16_t rhs );
kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_swp( ident_t *id_ref, int gtid, kmp_cmplx128_a16_t * lhs, kmp_cmplx128_a16_t rhs );
#endif
#endif
// End of OpenMP 4.0 capture
#endif //OMP_40_ENABLED
#endif //KMP_ARCH_X86 || KMP_ARCH_X86_64
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* KMP_ATOMIC_H */
// end of file