blob: ac51de2b55da299a72ca52811915315aa235963d [file] [log] [blame]
/*
* kmp_taskdeps.cpp
* $Revision: 42539 $
* $Date: 2013-07-17 11:20:01 -0500 (Wed, 17 Jul 2013) $
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
//#define KMP_SUPPORT_GRAPH_OUTPUT 1
#include "kmp.h"
#include "kmp_io.h"
#if OMP_40_ENABLED
//TODO: Improve memory allocation? keep a list of pre-allocated structures? allocate in blocks? re-use list finished list entries?
//TODO: don't use atomic ref counters for stack-allocated nodes.
//TODO: find an alternate to atomic refs for heap-allocated nodes?
//TODO: Finish graph output support
//TODO: kmp_lock_t seems a tad to big (and heavy weight) for this. Check other runtime locks
//TODO: Any ITT support needed?
#ifdef KMP_SUPPORT_GRAPH_OUTPUT
static kmp_int32 kmp_node_id_seed = 0;
#endif
static void
__kmp_init_node ( kmp_depnode_t *node )
{
node->dn.task = NULL; // set to null initially, it will point to the right task once dependences have been processed
node->dn.successors = NULL;
__kmp_init_lock(&node->dn.lock);
node->dn.nrefs = 1; // init creates the first reference to the node
#ifdef KMP_SUPPORT_GRAPH_OUTPUT
node->dn.id = KMP_TEST_THEN_INC32(&kmp_node_id_seed);
#endif
}
static inline kmp_depnode_t *
__kmp_node_ref ( kmp_depnode_t *node )
{
KMP_TEST_THEN_INC32(&node->dn.nrefs);
return node;
}
static inline void
__kmp_node_deref ( kmp_info_t *thread, kmp_depnode_t *node )
{
if (!node) return;
kmp_int32 n = KMP_TEST_THEN_DEC32(&node->dn.nrefs) - 1;
if ( n == 0 ) {
KMP_ASSERT(node->dn.nrefs == 0);
#if USE_FAST_MEMORY
__kmp_fast_free(thread,node);
#else
__kmp_thread_free(thread,node);
#endif
}
}
#define KMP_ACQUIRE_DEPNODE(gtid,n) __kmp_acquire_lock(&(n)->dn.lock,(gtid))
#define KMP_RELEASE_DEPNODE(gtid,n) __kmp_release_lock(&(n)->dn.lock,(gtid))
static void
__kmp_depnode_list_free ( kmp_info_t *thread, kmp_depnode_list *list );
static const kmp_int32 kmp_dephash_log2 = 6;
static const kmp_int32 kmp_dephash_size = (1 << kmp_dephash_log2);
static inline kmp_int32
__kmp_dephash_hash ( kmp_intptr_t addr )
{
//TODO alternate to try: set = (((Addr64)(addrUsefulBits * 9.618)) % m_num_sets );
return ((addr >> kmp_dephash_log2) ^ addr) % kmp_dephash_size;
}
static kmp_dephash_t *
__kmp_dephash_create ( kmp_info_t *thread )
{
kmp_dephash_t *h;
kmp_int32 size = kmp_dephash_size * sizeof(kmp_dephash_entry_t) + sizeof(kmp_dephash_t);
#if USE_FAST_MEMORY
h = (kmp_dephash_t *) __kmp_fast_allocate( thread, size );
#else
h = (kmp_dephash_t *) __kmp_thread_malloc( thread, size );
#endif
#ifdef KMP_DEBUG
h->nelements = 0;
#endif
h->buckets = (kmp_dephash_entry **)(h+1);
for ( kmp_int32 i = 0; i < kmp_dephash_size; i++ )
h->buckets[i] = 0;
return h;
}
static void
__kmp_dephash_free ( kmp_info_t *thread, kmp_dephash_t *h )
{
for ( kmp_int32 i=0; i < kmp_dephash_size; i++ ) {
if ( h->buckets[i] ) {
kmp_dephash_entry_t *next;
for ( kmp_dephash_entry_t *entry = h->buckets[i]; entry; entry = next ) {
next = entry->next_in_bucket;
__kmp_depnode_list_free(thread,entry->last_ins);
__kmp_node_deref(thread,entry->last_out);
#if USE_FAST_MEMORY
__kmp_fast_free(thread,entry);
#else
__kmp_thread_free(thread,entry);
#endif
}
}
}
#if USE_FAST_MEMORY
__kmp_fast_free(thread,h);
#else
__kmp_thread_free(thread,h);
#endif
}
static kmp_dephash_entry *
__kmp_dephash_find ( kmp_info_t *thread, kmp_dephash_t *h, kmp_intptr_t addr )
{
kmp_int32 bucket = __kmp_dephash_hash(addr);
kmp_dephash_entry_t *entry;
for ( entry = h->buckets[bucket]; entry; entry = entry->next_in_bucket )
if ( entry->addr == addr ) break;
if ( entry == NULL ) {
// create entry. This is only done by one thread so no locking required
#if USE_FAST_MEMORY
entry = (kmp_dephash_entry_t *) __kmp_fast_allocate( thread, sizeof(kmp_dephash_entry_t) );
#else
entry = (kmp_dephash_entry_t *) __kmp_thread_malloc( thread, sizeof(kmp_dephash_entry_t) );
#endif
entry->addr = addr;
entry->last_out = NULL;
entry->last_ins = NULL;
entry->next_in_bucket = h->buckets[bucket];
h->buckets[bucket] = entry;
#ifdef KMP_DEBUG
h->nelements++;
if ( entry->next_in_bucket ) h->nconflicts++;
#endif
}
return entry;
}
static kmp_depnode_list_t *
__kmp_add_node ( kmp_info_t *thread, kmp_depnode_list_t *list, kmp_depnode_t *node )
{
kmp_depnode_list_t *new_head;
#if USE_FAST_MEMORY
new_head = (kmp_depnode_list_t *) __kmp_fast_allocate(thread,sizeof(kmp_depnode_list_t));
#else
new_head = (kmp_depnode_list_t *) __kmp_thread_malloc(thread,sizeof(kmp_depnode_list_t));
#endif
new_head->node = __kmp_node_ref(node);
new_head->next = list;
return new_head;
}
static void
__kmp_depnode_list_free ( kmp_info_t *thread, kmp_depnode_list *list )
{
kmp_depnode_list *next;
for ( ; list ; list = next ) {
next = list->next;
__kmp_node_deref(thread,list->node);
#if USE_FAST_MEMORY
__kmp_fast_free(thread,list);
#else
__kmp_thread_free(thread,list);
#endif
}
}
static inline void
__kmp_track_dependence ( kmp_depnode_t *source, kmp_depnode_t *sink )
{
#ifdef KMP_SUPPORT_GRAPH_OUTPUT
kmp_taskdata_t * task_source = KMP_TASK_TO_TASKDATA(source->dn.task);
kmp_taskdata_t * task_sink = KMP_TASK_TO_TASKDATA(sink->dn.task); // this can be NULL when if(0) ...
__kmp_printf("%d(%s) -> %d(%s)\n", source->dn.id, task_source->td_ident->psource, sink->dn.id, task_sink->td_ident->psource);
#endif
}
template< bool filter >
static inline kmp_int32
__kmp_process_deps ( kmp_int32 gtid, kmp_depnode_t *node, kmp_dephash_t *hash,
bool dep_barrier,kmp_int32 ndeps, kmp_depend_info_t *dep_list)
{
kmp_info_t *thread = __kmp_threads[ gtid ];
kmp_int32 npredecessors=0;
for ( kmp_int32 i = 0; i < ndeps ; i++ ) {
const kmp_depend_info_t * dep = &dep_list[i];
KMP_DEBUG_ASSERT(dep->flags.in);
if ( filter && dep->base_addr == 0 ) continue; // skip filtered entries
kmp_dephash_entry_t *info = __kmp_dephash_find(thread,hash,dep->base_addr);
kmp_depnode_t *last_out = info->last_out;
if ( dep->flags.out && info->last_ins ) {
for ( kmp_depnode_list_t * p = info->last_ins; p; p = p->next ) {
kmp_depnode_t * indep = p->node;
if ( indep->dn.task ) {
KMP_ACQUIRE_DEPNODE(gtid,indep);
if ( indep->dn.task ) {
__kmp_track_dependence(indep,node);
indep->dn.successors = __kmp_add_node(thread, indep->dn.successors, node);
npredecessors++;
}
KMP_RELEASE_DEPNODE(gtid,indep);
}
}
__kmp_depnode_list_free(thread,info->last_ins);
info->last_ins = NULL;
} else if ( last_out && last_out->dn.task ) {
KMP_ACQUIRE_DEPNODE(gtid,last_out);
if ( last_out->dn.task ) {
__kmp_track_dependence(last_out,node);
last_out->dn.successors = __kmp_add_node(thread, last_out->dn.successors, node);
npredecessors++;
}
KMP_RELEASE_DEPNODE(gtid,last_out);
}
if ( dep_barrier ) {
// if this is a sync point in the serial sequence and previous outputs are guaranteed to be completed after
// the execution of this task so the previous output nodes can be cleared.
__kmp_node_deref(thread,last_out);
info->last_out = NULL;
} else {
if ( dep->flags.out ) {
__kmp_node_deref(thread,last_out);
info->last_out = __kmp_node_ref(node);
} else
info->last_ins = __kmp_add_node(thread, info->last_ins, node);
}
}
return npredecessors;
}
#define NO_DEP_BARRIER (false)
#define DEP_BARRIER (true)
// returns true if the task has any outstanding dependence
static bool
__kmp_check_deps ( kmp_int32 gtid, kmp_depnode_t *node, kmp_task_t *task, kmp_dephash_t *hash, bool dep_barrier,
kmp_int32 ndeps, kmp_depend_info_t *dep_list,
kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list )
{
int i;
// Filter deps in dep_list
// TODO: Different algorithm for large dep_list ( > 10 ? )
for ( i = 0; i < ndeps; i ++ ) {
if ( dep_list[i].base_addr != 0 )
for ( int j = i+1; j < ndeps; j++ )
if ( dep_list[i].base_addr == dep_list[j].base_addr ) {
dep_list[i].flags.in |= dep_list[j].flags.in;
dep_list[i].flags.out |= dep_list[j].flags.out;
dep_list[j].base_addr = 0; // Mark j element as void
}
}
// doesn't need to be atomic as no other thread is going to be accessing this node just yet
// npredecessors is set 1 to ensure that none of the releasing tasks queues this task before we have finished processing all the dependencies
node->dn.npredecessors = 1;
// used to pack all npredecessors additions into a single atomic operation at the end
int npredecessors;
npredecessors = __kmp_process_deps<true>(gtid, node, hash, dep_barrier, ndeps, dep_list);
npredecessors += __kmp_process_deps<false>(gtid, node, hash, dep_barrier, ndeps_noalias, noalias_dep_list);
KMP_TEST_THEN_ADD32(&node->dn.npredecessors, npredecessors);
// Remove the fake predecessor and find out if there's any outstanding dependence (some tasks may have finished while we processed the dependences)
node->dn.task = task;
KMP_MB();
npredecessors = KMP_TEST_THEN_DEC32(&node->dn.npredecessors) - 1;
// beyond this point the task could be queued (and executed) by a releasing task...
return npredecessors > 0 ? true : false;
}
void
__kmp_release_deps ( kmp_int32 gtid, kmp_taskdata_t *task )
{
kmp_info_t *thread = __kmp_threads[ gtid ];
kmp_depnode_t *node = task->td_depnode;
if ( task->td_dephash )
__kmp_dephash_free(thread,task->td_dephash);
if ( !node ) return;
KMP_ACQUIRE_DEPNODE(gtid,node);
node->dn.task = NULL; // mark this task as finished, so no new dependencies are generated
KMP_RELEASE_DEPNODE(gtid,node);
kmp_depnode_list_t *next;
for ( kmp_depnode_list_t *p = node->dn.successors; p; p = next ) {
kmp_depnode_t *successor = p->node;
kmp_int32 npredecessors = KMP_TEST_THEN_DEC32(&successor->dn.npredecessors) - 1;
// successor task can be NULL for wait_depends or because deps are still being processed
if ( npredecessors == 0 ) {
KMP_MB();
if ( successor->dn.task )
// loc_ref was already stored in successor's task_data
__kmpc_omp_task(NULL,gtid,successor->dn.task);
}
next = p->next;
__kmp_node_deref(thread,p->node);
#if USE_FAST_MEMORY
__kmp_fast_free(thread,p);
#else
__kmp_thread_free(thread,p);
#endif
}
__kmp_node_deref(thread,node);
}
/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param new_task task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
@param ndeps Number of depend items with possible aliasing
@param dep_list List of depend items with possible aliasing
@param ndeps_noalias Number of depend items with no aliasing
@param noalias_dep_list List of depend items with no aliasing
@return Returns either TASK_CURRENT_NOT_QUEUED if the current task was not suspendend and queued, or TASK_CURRENT_QUEUED if it was suspended and queued
Schedule a non-thread-switchable task with dependences for execution
*/
kmp_int32
__kmpc_omp_task_with_deps( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task,
kmp_int32 ndeps, kmp_depend_info_t *dep_list,
kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list )
{
kmp_info_t *thread = __kmp_threads[ gtid ];
kmp_taskdata_t * current_task = thread->th.th_current_task;
bool serial = current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final;
if ( !serial && ( ndeps > 0 || ndeps_noalias > 0 )) {
/* if no dependencies have been tracked yet, create the dependence hash */
if ( current_task->td_dephash == NULL )
current_task->td_dephash = __kmp_dephash_create(thread);
#if USE_FAST_MEMORY
kmp_depnode_t *node = (kmp_depnode_t *) __kmp_fast_allocate(thread,sizeof(kmp_depnode_t));
#else
kmp_depnode_t *node = (kmp_depnode_t *) __kmp_thread_malloc(thread,sizeof(kmp_depnode_t));
#endif
__kmp_init_node(node);
KMP_TASK_TO_TASKDATA(new_task)->td_depnode = node;
if ( __kmp_check_deps( gtid, node, new_task, current_task->td_dephash, NO_DEP_BARRIER,
ndeps, dep_list, ndeps_noalias,noalias_dep_list ) )
return TASK_CURRENT_NOT_QUEUED;
}
return __kmpc_omp_task(loc_ref,gtid,new_task);
}
/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param ndeps Number of depend items with possible aliasing
@param dep_list List of depend items with possible aliasing
@param ndeps_noalias Number of depend items with no aliasing
@param noalias_dep_list List of depend items with no aliasing
Blocks the current task until all specifies dependencies have been fulfilled.
*/
void
__kmpc_omp_wait_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list )
{
if ( ndeps == 0 && ndeps_noalias == 0 ) return;
kmp_info_t *thread = __kmp_threads[ gtid ];
kmp_taskdata_t * current_task = thread->th.th_current_task;
// dependences are not computed in serial teams
if ( current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final)
return;
// if the dephash is not yet created it means we have nothing to wait for
if ( current_task->td_dephash == NULL ) return;
kmp_depnode_t node;
__kmp_init_node(&node);
if (!__kmp_check_deps( gtid, &node, NULL, current_task->td_dephash, DEP_BARRIER,
ndeps, dep_list, ndeps_noalias, noalias_dep_list ))
return;
int thread_finished = FALSE;
while ( node.dn.npredecessors > 0 ) {
__kmp_execute_tasks( thread, gtid, (volatile kmp_uint32 *)&(node.dn.npredecessors),
0, FALSE, &thread_finished,
#if USE_ITT_BUILD
NULL,
#endif
__kmp_task_stealing_constraint );
}
}
#endif /* OMP_40_ENABLED */