blob: 8edc3f7db226ace567b653223cfb217f3975ec0e [file] [log] [blame]
//===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the interface to be used by Clang during the codegen of a
// target region.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <dlfcn.h>
#include <list>
#include <map>
#include <mutex>
#include <string>
#include <vector>
// Header file global to this project
#include "omptarget.h"
#define DP(...) DEBUGP("Libomptarget", __VA_ARGS__)
#define INF_REF_CNT (LONG_MAX>>1) // leave room for additions/subtractions
#define CONSIDERED_INF(x) (x > (INF_REF_CNT>>1))
// List of all plugins that can support offloading.
static const char *RTLNames[] = {
/* PowerPC target */ "libomptarget.rtl.ppc64.so",
/* x86_64 target */ "libomptarget.rtl.x86_64.so",
/* CUDA target */ "libomptarget.rtl.cuda.so",
/* AArch64 target */ "libomptarget.rtl.aarch64.so"};
// forward declarations
struct RTLInfoTy;
static int target(int32_t device_id, void *host_ptr, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types,
int32_t team_num, int32_t thread_limit, int IsTeamConstruct);
/// Map between host data and target data.
struct HostDataToTargetTy {
uintptr_t HstPtrBase; // host info.
uintptr_t HstPtrBegin;
uintptr_t HstPtrEnd; // non-inclusive.
uintptr_t TgtPtrBegin; // target info.
long RefCount;
HostDataToTargetTy()
: HstPtrBase(0), HstPtrBegin(0), HstPtrEnd(0),
TgtPtrBegin(0), RefCount(0) {}
HostDataToTargetTy(uintptr_t BP, uintptr_t B, uintptr_t E, uintptr_t TB)
: HstPtrBase(BP), HstPtrBegin(B), HstPtrEnd(E),
TgtPtrBegin(TB), RefCount(1) {}
HostDataToTargetTy(uintptr_t BP, uintptr_t B, uintptr_t E, uintptr_t TB,
long RF)
: HstPtrBase(BP), HstPtrBegin(B), HstPtrEnd(E),
TgtPtrBegin(TB), RefCount(RF) {}
};
typedef std::list<HostDataToTargetTy> HostDataToTargetListTy;
struct LookupResult {
struct {
unsigned IsContained : 1;
unsigned ExtendsBefore : 1;
unsigned ExtendsAfter : 1;
} Flags;
HostDataToTargetListTy::iterator Entry;
LookupResult() : Flags({0,0,0}), Entry() {}
};
/// Map for shadow pointers
struct ShadowPtrValTy {
void *HstPtrVal;
void *TgtPtrAddr;
void *TgtPtrVal;
};
typedef std::map<void *, ShadowPtrValTy> ShadowPtrListTy;
///
struct PendingCtorDtorListsTy {
std::list<void *> PendingCtors;
std::list<void *> PendingDtors;
};
typedef std::map<__tgt_bin_desc *, PendingCtorDtorListsTy>
PendingCtorsDtorsPerLibrary;
struct DeviceTy {
int32_t DeviceID;
RTLInfoTy *RTL;
int32_t RTLDeviceID;
bool IsInit;
std::once_flag InitFlag;
bool HasPendingGlobals;
HostDataToTargetListTy HostDataToTargetMap;
PendingCtorsDtorsPerLibrary PendingCtorsDtors;
ShadowPtrListTy ShadowPtrMap;
std::mutex DataMapMtx, PendingGlobalsMtx, ShadowMtx;
uint64_t loopTripCnt;
DeviceTy(RTLInfoTy *RTL)
: DeviceID(-1), RTL(RTL), RTLDeviceID(-1), IsInit(false), InitFlag(),
HasPendingGlobals(false), HostDataToTargetMap(),
PendingCtorsDtors(), ShadowPtrMap(), DataMapMtx(), PendingGlobalsMtx(),
ShadowMtx(), loopTripCnt(0) {}
// The existence of mutexes makes DeviceTy non-copyable. We need to
// provide a copy constructor and an assignment operator explicitly.
DeviceTy(const DeviceTy &d)
: DeviceID(d.DeviceID), RTL(d.RTL), RTLDeviceID(d.RTLDeviceID),
IsInit(d.IsInit), InitFlag(), HasPendingGlobals(d.HasPendingGlobals),
HostDataToTargetMap(d.HostDataToTargetMap),
PendingCtorsDtors(d.PendingCtorsDtors), ShadowPtrMap(d.ShadowPtrMap),
DataMapMtx(), PendingGlobalsMtx(),
ShadowMtx(), loopTripCnt(d.loopTripCnt) {}
DeviceTy& operator=(const DeviceTy &d) {
DeviceID = d.DeviceID;
RTL = d.RTL;
RTLDeviceID = d.RTLDeviceID;
IsInit = d.IsInit;
HasPendingGlobals = d.HasPendingGlobals;
HostDataToTargetMap = d.HostDataToTargetMap;
PendingCtorsDtors = d.PendingCtorsDtors;
ShadowPtrMap = d.ShadowPtrMap;
loopTripCnt = d.loopTripCnt;
return *this;
}
long getMapEntryRefCnt(void *HstPtrBegin);
LookupResult lookupMapping(void *HstPtrBegin, int64_t Size);
void *getOrAllocTgtPtr(void *HstPtrBegin, void *HstPtrBase, int64_t Size,
bool &IsNew, bool IsImplicit, bool UpdateRefCount = true);
void *getTgtPtrBegin(void *HstPtrBegin, int64_t Size);
void *getTgtPtrBegin(void *HstPtrBegin, int64_t Size, bool &IsLast,
bool UpdateRefCount);
int deallocTgtPtr(void *TgtPtrBegin, int64_t Size, bool ForceDelete);
int associatePtr(void *HstPtrBegin, void *TgtPtrBegin, int64_t Size);
int disassociatePtr(void *HstPtrBegin);
// calls to RTL
int32_t initOnce();
__tgt_target_table *load_binary(void *Img);
int32_t data_submit(void *TgtPtrBegin, void *HstPtrBegin, int64_t Size);
int32_t data_retrieve(void *HstPtrBegin, void *TgtPtrBegin, int64_t Size);
int32_t run_region(void *TgtEntryPtr, void **TgtVarsPtr,
ptrdiff_t *TgtOffsets, int32_t TgtVarsSize);
int32_t run_team_region(void *TgtEntryPtr, void **TgtVarsPtr,
ptrdiff_t *TgtOffsets, int32_t TgtVarsSize, int32_t NumTeams,
int32_t ThreadLimit, uint64_t LoopTripCount);
private:
// Call to RTL
void init(); // To be called only via DeviceTy::initOnce()
};
/// Map between Device ID (i.e. openmp device id) and its DeviceTy.
typedef std::vector<DeviceTy> DevicesTy;
static DevicesTy Devices;
struct RTLInfoTy {
typedef int32_t(is_valid_binary_ty)(void *);
typedef int32_t(number_of_devices_ty)();
typedef int32_t(init_device_ty)(int32_t);
typedef __tgt_target_table *(load_binary_ty)(int32_t, void *);
typedef void *(data_alloc_ty)(int32_t, int64_t, void *);
typedef int32_t(data_submit_ty)(int32_t, void *, void *, int64_t);
typedef int32_t(data_retrieve_ty)(int32_t, void *, void *, int64_t);
typedef int32_t(data_delete_ty)(int32_t, void *);
typedef int32_t(run_region_ty)(int32_t, void *, void **, ptrdiff_t *,
int32_t);
typedef int32_t(run_team_region_ty)(int32_t, void *, void **, ptrdiff_t *,
int32_t, int32_t, int32_t, uint64_t);
int32_t Idx; // RTL index, index is the number of devices
// of other RTLs that were registered before,
// i.e. the OpenMP index of the first device
// to be registered with this RTL.
int32_t NumberOfDevices; // Number of devices this RTL deals with.
std::vector<DeviceTy *> Devices; // one per device (NumberOfDevices in total).
void *LibraryHandler;
#ifdef OMPTARGET_DEBUG
std::string RTLName;
#endif
// Functions implemented in the RTL.
is_valid_binary_ty *is_valid_binary;
number_of_devices_ty *number_of_devices;
init_device_ty *init_device;
load_binary_ty *load_binary;
data_alloc_ty *data_alloc;
data_submit_ty *data_submit;
data_retrieve_ty *data_retrieve;
data_delete_ty *data_delete;
run_region_ty *run_region;
run_team_region_ty *run_team_region;
// Are there images associated with this RTL.
bool isUsed;
// Mutex for thread-safety when calling RTL interface functions.
// It is easier to enforce thread-safety at the libomptarget level,
// so that developers of new RTLs do not have to worry about it.
std::mutex Mtx;
// The existence of the mutex above makes RTLInfoTy non-copyable.
// We need to provide a copy constructor explicitly.
RTLInfoTy()
: Idx(-1), NumberOfDevices(-1), Devices(), LibraryHandler(0),
#ifdef OMPTARGET_DEBUG
RTLName(),
#endif
is_valid_binary(0), number_of_devices(0), init_device(0),
load_binary(0), data_alloc(0), data_submit(0), data_retrieve(0),
data_delete(0), run_region(0), run_team_region(0), isUsed(false),
Mtx() {}
RTLInfoTy(const RTLInfoTy &r) : Mtx() {
Idx = r.Idx;
NumberOfDevices = r.NumberOfDevices;
Devices = r.Devices;
LibraryHandler = r.LibraryHandler;
#ifdef OMPTARGET_DEBUG
RTLName = r.RTLName;
#endif
is_valid_binary = r.is_valid_binary;
number_of_devices = r.number_of_devices;
init_device = r.init_device;
load_binary = r.load_binary;
data_alloc = r.data_alloc;
data_submit = r.data_submit;
data_retrieve = r.data_retrieve;
data_delete = r.data_delete;
run_region = r.run_region;
run_team_region = r.run_team_region;
isUsed = r.isUsed;
}
};
/// RTLs identified in the system.
class RTLsTy {
private:
// Mutex-like object to guarantee thread-safety and unique initialization
// (i.e. the library attempts to load the RTLs (plugins) only once).
std::once_flag initFlag;
void LoadRTLs(); // not thread-safe
public:
// List of the detected runtime libraries.
std::list<RTLInfoTy> AllRTLs;
// Array of pointers to the detected runtime libraries that have compatible
// binaries.
std::vector<RTLInfoTy *> UsedRTLs;
explicit RTLsTy() {}
// Load all the runtime libraries (plugins) if not done before.
void LoadRTLsOnce();
};
void RTLsTy::LoadRTLs() {
// Parse environment variable OMP_TARGET_OFFLOAD (if set)
char *envStr = getenv("OMP_TARGET_OFFLOAD");
if (envStr && !strcmp(envStr, "DISABLED")) {
DP("Target offloading disabled by environment\n");
return;
}
DP("Loading RTLs...\n");
// Attempt to open all the plugins and, if they exist, check if the interface
// is correct and if they are supporting any devices.
for (auto *Name : RTLNames) {
DP("Loading library '%s'...\n", Name);
void *dynlib_handle = dlopen(Name, RTLD_NOW);
if (!dynlib_handle) {
// Library does not exist or cannot be found.
DP("Unable to load library '%s': %s!\n", Name, dlerror());
continue;
}
DP("Successfully loaded library '%s'!\n", Name);
// Retrieve the RTL information from the runtime library.
RTLInfoTy R;
R.LibraryHandler = dynlib_handle;
R.isUsed = false;
#ifdef OMPTARGET_DEBUG
R.RTLName = Name;
#endif
if (!(*((void**) &R.is_valid_binary) = dlsym(
dynlib_handle, "__tgt_rtl_is_valid_binary")))
continue;
if (!(*((void**) &R.number_of_devices) = dlsym(
dynlib_handle, "__tgt_rtl_number_of_devices")))
continue;
if (!(*((void**) &R.init_device) = dlsym(
dynlib_handle, "__tgt_rtl_init_device")))
continue;
if (!(*((void**) &R.load_binary) = dlsym(
dynlib_handle, "__tgt_rtl_load_binary")))
continue;
if (!(*((void**) &R.data_alloc) = dlsym(
dynlib_handle, "__tgt_rtl_data_alloc")))
continue;
if (!(*((void**) &R.data_submit) = dlsym(
dynlib_handle, "__tgt_rtl_data_submit")))
continue;
if (!(*((void**) &R.data_retrieve) = dlsym(
dynlib_handle, "__tgt_rtl_data_retrieve")))
continue;
if (!(*((void**) &R.data_delete) = dlsym(
dynlib_handle, "__tgt_rtl_data_delete")))
continue;
if (!(*((void**) &R.run_region) = dlsym(
dynlib_handle, "__tgt_rtl_run_target_region")))
continue;
if (!(*((void**) &R.run_team_region) = dlsym(
dynlib_handle, "__tgt_rtl_run_target_team_region")))
continue;
// No devices are supported by this RTL?
if (!(R.NumberOfDevices = R.number_of_devices())) {
DP("No devices supported in this RTL\n");
continue;
}
DP("Registering RTL %s supporting %d devices!\n",
R.RTLName.c_str(), R.NumberOfDevices);
// The RTL is valid! Will save the information in the RTLs list.
AllRTLs.push_back(R);
}
DP("RTLs loaded!\n");
return;
}
void RTLsTy::LoadRTLsOnce() {
// RTL.LoadRTLs() is called only once in a thread-safe fashion.
std::call_once(initFlag, &RTLsTy::LoadRTLs, this);
}
static RTLsTy RTLs;
static std::mutex RTLsMtx;
/// Map between the host entry begin and the translation table. Each
/// registered library gets one TranslationTable. Use the map from
/// __tgt_offload_entry so that we may quickly determine whether we
/// are trying to (re)register an existing lib or really have a new one.
struct TranslationTable {
__tgt_target_table HostTable;
// Image assigned to a given device.
std::vector<__tgt_device_image *> TargetsImages; // One image per device ID.
// Table of entry points or NULL if it was not already computed.
std::vector<__tgt_target_table *> TargetsTable; // One table per device ID.
};
typedef std::map<__tgt_offload_entry *, TranslationTable>
HostEntriesBeginToTransTableTy;
static HostEntriesBeginToTransTableTy HostEntriesBeginToTransTable;
static std::mutex TrlTblMtx;
/// Map between the host ptr and a table index
struct TableMap {
TranslationTable *Table; // table associated with the host ptr.
uint32_t Index; // index in which the host ptr translated entry is found.
TableMap() : Table(0), Index(0) {}
TableMap(TranslationTable *table, uint32_t index)
: Table(table), Index(index) {}
};
typedef std::map<void *, TableMap> HostPtrToTableMapTy;
static HostPtrToTableMapTy HostPtrToTableMap;
static std::mutex TblMapMtx;
/// Check whether a device has an associated RTL and initialize it if it's not
/// already initialized.
static bool device_is_ready(int device_num) {
DP("Checking whether device %d is ready.\n", device_num);
// Devices.size() can only change while registering a new
// library, so try to acquire the lock of RTLs' mutex.
RTLsMtx.lock();
size_t Devices_size = Devices.size();
RTLsMtx.unlock();
if (Devices_size <= (size_t)device_num) {
DP("Device ID %d does not have a matching RTL\n", device_num);
return false;
}
// Get device info
DeviceTy &Device = Devices[device_num];
DP("Is the device %d (local ID %d) initialized? %d\n", device_num,
Device.RTLDeviceID, Device.IsInit);
// Init the device if not done before
if (!Device.IsInit && Device.initOnce() != OFFLOAD_SUCCESS) {
DP("Failed to init device %d\n", device_num);
return false;
}
DP("Device %d is ready to use.\n", device_num);
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Target API functions
//
EXTERN int omp_get_num_devices(void) {
RTLsMtx.lock();
size_t Devices_size = Devices.size();
RTLsMtx.unlock();
DP("Call to omp_get_num_devices returning %zd\n", Devices_size);
return Devices_size;
}
EXTERN int omp_get_initial_device(void) {
DP("Call to omp_get_initial_device returning %d\n", HOST_DEVICE);
return HOST_DEVICE;
}
EXTERN void *omp_target_alloc(size_t size, int device_num) {
DP("Call to omp_target_alloc for device %d requesting %zu bytes\n",
device_num, size);
if (size <= 0) {
DP("Call to omp_target_alloc with non-positive length\n");
return NULL;
}
void *rc = NULL;
if (device_num == omp_get_initial_device()) {
rc = malloc(size);
DP("omp_target_alloc returns host ptr " DPxMOD "\n", DPxPTR(rc));
return rc;
}
if (!device_is_ready(device_num)) {
DP("omp_target_alloc returns NULL ptr\n");
return NULL;
}
DeviceTy &Device = Devices[device_num];
rc = Device.RTL->data_alloc(Device.RTLDeviceID, size, NULL);
DP("omp_target_alloc returns device ptr " DPxMOD "\n", DPxPTR(rc));
return rc;
}
EXTERN void omp_target_free(void *device_ptr, int device_num) {
DP("Call to omp_target_free for device %d and address " DPxMOD "\n",
device_num, DPxPTR(device_ptr));
if (!device_ptr) {
DP("Call to omp_target_free with NULL ptr\n");
return;
}
if (device_num == omp_get_initial_device()) {
free(device_ptr);
DP("omp_target_free deallocated host ptr\n");
return;
}
if (!device_is_ready(device_num)) {
DP("omp_target_free returns, nothing to do\n");
return;
}
DeviceTy &Device = Devices[device_num];
Device.RTL->data_delete(Device.RTLDeviceID, (void *)device_ptr);
DP("omp_target_free deallocated device ptr\n");
}
EXTERN int omp_target_is_present(void *ptr, int device_num) {
DP("Call to omp_target_is_present for device %d and address " DPxMOD "\n",
device_num, DPxPTR(ptr));
if (!ptr) {
DP("Call to omp_target_is_present with NULL ptr, returning false\n");
return false;
}
if (device_num == omp_get_initial_device()) {
DP("Call to omp_target_is_present on host, returning true\n");
return true;
}
RTLsMtx.lock();
size_t Devices_size = Devices.size();
RTLsMtx.unlock();
if (Devices_size <= (size_t)device_num) {
DP("Call to omp_target_is_present with invalid device ID, returning "
"false\n");
return false;
}
DeviceTy& Device = Devices[device_num];
bool IsLast; // not used
int rc = (Device.getTgtPtrBegin(ptr, 0, IsLast, false) != NULL);
DP("Call to omp_target_is_present returns %d\n", rc);
return rc;
}
EXTERN int omp_target_memcpy(void *dst, void *src, size_t length,
size_t dst_offset, size_t src_offset, int dst_device, int src_device) {
DP("Call to omp_target_memcpy, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offset %zu, "
"src offset %zu, length %zu\n", dst_device, src_device, DPxPTR(dst),
DPxPTR(src), dst_offset, src_offset, length);
if (!dst || !src || length <= 0) {
DP("Call to omp_target_memcpy with invalid arguments\n");
return OFFLOAD_FAIL;
}
if (src_device != omp_get_initial_device() && !device_is_ready(src_device)) {
DP("omp_target_memcpy returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
if (dst_device != omp_get_initial_device() && !device_is_ready(dst_device)) {
DP("omp_target_memcpy returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
int rc = OFFLOAD_SUCCESS;
void *srcAddr = (char *)src + src_offset;
void *dstAddr = (char *)dst + dst_offset;
if (src_device == omp_get_initial_device() &&
dst_device == omp_get_initial_device()) {
DP("copy from host to host\n");
const void *p = memcpy(dstAddr, srcAddr, length);
if (p == NULL)
rc = OFFLOAD_FAIL;
} else if (src_device == omp_get_initial_device()) {
DP("copy from host to device\n");
DeviceTy& DstDev = Devices[dst_device];
rc = DstDev.data_submit(dstAddr, srcAddr, length);
} else if (dst_device == omp_get_initial_device()) {
DP("copy from device to host\n");
DeviceTy& SrcDev = Devices[src_device];
rc = SrcDev.data_retrieve(dstAddr, srcAddr, length);
} else {
DP("copy from device to device\n");
void *buffer = malloc(length);
DeviceTy& SrcDev = Devices[src_device];
DeviceTy& DstDev = Devices[dst_device];
rc = SrcDev.data_retrieve(buffer, srcAddr, length);
if (rc == OFFLOAD_SUCCESS)
rc = DstDev.data_submit(dstAddr, buffer, length);
}
DP("omp_target_memcpy returns %d\n", rc);
return rc;
}
EXTERN int omp_target_memcpy_rect(void *dst, void *src, size_t element_size,
int num_dims, const size_t *volume, const size_t *dst_offsets,
const size_t *src_offsets, const size_t *dst_dimensions,
const size_t *src_dimensions, int dst_device, int src_device) {
DP("Call to omp_target_memcpy_rect, dst device %d, src device %d, "
"dst addr " DPxMOD ", src addr " DPxMOD ", dst offsets " DPxMOD ", "
"src offsets " DPxMOD ", dst dims " DPxMOD ", src dims " DPxMOD ", "
"volume " DPxMOD ", element size %zu, num_dims %d\n", dst_device,
src_device, DPxPTR(dst), DPxPTR(src), DPxPTR(dst_offsets),
DPxPTR(src_offsets), DPxPTR(dst_dimensions), DPxPTR(src_dimensions),
DPxPTR(volume), element_size, num_dims);
if (!(dst || src)) {
DP("Call to omp_target_memcpy_rect returns max supported dimensions %d\n",
INT_MAX);
return INT_MAX;
}
if (!dst || !src || element_size < 1 || num_dims < 1 || !volume ||
!dst_offsets || !src_offsets || !dst_dimensions || !src_dimensions) {
DP("Call to omp_target_memcpy_rect with invalid arguments\n");
return OFFLOAD_FAIL;
}
int rc;
if (num_dims == 1) {
rc = omp_target_memcpy(dst, src, element_size * volume[0],
element_size * dst_offsets[0], element_size * src_offsets[0],
dst_device, src_device);
} else {
size_t dst_slice_size = element_size;
size_t src_slice_size = element_size;
for (int i=1; i<num_dims; ++i) {
dst_slice_size *= dst_dimensions[i];
src_slice_size *= src_dimensions[i];
}
size_t dst_off = dst_offsets[0] * dst_slice_size;
size_t src_off = src_offsets[0] * src_slice_size;
for (size_t i=0; i<volume[0]; ++i) {
rc = omp_target_memcpy_rect((char *) dst + dst_off + dst_slice_size * i,
(char *) src + src_off + src_slice_size * i, element_size,
num_dims - 1, volume + 1, dst_offsets + 1, src_offsets + 1,
dst_dimensions + 1, src_dimensions + 1, dst_device, src_device);
if (rc) {
DP("Recursive call to omp_target_memcpy_rect returns unsuccessfully\n");
return rc;
}
}
}
DP("omp_target_memcpy_rect returns %d\n", rc);
return rc;
}
EXTERN int omp_target_associate_ptr(void *host_ptr, void *device_ptr,
size_t size, size_t device_offset, int device_num) {
DP("Call to omp_target_associate_ptr with host_ptr " DPxMOD ", "
"device_ptr " DPxMOD ", size %zu, device_offset %zu, device_num %d\n",
DPxPTR(host_ptr), DPxPTR(device_ptr), size, device_offset, device_num);
if (!host_ptr || !device_ptr || size <= 0) {
DP("Call to omp_target_associate_ptr with invalid arguments\n");
return OFFLOAD_FAIL;
}
if (device_num == omp_get_initial_device()) {
DP("omp_target_associate_ptr: no association possible on the host\n");
return OFFLOAD_FAIL;
}
if (!device_is_ready(device_num)) {
DP("omp_target_associate_ptr returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
DeviceTy& Device = Devices[device_num];
void *device_addr = (void *)((uint64_t)device_ptr + (uint64_t)device_offset);
int rc = Device.associatePtr(host_ptr, device_addr, size);
DP("omp_target_associate_ptr returns %d\n", rc);
return rc;
}
EXTERN int omp_target_disassociate_ptr(void *host_ptr, int device_num) {
DP("Call to omp_target_disassociate_ptr with host_ptr " DPxMOD ", "
"device_num %d\n", DPxPTR(host_ptr), device_num);
if (!host_ptr) {
DP("Call to omp_target_associate_ptr with invalid host_ptr\n");
return OFFLOAD_FAIL;
}
if (device_num == omp_get_initial_device()) {
DP("omp_target_disassociate_ptr: no association possible on the host\n");
return OFFLOAD_FAIL;
}
if (!device_is_ready(device_num)) {
DP("omp_target_disassociate_ptr returns OFFLOAD_FAIL\n");
return OFFLOAD_FAIL;
}
DeviceTy& Device = Devices[device_num];
int rc = Device.disassociatePtr(host_ptr);
DP("omp_target_disassociate_ptr returns %d\n", rc);
return rc;
}
////////////////////////////////////////////////////////////////////////////////
// functionality for device
int DeviceTy::associatePtr(void *HstPtrBegin, void *TgtPtrBegin, int64_t Size) {
DataMapMtx.lock();
// Check if entry exists
for (auto &HT : HostDataToTargetMap) {
if ((uintptr_t)HstPtrBegin == HT.HstPtrBegin) {
// Mapping already exists
bool isValid = HT.HstPtrBegin == (uintptr_t) HstPtrBegin &&
HT.HstPtrEnd == (uintptr_t) HstPtrBegin + Size &&
HT.TgtPtrBegin == (uintptr_t) TgtPtrBegin;
DataMapMtx.unlock();
if (isValid) {
DP("Attempt to re-associate the same device ptr+offset with the same "
"host ptr, nothing to do\n");
return OFFLOAD_SUCCESS;
} else {
DP("Not allowed to re-associate a different device ptr+offset with the "
"same host ptr\n");
return OFFLOAD_FAIL;
}
}
}
// Mapping does not exist, allocate it
HostDataToTargetTy newEntry;
// Set up missing fields
newEntry.HstPtrBase = (uintptr_t) HstPtrBegin;
newEntry.HstPtrBegin = (uintptr_t) HstPtrBegin;
newEntry.HstPtrEnd = (uintptr_t) HstPtrBegin + Size;
newEntry.TgtPtrBegin = (uintptr_t) TgtPtrBegin;
// refCount must be infinite
newEntry.RefCount = INF_REF_CNT;
DP("Creating new map entry: HstBase=" DPxMOD ", HstBegin=" DPxMOD ", HstEnd="
DPxMOD ", TgtBegin=" DPxMOD "\n", DPxPTR(newEntry.HstPtrBase),
DPxPTR(newEntry.HstPtrBegin), DPxPTR(newEntry.HstPtrEnd),
DPxPTR(newEntry.TgtPtrBegin));
HostDataToTargetMap.push_front(newEntry);
DataMapMtx.unlock();
return OFFLOAD_SUCCESS;
}
int DeviceTy::disassociatePtr(void *HstPtrBegin) {
DataMapMtx.lock();
// Check if entry exists
for (HostDataToTargetListTy::iterator ii = HostDataToTargetMap.begin();
ii != HostDataToTargetMap.end(); ++ii) {
if ((uintptr_t)HstPtrBegin == ii->HstPtrBegin) {
// Mapping exists
if (CONSIDERED_INF(ii->RefCount)) {
DP("Association found, removing it\n");
HostDataToTargetMap.erase(ii);
DataMapMtx.unlock();
return OFFLOAD_SUCCESS;
} else {
DP("Trying to disassociate a pointer which was not mapped via "
"omp_target_associate_ptr\n");
break;
}
}
}
// Mapping not found
DataMapMtx.unlock();
DP("Association not found\n");
return OFFLOAD_FAIL;
}
// Get ref count of map entry containing HstPtrBegin
long DeviceTy::getMapEntryRefCnt(void *HstPtrBegin) {
uintptr_t hp = (uintptr_t)HstPtrBegin;
long RefCnt = -1;
DataMapMtx.lock();
for (auto &HT : HostDataToTargetMap) {
if (hp >= HT.HstPtrBegin && hp < HT.HstPtrEnd) {
DP("DeviceTy::getMapEntry: requested entry found\n");
RefCnt = HT.RefCount;
break;
}
}
DataMapMtx.unlock();
if (RefCnt < 0) {
DP("DeviceTy::getMapEntry: requested entry not found\n");
}
return RefCnt;
}
LookupResult DeviceTy::lookupMapping(void *HstPtrBegin, int64_t Size) {
uintptr_t hp = (uintptr_t)HstPtrBegin;
LookupResult lr;
DP("Looking up mapping(HstPtrBegin=" DPxMOD ", Size=%ld)...\n", DPxPTR(hp),
Size);
for (lr.Entry = HostDataToTargetMap.begin();
lr.Entry != HostDataToTargetMap.end(); ++lr.Entry) {
auto &HT = *lr.Entry;
// Is it contained?
lr.Flags.IsContained = hp >= HT.HstPtrBegin && hp < HT.HstPtrEnd &&
(hp+Size) <= HT.HstPtrEnd;
// Does it extend into an already mapped region?
lr.Flags.ExtendsBefore = hp < HT.HstPtrBegin && (hp+Size) > HT.HstPtrBegin;
// Does it extend beyond the mapped region?
lr.Flags.ExtendsAfter = hp < HT.HstPtrEnd && (hp+Size) > HT.HstPtrEnd;
if (lr.Flags.IsContained || lr.Flags.ExtendsBefore ||
lr.Flags.ExtendsAfter) {
break;
}
}
if (lr.Flags.ExtendsBefore) {
DP("WARNING: Pointer is not mapped but section extends into already "
"mapped data\n");
}
if (lr.Flags.ExtendsAfter) {
DP("WARNING: Pointer is already mapped but section extends beyond mapped "
"region\n");
}
return lr;
}
// Used by target_data_begin
// Return the target pointer begin (where the data will be moved).
// Allocate memory if this is the first occurrence if this mapping.
// Increment the reference counter.
// If NULL is returned, then either data allocation failed or the user tried
// to do an illegal mapping.
void *DeviceTy::getOrAllocTgtPtr(void *HstPtrBegin, void *HstPtrBase,
int64_t Size, bool &IsNew, bool IsImplicit, bool UpdateRefCount) {
void *rc = NULL;
DataMapMtx.lock();
LookupResult lr = lookupMapping(HstPtrBegin, Size);
// Check if the pointer is contained.
if (lr.Flags.IsContained ||
((lr.Flags.ExtendsBefore || lr.Flags.ExtendsAfter) && IsImplicit)) {
auto &HT = *lr.Entry;
IsNew = false;
if (UpdateRefCount)
++HT.RefCount;
uintptr_t tp = HT.TgtPtrBegin + ((uintptr_t)HstPtrBegin - HT.HstPtrBegin);
DP("Mapping exists%s with HstPtrBegin=" DPxMOD ", TgtPtrBegin=" DPxMOD ", "
"Size=%ld,%s RefCount=%s\n", (IsImplicit ? " (implicit)" : ""),
DPxPTR(HstPtrBegin), DPxPTR(tp), Size,
(UpdateRefCount ? " updated" : ""),
(CONSIDERED_INF(HT.RefCount)) ? "INF" :
std::to_string(HT.RefCount).c_str());
rc = (void *)tp;
} else if ((lr.Flags.ExtendsBefore || lr.Flags.ExtendsAfter) && !IsImplicit) {
// Explicit extension of mapped data - not allowed.
DP("Explicit extension of mapping is not allowed.\n");
} else if (Size) {
// If it is not contained and Size > 0 we should create a new entry for it.
IsNew = true;
uintptr_t tp = (uintptr_t)RTL->data_alloc(RTLDeviceID, Size, HstPtrBegin);
DP("Creating new map entry: HstBase=" DPxMOD ", HstBegin=" DPxMOD ", "
"HstEnd=" DPxMOD ", TgtBegin=" DPxMOD "\n", DPxPTR(HstPtrBase),
DPxPTR(HstPtrBegin), DPxPTR((uintptr_t)HstPtrBegin + Size), DPxPTR(tp));
HostDataToTargetMap.push_front(HostDataToTargetTy((uintptr_t)HstPtrBase,
(uintptr_t)HstPtrBegin, (uintptr_t)HstPtrBegin + Size, tp));
rc = (void *)tp;
}
DataMapMtx.unlock();
return rc;
}
// Used by target_data_begin, target_data_end, target_data_update and target.
// Return the target pointer begin (where the data will be moved).
// Decrement the reference counter if called from target_data_end.
void *DeviceTy::getTgtPtrBegin(void *HstPtrBegin, int64_t Size, bool &IsLast,
bool UpdateRefCount) {
void *rc = NULL;
DataMapMtx.lock();
LookupResult lr = lookupMapping(HstPtrBegin, Size);
if (lr.Flags.IsContained || lr.Flags.ExtendsBefore || lr.Flags.ExtendsAfter) {
auto &HT = *lr.Entry;
IsLast = !(HT.RefCount > 1);
if (HT.RefCount > 1 && UpdateRefCount)
--HT.RefCount;
uintptr_t tp = HT.TgtPtrBegin + ((uintptr_t)HstPtrBegin - HT.HstPtrBegin);
DP("Mapping exists with HstPtrBegin=" DPxMOD ", TgtPtrBegin=" DPxMOD ", "
"Size=%ld,%s RefCount=%s\n", DPxPTR(HstPtrBegin), DPxPTR(tp), Size,
(UpdateRefCount ? " updated" : ""),
(CONSIDERED_INF(HT.RefCount)) ? "INF" :
std::to_string(HT.RefCount).c_str());
rc = (void *)tp;
} else {
IsLast = false;
}
DataMapMtx.unlock();
return rc;
}
// Return the target pointer begin (where the data will be moved).
// Lock-free version called when loading global symbols from the fat binary.
void *DeviceTy::getTgtPtrBegin(void *HstPtrBegin, int64_t Size) {
uintptr_t hp = (uintptr_t)HstPtrBegin;
LookupResult lr = lookupMapping(HstPtrBegin, Size);
if (lr.Flags.IsContained || lr.Flags.ExtendsBefore || lr.Flags.ExtendsAfter) {
auto &HT = *lr.Entry;
uintptr_t tp = HT.TgtPtrBegin + (hp - HT.HstPtrBegin);
return (void *)tp;
}
return NULL;
}
int DeviceTy::deallocTgtPtr(void *HstPtrBegin, int64_t Size, bool ForceDelete) {
// Check if the pointer is contained in any sub-nodes.
int rc;
DataMapMtx.lock();
LookupResult lr = lookupMapping(HstPtrBegin, Size);
if (lr.Flags.IsContained || lr.Flags.ExtendsBefore || lr.Flags.ExtendsAfter) {
auto &HT = *lr.Entry;
if (ForceDelete)
HT.RefCount = 1;
if (--HT.RefCount <= 0) {
assert(HT.RefCount == 0 && "did not expect a negative ref count");
DP("Deleting tgt data " DPxMOD " of size %ld\n",
DPxPTR(HT.TgtPtrBegin), Size);
RTL->data_delete(RTLDeviceID, (void *)HT.TgtPtrBegin);
DP("Removing%s mapping with HstPtrBegin=" DPxMOD ", TgtPtrBegin=" DPxMOD
", Size=%ld\n", (ForceDelete ? " (forced)" : ""),
DPxPTR(HT.HstPtrBegin), DPxPTR(HT.TgtPtrBegin), Size);
HostDataToTargetMap.erase(lr.Entry);
}
rc = OFFLOAD_SUCCESS;
} else {
DP("Section to delete (hst addr " DPxMOD ") does not exist in the allocated"
" memory\n", DPxPTR(HstPtrBegin));
rc = OFFLOAD_FAIL;
}
DataMapMtx.unlock();
return rc;
}
/// Init device, should not be called directly.
void DeviceTy::init() {
int32_t rc = RTL->init_device(RTLDeviceID);
if (rc == OFFLOAD_SUCCESS) {
IsInit = true;
}
}
/// Thread-safe method to initialize the device only once.
int32_t DeviceTy::initOnce() {
std::call_once(InitFlag, &DeviceTy::init, this);
// At this point, if IsInit is true, then either this thread or some other
// thread in the past successfully initialized the device, so we can return
// OFFLOAD_SUCCESS. If this thread executed init() via call_once() and it
// failed, return OFFLOAD_FAIL. If call_once did not invoke init(), it means
// that some other thread already attempted to execute init() and if IsInit
// is still false, return OFFLOAD_FAIL.
if (IsInit)
return OFFLOAD_SUCCESS;
else
return OFFLOAD_FAIL;
}
// Load binary to device.
__tgt_target_table *DeviceTy::load_binary(void *Img) {
RTL->Mtx.lock();
__tgt_target_table *rc = RTL->load_binary(RTLDeviceID, Img);
RTL->Mtx.unlock();
return rc;
}
// Submit data to device.
int32_t DeviceTy::data_submit(void *TgtPtrBegin, void *HstPtrBegin,
int64_t Size) {
return RTL->data_submit(RTLDeviceID, TgtPtrBegin, HstPtrBegin, Size);
}
// Retrieve data from device.
int32_t DeviceTy::data_retrieve(void *HstPtrBegin, void *TgtPtrBegin,
int64_t Size) {
return RTL->data_retrieve(RTLDeviceID, HstPtrBegin, TgtPtrBegin, Size);
}
// Run region on device
int32_t DeviceTy::run_region(void *TgtEntryPtr, void **TgtVarsPtr,
ptrdiff_t *TgtOffsets, int32_t TgtVarsSize) {
return RTL->run_region(RTLDeviceID, TgtEntryPtr, TgtVarsPtr, TgtOffsets,
TgtVarsSize);
}
// Run team region on device.
int32_t DeviceTy::run_team_region(void *TgtEntryPtr, void **TgtVarsPtr,
ptrdiff_t *TgtOffsets, int32_t TgtVarsSize, int32_t NumTeams,
int32_t ThreadLimit, uint64_t LoopTripCount) {
return RTL->run_team_region(RTLDeviceID, TgtEntryPtr, TgtVarsPtr, TgtOffsets,
TgtVarsSize, NumTeams, ThreadLimit, LoopTripCount);
}
////////////////////////////////////////////////////////////////////////////////
// Functionality for registering libs
static void RegisterImageIntoTranslationTable(TranslationTable &TT,
RTLInfoTy &RTL, __tgt_device_image *image) {
// same size, as when we increase one, we also increase the other.
assert(TT.TargetsTable.size() == TT.TargetsImages.size() &&
"We should have as many images as we have tables!");
// Resize the Targets Table and Images to accommodate the new targets if
// required
unsigned TargetsTableMinimumSize = RTL.Idx + RTL.NumberOfDevices;
if (TT.TargetsTable.size() < TargetsTableMinimumSize) {
TT.TargetsImages.resize(TargetsTableMinimumSize, 0);
TT.TargetsTable.resize(TargetsTableMinimumSize, 0);
}
// Register the image in all devices for this target type.
for (int32_t i = 0; i < RTL.NumberOfDevices; ++i) {
// If we are changing the image we are also invalidating the target table.
if (TT.TargetsImages[RTL.Idx + i] != image) {
TT.TargetsImages[RTL.Idx + i] = image;
TT.TargetsTable[RTL.Idx + i] = 0; // lazy initialization of target table.
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Functionality for registering Ctors/Dtors
static void RegisterGlobalCtorsDtorsForImage(__tgt_bin_desc *desc,
__tgt_device_image *img, RTLInfoTy *RTL) {
for (int32_t i = 0; i < RTL->NumberOfDevices; ++i) {
DeviceTy &Device = Devices[RTL->Idx + i];
Device.PendingGlobalsMtx.lock();
Device.HasPendingGlobals = true;
for (__tgt_offload_entry *entry = img->EntriesBegin;
entry != img->EntriesEnd; ++entry) {
if (entry->flags & OMP_DECLARE_TARGET_CTOR) {
DP("Adding ctor " DPxMOD " to the pending list.\n",
DPxPTR(entry->addr));
Device.PendingCtorsDtors[desc].PendingCtors.push_back(entry->addr);
} else if (entry->flags & OMP_DECLARE_TARGET_DTOR) {
// Dtors are pushed in reverse order so they are executed from end
// to beginning when unregistering the library!
DP("Adding dtor " DPxMOD " to the pending list.\n",
DPxPTR(entry->addr));
Device.PendingCtorsDtors[desc].PendingDtors.push_front(entry->addr);
}
if (entry->flags & OMP_DECLARE_TARGET_LINK) {
DP("The \"link\" attribute is not yet supported!\n");
}
}
Device.PendingGlobalsMtx.unlock();
}
}
////////////////////////////////////////////////////////////////////////////////
/// adds a target shared library to the target execution image
EXTERN void __tgt_register_lib(__tgt_bin_desc *desc) {
// Attempt to load all plugins available in the system.
RTLs.LoadRTLsOnce();
RTLsMtx.lock();
// Register the images with the RTLs that understand them, if any.
for (int32_t i = 0; i < desc->NumDeviceImages; ++i) {
// Obtain the image.
__tgt_device_image *img = &desc->DeviceImages[i];
RTLInfoTy *FoundRTL = NULL;
// Scan the RTLs that have associated images until we find one that supports
// the current image.
for (auto &R : RTLs.AllRTLs) {
if (!R.is_valid_binary(img)) {
DP("Image " DPxMOD " is NOT compatible with RTL %s!\n",
DPxPTR(img->ImageStart), R.RTLName.c_str());
continue;
}
DP("Image " DPxMOD " is compatible with RTL %s!\n",
DPxPTR(img->ImageStart), R.RTLName.c_str());
// If this RTL is not already in use, initialize it.
if (!R.isUsed) {
// Initialize the device information for the RTL we are about to use.
DeviceTy device(&R);
size_t start = Devices.size();
Devices.resize(start + R.NumberOfDevices, device);
for (int32_t device_id = 0; device_id < R.NumberOfDevices;
device_id++) {
// global device ID
Devices[start + device_id].DeviceID = start + device_id;
// RTL local device ID
Devices[start + device_id].RTLDeviceID = device_id;
// Save pointer to device in RTL in case we want to unregister the RTL
R.Devices.push_back(&Devices[start + device_id]);
}
// Initialize the index of this RTL and save it in the used RTLs.
R.Idx = (RTLs.UsedRTLs.empty())
? 0
: RTLs.UsedRTLs.back()->Idx +
RTLs.UsedRTLs.back()->NumberOfDevices;
assert((size_t) R.Idx == start &&
"RTL index should equal the number of devices used so far.");
R.isUsed = true;
RTLs.UsedRTLs.push_back(&R);
DP("RTL " DPxMOD " has index %d!\n", DPxPTR(R.LibraryHandler), R.Idx);
}
// Initialize (if necessary) translation table for this library.
TrlTblMtx.lock();
if(!HostEntriesBeginToTransTable.count(desc->HostEntriesBegin)){
TranslationTable &tt =
HostEntriesBeginToTransTable[desc->HostEntriesBegin];
tt.HostTable.EntriesBegin = desc->HostEntriesBegin;
tt.HostTable.EntriesEnd = desc->HostEntriesEnd;
}
// Retrieve translation table for this library.
TranslationTable &TransTable =
HostEntriesBeginToTransTable[desc->HostEntriesBegin];
DP("Registering image " DPxMOD " with RTL %s!\n",
DPxPTR(img->ImageStart), R.RTLName.c_str());
RegisterImageIntoTranslationTable(TransTable, R, img);
TrlTblMtx.unlock();
FoundRTL = &R;
// Load ctors/dtors for static objects
RegisterGlobalCtorsDtorsForImage(desc, img, FoundRTL);
// if an RTL was found we are done - proceed to register the next image
break;
}
if (!FoundRTL) {
DP("No RTL found for image " DPxMOD "!\n", DPxPTR(img->ImageStart));
}
}
RTLsMtx.unlock();
DP("Done registering entries!\n");
}
////////////////////////////////////////////////////////////////////////////////
/// unloads a target shared library
EXTERN void __tgt_unregister_lib(__tgt_bin_desc *desc) {
DP("Unloading target library!\n");
RTLsMtx.lock();
// Find which RTL understands each image, if any.
for (int32_t i = 0; i < desc->NumDeviceImages; ++i) {
// Obtain the image.
__tgt_device_image *img = &desc->DeviceImages[i];
RTLInfoTy *FoundRTL = NULL;
// Scan the RTLs that have associated images until we find one that supports
// the current image. We only need to scan RTLs that are already being used.
for (auto *R : RTLs.UsedRTLs) {
assert(R->isUsed && "Expecting used RTLs.");
if (!R->is_valid_binary(img)) {
DP("Image " DPxMOD " is NOT compatible with RTL " DPxMOD "!\n",
DPxPTR(img->ImageStart), DPxPTR(R->LibraryHandler));
continue;
}
DP("Image " DPxMOD " is compatible with RTL " DPxMOD "!\n",
DPxPTR(img->ImageStart), DPxPTR(R->LibraryHandler));
FoundRTL = R;
// Execute dtors for static objects if the device has been used, i.e.
// if its PendingCtors list has been emptied.
for (int32_t i = 0; i < FoundRTL->NumberOfDevices; ++i) {
DeviceTy &Device = Devices[FoundRTL->Idx + i];
Device.PendingGlobalsMtx.lock();
if (Device.PendingCtorsDtors[desc].PendingCtors.empty()) {
for (auto &dtor : Device.PendingCtorsDtors[desc].PendingDtors) {
int rc = target(Device.DeviceID, dtor, 0, NULL, NULL, NULL, NULL, 1,
1, true /*team*/);
if (rc != OFFLOAD_SUCCESS) {
DP("Running destructor " DPxMOD " failed.\n", DPxPTR(dtor));
}
}
// Remove this library's entry from PendingCtorsDtors
Device.PendingCtorsDtors.erase(desc);
}
Device.PendingGlobalsMtx.unlock();
}
DP("Unregistered image " DPxMOD " from RTL " DPxMOD "!\n",
DPxPTR(img->ImageStart), DPxPTR(R->LibraryHandler));
break;
}
// if no RTL was found proceed to unregister the next image
if (!FoundRTL){
DP("No RTLs in use support the image " DPxMOD "!\n",
DPxPTR(img->ImageStart));
}
}
RTLsMtx.unlock();
DP("Done unregistering images!\n");
// Remove entries from HostPtrToTableMap
TblMapMtx.lock();
for (__tgt_offload_entry *cur = desc->HostEntriesBegin;
cur < desc->HostEntriesEnd; ++cur) {
HostPtrToTableMap.erase(cur->addr);
}
// Remove translation table for this descriptor.
auto tt = HostEntriesBeginToTransTable.find(desc->HostEntriesBegin);
if (tt != HostEntriesBeginToTransTable.end()) {
DP("Removing translation table for descriptor " DPxMOD "\n",
DPxPTR(desc->HostEntriesBegin));
HostEntriesBeginToTransTable.erase(tt);
} else {
DP("Translation table for descriptor " DPxMOD " cannot be found, probably "
"it has been already removed.\n", DPxPTR(desc->HostEntriesBegin));
}
TblMapMtx.unlock();
// TODO: Remove RTL and the devices it manages if it's not used anymore?
// TODO: Write some RTL->unload_image(...) function?
DP("Done unregistering library!\n");
}
/// Map global data and execute pending ctors
static int InitLibrary(DeviceTy& Device) {
/*
* Map global data
*/
int32_t device_id = Device.DeviceID;
int rc = OFFLOAD_SUCCESS;
Device.PendingGlobalsMtx.lock();
TrlTblMtx.lock();
for (HostEntriesBeginToTransTableTy::iterator
ii = HostEntriesBeginToTransTable.begin();
ii != HostEntriesBeginToTransTable.end(); ++ii) {
TranslationTable *TransTable = &ii->second;
if (TransTable->TargetsTable[device_id] != 0) {
// Library entries have already been processed
continue;
}
// 1) get image.
assert(TransTable->TargetsImages.size() > (size_t)device_id &&
"Not expecting a device ID outside the table's bounds!");
__tgt_device_image *img = TransTable->TargetsImages[device_id];
if (!img) {
DP("No image loaded for device id %d.\n", device_id);
rc = OFFLOAD_FAIL;
break;
}
// 2) load image into the target table.
__tgt_target_table *TargetTable =
TransTable->TargetsTable[device_id] = Device.load_binary(img);
// Unable to get table for this image: invalidate image and fail.
if (!TargetTable) {
DP("Unable to generate entries table for device id %d.\n", device_id);
TransTable->TargetsImages[device_id] = 0;
rc = OFFLOAD_FAIL;
break;
}
// Verify whether the two table sizes match.
size_t hsize =
TransTable->HostTable.EntriesEnd - TransTable->HostTable.EntriesBegin;
size_t tsize = TargetTable->EntriesEnd - TargetTable->EntriesBegin;
// Invalid image for these host entries!
if (hsize != tsize) {
DP("Host and Target tables mismatch for device id %d [%zx != %zx].\n",
device_id, hsize, tsize);
TransTable->TargetsImages[device_id] = 0;
TransTable->TargetsTable[device_id] = 0;
rc = OFFLOAD_FAIL;
break;
}
// process global data that needs to be mapped.
Device.DataMapMtx.lock();
__tgt_target_table *HostTable = &TransTable->HostTable;
for (__tgt_offload_entry *CurrDeviceEntry = TargetTable->EntriesBegin,
*CurrHostEntry = HostTable->EntriesBegin,
*EntryDeviceEnd = TargetTable->EntriesEnd;
CurrDeviceEntry != EntryDeviceEnd;
CurrDeviceEntry++, CurrHostEntry++) {
if (CurrDeviceEntry->size != 0) {
// has data.
assert(CurrDeviceEntry->size == CurrHostEntry->size &&
"data size mismatch");
// Fortran may use multiple weak declarations for the same symbol,
// therefore we must allow for multiple weak symbols to be loaded from
// the fat binary. Treat these mappings as any other "regular" mapping.
// Add entry to map.
if (Device.getTgtPtrBegin(CurrHostEntry->addr, CurrHostEntry->size))
continue;
DP("Add mapping from host " DPxMOD " to device " DPxMOD " with size %zu"
"\n", DPxPTR(CurrHostEntry->addr), DPxPTR(CurrDeviceEntry->addr),
CurrDeviceEntry->size);
Device.HostDataToTargetMap.push_front(HostDataToTargetTy(
(uintptr_t)CurrHostEntry->addr /*HstPtrBase*/,
(uintptr_t)CurrHostEntry->addr /*HstPtrBegin*/,
(uintptr_t)CurrHostEntry->addr + CurrHostEntry->size /*HstPtrEnd*/,
(uintptr_t)CurrDeviceEntry->addr /*TgtPtrBegin*/,
INF_REF_CNT /*RefCount*/));
}
}
Device.DataMapMtx.unlock();
}
TrlTblMtx.unlock();
if (rc != OFFLOAD_SUCCESS) {
Device.PendingGlobalsMtx.unlock();
return rc;
}
/*
* Run ctors for static objects
*/
if (!Device.PendingCtorsDtors.empty()) {
// Call all ctors for all libraries registered so far
for (auto &lib : Device.PendingCtorsDtors) {
if (!lib.second.PendingCtors.empty()) {
DP("Has pending ctors... call now\n");
for (auto &entry : lib.second.PendingCtors) {
void *ctor = entry;
int rc = target(device_id, ctor, 0, NULL, NULL, NULL,
NULL, 1, 1, true /*team*/);
if (rc != OFFLOAD_SUCCESS) {
DP("Running ctor " DPxMOD " failed.\n", DPxPTR(ctor));
Device.PendingGlobalsMtx.unlock();
return OFFLOAD_FAIL;
}
}
// Clear the list to indicate that this device has been used
lib.second.PendingCtors.clear();
DP("Done with pending ctors for lib " DPxMOD "\n", DPxPTR(lib.first));
}
}
}
Device.HasPendingGlobals = false;
Device.PendingGlobalsMtx.unlock();
return OFFLOAD_SUCCESS;
}
// Check whether a device has been initialized, global ctors have been
// executed and global data has been mapped; do so if not already done.
static int CheckDevice(int32_t device_id) {
// Is device ready?
if (!device_is_ready(device_id)) {
DP("Device %d is not ready.\n", device_id);
return OFFLOAD_FAIL;
}
// Get device info.
DeviceTy &Device = Devices[device_id];
// Check whether global data has been mapped for this device
Device.PendingGlobalsMtx.lock();
bool hasPendingGlobals = Device.HasPendingGlobals;
Device.PendingGlobalsMtx.unlock();
if (hasPendingGlobals && InitLibrary(Device) != OFFLOAD_SUCCESS) {
DP("Failed to init globals on device %d\n", device_id);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Following datatypes and functions (tgt_oldmap_type, combined_entry_t,
// translate_map, cleanup_map) will be removed once the compiler starts using
// the new map types.
// Old map types
enum tgt_oldmap_type {
OMP_TGT_OLDMAPTYPE_TO = 0x001, // copy data from host to device
OMP_TGT_OLDMAPTYPE_FROM = 0x002, // copy data from device to host
OMP_TGT_OLDMAPTYPE_ALWAYS = 0x004, // copy regardless of the ref. count
OMP_TGT_OLDMAPTYPE_DELETE = 0x008, // force unmapping of data
OMP_TGT_OLDMAPTYPE_MAP_PTR = 0x010, // map pointer as well as pointee
OMP_TGT_OLDMAPTYPE_FIRST_MAP = 0x020, // first occurrence of mapped variable
OMP_TGT_OLDMAPTYPE_RETURN_PTR = 0x040, // return TgtBase addr of mapped data
OMP_TGT_OLDMAPTYPE_PRIVATE_PTR = 0x080, // private variable - not mapped
OMP_TGT_OLDMAPTYPE_PRIVATE_VAL = 0x100 // copy by value - not mapped
};
// Temporary functions for map translation and cleanup
struct combined_entry_t {
int num_members; // number of members in combined entry
void *base_addr; // base address of combined entry
void *begin_addr; // begin address of combined entry
void *end_addr; // size of combined entry
};
static void translate_map(int32_t arg_num, void **args_base, void **args,
int64_t *arg_sizes, int32_t *arg_types, int32_t &new_arg_num,
void **&new_args_base, void **&new_args, int64_t *&new_arg_sizes,
int64_t *&new_arg_types, bool is_target_construct) {
if (arg_num <= 0) {
DP("Nothing to translate\n");
new_arg_num = 0;
return;
}
// array of combined entries
combined_entry_t *cmb_entries =
(combined_entry_t *) alloca(arg_num * sizeof(combined_entry_t));
// number of combined entries
long num_combined = 0;
// old entry is MAP_PTR?
bool *is_ptr_old = (bool *) alloca(arg_num * sizeof(bool));
// old entry is member of member_of[old] cmb_entry
int *member_of = (int *) alloca(arg_num * sizeof(int));
// temporary storage for modifications of the original arg_types
int32_t *mod_arg_types = (int32_t *) alloca(arg_num *sizeof(int32_t));
DP("Translating %d map entries\n", arg_num);
for (int i = 0; i < arg_num; ++i) {
member_of[i] = -1;
is_ptr_old[i] = false;
mod_arg_types[i] = arg_types[i];
// Scan previous entries to see whether this entry shares the same base
for (int j = 0; j < i; ++j) {
void *new_begin_addr = NULL;
void *new_end_addr = NULL;
if (mod_arg_types[i] & OMP_TGT_OLDMAPTYPE_MAP_PTR) {
if (args_base[i] == args[j]) {
if (!(mod_arg_types[j] & OMP_TGT_OLDMAPTYPE_MAP_PTR)) {
DP("Entry %d has the same base as entry %d's begin address\n", i,
j);
new_begin_addr = args_base[i];
new_end_addr = (char *)args_base[i] + sizeof(void *);
assert(arg_sizes[j] == sizeof(void *));
is_ptr_old[j] = true;
} else {
DP("Entry %d has the same base as entry %d's begin address, but "
"%d's base was a MAP_PTR too\n", i, j, j);
int32_t to_from_always_delete =
OMP_TGT_OLDMAPTYPE_TO | OMP_TGT_OLDMAPTYPE_FROM |
OMP_TGT_OLDMAPTYPE_ALWAYS | OMP_TGT_OLDMAPTYPE_DELETE;
if (mod_arg_types[j] & to_from_always_delete) {
DP("Resetting to/from/always/delete flags for entry %d because "
"it is only a pointer to pointer\n", j);
mod_arg_types[j] &= ~to_from_always_delete;
}
}
}
} else {
if (!(mod_arg_types[i] & OMP_TGT_OLDMAPTYPE_FIRST_MAP) &&
args_base[i] == args_base[j]) {
DP("Entry %d has the same base address as entry %d\n", i, j);
new_begin_addr = args[i];
new_end_addr = (char *)args[i] + arg_sizes[i];
}
}
// If we have combined the entry with a previous one
if (new_begin_addr) {
int id;
if(member_of[j] == -1) {
// We have a new entry
id = num_combined++;
DP("Creating new combined entry %d for old entry %d\n", id, j);
// Initialize new entry
cmb_entries[id].num_members = 1;
cmb_entries[id].base_addr = args_base[j];
if (mod_arg_types[j] & OMP_TGT_OLDMAPTYPE_MAP_PTR) {
cmb_entries[id].begin_addr = args_base[j];
cmb_entries[id].end_addr = (char *)args_base[j] + arg_sizes[j];
} else {
cmb_entries[id].begin_addr = args[j];
cmb_entries[id].end_addr = (char *)args[j] + arg_sizes[j];
}
member_of[j] = id;
} else {
// Reuse existing combined entry
DP("Reusing existing combined entry %d\n", member_of[j]);
id = member_of[j];
}
// Update combined entry
DP("Adding entry %d to combined entry %d\n", i, id);
cmb_entries[id].num_members++;
// base_addr stays the same
cmb_entries[id].begin_addr =
std::min(cmb_entries[id].begin_addr, new_begin_addr);
cmb_entries[id].end_addr =
std::max(cmb_entries[id].end_addr, new_end_addr);
member_of[i] = id;
break;
}
}
}
DP("New entries: %ld combined + %d original\n", num_combined, arg_num);
new_arg_num = arg_num + num_combined;
new_args_base = (void **) malloc(new_arg_num * sizeof(void *));
new_args = (void **) malloc(new_arg_num * sizeof(void *));
new_arg_sizes = (int64_t *) malloc(new_arg_num * sizeof(int64_t));
new_arg_types = (int64_t *) malloc(new_arg_num * sizeof(int64_t));
const int64_t alignment = 8;
int next_id = 0; // next ID
int next_cid = 0; // next combined ID
int *combined_to_new_id = (int *) alloca(num_combined * sizeof(int));
for (int i = 0; i < arg_num; ++i) {
// It is member_of
if (member_of[i] == next_cid) {
int cid = next_cid++; // ID of this combined entry
int nid = next_id++; // ID of the new (global) entry
combined_to_new_id[cid] = nid;
DP("Combined entry %3d will become new entry %3d\n", cid, nid);
int64_t padding = (int64_t)cmb_entries[cid].begin_addr % alignment;
if (padding) {
DP("Using a padding of %" PRId64 " for begin address " DPxMOD "\n",
padding, DPxPTR(cmb_entries[cid].begin_addr));
cmb_entries[cid].begin_addr =
(char *)cmb_entries[cid].begin_addr - padding;
}
new_args_base[nid] = cmb_entries[cid].base_addr;
new_args[nid] = cmb_entries[cid].begin_addr;
new_arg_sizes[nid] = (int64_t) ((char *)cmb_entries[cid].end_addr -
(char *)cmb_entries[cid].begin_addr);
new_arg_types[nid] = OMP_TGT_MAPTYPE_TARGET_PARAM;
DP("Entry %3d: base_addr " DPxMOD ", begin_addr " DPxMOD ", "
"size %" PRId64 ", type 0x%" PRIx64 "\n", nid,
DPxPTR(new_args_base[nid]), DPxPTR(new_args[nid]), new_arg_sizes[nid],
new_arg_types[nid]);
} else if (member_of[i] != -1) {
DP("Combined entry %3d has been encountered before, do nothing\n",
member_of[i]);
}
// Now that the combined entry (the one the old entry was a member of) has
// been inserted into the new arguments list, proceed with the old entry.
int nid = next_id++;
DP("Old entry %3d will become new entry %3d\n", i, nid);
new_args_base[nid] = args_base[i];
new_args[nid] = args[i];
new_arg_sizes[nid] = arg_sizes[i];
int64_t old_type = mod_arg_types[i];
if (is_ptr_old[i]) {
// Reset TO and FROM flags
old_type &= ~(OMP_TGT_OLDMAPTYPE_TO | OMP_TGT_OLDMAPTYPE_FROM);
}
if (member_of[i] == -1) {
if (!is_target_construct)
old_type &= ~OMP_TGT_MAPTYPE_TARGET_PARAM;
new_arg_types[nid] = old_type;
DP("Entry %3d: base_addr " DPxMOD ", begin_addr " DPxMOD ", size %" PRId64
", type 0x%" PRIx64 " (old entry %d not MEMBER_OF)\n", nid,
DPxPTR(new_args_base[nid]), DPxPTR(new_args[nid]), new_arg_sizes[nid],
new_arg_types[nid], i);
} else {
// Old entry is not FIRST_MAP
old_type &= ~OMP_TGT_OLDMAPTYPE_FIRST_MAP;
// Add MEMBER_OF
int new_member_of = combined_to_new_id[member_of[i]];
old_type |= ((int64_t)new_member_of + 1) << 48;
new_arg_types[nid] = old_type;
DP("Entry %3d: base_addr " DPxMOD ", begin_addr " DPxMOD ", size %" PRId64
", type 0x%" PRIx64 " (old entry %d MEMBER_OF %d)\n", nid,
DPxPTR(new_args_base[nid]), DPxPTR(new_args[nid]), new_arg_sizes[nid],
new_arg_types[nid], i, new_member_of);
}
}
}
static void cleanup_map(int32_t new_arg_num, void **new_args_base,
void **new_args, int64_t *new_arg_sizes, int64_t *new_arg_types,
int32_t arg_num, void **args_base) {
if (new_arg_num > 0) {
int offset = new_arg_num - arg_num;
for (int32_t i = 0; i < arg_num; ++i) {
// Restore old base address
args_base[i] = new_args_base[i+offset];
}
free(new_args_base);
free(new_args);
free(new_arg_sizes);
free(new_arg_types);
}
}
static short member_of(int64_t type) {
return ((type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1;
}
/// Internal function to do the mapping and transfer the data to the device
static int target_data_begin(DeviceTy &Device, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types) {
// process each input.
int rc = OFFLOAD_SUCCESS;
for (int32_t i = 0; i < arg_num; ++i) {
// Ignore private variables and arrays - there is no mapping for them.
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
void *HstPtrBase = args_base[i];
// Address of pointer on the host and device, respectively.
void *Pointer_HstPtrBegin, *Pointer_TgtPtrBegin;
bool IsNew, Pointer_IsNew;
bool IsImplicit = arg_types[i] & OMP_TGT_MAPTYPE_IMPLICIT;
bool UpdateRef = !(arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF);
if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
DP("Has a pointer entry: \n");
// base is address of pointer.
Pointer_TgtPtrBegin = Device.getOrAllocTgtPtr(HstPtrBase, HstPtrBase,
sizeof(void *), Pointer_IsNew, IsImplicit, UpdateRef);
if (!Pointer_TgtPtrBegin) {
DP("Call to getOrAllocTgtPtr returned null pointer (device failure or "
"illegal mapping).\n");
}
DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new"
"\n", sizeof(void *), DPxPTR(Pointer_TgtPtrBegin),
(Pointer_IsNew ? "" : " not"));
Pointer_HstPtrBegin = HstPtrBase;
// modify current entry.
HstPtrBase = *(void **)HstPtrBase;
UpdateRef = true; // subsequently update ref count of pointee
}
void *TgtPtrBegin = Device.getOrAllocTgtPtr(HstPtrBegin, HstPtrBase,
arg_sizes[i], IsNew, IsImplicit, UpdateRef);
if (!TgtPtrBegin && arg_sizes[i]) {
// If arg_sizes[i]==0, then the argument is a pointer to NULL, so
// getOrAlloc() returning NULL is not an error.
DP("Call to getOrAllocTgtPtr returned null pointer (device failure or "
"illegal mapping).\n");
}
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s new\n", arg_sizes[i], DPxPTR(TgtPtrBegin),
(IsNew ? "" : " not"));
if (arg_types[i] & OMP_TGT_MAPTYPE_RETURN_PARAM) {
void *ret_ptr;
if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)
ret_ptr = Pointer_TgtPtrBegin;
else {
bool IsLast; // not used
ret_ptr = Device.getTgtPtrBegin(HstPtrBegin, 0, IsLast, false);
}
DP("Returning device pointer " DPxMOD "\n", DPxPTR(ret_ptr));
args_base[i] = ret_ptr;
}
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
bool copy = false;
if (IsNew || (arg_types[i] & OMP_TGT_MAPTYPE_ALWAYS)) {
copy = true;
} else if (arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) {
// Copy data only if the "parent" struct has RefCount==1.
short parent_idx = member_of(arg_types[i]);
long parent_rc = Device.getMapEntryRefCnt(args[parent_idx]);
assert(parent_rc > 0 && "parent struct not found");
if (parent_rc == 1) {
copy = true;
}
}
if (copy) {
DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
int rt = Device.data_submit(TgtPtrBegin, HstPtrBegin, arg_sizes[i]);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
rc = OFFLOAD_FAIL;
}
}
}
if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n",
DPxPTR(Pointer_TgtPtrBegin), DPxPTR(TgtPtrBegin));
uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
void *TgtPtrBase = (void *)((uint64_t)TgtPtrBegin - Delta);
int rt = Device.data_submit(Pointer_TgtPtrBegin, &TgtPtrBase,
sizeof(void *));
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
rc = OFFLOAD_FAIL;
}
// create shadow pointers for this entry
Device.ShadowMtx.lock();
Device.ShadowPtrMap[Pointer_HstPtrBegin] = {HstPtrBase,
Pointer_TgtPtrBegin, TgtPtrBase};
Device.ShadowMtx.unlock();
}
}
return rc;
}
EXTERN void __tgt_target_data_begin_nowait(int32_t device_id, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types,
int32_t depNum, void *depList, int32_t noAliasDepNum,
void *noAliasDepList) {
if (depNum + noAliasDepNum > 0)
__kmpc_omp_taskwait(NULL, 0);
__tgt_target_data_begin(device_id, arg_num, args_base, args, arg_sizes,
arg_types);
}
/// creates host-to-target data mapping, stores it in the
/// libomptarget.so internal structure (an entry in a stack of data maps)
/// and passes the data to the device.
EXTERN void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types) {
DP("Entering data begin region for device %d with %d mappings\n", device_id,
arg_num);
// No devices available?
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
DP("Use default device id %d\n", device_id);
}
if (CheckDevice(device_id) != OFFLOAD_SUCCESS) {
DP("Failed to get device %d ready\n", device_id);
return;
}
DeviceTy& Device = Devices[device_id];
// Translate maps
int32_t new_arg_num;
void **new_args_base;
void **new_args;
int64_t *new_arg_sizes;
int64_t *new_arg_types;
translate_map(arg_num, args_base, args, arg_sizes, arg_types, new_arg_num,
new_args_base, new_args, new_arg_sizes, new_arg_types, false);
//target_data_begin(Device, arg_num, args_base, args, arg_sizes, arg_types);
target_data_begin(Device, new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types);
// Cleanup translation memory
cleanup_map(new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types, arg_num, args_base);
}
/// Internal function to undo the mapping and retrieve the data from the device.
static int target_data_end(DeviceTy &Device, int32_t arg_num, void **args_base,
void **args, int64_t *arg_sizes, int64_t *arg_types) {
int rc = OFFLOAD_SUCCESS;
// process each input.
for (int32_t i = arg_num - 1; i >= 0; --i) {
// Ignore private variables and arrays - there is no mapping for them.
// Also, ignore the use_device_ptr directive, it has no effect here.
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
bool IsLast;
bool UpdateRef = !(arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ);
bool ForceDelete = arg_types[i] & OMP_TGT_MAPTYPE_DELETE;
// If PTR_AND_OBJ, HstPtrBegin is address of pointee
void *TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, arg_sizes[i], IsLast,
UpdateRef);
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s last\n", arg_sizes[i], DPxPTR(TgtPtrBegin),
(IsLast ? "" : " not"));
bool DelEntry = IsLast || ForceDelete;
if ((arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
!(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
DelEntry = false; // protect parent struct from being deallocated
}
if ((arg_types[i] & OMP_TGT_MAPTYPE_FROM) || DelEntry) {
// Move data back to the host
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
bool Always = arg_types[i] & OMP_TGT_MAPTYPE_ALWAYS;
bool CopyMember = false;
if ((arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
!(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
// Copy data only if the "parent" struct has RefCount==1.
short parent_idx = member_of(arg_types[i]);
long parent_rc = Device.getMapEntryRefCnt(args[parent_idx]);
assert(parent_rc > 0 && "parent struct not found");
if (parent_rc == 1) {
CopyMember = true;
}
}
if (DelEntry || Always || CopyMember) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
int rt = Device.data_retrieve(HstPtrBegin, TgtPtrBegin, arg_sizes[i]);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data from device failed.\n");
rc = OFFLOAD_FAIL;
}
}
}
// If we copied back to the host a struct/array containing pointers, we
// need to restore the original host pointer values from their shadow
// copies. If the struct is going to be deallocated, remove any remaining
// shadow pointer entries for this struct.
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + arg_sizes[i];
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end(); ++it) {
void **ShadowHstPtrAddr = (void**) it->first;
// An STL map is sorted on its keys; use this property
// to quickly determine when to break out of the loop.
if ((uintptr_t) ShadowHstPtrAddr < lb)
continue;
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
// If we copied the struct to the host, we need to restore the pointer.
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
DP("Restoring original host pointer value " DPxMOD " for host "
"pointer " DPxMOD "\n", DPxPTR(it->second.HstPtrVal),
DPxPTR(ShadowHstPtrAddr));
*ShadowHstPtrAddr = it->second.HstPtrVal;
}
// If the struct is to be deallocated, remove the shadow entry.
if (DelEntry) {
DP("Removing shadow pointer " DPxMOD "\n", DPxPTR(ShadowHstPtrAddr));
Device.ShadowPtrMap.erase(it);
}
}
Device.ShadowMtx.unlock();
// Deallocate map
if (DelEntry) {
int rt = Device.deallocTgtPtr(HstPtrBegin, arg_sizes[i], ForceDelete);
if (rt != OFFLOAD_SUCCESS) {
DP("Deallocating data from device failed.\n");
rc = OFFLOAD_FAIL;
}
}
}
}
return rc;
}
/// passes data from the target, releases target memory and destroys
/// the host-target mapping (top entry from the stack of data maps)
/// created by the last __tgt_target_data_begin.
EXTERN void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types) {
DP("Entering data end region with %d mappings\n", arg_num);
// No devices available?
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
}
RTLsMtx.lock();
size_t Devices_size = Devices.size();
RTLsMtx.unlock();
if (Devices_size <= (size_t)device_id) {
DP("Device ID %d does not have a matching RTL.\n", device_id);
return;
}
DeviceTy &Device = Devices[device_id];
if (!Device.IsInit) {
DP("uninit device: ignore");
return;
}
// Translate maps
int32_t new_arg_num;
void **new_args_base;
void **new_args;
int64_t *new_arg_sizes;
int64_t *new_arg_types;
translate_map(arg_num, args_base, args, arg_sizes, arg_types, new_arg_num,
new_args_base, new_args, new_arg_sizes, new_arg_types, false);
//target_data_end(Device, arg_num, args_base, args, arg_sizes, arg_types);
target_data_end(Device, new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types);
// Cleanup translation memory
cleanup_map(new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types, arg_num, args_base);
}
EXTERN void __tgt_target_data_end_nowait(int32_t device_id, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types,
int32_t depNum, void *depList, int32_t noAliasDepNum,
void *noAliasDepList) {
if (depNum + noAliasDepNum > 0)
__kmpc_omp_taskwait(NULL, 0);
__tgt_target_data_end(device_id, arg_num, args_base, args, arg_sizes,
arg_types);
}
/// passes data to/from the target.
EXTERN void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types) {
DP("Entering data update with %d mappings\n", arg_num);
// No devices available?
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
}
if (CheckDevice(device_id) != OFFLOAD_SUCCESS) {
DP("Failed to get device %d ready\n", device_id);
return;
}
DeviceTy& Device = Devices[device_id];
// process each input.
for (int32_t i = 0; i < arg_num; ++i) {
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
int64_t MapSize = arg_sizes[i];
bool IsLast;
void *TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, MapSize, IsLast,
false);
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
Device.data_retrieve(HstPtrBegin, TgtPtrBegin, MapSize);
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + MapSize;
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end(); ++it) {
void **ShadowHstPtrAddr = (void**) it->first;
if ((uintptr_t) ShadowHstPtrAddr < lb)
continue;
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
DP("Restoring original host pointer value " DPxMOD " for host pointer "
DPxMOD "\n", DPxPTR(it->second.HstPtrVal),
DPxPTR(ShadowHstPtrAddr));
*ShadowHstPtrAddr = it->second.HstPtrVal;
}
Device.ShadowMtx.unlock();
}
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
Device.data_submit(TgtPtrBegin, HstPtrBegin, MapSize);
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + MapSize;
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end(); ++it) {
void **ShadowHstPtrAddr = (void**) it->first;
if ((uintptr_t) ShadowHstPtrAddr < lb)
continue;
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
DP("Restoring original target pointer value " DPxMOD " for target "
"pointer " DPxMOD "\n", DPxPTR(it->second.TgtPtrVal),
DPxPTR(it->second.TgtPtrAddr));
Device.data_submit(it->second.TgtPtrAddr,
&it->second.TgtPtrVal, sizeof(void *));
}
Device.ShadowMtx.unlock();
}
}
}
EXTERN void __tgt_target_data_update_nowait(
int32_t device_id, int32_t arg_num, void **args_base, void **args,
int64_t *arg_sizes, int32_t *arg_types, int32_t depNum, void *depList,
int32_t noAliasDepNum, void *noAliasDepList) {
if (depNum + noAliasDepNum > 0)
__kmpc_omp_taskwait(NULL, 0);
__tgt_target_data_update(device_id, arg_num, args_base, args, arg_sizes,
arg_types);
}
/// performs the same actions as data_begin in case arg_num is
/// non-zero and initiates run of the offloaded region on the target platform;
/// if arg_num is non-zero after the region execution is done it also
/// performs the same action as data_update and data_end above. This function
/// returns 0 if it was able to transfer the execution to a target and an
/// integer different from zero otherwise.
static int target(int32_t device_id, void *host_ptr, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types,
int32_t team_num, int32_t thread_limit, int IsTeamConstruct) {
DeviceTy &Device = Devices[device_id];
// Find the table information in the map or look it up in the translation
// tables.
TableMap *TM = 0;
TblMapMtx.lock();
HostPtrToTableMapTy::iterator TableMapIt = HostPtrToTableMap.find(host_ptr);
if (TableMapIt == HostPtrToTableMap.end()) {
// We don't have a map. So search all the registered libraries.
TrlTblMtx.lock();
for (HostEntriesBeginToTransTableTy::iterator
ii = HostEntriesBeginToTransTable.begin(),
ie = HostEntriesBeginToTransTable.end();
!TM && ii != ie; ++ii) {
// get the translation table (which contains all the good info).
TranslationTable *TransTable = &ii->second;
// iterate over all the host table entries to see if we can locate the
// host_ptr.
__tgt_offload_entry *begin = TransTable->HostTable.EntriesBegin;
__tgt_offload_entry *end = TransTable->HostTable.EntriesEnd;
__tgt_offload_entry *cur = begin;
for (uint32_t i = 0; cur < end; ++cur, ++i) {
if (cur->addr != host_ptr)
continue;
// we got a match, now fill the HostPtrToTableMap so that we
// may avoid this search next time.
TM = &HostPtrToTableMap[host_ptr];
TM->Table = TransTable;
TM->Index = i;
break;
}
}
TrlTblMtx.unlock();
} else {
TM = &TableMapIt->second;
}
TblMapMtx.unlock();
// No map for this host pointer found!
if (!TM) {
DP("Host ptr " DPxMOD " does not have a matching target pointer.\n",
DPxPTR(host_ptr));
return OFFLOAD_FAIL;
}
// get target table.
TrlTblMtx.lock();
assert(TM->Table->TargetsTable.size() > (size_t)device_id &&
"Not expecting a device ID outside the table's bounds!");
__tgt_target_table *TargetTable = TM->Table->TargetsTable[device_id];
TrlTblMtx.unlock();
assert(TargetTable && "Global data has not been mapped\n");
// Move data to device.
int rc = target_data_begin(Device, arg_num, args_base, args, arg_sizes,
arg_types);
if (rc != OFFLOAD_SUCCESS) {
DP("Call to target_data_begin failed, skipping target execution.\n");
// Call target_data_end to dealloc whatever target_data_begin allocated
// and return OFFLOAD_FAIL.
target_data_end(Device, arg_num, args_base, args, arg_sizes, arg_types);
return OFFLOAD_FAIL;
}
std::vector<void *> tgt_args;
std::vector<ptrdiff_t> tgt_offsets;
// List of (first-)private arrays allocated for this target region
std::vector<void *> fpArrays;
for (int32_t i = 0; i < arg_num; ++i) {
if (!(arg_types[i] & OMP_TGT_MAPTYPE_TARGET_PARAM)) {
// This is not a target parameter, do not push it into tgt_args.
continue;
}
void *HstPtrBegin = args[i];
void *HstPtrBase = args_base[i];
void *TgtPtrBegin;
ptrdiff_t TgtBaseOffset;
bool IsLast; // unused.
if (arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) {
DP("Forwarding first-private value " DPxMOD " to the target construct\n",
DPxPTR(HstPtrBase));
TgtPtrBegin = HstPtrBase;
TgtBaseOffset = 0;
} else if (arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE) {
// Allocate memory for (first-)private array
TgtPtrBegin = Device.RTL->data_alloc(Device.RTLDeviceID,
arg_sizes[i], HstPtrBegin);
if (!TgtPtrBegin) {
DP ("Data allocation for %sprivate array " DPxMOD " failed\n",
(arg_types[i] & OMP_TGT_MAPTYPE_TO ? "first-" : ""),
DPxPTR(HstPtrBegin));
rc = OFFLOAD_FAIL;
break;
} else {
fpArrays.push_back(TgtPtrBegin);
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD " for "
"%sprivate array " DPxMOD " - pushing target argument " DPxMOD "\n",
arg_sizes[i], DPxPTR(TgtPtrBegin),
(arg_types[i] & OMP_TGT_MAPTYPE_TO ? "first-" : ""),
DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBase));
#endif
// If first-private, copy data from host
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
int rt = Device.data_submit(TgtPtrBegin, HstPtrBegin, arg_sizes[i]);
if (rt != OFFLOAD_SUCCESS) {
DP ("Copying data to device failed.\n");
rc = OFFLOAD_FAIL;
break;
}
}
}
} else if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBase, sizeof(void *), IsLast,
false);
TgtBaseOffset = 0; // no offset for ptrs.
DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD " to "
"object " DPxMOD "\n", DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBase),
DPxPTR(HstPtrBase));
} else {
TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, arg_sizes[i], IsLast,
false);
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n",
DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin));
#endif
}
tgt_args.push_back(TgtPtrBegin);
tgt_offsets.push_back(TgtBaseOffset);
}
// Push omp handle.
tgt_args.push_back((void *)0);
tgt_offsets.push_back(0);
assert(tgt_args.size() == tgt_offsets.size() &&
"Size mismatch in arguments and offsets");
// Pop loop trip count
uint64_t ltc = Device.loopTripCnt;
Device.loopTripCnt = 0;
// Launch device execution.
if (rc == OFFLOAD_SUCCESS) {
DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
TargetTable->EntriesBegin[TM->Index].name,
DPxPTR(TargetTable->EntriesBegin[TM->Index].addr), TM->Index);
if (IsTeamConstruct) {
rc = Device.run_team_region(TargetTable->EntriesBegin[TM->Index].addr,
&tgt_args[0], &tgt_offsets[0], tgt_args.size(), team_num,
thread_limit, ltc);
} else {
rc = Device.run_region(TargetTable->EntriesBegin[TM->Index].addr,
&tgt_args[0], &tgt_offsets[0], tgt_args.size());
}
} else {
DP("Errors occurred while obtaining target arguments, skipping kernel "
"execution\n");
}
// Deallocate (first-)private arrays
for (auto it : fpArrays) {
int rt = Device.RTL->data_delete(Device.RTLDeviceID, it);
if (rt != OFFLOAD_SUCCESS) {
DP("Deallocation of (first-)private arrays failed.\n");
rc = OFFLOAD_FAIL;
}
}
// Move data from device.
int rt = target_data_end(Device, arg_num, args_base, args, arg_sizes,
arg_types);
if (rt != OFFLOAD_SUCCESS) {
DP("Call to target_data_end failed.\n");
rc = OFFLOAD_FAIL;
}
return rc;
}
EXTERN int __tgt_target(int32_t device_id, void *host_ptr, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int32_t *arg_types) {
DP("Entering target region with entry point " DPxMOD " and device Id %d\n",
DPxPTR(host_ptr), device_id);
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
}
if (CheckDevice(device_id) != OFFLOAD_SUCCESS) {
DP("Failed to get device %d ready\n", device_id);
return OFFLOAD_FAIL;
}
// Translate maps
int32_t new_arg_num;
void **new_args_base;
void **new_args;
int64_t *new_arg_sizes;
int64_t *new_arg_types;
translate_map(arg_num, args_base, args, arg_sizes, arg_types, new_arg_num,
new_args_base, new_args, new_arg_sizes, new_arg_types, true);
//return target(device_id, host_ptr, arg_num, args_base, args, arg_sizes,
// arg_types, 0, 0, false /*team*/, false /*recursive*/);
int rc = target(device_id, host_ptr, new_arg_num, new_args_base, new_args,
new_arg_sizes, new_arg_types, 0, 0, false /*team*/);
// Cleanup translation memory
cleanup_map(new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types, arg_num, args_base);
return rc;
}
EXTERN int __tgt_target_nowait(int32_t device_id, void *host_ptr,
int32_t arg_num, void **args_base, void **args, int64_t *arg_sizes,
int32_t *arg_types, int32_t depNum, void *depList, int32_t noAliasDepNum,
void *noAliasDepList) {
if (depNum + noAliasDepNum > 0)
__kmpc_omp_taskwait(NULL, 0);
return __tgt_target(device_id, host_ptr, arg_num, args_base, args, arg_sizes,
arg_types);
}
EXTERN int __tgt_target_teams(int32_t device_id, void *host_ptr,
int32_t arg_num, void **args_base, void **args, int64_t *arg_sizes,
int32_t *arg_types, int32_t team_num, int32_t thread_limit) {
DP("Entering target region with entry point " DPxMOD " and device Id %d\n",
DPxPTR(host_ptr), device_id);
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
}
if (CheckDevice(device_id) != OFFLOAD_SUCCESS) {
DP("Failed to get device %d ready\n", device_id);
return OFFLOAD_FAIL;
}
// Translate maps
int32_t new_arg_num;
void **new_args_base;
void **new_args;
int64_t *new_arg_sizes;
int64_t *new_arg_types;
translate_map(arg_num, args_base, args, arg_sizes, arg_types, new_arg_num,
new_args_base, new_args, new_arg_sizes, new_arg_types, true);
//return target(device_id, host_ptr, arg_num, args_base, args, arg_sizes,
// arg_types, team_num, thread_limit, true /*team*/,
// false /*recursive*/);
int rc = target(device_id, host_ptr, new_arg_num, new_args_base, new_args,
new_arg_sizes, new_arg_types, team_num, thread_limit, true /*team*/);
// Cleanup translation memory
cleanup_map(new_arg_num, new_args_base, new_args, new_arg_sizes,
new_arg_types, arg_num, args_base);
return rc;
}
EXTERN int __tgt_target_teams_nowait(int32_t device_id, void *host_ptr,
int32_t arg_num, void **args_base, void **args, int64_t *arg_sizes,
int32_t *arg_types, int32_t team_num, int32_t thread_limit, int32_t depNum,
void *depList, int32_t noAliasDepNum, void *noAliasDepList) {
if (depNum + noAliasDepNum > 0)
__kmpc_omp_taskwait(NULL, 0);
return __tgt_target_teams(device_id, host_ptr, arg_num, args_base, args,
arg_sizes, arg_types, team_num, thread_limit);
}
// The trip count mechanism will be revised - this scheme is not thread-safe.
EXTERN void __kmpc_push_target_tripcount(int32_t device_id,
uint64_t loop_tripcount) {
if (device_id == OFFLOAD_DEVICE_DEFAULT) {
device_id = omp_get_default_device();
}
if (CheckDevice(device_id) != OFFLOAD_SUCCESS) {
DP("Failed to get device %d ready\n", device_id);
return;
}
DP("__kmpc_push_target_tripcount(%d, %" PRIu64 ")\n", device_id,
loop_tripcount);
Devices[device_id].loopTripCnt = loop_tripcount;
}