blob: d1f43afe4ae4e2e2b886dd24efe719bf40f13679 [file] [log] [blame]
/** @file kmp_stats.cpp
* Statistics gathering and processing.
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_str.h"
#include "kmp_lock.h"
#include "kmp_stats.h"
#include <algorithm>
#include <sstream>
#include <iomanip>
#include <stdlib.h> // for atexit
#define STRINGIZE2(x) #x
#define STRINGIZE(x) STRINGIZE2(x)
#define expandName(name,flags,ignore) {STRINGIZE(name),flags},
statInfo timeStat::timerInfo[] = {
KMP_FOREACH_TIMER(expandName,0)
{0,0}
};
const statInfo counter::counterInfo[] = {
KMP_FOREACH_COUNTER(expandName,0)
{0,0}
};
#undef expandName
#define expandName(ignore1,ignore2,ignore3) {0.0,0.0,0.0},
kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
KMP_FOREACH_TIMER(expandName,0)
{0.0,0.0,0.0}
};
#undef expandName
const kmp_stats_output_module::rgb_color kmp_stats_output_module::globalColorArray[] = {
{1.0, 0.0, 0.0}, // red
{1.0, 0.6, 0.0}, // orange
{1.0, 1.0, 0.0}, // yellow
{0.0, 1.0, 0.0}, // green
{0.0, 0.0, 1.0}, // blue
{0.6, 0.2, 0.8}, // purple
{1.0, 0.0, 1.0}, // magenta
{0.0, 0.4, 0.2}, // dark green
{1.0, 1.0, 0.6}, // light yellow
{0.6, 0.4, 0.6}, // dirty purple
{0.0, 1.0, 1.0}, // cyan
{1.0, 0.4, 0.8}, // pink
{0.5, 0.5, 0.5}, // grey
{0.8, 0.7, 0.5}, // brown
{0.6, 0.6, 1.0}, // light blue
{1.0, 0.7, 0.5}, // peach
{0.8, 0.5, 1.0}, // lavender
{0.6, 0.0, 0.0}, // dark red
{0.7, 0.6, 0.0}, // gold
{0.0, 0.0, 0.0} // black
};
// Ensure that the atexit handler only runs once.
static uint32_t statsPrinted = 0;
// output interface
static kmp_stats_output_module __kmp_stats_global_output;
/* ****************************************************** */
/* ************* statistic member functions ************* */
void statistic::addSample(double sample)
{
double delta = sample - meanVal;
sampleCount = sampleCount + 1;
meanVal = meanVal + delta/sampleCount;
m2 = m2 + delta*(sample - meanVal);
minVal = std::min(minVal, sample);
maxVal = std::max(maxVal, sample);
}
statistic & statistic::operator+= (const statistic & other)
{
if (sampleCount == 0)
{
*this = other;
return *this;
}
uint64_t newSampleCount = sampleCount + other.sampleCount;
double dnsc = double(newSampleCount);
double dsc = double(sampleCount);
double dscBydnsc = dsc/dnsc;
double dosc = double(other.sampleCount);
double delta = other.meanVal - meanVal;
// Try to order these calculations to avoid overflows.
// If this were Fortran, then the compiler would not be able to re-order over brackets.
// In C++ it may be legal to do that (we certainly hope it doesn't, and CC+ Programming Language 2nd edition
// suggests it shouldn't, since it says that exploitation of associativity can only be made if the operation
// really is associative (which floating addition isn't...)).
meanVal = meanVal*dscBydnsc + other.meanVal*(1-dscBydnsc);
m2 = m2 + other.m2 + dscBydnsc*dosc*delta*delta;
minVal = std::min (minVal, other.minVal);
maxVal = std::max (maxVal, other.maxVal);
sampleCount = newSampleCount;
return *this;
}
void statistic::scale(double factor)
{
minVal = minVal*factor;
maxVal = maxVal*factor;
meanVal= meanVal*factor;
m2 = m2*factor*factor;
return;
}
std::string statistic::format(char unit, bool total) const
{
std::string result = formatSI(sampleCount,9,' ');
result = result + std::string(", ") + formatSI(minVal, 9, unit);
result = result + std::string(", ") + formatSI(meanVal, 9, unit);
result = result + std::string(", ") + formatSI(maxVal, 9, unit);
if (total)
result = result + std::string(", ") + formatSI(meanVal*sampleCount, 9, unit);
result = result + std::string(", ") + formatSI(getSD(), 9, unit);
return result;
}
/* ********************************************************** */
/* ************* explicitTimer member functions ************* */
void explicitTimer::start(timer_e timerEnumValue) {
startTime = tsc_tick_count::now();
if(timeStat::logEvent(timerEnumValue)) {
__kmp_stats_thread_ptr->incrementNestValue();
}
return;
}
void explicitTimer::stop(timer_e timerEnumValue) {
if (startTime.getValue() == 0)
return;
tsc_tick_count finishTime = tsc_tick_count::now();
//stat->addSample ((tsc_tick_count::now() - startTime).ticks());
stat->addSample ((finishTime - startTime).ticks());
if(timeStat::logEvent(timerEnumValue)) {
__kmp_stats_thread_ptr->push_event(startTime.getValue() - __kmp_stats_start_time.getValue(), finishTime.getValue() - __kmp_stats_start_time.getValue(), __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
__kmp_stats_thread_ptr->decrementNestValue();
}
/* We accept the risk that we drop a sample because it really did start at t==0. */
startTime = 0;
return;
}
/* ******************************************************************* */
/* ************* kmp_stats_event_vector member functions ************* */
void kmp_stats_event_vector::deallocate() {
__kmp_free(events);
internal_size = 0;
allocated_size = 0;
events = NULL;
}
// This function is for qsort() which requires the compare function to return
// either a negative number if event1 < event2, a positive number if event1 > event2
// or zero if event1 == event2.
// This sorts by start time (lowest to highest).
int compare_two_events(const void* event1, const void* event2) {
kmp_stats_event* ev1 = (kmp_stats_event*)event1;
kmp_stats_event* ev2 = (kmp_stats_event*)event2;
if(ev1->getStart() < ev2->getStart()) return -1;
else if(ev1->getStart() > ev2->getStart()) return 1;
else return 0;
}
void kmp_stats_event_vector::sort() {
qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
}
/* *********************************************************** */
/* ************* kmp_stats_list member functions ************* */
// returns a pointer to newly created stats node
kmp_stats_list* kmp_stats_list::push_back(int gtid) {
kmp_stats_list* newnode = (kmp_stats_list*)__kmp_allocate(sizeof(kmp_stats_list));
// placement new, only requires space and pointer and initializes (so __kmp_allocate instead of C++ new[] is used)
new (newnode) kmp_stats_list();
newnode->setGtid(gtid);
newnode->prev = this->prev;
newnode->next = this;
newnode->prev->next = newnode;
newnode->next->prev = newnode;
return newnode;
}
void kmp_stats_list::deallocate() {
kmp_stats_list* ptr = this->next;
kmp_stats_list* delptr = this->next;
while(ptr != this) {
delptr = ptr;
ptr=ptr->next;
// placement new means we have to explicitly call destructor.
delptr->_event_vector.deallocate();
delptr->~kmp_stats_list();
__kmp_free(delptr);
}
}
kmp_stats_list::iterator kmp_stats_list::begin() {
kmp_stats_list::iterator it;
it.ptr = this->next;
return it;
}
kmp_stats_list::iterator kmp_stats_list::end() {
kmp_stats_list::iterator it;
it.ptr = this;
return it;
}
int kmp_stats_list::size() {
int retval;
kmp_stats_list::iterator it;
for(retval=0, it=begin(); it!=end(); it++, retval++) {}
return retval;
}
/* ********************************************************************* */
/* ************* kmp_stats_list::iterator member functions ************* */
kmp_stats_list::iterator::iterator() : ptr(NULL) {}
kmp_stats_list::iterator::~iterator() {}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
this->ptr = this->ptr->next;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
this->ptr = this->ptr->prev;
return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
this->ptr = this->ptr->prev;
return *this;
}
bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator & rhs) {
return this->ptr!=rhs.ptr;
}
bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator & rhs) {
return this->ptr==rhs.ptr;
}
kmp_stats_list* kmp_stats_list::iterator::operator*() const {
return this->ptr;
}
/* *************************************************************** */
/* ************* kmp_stats_output_module functions ************** */
const char* kmp_stats_output_module::outputFileName = NULL;
const char* kmp_stats_output_module::eventsFileName = NULL;
const char* kmp_stats_output_module::plotFileName = NULL;
int kmp_stats_output_module::printPerThreadFlag = 0;
int kmp_stats_output_module::printPerThreadEventsFlag = 0;
// init() is called very near the beginning of execution time in the constructor of __kmp_stats_global_output
void kmp_stats_output_module::init()
{
char * statsFileName = getenv("KMP_STATS_FILE");
eventsFileName = getenv("KMP_STATS_EVENTS_FILE");
plotFileName = getenv("KMP_STATS_PLOT_FILE");
char * threadStats = getenv("KMP_STATS_THREADS");
char * threadEvents = getenv("KMP_STATS_EVENTS");
// set the stats output filenames based on environment variables and defaults
outputFileName = statsFileName;
eventsFileName = eventsFileName ? eventsFileName : "events.dat";
plotFileName = plotFileName ? plotFileName : "events.plt";
// set the flags based on environment variables matching: true, on, 1, .true. , .t. , yes
printPerThreadFlag = __kmp_str_match_true(threadStats);
printPerThreadEventsFlag = __kmp_str_match_true(threadEvents);
if(printPerThreadEventsFlag) {
// assigns a color to each timer for printing
setupEventColors();
} else {
// will clear flag so that no event will be logged
timeStat::clearEventFlags();
}
return;
}
void kmp_stats_output_module::setupEventColors() {
int i;
int globalColorIndex = 0;
int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
for(i=0;i<TIMER_LAST;i++) {
if(timeStat::logEvent((timer_e)i)) {
timerColorInfo[i] = globalColorArray[globalColorIndex];
globalColorIndex = (globalColorIndex+1)%numGlobalColors;
}
}
return;
}
void kmp_stats_output_module::printStats(FILE *statsOut, statistic const * theStats, bool areTimers)
{
if (areTimers)
{
// Check if we have useful timers, since we don't print zero value timers we need to avoid
// printing a header and then no data.
bool haveTimers = false;
for (int s = 0; s<TIMER_LAST; s++)
{
if (theStats[s].getCount() != 0)
{
haveTimers = true;
break;
}
}
if (!haveTimers)
return;
}
// Print
const char * title = areTimers ? "Timer, SampleCount," : "Counter, ThreadCount,";
fprintf (statsOut, "%s Min, Mean, Max, Total, SD\n", title);
if (areTimers) {
for (int s = 0; s<TIMER_LAST; s++) {
statistic const * stat = &theStats[s];
if (stat->getCount() != 0) {
char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';
fprintf (statsOut, "%-25s, %s\n", timeStat::name(timer_e(s)), stat->format(tag, true).c_str());
}
}
} else { // Counters
for (int s = 0; s<COUNTER_LAST; s++) {
statistic const * stat = &theStats[s];
fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(s)), stat->format(' ', true).c_str());
}
}
}
void kmp_stats_output_module::printCounters(FILE * statsOut, counter const * theCounters)
{
// We print all the counters even if they are zero.
// That makes it easier to slice them into a spreadsheet if you need to.
fprintf (statsOut, "\nCounter, Count\n");
for (int c = 0; c<COUNTER_LAST; c++) {
counter const * stat = &theCounters[c];
fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(c)), formatSI(stat->getValue(), 9, ' ').c_str());
}
}
void kmp_stats_output_module::printEvents(FILE* eventsOut, kmp_stats_event_vector* theEvents, int gtid) {
// sort by start time before printing
theEvents->sort();
for (int i = 0; i < theEvents->size(); i++) {
kmp_stats_event ev = theEvents->at(i);
rgb_color color = getEventColor(ev.getTimerName());
fprintf(eventsOut, "%d %lu %lu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n",
gtid,
ev.getStart(),
ev.getStop(),
1.2 - (ev.getNestLevel() * 0.2),
color.r, color.g, color.b,
timeStat::name(ev.getTimerName())
);
}
return;
}
void kmp_stats_output_module::windupExplicitTimers()
{
// Wind up any explicit timers. We assume that it's fair at this point to just walk all the explcit timers in all threads
// and say "it's over".
// If the timer wasn't running, this won't record anything anyway.
kmp_stats_list::iterator it;
for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
for (int timer=0; timer<EXPLICIT_TIMER_LAST; timer++) {
(*it)->getExplicitTimer(explicit_timer_e(timer))->stop((timer_e)timer);
}
}
}
void kmp_stats_output_module::printPloticusFile() {
int i;
int size = __kmp_stats_list.size();
FILE* plotOut = fopen(plotFileName, "w+");
fprintf(plotOut, "#proc page\n"
" pagesize: 15 10\n"
" scale: 1.0\n\n");
fprintf(plotOut, "#proc getdata\n"
" file: %s\n\n",
eventsFileName);
fprintf(plotOut, "#proc areadef\n"
" title: OpenMP Sampling Timeline\n"
" titledetails: align=center size=16\n"
" rectangle: 1 1 13 9\n"
" xautorange: datafield=2,3\n"
" yautorange: -1 %d\n\n",
size);
fprintf(plotOut, "#proc xaxis\n"
" stubs: inc\n"
" stubdetails: size=12\n"
" label: Time (ticks)\n"
" labeldetails: size=14\n\n");
fprintf(plotOut, "#proc yaxis\n"
" stubs: inc 1\n"
" stubrange: 0 %d\n"
" stubdetails: size=12\n"
" label: Thread #\n"
" labeldetails: size=14\n\n",
size-1);
fprintf(plotOut, "#proc bars\n"
" exactcolorfield: 5\n"
" axis: x\n"
" locfield: 1\n"
" segmentfields: 2 3\n"
" barwidthfield: 4\n\n");
// create legend entries corresponding to the timer color
for(i=0;i<TIMER_LAST;i++) {
if(timeStat::logEvent((timer_e)i)) {
rgb_color c = getEventColor((timer_e)i);
fprintf(plotOut, "#proc legendentry\n"
" sampletype: color\n"
" label: %s\n"
" details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
timeStat::name((timer_e)i),
c.r, c.g, c.b);
}
}
fprintf(plotOut, "#proc legend\n"
" format: down\n"
" location: max max\n\n");
fclose(plotOut);
return;
}
void kmp_stats_output_module::outputStats(const char* heading)
{
statistic allStats[TIMER_LAST];
statistic allCounters[COUNTER_LAST];
// stop all the explicit timers for all threads
windupExplicitTimers();
FILE * eventsOut;
FILE * statsOut = outputFileName ? fopen (outputFileName, "a+") : stderr;
if (eventPrintingEnabled()) {
eventsOut = fopen(eventsFileName, "w+");
}
if (!statsOut)
statsOut = stderr;
fprintf(statsOut, "%s\n",heading);
// Accumulate across threads.
kmp_stats_list::iterator it;
for (it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
int t = (*it)->getGtid();
// Output per thread stats if requested.
if (perThreadPrintingEnabled()) {
fprintf (statsOut, "Thread %d\n", t);
printStats(statsOut, (*it)->getTimers(), true);
printCounters(statsOut, (*it)->getCounters());
fprintf(statsOut,"\n");
}
// Output per thread events if requested.
if (eventPrintingEnabled()) {
kmp_stats_event_vector events = (*it)->getEventVector();
printEvents(eventsOut, &events, t);
}
for (int s = 0; s<TIMER_LAST; s++) {
// See if we should ignore this timer when aggregating
if ((timeStat::masterOnly(timer_e(s)) && (t != 0)) || // Timer is only valid on the master and this thread is a worker
(timeStat::workerOnly(timer_e(s)) && (t == 0)) || // Timer is only valid on a worker and this thread is the master
timeStat::synthesized(timer_e(s)) // It's a synthesized stat, so there's no raw data for it.
)
{
continue;
}
statistic * threadStat = (*it)->getTimer(timer_e(s));
allStats[s] += *threadStat;
}
// Special handling for synthesized statistics.
// These just have to be coded specially here for now.
// At present we only have a few:
// The total parallel work done in each thread.
// The variance here makes it easy to see load imbalance over the whole program (though, of course,
// it's possible to have a code with awful load balance in every parallel region but perfect load
// balance oever the whole program.)
// The time spent in barriers in each thread.
allStats[TIMER_Total_work].addSample ((*it)->getTimer(TIMER_OMP_work)->getTotal());
// Time in explicit barriers.
allStats[TIMER_Total_barrier].addSample ((*it)->getTimer(TIMER_OMP_barrier)->getTotal());
for (int c = 0; c<COUNTER_LAST; c++) {
if (counter::masterOnly(counter_e(c)) && t != 0)
continue;
allCounters[c].addSample ((*it)->getCounter(counter_e(c))->getValue());
}
}
if (eventPrintingEnabled()) {
printPloticusFile();
fclose(eventsOut);
}
fprintf (statsOut, "Aggregate for all threads\n");
printStats (statsOut, &allStats[0], true);
fprintf (statsOut, "\n");
printStats (statsOut, &allCounters[0], false);
if (statsOut != stderr)
fclose(statsOut);
}
/* ************************************************** */
/* ************* exported C functions ************** */
// no name mangling for these functions, we want the c files to be able to get at these functions
extern "C" {
void __kmp_reset_stats()
{
kmp_stats_list::iterator it;
for(it = __kmp_stats_list.begin(); it != __kmp_stats_list.end(); it++) {
timeStat * timers = (*it)->getTimers();
counter * counters = (*it)->getCounters();
explicitTimer * eTimers = (*it)->getExplicitTimers();
for (int t = 0; t<TIMER_LAST; t++)
timers[t].reset();
for (int c = 0; c<COUNTER_LAST; c++)
counters[c].reset();
for (int t=0; t<EXPLICIT_TIMER_LAST; t++)
eTimers[t].reset();
// reset the event vector so all previous events are "erased"
(*it)->resetEventVector();
// May need to restart the explicit timers in thread zero?
}
KMP_START_EXPLICIT_TIMER(OMP_serial);
KMP_START_EXPLICIT_TIMER(OMP_start_end);
}
// This function will reset all stats and stop all threads' explicit timers if they haven't been stopped already.
void __kmp_output_stats(const char * heading)
{
__kmp_stats_global_output.outputStats(heading);
__kmp_reset_stats();
}
void __kmp_accumulate_stats_at_exit(void)
{
// Only do this once.
if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
return;
__kmp_output_stats("Statistics on exit");
return;
}
void __kmp_stats_init(void)
{
return;
}
} // extern "C"