blob: f5dd10f8baa8851efed4594acf10f98c449ab93a [file] [log] [blame]
/*! \file */
/*
* kmp.h -- KPTS runtime header file.
* $Revision: 42816 $
* $Date: 2013-11-11 15:33:37 -0600 (Mon, 11 Nov 2013) $
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#ifndef KMP_H
#define KMP_H
/* #define BUILD_PARALLEL_ORDERED 1 */
/* This fix replaces gettimeofday with clock_gettime for better scalability on
the Altix. Requires user code to be linked with -lrt.
*/
//#define FIX_SGI_CLOCK
/* Defines for OpenMP 3.0 tasking and auto scheduling */
#if OMP_30_ENABLED
# ifndef KMP_STATIC_STEAL_ENABLED
# define KMP_STATIC_STEAL_ENABLED 1
# endif
#define TASK_CURRENT_NOT_QUEUED 0
#define TASK_CURRENT_QUEUED 1
#define TASK_DEQUE_BITS 8 // Used solely to define TASK_DEQUE_SIZE and TASK_DEQUE_MASK.
#define TASK_DEQUE_SIZE ( 1 << TASK_DEQUE_BITS )
#define TASK_DEQUE_MASK ( TASK_DEQUE_SIZE - 1 )
#ifdef BUILD_TIED_TASK_STACK
#define TASK_STACK_EMPTY 0 // entries when the stack is empty
#define TASK_STACK_BLOCK_BITS 5 // Used to define TASK_STACK_SIZE and TASK_STACK_MASK
#define TASK_STACK_BLOCK_SIZE ( 1 << TASK_STACK_BLOCK_BITS ) // Number of entries in each task stack array
#define TASK_STACK_INDEX_MASK ( TASK_STACK_BLOCK_SIZE - 1 ) // Mask for determining index into stack block
#endif // BUILD_TIED_TASK_STACK
#define TASK_NOT_PUSHED 1
#define TASK_SUCCESSFULLY_PUSHED 0
#define TASK_TIED 1
#define TASK_UNTIED 0
#define TASK_EXPLICIT 1
#define TASK_IMPLICIT 0
#endif // OMP_30_ENABLED
#define KMP_CANCEL_THREADS
#define KMP_THREAD_ATTR
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include <signal.h>
/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad Microsoft library */
/* some macros provided below to replace some of these functions */
#ifndef __ABSOFT_WIN
#include <sys/types.h>
#endif
#include <limits.h>
#include <time.h>
#include <errno.h>
#include "kmp_os.h"
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
#include <xmmintrin.h>
#endif
#include "kmp_version.h"
#include "kmp_debug.h"
#include "kmp_lock.h"
#include "kmp_i18n.h"
#define KMP_HANDLE_SIGNALS (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN)
#ifdef KMP_SETVERSION
/* from factory/Include, to get VERSION_STRING embedded for 'what' */
#include "kaiconfig.h"
#include "eye.h"
#include "own.h"
#include "setversion.h"
#endif
#include "kmp_wrapper_malloc.h"
#if KMP_OS_UNIX
# include <unistd.h>
# if !defined NSIG && defined _NSIG
# define NSIG _NSIG
# endif
#endif
#if KMP_OS_LINUX
# pragma weak clock_gettime
#endif
/*Select data placement in NUMA memory */
#define NO_FIRST_TOUCH 0
#define FIRST_TOUCH 1 /* Exploit SGI's first touch page placement algo */
/* If not specified on compile command line, assume no first touch */
#ifndef BUILD_MEMORY
#define BUILD_MEMORY NO_FIRST_TOUCH
#endif
// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
// 3 - fast allocation using sync, non-sync free lists of any size, non-self free lists of limited size.
#ifndef USE_FAST_MEMORY
#define USE_FAST_MEMORY 3
#endif
// Assume using BGET compare_exchange instruction instead of lock by default.
#ifndef USE_CMP_XCHG_FOR_BGET
#define USE_CMP_XCHG_FOR_BGET 1
#endif
// Test to see if queuing lock is better than bootstrap lock for bget
// #ifndef USE_QUEUING_LOCK_FOR_BGET
// #define USE_QUEUING_LOCK_FOR_BGET
// #endif
#ifndef NSEC_PER_SEC
# define NSEC_PER_SEC 1000000000L
#endif
#ifndef USEC_PER_SEC
# define USEC_PER_SEC 1000000L
#endif
// For error messages
#define KMP_IOMP_NAME "Intel(R) OMP"
/*!
@ingroup BASIC_TYPES
@{
*/
// FIXME DOXYGEN... need to group these flags somehow (Making them an anonymous enum would do it...)
/*!
Values for bit flags used in the ident_t to describe the fields.
*/
/*! Use trampoline for internal microtasks */
#define KMP_IDENT_IMB 0x01
/*! Use c-style ident structure */
#define KMP_IDENT_KMPC 0x02
/* 0x04 is no longer used */
/*! Entry point generated by auto-parallelization */
#define KMP_IDENT_AUTOPAR 0x08
/*! Compiler generates atomic reduction option for kmpc_reduce* */
#define KMP_IDENT_ATOMIC_REDUCE 0x10
/*! To mark a 'barrier' directive in user code */
#define KMP_IDENT_BARRIER_EXPL 0x20
/*! To Mark implicit barriers. */
#define KMP_IDENT_BARRIER_IMPL 0x0040
#define KMP_IDENT_BARRIER_IMPL_MASK 0x01C0
#define KMP_IDENT_BARRIER_IMPL_FOR 0x0040
#define KMP_IDENT_BARRIER_IMPL_SECTIONS 0x00C0
#define KMP_IDENT_BARRIER_IMPL_SINGLE 0x0140
#define KMP_IDENT_BARRIER_IMPL_WORKSHARE 0x01C0
/*!
* The ident structure that describes a source location.
*/
typedef struct ident {
kmp_int32 reserved_1; /**< might be used in Fortran; see above */
kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC identifies this union member */
kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */
#if USE_ITT_BUILD
/* but currently used for storing region-specific ITT */
/* contextual information. */
#endif /* USE_ITT_BUILD */
kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */
char const *psource; /**< String describing the source location.
The string is composed of semi-colon separated fields which describe the source file,
the function and a pair of line numbers that delimit the construct.
*/
} ident_t;
/*!
@}
*/
// Some forward declarations.
typedef union kmp_team kmp_team_t;
typedef struct kmp_taskdata kmp_taskdata_t;
typedef union kmp_task_team kmp_task_team_t;
typedef union kmp_team kmp_team_p;
typedef union kmp_info kmp_info_p;
typedef union kmp_root kmp_root_p;
#ifdef __cplusplus
extern "C" {
#endif
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/* Pack two 32-bit signed integers into a 64-bit signed integer */
/* ToDo: Fix word ordering for big-endian machines. */
#define KMP_PACK_64(HIGH_32,LOW_32) \
( (kmp_int64) ((((kmp_uint64)(HIGH_32))<<32) | (kmp_uint64)(LOW_32)) )
/*
* Generic string manipulation macros.
* Assume that _x is of type char *
*/
#define SKIP_WS(_x) { while (*(_x) == ' ' || *(_x) == '\t') (_x)++; }
#define SKIP_DIGITS(_x) { while (*(_x) >= '0' && *(_x) <= '9') (_x)++; }
#define SKIP_TO(_x,_c) { while (*(_x) != '\0' && *(_x) != (_c)) (_x)++; }
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#define KMP_MAX( x, y ) ( (x) > (y) ? (x) : (y) )
#define KMP_MIN( x, y ) ( (x) < (y) ? (x) : (y) )
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/* Enumeration types */
enum kmp_state_timer {
ts_stop,
ts_start,
ts_pause,
ts_last_state
};
enum dynamic_mode {
dynamic_default,
#ifdef USE_LOAD_BALANCE
dynamic_load_balance,
#endif /* USE_LOAD_BALANCE */
dynamic_random,
dynamic_thread_limit,
dynamic_max
};
/* external schedule constants, duplicate enum omp_sched in omp.h in order to not include it here */
#ifndef KMP_SCHED_TYPE_DEFINED
#define KMP_SCHED_TYPE_DEFINED
typedef enum kmp_sched {
kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
// Note: need to adjust __kmp_sch_map global array in case this enum is changed
kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
kmp_sched_upper_std = 5, // upper bound for standard schedules
kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
// kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
kmp_sched_upper = 102,
kmp_sched_default = kmp_sched_static // default scheduling
} kmp_sched_t;
#endif
/*!
@ingroup WORK_SHARING
* Describes the loop schedule to be used for a parallel for loop.
*/
enum sched_type {
kmp_sch_lower = 32, /**< lower bound for unordered values */
kmp_sch_static_chunked = 33,
kmp_sch_static = 34, /**< static unspecialized */
kmp_sch_dynamic_chunked = 35,
kmp_sch_guided_chunked = 36, /**< guided unspecialized */
kmp_sch_runtime = 37,
kmp_sch_auto = 38, /**< auto */
kmp_sch_trapezoidal = 39,
/* accessible only through KMP_SCHEDULE environment variable */
kmp_sch_static_greedy = 40,
kmp_sch_static_balanced = 41,
/* accessible only through KMP_SCHEDULE environment variable */
kmp_sch_guided_iterative_chunked = 42,
kmp_sch_guided_analytical_chunked = 43,
kmp_sch_static_steal = 44, /**< accessible only through KMP_SCHEDULE environment variable */
/* accessible only through KMP_SCHEDULE environment variable */
kmp_sch_upper = 45, /**< upper bound for unordered values */
kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
kmp_ord_static_chunked = 65,
kmp_ord_static = 66, /**< ordered static unspecialized */
kmp_ord_dynamic_chunked = 67,
kmp_ord_guided_chunked = 68,
kmp_ord_runtime = 69,
kmp_ord_auto = 70, /**< ordered auto */
kmp_ord_trapezoidal = 71,
kmp_ord_upper = 72, /**< upper bound for ordered values */
#if OMP_40_ENABLED
/* Schedules for Distribute construct */
kmp_distribute_static_chunked = 91, /**< distribute static chunked */
kmp_distribute_static = 92, /**< distribute static unspecialized */
#endif
/*
* For the "nomerge" versions, kmp_dispatch_next*() will always return
* a single iteration/chunk, even if the loop is serialized. For the
* schedule types listed above, the entire iteration vector is returned
* if the loop is serialized. This doesn't work for gcc/gcomp sections.
*/
kmp_nm_lower = 160, /**< lower bound for nomerge values */
kmp_nm_static_chunked = (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
kmp_nm_static = 162, /**< static unspecialized */
kmp_nm_dynamic_chunked = 163,
kmp_nm_guided_chunked = 164, /**< guided unspecialized */
kmp_nm_runtime = 165,
kmp_nm_auto = 166, /**< auto */
kmp_nm_trapezoidal = 167,
/* accessible only through KMP_SCHEDULE environment variable */
kmp_nm_static_greedy = 168,
kmp_nm_static_balanced = 169,
/* accessible only through KMP_SCHEDULE environment variable */
kmp_nm_guided_iterative_chunked = 170,
kmp_nm_guided_analytical_chunked = 171,
kmp_nm_static_steal = 172, /* accessible only through OMP_SCHEDULE environment variable */
kmp_nm_ord_static_chunked = 193,
kmp_nm_ord_static = 194, /**< ordered static unspecialized */
kmp_nm_ord_dynamic_chunked = 195,
kmp_nm_ord_guided_chunked = 196,
kmp_nm_ord_runtime = 197,
kmp_nm_ord_auto = 198, /**< auto */
kmp_nm_ord_trapezoidal = 199,
kmp_nm_upper = 200, /**< upper bound for nomerge values */
kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
};
/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
typedef struct kmp_r_sched {
enum sched_type r_sched_type;
int chunk;
} kmp_r_sched_t;
extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our internal schedule types
enum library_type {
library_none,
library_serial,
library_turnaround,
library_throughput
};
#if KMP_OS_LINUX
enum clock_function_type {
clock_function_gettimeofday,
clock_function_clock_gettime
};
#endif /* KMP_OS_LINUX */
/* ------------------------------------------------------------------------ */
/* -- fast reduction stuff ------------------------------------------------ */
#undef KMP_FAST_REDUCTION_BARRIER
#define KMP_FAST_REDUCTION_BARRIER 1
#undef KMP_FAST_REDUCTION_CORE_DUO
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
#define KMP_FAST_REDUCTION_CORE_DUO 1
#endif
enum _reduction_method {
reduction_method_not_defined = 0,
critical_reduce_block = ( 1 << 8 ),
atomic_reduce_block = ( 2 << 8 ),
tree_reduce_block = ( 3 << 8 ),
empty_reduce_block = ( 4 << 8 )
};
// description of the packed_reduction_method variable
// the packed_reduction_method variable consists of two enum types variables that are packed together into 0-th byte and 1-st byte:
// 0: ( packed_reduction_method & 0x000000FF ) is a 'enum barrier_type' value of barrier that will be used in fast reduction: bs_plain_barrier or bs_reduction_barrier
// 1: ( packed_reduction_method & 0x0000FF00 ) is a reduction method that will be used in fast reduction;
// reduction method is of 'enum _reduction_method' type and it's defined the way so that the bits of 0-th byte are empty,
// so no need to execute a shift instruction while packing/unpacking
#if KMP_FAST_REDUCTION_BARRIER
#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method,barrier_type) \
( ( reduction_method ) | ( barrier_type ) )
#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
( ( enum _reduction_method )( ( packed_reduction_method ) & ( 0x0000FF00 ) ) )
#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
( ( enum barrier_type )( ( packed_reduction_method ) & ( 0x000000FF ) ) )
#else
#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method,barrier_type) \
( reduction_method )
#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
( packed_reduction_method )
#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
( bs_plain_barrier )
#endif
#define TEST_REDUCTION_METHOD(packed_reduction_method,which_reduction_block) \
( ( UNPACK_REDUCTION_METHOD( packed_reduction_method ) ) == ( which_reduction_block ) )
#if KMP_FAST_REDUCTION_BARRIER
#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
( PACK_REDUCTION_METHOD_AND_BARRIER( tree_reduce_block, bs_reduction_barrier ) )
#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
( PACK_REDUCTION_METHOD_AND_BARRIER( tree_reduce_block, bs_plain_barrier ) )
#endif
typedef int PACKED_REDUCTION_METHOD_T;
/* -- end of fast reduction stuff ----------------------------------------- */
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#if KMP_OS_WINDOWS
# define USE_CBLKDATA
# pragma warning( push )
# pragma warning( disable: 271 310 )
# include <windows.h>
# pragma warning( pop )
#endif
#if KMP_OS_UNIX
# include <pthread.h>
# include <dlfcn.h>
#endif
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/*
* Only Linux* OS and Windows* OS support thread affinity.
*/
#if (KMP_OS_LINUX || KMP_OS_WINDOWS) && !KMP_OS_CNK && !KMP_ARCH_PPC64
# define KMP_AFFINITY_SUPPORTED 1
#elif KMP_OS_DARWIN || KMP_OS_FREEBSD || KMP_OS_CNK || KMP_ARCH_PPC64
// affinity not supported
# define KMP_AFFINITY_SUPPORTED 0
#else
# error "Unknown or unsupported OS"
#endif
#if KMP_AFFINITY_SUPPORTED
extern size_t __kmp_affin_mask_size;
# define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
# define KMP_CPU_SETSIZE (__kmp_affin_mask_size * CHAR_BIT)
# if KMP_OS_LINUX
//
// On Linux* OS, the mask is actually a vector of length __kmp_affin_mask_size
// (in bytes). It should be allocated on a word boundary.
//
// WARNING!!! We have made the base type of the affinity mask unsigned char,
// in order to eliminate a lot of checks that the true system mask size is
// really a multiple of 4 bytes (on Linux* OS).
//
// THESE MACROS WON'T WORK PROPERLY ON BIG ENDIAN MACHINES!!!
//
typedef unsigned char kmp_affin_mask_t;
# define _KMP_CPU_SET(i,mask) (mask[i/CHAR_BIT] |= (((kmp_affin_mask_t)1) << (i % CHAR_BIT)))
# define KMP_CPU_SET(i,mask) _KMP_CPU_SET((i), ((kmp_affin_mask_t *)(mask)))
# define _KMP_CPU_ISSET(i,mask) (!!(mask[i/CHAR_BIT] & (((kmp_affin_mask_t)1) << (i % CHAR_BIT))))
# define KMP_CPU_ISSET(i,mask) _KMP_CPU_ISSET((i), ((kmp_affin_mask_t *)(mask)))
# define _KMP_CPU_CLR(i,mask) (mask[i/CHAR_BIT] &= ~(((kmp_affin_mask_t)1) << (i % CHAR_BIT)))
# define KMP_CPU_CLR(i,mask) _KMP_CPU_CLR((i), ((kmp_affin_mask_t *)(mask)))
# define KMP_CPU_ZERO(mask) \
{ \
size_t __i; \
for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \
((kmp_affin_mask_t *)(mask))[__i] = 0; \
} \
}
# define KMP_CPU_COPY(dest, src) \
{ \
size_t __i; \
for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \
((kmp_affin_mask_t *)(dest))[__i] \
= ((kmp_affin_mask_t *)(src))[__i]; \
} \
}
# define KMP_CPU_COMPLEMENT(mask) \
{ \
size_t __i; \
for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \
((kmp_affin_mask_t *)(mask))[__i] \
= ~((kmp_affin_mask_t *)(mask))[__i]; \
} \
}
# define KMP_CPU_UNION(dest, src) \
{ \
size_t __i; \
for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \
((kmp_affin_mask_t *)(dest))[__i] \
|= ((kmp_affin_mask_t *)(src))[__i]; \
} \
}
# endif /* KMP_OS_LINUX */
# if KMP_OS_WINDOWS
//
// On Windows* OS, the mask size is 4 bytes for IA-32 architecture, and on
// Intel(R) 64 it is 8 bytes times the number of processor groups.
//
# if KMP_ARCH_X86_64
typedef struct GROUP_AFFINITY {
KAFFINITY mask;
WORD group;
WORD reserved[3];
} GROUP_AFFINITY;
typedef DWORD_PTR kmp_affin_mask_t;
extern int __kmp_num_proc_groups;
# define _KMP_CPU_SET(i,mask) \
(mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] |= \
(((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t)))))
# define KMP_CPU_SET(i,mask) \
_KMP_CPU_SET((i), ((kmp_affin_mask_t *)(mask)))
# define _KMP_CPU_ISSET(i,mask) \
(!!(mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] & \
(((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t))))))
# define KMP_CPU_ISSET(i,mask) \
_KMP_CPU_ISSET((i), ((kmp_affin_mask_t *)(mask)))
# define _KMP_CPU_CLR(i,mask) \
(mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] &= \
~(((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t)))))
# define KMP_CPU_CLR(i,mask) \
_KMP_CPU_CLR((i), ((kmp_affin_mask_t *)(mask)))
# define KMP_CPU_ZERO(mask) \
{ \
int __i; \
for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \
((kmp_affin_mask_t *)(mask))[__i] = 0; \
} \
}
# define KMP_CPU_COPY(dest, src) \
{ \
int __i; \
for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \
((kmp_affin_mask_t *)(dest))[__i] \
= ((kmp_affin_mask_t *)(src))[__i]; \
} \
}
# define KMP_CPU_COMPLEMENT(mask) \
{ \
int __i; \
for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \
((kmp_affin_mask_t *)(mask))[__i] \
= ~((kmp_affin_mask_t *)(mask))[__i]; \
} \
}
# define KMP_CPU_UNION(dest, src) \
{ \
int __i; \
for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \
((kmp_affin_mask_t *)(dest))[__i] \
|= ((kmp_affin_mask_t *)(src))[__i]; \
} \
}
typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, GROUP_AFFINITY *);
extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
extern int __kmp_get_proc_group(kmp_affin_mask_t const *mask);
# else
typedef DWORD kmp_affin_mask_t; /* for compatibility with older winbase.h */
# define KMP_CPU_SET(i,mask) (*(mask) |= (((kmp_affin_mask_t)1) << (i)))
# define KMP_CPU_ISSET(i,mask) (!!(*(mask) & (((kmp_affin_mask_t)1) << (i))))
# define KMP_CPU_CLR(i,mask) (*(mask) &= ~(((kmp_affin_mask_t)1) << (i)))
# define KMP_CPU_ZERO(mask) (*(mask) = 0)
# define KMP_CPU_COPY(dest, src) (*(dest) = *(src))
# define KMP_CPU_COMPLEMENT(mask) (*(mask) = ~*(mask))
# define KMP_CPU_UNION(dest, src) (*(dest) |= *(src))
# endif /* KMP_ARCH_X86 */
# endif /* KMP_OS_WINDOWS */
//
// __kmp_allocate() will return memory allocated on a 4-bytes boundary.
// after zeroing it - it takes care of those assumptions stated above.
//
# define KMP_CPU_ALLOC(ptr) \
(ptr = ((kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size)))
# define KMP_CPU_FREE(ptr) __kmp_free(ptr)
//
// The following macro should be used to index an array of masks.
// The array should be declared as "kmp_affinity_t *" and allocated with
// size "__kmp_affinity_mask_size * len". The macro takes care of the fact
// that on Windows* OS, sizeof(kmp_affin_t) is really the size of the mask, but
// on Linux* OS, sizeof(kmp_affin_t) is 1.
//
# define KMP_CPU_INDEX(array,i) \
((kmp_affin_mask_t *)(((char *)(array)) + (i) * __kmp_affin_mask_size))
//
// Declare local char buffers with this size for printing debug and info
// messages, using __kmp_affinity_print_mask().
//
#define KMP_AFFIN_MASK_PRINT_LEN 1024
enum affinity_type {
affinity_none = 0,
affinity_physical,
affinity_logical,
affinity_compact,
affinity_scatter,
affinity_explicit,
#if KMP_MIC
affinity_balanced,
#endif
affinity_disabled, // not used outsize the env var parser
affinity_default
};
enum affinity_gran {
affinity_gran_fine = 0,
affinity_gran_thread,
affinity_gran_core,
affinity_gran_package,
affinity_gran_node,
#if KMP_OS_WINDOWS && KMP_ARCH_X86_64
//
// The "group" granularity isn't necesssarily coarser than all of the
// other levels, but we put it last in the enum.
//
affinity_gran_group,
#endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
affinity_gran_default
};
enum affinity_top_method {
affinity_top_method_all = 0, // try all (supported) methods, in order
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
affinity_top_method_apicid,
affinity_top_method_x2apicid,
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
#if KMP_OS_WINDOWS && KMP_ARCH_X86_64
affinity_top_method_group,
#endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */
affinity_top_method_flat,
affinity_top_method_default
};
#define affinity_respect_mask_default (-1)
extern enum affinity_type __kmp_affinity_type; /* Affinity type */
extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
extern int __kmp_affinity_gran_levels; /* corresponding int value */
extern int __kmp_affinity_dups; /* Affinity duplicate masks */
extern enum affinity_top_method __kmp_affinity_top_method;
extern int __kmp_affinity_compact; /* Affinity 'compact' value */
extern int __kmp_affinity_offset; /* Affinity offset value */
extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
extern int __kmp_affinity_respect_mask; /* Respect process' initial affinity mask? */
extern char * __kmp_affinity_proclist; /* proc ID list */
extern kmp_affin_mask_t *__kmp_affinity_masks;
extern unsigned __kmp_affinity_num_masks;
extern int __kmp_get_system_affinity(kmp_affin_mask_t *mask, int abort_on_error);
extern int __kmp_set_system_affinity(kmp_affin_mask_t const *mask, int abort_on_error);
extern void __kmp_affinity_bind_thread(int which);
# if KMP_OS_LINUX
extern kmp_affin_mask_t *__kmp_affinity_get_fullMask();
# endif /* KMP_OS_LINUX */
extern char const * __kmp_cpuinfo_file;
#endif /* KMP_AFFINITY_SUPPORTED */
#if OMP_40_ENABLED
//
// This needs to be kept in sync with the values in omp.h !!!
//
typedef enum kmp_proc_bind_t {
proc_bind_false = 0,
proc_bind_true,
proc_bind_master,
proc_bind_close,
proc_bind_spread,
proc_bind_disabled,
proc_bind_intel, // use KMP_AFFINITY interface
proc_bind_default
} kmp_proc_bind_t;
typedef struct kmp_nested_proc_bind_t {
kmp_proc_bind_t *bind_types;
int size;
int used;
} kmp_nested_proc_bind_t;
extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
# if KMP_AFFINITY_SUPPORTED
# define KMP_PLACE_ALL (-1)
# define KMP_PLACE_UNDEFINED (-2)
# endif /* KMP_AFFINITY_SUPPORTED */
extern int __kmp_affinity_num_places;
#endif /* OMP_40_ENABLED */
#if OMP_40_ENABLED
typedef enum kmp_cancel_kind_t {
cancel_noreq = 0,
cancel_parallel = 1,
cancel_loop = 2,
cancel_sections = 3,
cancel_taskgroup = 4
} kmp_cancel_kind_t;
#endif // OMP_40_ENABLED
#if KMP_MIC
extern unsigned int __kmp_place_num_cores;
extern unsigned int __kmp_place_num_threads_per_core;
extern unsigned int __kmp_place_core_offset;
#endif
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#define KMP_PAD(type, sz) (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
//
// We need to avoid using -1 as a GTID as +1 is added to the gtid
// when storing it in a lock, and the value 0 is reserved.
//
#define KMP_GTID_DNE (-2) /* Does not exist */
#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
#define KMP_GTID_UNKNOWN (-5) /* Is not known */
#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
#define __kmp_get_gtid() __kmp_get_global_thread_id()
#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
#define __kmp_tid_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), \
/*(__kmp_threads[ (gtid) ]->th.th_team_serialized) ? 0 : */ /* TODO remove this check, it is redundant */ \
__kmp_threads[ (gtid) ]->th.th_info.ds.ds_tid )
#define __kmp_get_tid() ( __kmp_tid_from_gtid( __kmp_get_gtid() ) )
#define __kmp_gtid_from_tid(tid,team) ( KMP_DEBUG_ASSERT( (tid) >= 0 && (team) != NULL ), \
team -> t.t_threads[ (tid) ] -> th.th_info .ds.ds_gtid )
#define __kmp_get_team() ( __kmp_threads[ (__kmp_get_gtid()) ]-> th.th_team )
#define __kmp_team_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), \
__kmp_threads[ (gtid) ]-> th.th_team )
#define __kmp_thread_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), __kmp_threads[ (gtid) ] )
#define __kmp_get_thread() ( __kmp_thread_from_gtid( __kmp_get_gtid() ) )
// Returns current thread (pointer to kmp_info_t). In contrast to __kmp_get_thread(), it works
// with registered and not-yet-registered threads.
#define __kmp_gtid_from_thread(thr) ( KMP_DEBUG_ASSERT( (thr) != NULL ), \
(thr)->th.th_info.ds.ds_gtid )
// AT: Which way is correct?
// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
#define __kmp_get_team_num_threads(gtid) ( __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc )
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#define KMP_UINT64_MAX (~((kmp_uint64)1<<((sizeof(kmp_uint64)*(1<<3))-1)))
#define KMP_MIN_NTH 1
#ifndef KMP_MAX_NTH
# ifdef PTHREAD_THREADS_MAX
# define KMP_MAX_NTH PTHREAD_THREADS_MAX
# else
# define KMP_MAX_NTH (32 * 1024)
# endif
#endif /* KMP_MAX_NTH */
#ifdef PTHREAD_STACK_MIN
# define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
#else
# define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
#endif
#define KMP_MAX_STKSIZE (~((size_t)1<<((sizeof(size_t)*(1<<3))-1)))
#if KMP_ARCH_X86
# define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
#elif KMP_ARCH_X86_64
# define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
# define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
#else
# define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
#endif
#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t) (1024 * 1024))
#define KMP_MIN_MALLOC_POOL_INCR ((size_t) (4 * 1024))
#define KMP_MAX_MALLOC_POOL_INCR (~((size_t)1<<((sizeof(size_t)*(1<<3))-1)))
#define KMP_MIN_STKOFFSET (0)
#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
#define KMP_MIN_MONITOR_WAKEUPS (1) /* min number of times monitor wakes up per second */
#define KMP_MAX_MONITOR_WAKEUPS (1000) /* maximum number of times monitor can wake up per second */
#define KMP_BLOCKTIME_MULTIPLIER (1000) /* number of blocktime units per second */
#define KMP_MIN_BLOCKTIME (0)
#define KMP_MAX_BLOCKTIME (INT_MAX) /* Must be this for "infinite" setting the work */
#define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
/* Calculate new number of monitor wakeups for a specific block time based on previous monitor_wakeups */
/* Only allow increasing number of wakeups */
#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
( ((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) : \
((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS : \
((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) ? (monitor_wakeups) : \
(KMP_BLOCKTIME_MULTIPLIER) / (blocktime) )
/* Calculate number of intervals for a specific block time based on monitor_wakeups */
#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
( ( (blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1 ) / \
(KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) )
#define KMP_MIN_STATSCOLS 40
#define KMP_MAX_STATSCOLS 4096
#define KMP_DEFAULT_STATSCOLS 80
#define KMP_MIN_INTERVAL 0
#define KMP_MAX_INTERVAL (INT_MAX-1)
#define KMP_DEFAULT_INTERVAL 0
#define KMP_MIN_CHUNK 1
#define KMP_MAX_CHUNK (INT_MAX-1)
#define KMP_DEFAULT_CHUNK 1
#define KMP_MIN_INIT_WAIT 1
#define KMP_MAX_INIT_WAIT (INT_MAX/2)
#define KMP_DEFAULT_INIT_WAIT 2048U
#define KMP_MIN_NEXT_WAIT 1
#define KMP_MAX_NEXT_WAIT (INT_MAX/2)
#define KMP_DEFAULT_NEXT_WAIT 1024U
// max possible dynamic loops in concurrent execution per team
#define KMP_MAX_DISP_BUF 7
#define KMP_MAX_ORDERED 8
#define KMP_MAX_FIELDS 32
#define KMP_MAX_BRANCH_BITS 31
#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
/* Minimum number of threads before switch to TLS gtid (experimentally determined) */
/* josh TODO: what about OS X* tuning? */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
# define KMP_TLS_GTID_MIN 5
#else
# define KMP_TLS_GTID_MIN INT_MAX
#endif
#define KMP_MASTER_TID(tid) ( (tid) == 0 )
#define KMP_WORKER_TID(tid) ( (tid) != 0 )
#define KMP_MASTER_GTID(gtid) ( __kmp_tid_from_gtid((gtid)) == 0 )
#define KMP_WORKER_GTID(gtid) ( __kmp_tid_from_gtid((gtid)) != 0 )
#define KMP_UBER_GTID(gtid) \
( \
KMP_DEBUG_ASSERT( (gtid) >= KMP_GTID_MIN ), \
KMP_DEBUG_ASSERT( (gtid) < __kmp_threads_capacity ), \
(gtid) >= 0 && __kmp_root[(gtid)] && __kmp_threads[(gtid)] && \
(__kmp_threads[(gtid)] == __kmp_root[(gtid)]->r.r_uber_thread)\
)
#define KMP_INITIAL_GTID(gtid) ( (gtid) == 0 )
#ifndef TRUE
#define FALSE 0
#define TRUE (! FALSE)
#endif
/* NOTE: all of the following constants must be even */
#if KMP_OS_WINDOWS
# define KMP_INIT_WAIT 64U /* initial number of spin-tests */
# define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
#elif KMP_OS_CNK
# define KMP_INIT_WAIT 16U /* initial number of spin-tests */
# define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */
#elif KMP_OS_LINUX
# define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
# define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
#elif KMP_OS_DARWIN || KMP_OS_FREEBSD
/* TODO: tune for OS */
# define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
# define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
#else
# error "Unknown or unsupported OS"
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
struct kmp_cpuid {
kmp_uint32 eax;
kmp_uint32 ebx;
kmp_uint32 ecx;
kmp_uint32 edx;
};
extern void __kmp_x86_cpuid( int mode, int mode2, struct kmp_cpuid *p );
# if KMP_MIC
static void __kmp_x86_pause( void ) { _mm_delay_32( 100 ); };
# else
extern void __kmp_x86_pause( void );
# endif
# define KMP_CPU_PAUSE() __kmp_x86_pause()
#elif KMP_ARCH_PPC64
# define KMP_PPC64_PRI_LOW() __asm__ volatile ("or 1, 1, 1")
# define KMP_PPC64_PRI_MED() __asm__ volatile ("or 2, 2, 2")
# define KMP_PPC64_PRI_LOC_MB() __asm__ volatile ("" : : : "memory")
# define KMP_CPU_PAUSE() do { KMP_PPC64_PRI_LOW(); KMP_PPC64_PRI_MED(); KMP_PPC64_PRI_LOC_MB(); } while (0)
#else
# define KMP_CPU_PAUSE() /* nothing to do */
#endif
#define KMP_INIT_YIELD(count) { (count) = __kmp_yield_init; }
#define KMP_YIELD(cond) { KMP_CPU_PAUSE(); __kmp_static_yield( (cond) ); }
// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
// there should be no yielding since the starting value from KMP_INIT_YIELD() is odd.
#define KMP_YIELD_WHEN(cond,count) { KMP_CPU_PAUSE(); (count) -= 2; \
if (!(count)) { KMP_YIELD(cond); (count) = __kmp_yield_next; } }
#define KMP_YIELD_SPIN(count) { KMP_CPU_PAUSE(); (count) -=2; \
if (!(count)) { KMP_YIELD(1); (count) = __kmp_yield_next; } }
/* ------------------------------------------------------------------------ */
/* Support datatypes for the orphaned construct nesting checks. */
/* ------------------------------------------------------------------------ */
enum cons_type {
ct_none,
ct_parallel,
ct_pdo,
ct_pdo_ordered,
ct_psections,
ct_psingle,
/* the following must be left in order and not split up */
ct_taskq,
ct_task, /* really task inside non-ordered taskq, considered a worksharing type */
ct_task_ordered, /* really task inside ordered taskq, considered a worksharing type */
/* the preceding must be left in order and not split up */
ct_critical,
ct_ordered_in_parallel,
ct_ordered_in_pdo,
ct_ordered_in_taskq,
ct_master,
ct_reduce,
ct_barrier
};
/* test to see if we are in a taskq construct */
# define IS_CONS_TYPE_TASKQ( ct ) ( ((int)(ct)) >= ((int)ct_taskq) && ((int)(ct)) <= ((int)ct_task_ordered) )
# define IS_CONS_TYPE_ORDERED( ct ) ((ct) == ct_pdo_ordered || (ct) == ct_task_ordered)
struct cons_data {
ident_t const *ident;
enum cons_type type;
int prev;
kmp_user_lock_p name; /* address exclusively for critical section name comparison */
};
struct cons_header {
int p_top, w_top, s_top;
int stack_size, stack_top;
struct cons_data *stack_data;
};
struct kmp_region_info {
char *text;
int offset[KMP_MAX_FIELDS];
int length[KMP_MAX_FIELDS];
};
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#if KMP_OS_WINDOWS
typedef HANDLE kmp_thread_t;
typedef DWORD kmp_key_t;
#endif /* KMP_OS_WINDOWS */
#if KMP_OS_UNIX
typedef pthread_t kmp_thread_t;
typedef pthread_key_t kmp_key_t;
#endif
extern kmp_key_t __kmp_gtid_threadprivate_key;
typedef struct kmp_sys_info {
long maxrss; /* the maximum resident set size utilized (in kilobytes) */
long minflt; /* the number of page faults serviced without any I/O */
long majflt; /* the number of page faults serviced that required I/O */
long nswap; /* the number of times a process was "swapped" out of memory */
long inblock; /* the number of times the file system had to perform input */
long oublock; /* the number of times the file system had to perform output */
long nvcsw; /* the number of times a context switch was voluntarily */
long nivcsw; /* the number of times a context switch was forced */
} kmp_sys_info_t;
typedef struct kmp_cpuinfo {
int initialized; // If 0, other fields are not initialized.
int signature; // CPUID(1).EAX
int family; // CPUID(1).EAX[27:20] + CPUID(1).EAX[11:8] ( Extended Family + Family )
int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended Model << 4 ) + Model)
int stepping; // CPUID(1).EAX[3:0] ( Stepping )
int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
int cpu_stackoffset;
int apic_id;
int physical_id;
int logical_id;
kmp_uint64 frequency; // Nominal CPU frequency in Hz.
} kmp_cpuinfo_t;
#ifdef BUILD_TV
struct tv_threadprivate {
/* Record type #1 */
void *global_addr;
void *thread_addr;
};
struct tv_data {
struct tv_data *next;
void *type;
union tv_union {
struct tv_threadprivate tp;
} u;
};
extern kmp_key_t __kmp_tv_key;
#endif /* BUILD_TV */
/* ------------------------------------------------------------------------ */
#if USE_ITT_BUILD
// We cannot include "kmp_itt.h" due to circular dependency. Declare the only required type here.
// Later we will check the type meets requirements.
typedef int kmp_itt_mark_t;
#define KMP_ITT_DEBUG 0
#endif /* USE_ITT_BUILD */
/* ------------------------------------------------------------------------ */
/*
* Taskq data structures
*/
#define HIGH_WATER_MARK(nslots) (((nslots) * 3) / 4)
#define __KMP_TASKQ_THUNKS_PER_TH 1 /* num thunks that each thread can simultaneously execute from a task queue */
/* flags for taskq_global_flags, kmp_task_queue_t tq_flags, kmpc_thunk_t th_flags */
#define TQF_IS_ORDERED 0x0001 /* __kmpc_taskq interface, taskq ordered */
#define TQF_IS_LASTPRIVATE 0x0002 /* __kmpc_taskq interface, taskq with lastprivate list */
#define TQF_IS_NOWAIT 0x0004 /* __kmpc_taskq interface, end taskq nowait */
#define TQF_HEURISTICS 0x0008 /* __kmpc_taskq interface, use heuristics to decide task queue size */
#define TQF_INTERFACE_RESERVED1 0x0010 /* __kmpc_taskq interface, reserved for future use */
#define TQF_INTERFACE_RESERVED2 0x0020 /* __kmpc_taskq interface, reserved for future use */
#define TQF_INTERFACE_RESERVED3 0x0040 /* __kmpc_taskq interface, reserved for future use */
#define TQF_INTERFACE_RESERVED4 0x0080 /* __kmpc_taskq interface, reserved for future use */
#define TQF_INTERFACE_FLAGS 0x00ff /* all the __kmpc_taskq interface flags */
#define TQF_IS_LAST_TASK 0x0100 /* internal/read by instrumentation; only used with TQF_IS_LASTPRIVATE */
#define TQF_TASKQ_TASK 0x0200 /* internal use only; this thunk->th_task is the taskq_task */
#define TQF_RELEASE_WORKERS 0x0400 /* internal use only; must release worker threads once ANY queued task exists (global) */
#define TQF_ALL_TASKS_QUEUED 0x0800 /* internal use only; notify workers that master has finished enqueuing tasks */
#define TQF_PARALLEL_CONTEXT 0x1000 /* internal use only: this queue encountered in a parallel context: not serialized */
#define TQF_DEALLOCATED 0x2000 /* internal use only; this queue is on the freelist and not in use */
#define TQF_INTERNAL_FLAGS 0x3f00 /* all the internal use only flags */
typedef struct KMP_ALIGN_CACHE kmpc_aligned_int32_t {
kmp_int32 ai_data;
} kmpc_aligned_int32_t;
typedef struct KMP_ALIGN_CACHE kmpc_aligned_queue_slot_t {
struct kmpc_thunk_t *qs_thunk;
} kmpc_aligned_queue_slot_t;
typedef struct kmpc_task_queue_t {
/* task queue linkage fields for n-ary tree of queues (locked with global taskq_tree_lck) */
kmp_lock_t tq_link_lck; /* lock for child link, child next/prev links and child ref counts */
union {
struct kmpc_task_queue_t *tq_parent; /* pointer to parent taskq, not locked */
struct kmpc_task_queue_t *tq_next_free; /* for taskq internal freelists, locked with global taskq_freelist_lck */
} tq;
volatile struct kmpc_task_queue_t *tq_first_child; /* pointer to linked-list of children, locked by tq's tq_link_lck */
struct kmpc_task_queue_t *tq_next_child; /* next child in linked-list, locked by parent tq's tq_link_lck */
struct kmpc_task_queue_t *tq_prev_child; /* previous child in linked-list, locked by parent tq's tq_link_lck */
volatile kmp_int32 tq_ref_count; /* reference count of threads with access to this task queue */
/* (other than the thread executing the kmpc_end_taskq call) */
/* locked by parent tq's tq_link_lck */
/* shared data for task queue */
struct kmpc_aligned_shared_vars_t *tq_shareds; /* per-thread array of pointers to shared variable structures */
/* only one array element exists for all but outermost taskq */
/* bookkeeping for ordered task queue */
kmp_uint32 tq_tasknum_queuing; /* ordered task number assigned while queuing tasks */
volatile kmp_uint32 tq_tasknum_serving; /* ordered number of next task to be served (executed) */
/* thunk storage management for task queue */
kmp_lock_t tq_free_thunks_lck; /* lock for thunk freelist manipulation */
struct kmpc_thunk_t *tq_free_thunks; /* thunk freelist, chained via th.th_next_free */
struct kmpc_thunk_t *tq_thunk_space; /* space allocated for thunks for this task queue */
/* data fields for queue itself */
kmp_lock_t tq_queue_lck; /* lock for [de]enqueue operations: tq_queue, tq_head, tq_tail, tq_nfull */
kmpc_aligned_queue_slot_t *tq_queue; /* array of queue slots to hold thunks for tasks */
volatile struct kmpc_thunk_t *tq_taskq_slot; /* special slot for taskq task thunk, occupied if not NULL */
kmp_int32 tq_nslots; /* # of tq_thunk_space thunks alloc'd (not incl. tq_taskq_slot space) */
kmp_int32 tq_head; /* enqueue puts next item in here (index into tq_queue array) */
kmp_int32 tq_tail; /* dequeue takes next item out of here (index into tq_queue array) */
volatile kmp_int32 tq_nfull; /* # of occupied entries in task queue right now */
kmp_int32 tq_hiwat; /* high-water mark for tq_nfull and queue scheduling */
volatile kmp_int32 tq_flags; /* TQF_xxx */
/* bookkeeping for outstanding thunks */
struct kmpc_aligned_int32_t *tq_th_thunks; /* per-thread array for # of regular thunks currently being executed */
kmp_int32 tq_nproc; /* number of thunks in the th_thunks array */
/* statistics library bookkeeping */
ident_t *tq_loc; /* source location information for taskq directive */
} kmpc_task_queue_t;
typedef void (*kmpc_task_t) (kmp_int32 global_tid, struct kmpc_thunk_t *thunk);
/* sizeof_shareds passed as arg to __kmpc_taskq call */
typedef struct kmpc_shared_vars_t { /* aligned during dynamic allocation */
kmpc_task_queue_t *sv_queue;
/* (pointers to) shared vars */
} kmpc_shared_vars_t;
typedef struct KMP_ALIGN_CACHE kmpc_aligned_shared_vars_t {
volatile struct kmpc_shared_vars_t *ai_data;
} kmpc_aligned_shared_vars_t;
/* sizeof_thunk passed as arg to kmpc_taskq call */
typedef struct kmpc_thunk_t { /* aligned during dynamic allocation */
union { /* field used for internal freelists too */
kmpc_shared_vars_t *th_shareds;
struct kmpc_thunk_t *th_next_free; /* freelist of individual thunks within queue, head at tq_free_thunks */
} th;
kmpc_task_t th_task; /* taskq_task if flags & TQF_TASKQ_TASK */
struct kmpc_thunk_t *th_encl_thunk; /* pointer to dynamically enclosing thunk on this thread's call stack */
kmp_int32 th_flags; /* TQF_xxx (tq_flags interface plus possible internal flags) */
kmp_int32 th_status;
kmp_uint32 th_tasknum; /* task number assigned in order of queuing, used for ordered sections */
/* private vars */
} kmpc_thunk_t;
typedef struct KMP_ALIGN_CACHE kmp_taskq {
int tq_curr_thunk_capacity;
kmpc_task_queue_t *tq_root;
kmp_int32 tq_global_flags;
kmp_lock_t tq_freelist_lck;
kmpc_task_queue_t *tq_freelist;
kmpc_thunk_t **tq_curr_thunk;
} kmp_taskq_t;
/* END Taskq data structures */
/* --------------------------------------------------------------------------- */
typedef kmp_int32 kmp_critical_name[8];
/*!
@ingroup PARALLEL
The type for a microtask which gets passed to @ref __kmpc_fork_call().
The arguments to the outlined function are
@param global_tid the global thread identity of the thread executing the function.
@param bound_tid the local identitiy of the thread executing the function
@param ... pointers to shared variables accessed by the function.
*/
typedef void (*kmpc_micro) ( kmp_int32 * global_tid, kmp_int32 * bound_tid, ... );
typedef void (*kmpc_micro_bound) ( kmp_int32 * bound_tid, kmp_int32 * bound_nth, ... );
/*!
@ingroup THREADPRIVATE
@{
*/
/* --------------------------------------------------------------------------- */
/* Threadprivate initialization/finalization function declarations */
/* for non-array objects: __kmpc_threadprivate_register() */
/*!
Pointer to the constructor function.
The first argument is the <tt>this</tt> pointer
*/
typedef void *(*kmpc_ctor) (void *);
/*!
Pointer to the destructor function.
The first argument is the <tt>this</tt> pointer
*/
typedef void (*kmpc_dtor) (void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel compiler */
/*!
Pointer to an alternate constructor.
The first argument is the <tt>this</tt> pointer.
*/
typedef void *(*kmpc_cctor) (void *, void *);
/* for array objects: __kmpc_threadprivate_register_vec() */
/* First arg: "this" pointer */
/* Last arg: number of array elements */
/*!
Array constructor.
First argument is the <tt>this</tt> pointer
Second argument the number of array elements.
*/
typedef void *(*kmpc_ctor_vec) (void *, size_t);
/*!
Pointer to the array destructor function.
The first argument is the <tt>this</tt> pointer
Second argument the number of array elements.
*/
typedef void (*kmpc_dtor_vec) (void *, size_t);
/*!
Array constructor.
First argument is the <tt>this</tt> pointer
Third argument the number of array elements.
*/
typedef void *(*kmpc_cctor_vec) (void *, void *, size_t); /* function unused by compiler */
/*!
@}
*/
/* ------------------------------------------------------------------------ */
/* keeps tracked of threadprivate cache allocations for cleanup later */
typedef struct kmp_cached_addr {
void **addr; /* address of allocated cache */
struct kmp_cached_addr *next; /* pointer to next cached address */
} kmp_cached_addr_t;
struct private_data {
struct private_data *next; /* The next descriptor in the list */
void *data; /* The data buffer for this descriptor */
int more; /* The repeat count for this descriptor */
size_t size; /* The data size for this descriptor */
};
struct private_common {
struct private_common *next;
struct private_common *link;
void *gbl_addr;
void *par_addr; /* par_addr == gbl_addr for MASTER thread */
size_t cmn_size;
};
struct shared_common
{
struct shared_common *next;
struct private_data *pod_init;
void *obj_init;
void *gbl_addr;
union {
kmpc_ctor ctor;
kmpc_ctor_vec ctorv;
} ct;
union {
kmpc_cctor cctor;
kmpc_cctor_vec cctorv;
} cct;
union {
kmpc_dtor dtor;
kmpc_dtor_vec dtorv;
} dt;
size_t vec_len;
int is_vec;
size_t cmn_size;
};
#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
#define KMP_HASH_TABLE_SIZE (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
#define KMP_HASH(x) ((((kmp_uintptr_t) x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE-1))
struct common_table {
struct private_common *data[ KMP_HASH_TABLE_SIZE ];
};
struct shared_table {
struct shared_common *data[ KMP_HASH_TABLE_SIZE ];
};
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#ifdef KMP_STATIC_STEAL_ENABLED
typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
kmp_int32 count;
kmp_int32 ub;
/* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
kmp_int32 lb;
kmp_int32 st;
kmp_int32 tc;
kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put after ub */
// KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
// a) parm3 is properly aligned and
// b) all parm1-4 are in the same cache line.
// Because of parm1-4 are used together, performance seems to be better
// if they are in the same line (not measured though).
struct KMP_ALIGN( 32 ) { // AC: changed 16 to 32 in order to simplify template
kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
kmp_int32 parm2; // make no real change at least while padding is off.
kmp_int32 parm3;
kmp_int32 parm4;
};
kmp_uint32 ordered_lower;
kmp_uint32 ordered_upper;
#if KMP_OS_WINDOWS
// This var can be placed in the hole between 'tc' and 'parm1', instead of 'static_steal_counter'.
// It would be nice to measure execution times.
// Conditional if/endif can be removed at all.
kmp_int32 last_upper;
#endif /* KMP_OS_WINDOWS */
} dispatch_private_info32_t;
typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
kmp_int64 count; /* current chunk number for static and static-steal scheduling*/
kmp_int64 ub; /* upper-bound */
/* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
kmp_int64 lb; /* lower-bound */
kmp_int64 st; /* stride */
kmp_int64 tc; /* trip count (number of iterations) */
kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put after ub */
/* parm[1-4] are used in different ways by different scheduling algorithms */
// KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
// a) parm3 is properly aligned and
// b) all parm1-4 are in the same cache line.
// Because of parm1-4 are used together, performance seems to be better
// if they are in the same line (not measured though).
struct KMP_ALIGN( 32 ) {
kmp_int64 parm1;
kmp_int64 parm2;
kmp_int64 parm3;
kmp_int64 parm4;
};
kmp_uint64 ordered_lower;
kmp_uint64 ordered_upper;
#if KMP_OS_WINDOWS
// This var can be placed in the hole between 'tc' and 'parm1', instead of 'static_steal_counter'.
// It would be nice to measure execution times.
// Conditional if/endif can be removed at all.
kmp_int64 last_upper;
#endif /* KMP_OS_WINDOWS */
} dispatch_private_info64_t;
#else /* KMP_STATIC_STEAL_ENABLED */
typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
kmp_int32 lb;
kmp_int32 ub;
kmp_int32 st;
kmp_int32 tc;
kmp_int32 parm1;
kmp_int32 parm2;
kmp_int32 parm3;
kmp_int32 parm4;
kmp_int32 count;
kmp_uint32 ordered_lower;
kmp_uint32 ordered_upper;
#if KMP_OS_WINDOWS
kmp_int32 last_upper;
#endif /* KMP_OS_WINDOWS */
} dispatch_private_info32_t;
typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
kmp_int64 lb; /* lower-bound */
kmp_int64 ub; /* upper-bound */
kmp_int64 st; /* stride */
kmp_int64 tc; /* trip count (number of iterations) */
/* parm[1-4] are used in different ways by different scheduling algorithms */
kmp_int64 parm1;
kmp_int64 parm2;
kmp_int64 parm3;
kmp_int64 parm4;
kmp_int64 count; /* current chunk number for static scheduling */
kmp_uint64 ordered_lower;
kmp_uint64 ordered_upper;
#if KMP_OS_WINDOWS
kmp_int64 last_upper;
#endif /* KMP_OS_WINDOWS */
} dispatch_private_info64_t;
#endif /* KMP_STATIC_STEAL_ENABLED */
typedef struct KMP_ALIGN_CACHE dispatch_private_info {
union private_info {
dispatch_private_info32_t p32;
dispatch_private_info64_t p64;
} u;
enum sched_type schedule; /* scheduling algorithm */
kmp_int32 ordered; /* ordered clause specified */
kmp_int32 ordered_bumped;
kmp_int32 ordered_dummy[KMP_MAX_ORDERED-3]; // to retain the structure size after making ordered_iteration scalar
struct dispatch_private_info * next; /* stack of buffers for nest of serial regions */
kmp_int32 nomerge; /* don't merge iters if serialized */
kmp_int32 type_size; /* the size of types in private_info */
enum cons_type pushed_ws;
} dispatch_private_info_t;
typedef struct dispatch_shared_info32 {
/* chunk index under dynamic, number of idle threads under static-steal;
iteration index otherwise */
volatile kmp_uint32 iteration;
volatile kmp_uint32 num_done;
volatile kmp_uint32 ordered_iteration;
kmp_int32 ordered_dummy[KMP_MAX_ORDERED-1]; // to retain the structure size after making ordered_iteration scalar
} dispatch_shared_info32_t;
typedef struct dispatch_shared_info64 {
/* chunk index under dynamic, number of idle threads under static-steal;
iteration index otherwise */
volatile kmp_uint64 iteration;
volatile kmp_uint64 num_done;
volatile kmp_uint64 ordered_iteration;
kmp_int64 ordered_dummy[KMP_MAX_ORDERED-1]; // to retain the structure size after making ordered_iteration scalar
} dispatch_shared_info64_t;
typedef struct dispatch_shared_info {
union shared_info {
dispatch_shared_info32_t s32;
dispatch_shared_info64_t s64;
} u;
/* volatile kmp_int32 dispatch_abort; depricated */
volatile kmp_uint32 buffer_index;
} dispatch_shared_info_t;
typedef struct kmp_disp {
/* Vector for ORDERED SECTION */
void (*th_deo_fcn)( int * gtid, int * cid, ident_t *);
/* Vector for END ORDERED SECTION */
void (*th_dxo_fcn)( int * gtid, int * cid, ident_t *);
dispatch_shared_info_t *th_dispatch_sh_current;
dispatch_private_info_t *th_dispatch_pr_current;
dispatch_private_info_t *th_disp_buffer;
kmp_int32 th_disp_index;
void* dummy_padding[2]; // make it 64 bytes on Intel(R) 64
} kmp_disp_t;
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/* Barrier stuff */
/* constants for barrier state update */
#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
#define KMP_BARRIER_UNUSED_BIT 1 /* bit that must never be set for valid state */
#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
#define KMP_BARRIER_SLEEP_STATE ((kmp_uint) (1 << KMP_BARRIER_SLEEP_BIT))
#define KMP_BARRIER_UNUSED_STATE ((kmp_uint) (1 << KMP_BARRIER_UNUSED_BIT))
#define KMP_BARRIER_STATE_BUMP ((kmp_uint) (1 << KMP_BARRIER_BUMP_BIT))
#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
# error "Barrier sleep bit must be smaller than barrier bump bit"
#endif
#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
# error "Barrier unused bit must be smaller than barrier bump bit"
#endif
enum barrier_type {
bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction barriers if enabled) */
bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
#if KMP_FAST_REDUCTION_BARRIER
bs_reduction_barrier, /* 2, All barriers that are used in reduction */
#endif // KMP_FAST_REDUCTION_BARRIER
bs_last_barrier /* Just a placeholder to mark the end */
};
// to work with reduction barriers just like with plain barriers
#if !KMP_FAST_REDUCTION_BARRIER
#define bs_reduction_barrier bs_plain_barrier
#endif // KMP_FAST_REDUCTION_BARRIER
typedef enum kmp_bar_pat { /* Barrier communication patterns */
bp_linear_bar = 0, /* Single level (degenerate) tree */
bp_tree_bar = 1, /* Balanced tree with branching factor 2^n */
bp_hyper_bar = 2, /* Hypercube-embedded tree with min branching factor 2^n */
bp_last_bar = 3 /* Placeholder to mark the end */
} kmp_bar_pat_e;
/* Thread barrier needs volatile barrier fields */
typedef struct KMP_ALIGN_CACHE kmp_bstate {
volatile kmp_uint b_arrived; /* STATE => task reached synch point. */
#if (KMP_PERF_V19 == KMP_ON)
KMP_ALIGN_CACHE
#endif
volatile kmp_uint b_go; /* STATE => task should proceed. */
} kmp_bstate_t;
union KMP_ALIGN_CACHE kmp_barrier_union {
double b_align; /* use worst case alignment */
char b_pad[ KMP_PAD(kmp_bstate_t, CACHE_LINE) ];
kmp_bstate_t bb;
};
typedef union kmp_barrier_union kmp_balign_t;
/* Team barrier needs only non-volatile arrived counter */
union KMP_ALIGN_CACHE kmp_barrier_team_union {
double b_align; /* use worst case alignment */
char b_pad[ CACHE_LINE ];
struct {
kmp_uint b_arrived; /* STATE => task reached synch point. */
};
};
typedef union kmp_barrier_team_union kmp_balign_team_t;
/*
* Padding for Linux* OS pthreads condition variables and mutexes used to signal
* threads when a condition changes. This is to workaround an NPTL bug
* where padding was added to pthread_cond_t which caused the initialization
* routine to write outside of the structure if compiled on pre-NPTL threads.
*/
#if KMP_OS_WINDOWS
typedef struct kmp_win32_mutex
{
/* The Lock */
CRITICAL_SECTION cs;
} kmp_win32_mutex_t;
typedef struct kmp_win32_cond
{
/* Count of the number of waiters. */
int waiters_count_;
/* Serialize access to <waiters_count_> */
kmp_win32_mutex_t waiters_count_lock_;
/* Number of threads to release via a <cond_broadcast> or a */
/* <cond_signal> */
int release_count_;
/* Keeps track of the current "generation" so that we don't allow */
/* one thread to steal all the "releases" from the broadcast. */
int wait_generation_count_;
/* A manual-reset event that's used to block and release waiting */
/* threads. */
HANDLE event_;
} kmp_win32_cond_t;
#endif
#if KMP_OS_UNIX
union KMP_ALIGN_CACHE kmp_cond_union {
double c_align;
char c_pad[ CACHE_LINE ];
pthread_cond_t c_cond;
};
typedef union kmp_cond_union kmp_cond_align_t;
union KMP_ALIGN_CACHE kmp_mutex_union {
double m_align;
char m_pad[ CACHE_LINE ];
pthread_mutex_t m_mutex;
};
typedef union kmp_mutex_union kmp_mutex_align_t;
#endif /* KMP_OS_UNIX */
typedef struct kmp_desc_base {
void *ds_stackbase;
size_t ds_stacksize;
int ds_stackgrow;
kmp_thread_t ds_thread;
volatile int ds_tid;
int ds_gtid;
#if KMP_OS_WINDOWS
volatile int ds_alive;
DWORD ds_thread_id;
/*
ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. However,
debugger support (libomp_db) cannot work with handles, because they uncomparable. For
example, debugger requests info about thread with handle h. h is valid within debugger
process, and meaningless within debugee process. Even if h is duped by call to
DuplicateHandle(), so the result h' is valid within debugee process, but it is a *new*
handle which does *not* equal to any other handle in debugee... The only way to
compare handles is convert them to system-wide ids. GetThreadId() function is
available only in Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is
available on all Windows* OS flavours (including Windows* 95). Thus, we have to get thread id by
call to GetCurrentThreadId() from within the thread and save it to let libomp_db
identify threads.
*/
#endif /* KMP_OS_WINDOWS */
} kmp_desc_base_t;
typedef union KMP_ALIGN_CACHE kmp_desc {
double ds_align; /* use worst case alignment */
char ds_pad[ KMP_PAD(kmp_desc_base_t, CACHE_LINE) ];
kmp_desc_base_t ds;
} kmp_desc_t;
typedef struct kmp_local {
volatile int this_construct; /* count of single's encountered by thread */
volatile int last_construct; /* cache for team's count used by old algorithm */
void *reduce_data;
#if KMP_USE_BGET
void *bget_data;
void *bget_list;
#if ! USE_CMP_XCHG_FOR_BGET
#ifdef USE_QUEUING_LOCK_FOR_BGET
kmp_lock_t bget_lock; /* Lock for accessing bget free list */
#else
kmp_bootstrap_lock_t bget_lock; /* Lock for accessing bget free list */
/* Must be bootstrap lock so we can use it at library shutdown */
#endif /* USE_LOCK_FOR_BGET */
#endif /* ! USE_CMP_XCHG_FOR_BGET */
#endif /* KMP_USE_BGET */
#ifdef BUILD_TV
struct tv_data *tv_data;
#endif
PACKED_REDUCTION_METHOD_T packed_reduction_method; /* stored by __kmpc_reduce*(), used by __kmpc_end_reduce*() */
} kmp_local_t;
/* Record for holding the values of the internal controls stack records */
typedef struct KMP_ALIGN_CACHE kmp_internal_control {
int serial_nesting_level; /* corresponds to the value of the th_team_serialized field */
int nested; /* internal control for nested parallelism (per thread) */
int dynamic; /* internal control for dynamic adjustment of threads (per thread) */
int nproc; /* internal control for # of threads for next parallel region (per thread) */
int blocktime; /* internal control for blocktime */
int bt_intervals; /* internal control for blocktime intervals */
int bt_set; /* internal control for whether blocktime is explicitly set */
#if OMP_30_ENABLED
int max_active_levels; /* internal control for max_active_levels */
kmp_r_sched_t sched; /* internal control for runtime schedule {sched,chunk} pair */
#endif // OMP_30_ENABLED
#if OMP_40_ENABLED
kmp_proc_bind_t proc_bind; /* internal control for affinity */
#endif // OMP_40_ENABLED
struct kmp_internal_control *next;
} kmp_internal_control_t;
#if OMP_30_ENABLED
static inline void
copy_icvs( kmp_internal_control_t *dst, kmp_internal_control_t *src ) {
*dst = *src;
}
#endif // OMP_30_ENABLED
#if OMP_30_ENABLED
#define get__blocktime( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
#define get__bt_set( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
#define get__bt_intervals( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
#define get__nested_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nested)
#define get__dynamic_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
#define get__nproc_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
#define get__sched_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
#define set__blocktime_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime ) = (xval) )
#define set__bt_intervals_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals ) = (xval) )
#define set__bt_set_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set ) = (xval) )
#define set__nested( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_threads[0] ->th.th_current_task->td_icvs.nested ) = \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.nested ) = \
(xval) )
#define get__nested( xthread ) \
( ( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.nested ) \
? (FTN_TRUE) : (FTN_FALSE) )
#define set__dynamic( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_threads[0] ->th.th_current_task->td_icvs.dynamic ) = \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.dynamic ) = \
(xval) )
#define get__dynamic( xthread ) \
( ( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.dynamic ) \
? (FTN_TRUE) : (FTN_FALSE) )
#define set__nproc( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_threads[0] ->th.th_current_task->td_icvs.nproc ) = \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.nproc ) = \
(xval) )
#define set__nproc_p( xthread, xval ) \
( \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.nproc ) = \
(xval) )
#define set__max_active_levels( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_threads[0] ->th.th_current_task->td_icvs.max_active_levels ) = \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.max_active_levels ) = \
(xval) )
#define set__sched( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_threads[0] ->th.th_current_task->td_icvs.sched ) = \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.sched ) = \
(xval) )
#if OMP_40_ENABLED
#define set__proc_bind( xthread, xval ) \
( \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.proc_bind ) = \
(xval) )
#define get__proc_bind( xthread ) \
( (xthread)->th.th_team ->t.t_threads[((xthread)->th.th_info.ds.ds_tid)]->th.th_current_task->td_icvs.proc_bind )
#endif /* OMP_40_ENABLED */
#else
#define get__blocktime( xteam, xtid ) ((xteam)->t.t_set_blocktime[ (xtid)])
#define get__bt_set( xteam, xtid ) ((xteam)->t.t_set_bt_set[ (xtid)])
#define get__bt_intervals( xteam, xtid ) ((xteam)->t.t_set_bt_intervals[(xtid)])
#define set__nested( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_set_nested[0] ) = \
( (xthread)->th.th_team->t.t_set_nested[((xthread)->th.th_info.ds.ds_tid)] ) = \
(xval) )
#define get__nested( xthread ) \
( ( (xthread)->th.th_team->t.t_set_nested[((xthread)->th.th_info.ds.ds_tid)] ) \
? (FTN_TRUE) : (FTN_FALSE) )
#define set__dynamic( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_set_dynamic[0] ) = \
( (xthread)->th.th_team->t.t_set_dynamic[((xthread)->th.th_info.ds.ds_tid)] ) = \
(xval) )
#define get__dynamic( xthread ) \
( ( (xthread)->th.th_team->t.t_set_dynamic[((xthread)->th.th_info.ds.ds_tid)] ) \
? (FTN_TRUE) : (FTN_FALSE) )
#define set__nproc( xthread, xval ) \
( ( (xthread)->th.th_serial_team->t.t_set_nproc[0] ) = \
( (xthread)->th.th_team->t.t_set_nproc[((xthread)->th.th_info.ds.ds_tid)] ) = \
(xval) )
#define set__nproc_p( xthread, xval ) \
( ( (xthread)->th.th_team->t.t_set_nproc[((xthread)->th.th_info.ds.ds_tid)] ) = (xval) )
#define set__blocktime_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_set_blocktime[(xtid)] ) = (xval) )
#define set__bt_intervals_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_set_bt_intervals[(xtid)] ) = (xval) )
#define set__bt_set_team( xteam, xtid, xval ) \
( ( (xteam)->t.t_set_bt_set[(xtid)] ) = (xval) )
#define get__nested_2(xteam,xtid) ( (xteam)->t.t_set_nested[(xtid)] )
#define get__dynamic_2(xteam,xtid) ( (xteam)->t.t_set_dynamic[(xtid)] )
#define get__nproc_2(xteam,xtid) ( (xteam)->t.t_set_nproc[(xtid)] )
#define get__sched_2(xteam,xtid) ( (xteam)->t.t_set_sched[(xtid)] )
#endif
#if OMP_30_ENABLED
/* ------------------------------------------------------------------------ */
// OpenMP tasking data structures
//
typedef enum kmp_tasking_mode {
tskm_immediate_exec = 0,
tskm_extra_barrier = 1,
tskm_task_teams = 2,
tskm_max = 2
} kmp_tasking_mode_t;
extern kmp_tasking_mode_t __kmp_tasking_mode; /* determines how/when to execute tasks */
extern kmp_int32 __kmp_task_stealing_constraint;
/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with taskdata first */
#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *) task) - 1)
#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *) (taskdata + 1)
// The tt_found_tasks flag is a signal to all threads in the team that tasks were spawned and
// queued since the previous barrier release.
// State is used to alternate task teams for successive barriers
#define KMP_TASKING_ENABLED(task_team,state) \
((TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE) && \
(TCR_4((task_team)->tt.tt_state) == (state)))
/*!
@ingroup BASIC_TYPES
@{
*/
/*!
*/
typedef kmp_int32 (* kmp_routine_entry_t)( kmp_int32, void * );
/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
/*!
*/
typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
void * shareds; /**< pointer to block of pointers to shared vars */
kmp_routine_entry_t routine; /**< pointer to routine to call for executing task */
kmp_int32 part_id; /**< part id for the task */
#if OMP_40_ENABLED
kmp_routine_entry_t destructors; /* pointer to function to invoke deconstructors of firstprivate C++ objects */
#endif // OMP_40_ENABLED
/* private vars */
} kmp_task_t;
/*!
@}
*/
#if OMP_40_ENABLED
typedef struct kmp_taskgroup {
kmp_uint32 count; // number of allocated and not yet complete tasks
kmp_int32 cancel_request; // request for cancellation of this taskgroup
struct kmp_taskgroup *parent; // parent taskgroup
} kmp_taskgroup_t;
// forward declarations
typedef union kmp_depnode kmp_depnode_t;
typedef struct kmp_depnode_list kmp_depnode_list_t;
typedef struct kmp_dephash_entry kmp_dephash_entry_t;
typedef struct kmp_depend_info {
kmp_intptr_t base_addr;
size_t len;
struct {
bool in:1;
bool out:1;
} flags;
} kmp_depend_info_t;
struct kmp_depnode_list {
kmp_depnode_t * node;
kmp_depnode_list_t * next;
};
typedef struct kmp_base_depnode {
kmp_depnode_list_t * successors;
kmp_task_t * task;
kmp_lock_t lock;
#if KMP_SUPPORT_GRAPH_OUTPUT
kmp_uint32 id;
#endif
volatile kmp_int32 npredecessors;
volatile kmp_int32 nrefs;
} kmp_base_depnode_t;
union KMP_ALIGN_CACHE kmp_depnode {
double dn_align; /* use worst case alignment */
char dn_pad[ KMP_PAD(kmp_base_depnode_t, CACHE_LINE) ];
kmp_base_depnode_t dn;
};
struct kmp_dephash_entry {
kmp_intptr_t addr;
kmp_depnode_t * last_out;
kmp_depnode_list_t * last_ins;
kmp_dephash_entry_t * next_in_bucket;
};
typedef struct kmp_dephash {
kmp_dephash_entry_t ** buckets;
#ifdef KMP_DEBUG
kmp_uint32 nelements;
kmp_uint32 nconflicts;
#endif
} kmp_dephash_t;
#endif
#ifdef BUILD_TIED_TASK_STACK
/* Tied Task stack definitions */
typedef struct kmp_stack_block {
kmp_taskdata_t * sb_block[ TASK_STACK_BLOCK_SIZE ];
struct kmp_stack_block * sb_next;
struct kmp_stack_block * sb_prev;
} kmp_stack_block_t;
typedef struct kmp_task_stack {
kmp_stack_block_t ts_first_block; // first block of stack entries
kmp_taskdata_t ** ts_top; // pointer to the top of stack
kmp_int32 ts_entries; // number of entries on the stack
} kmp_task_stack_t;
#endif // BUILD_TIED_TASK_STACK
typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
/* Compiler flags */ /* Total compiler flags must be 16 bits */
unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
unsigned final : 1; /* task is final(1) so execute immediately */
unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 code path */
#if OMP_40_ENABLED
unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to invoke destructors from the runtime */
unsigned reserved : 12; /* reserved for compiler use */
#else // OMP_40_ENABLED
unsigned reserved : 13; /* reserved for compiler use */
#endif // OMP_40_ENABLED
/* Library flags */ /* Total library flags must be 16 bits */
unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
unsigned task_serial : 1; /* this task is executed immediately (1) or deferred (0) */
unsigned tasking_ser : 1; /* all tasks in team are either executed immediately (1) or may be deferred (0) */
unsigned team_serial : 1; /* entire team is serial (1) [1 thread] or parallel (0) [>= 2 threads] */
/* If either team_serial or tasking_ser is set, task team may be NULL */
/* Task State Flags: */
unsigned started : 1; /* 1==started, 0==not started */
unsigned executing : 1; /* 1==executing, 0==not executing */
unsigned complete : 1; /* 1==complete, 0==not complete */
unsigned freed : 1; /* 1==freed, 0==allocateed */
unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
unsigned reserved31 : 7; /* reserved for library use */
} kmp_tasking_flags_t;
struct kmp_taskdata { /* aligned during dynamic allocation */
kmp_int32 td_task_id; /* id, assigned by debugger */
kmp_tasking_flags_t td_flags; /* task flags */
kmp_team_t * td_team; /* team for this task */
kmp_info_p * td_alloc_thread; /* thread that allocated data structures */
/* Currently not used except for perhaps IDB */
kmp_taskdata_t * td_parent; /* parent task */
kmp_int32 td_level; /* task nesting level */
ident_t * td_ident; /* task identifier */
// Taskwait data.
ident_t * td_taskwait_ident;
kmp_uint32 td_taskwait_counter;
kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
kmp_internal_control_t td_icvs; /* Internal control variables for the task */
volatile kmp_uint32 td_allocated_child_tasks; /* Child tasks (+ current task) not yet deallocated */
volatile kmp_uint32 td_incomplete_child_tasks; /* Child tasks not yet complete */
#if OMP_40_ENABLED
kmp_taskgroup_t * td_taskgroup; // Each task keeps pointer to its current taskgroup
kmp_dephash_t * td_dephash; // Dependencies for children tasks are tracked from here
kmp_depnode_t * td_depnode; // Pointer to graph node if this task has dependencies
#endif
#if KMP_HAVE_QUAD
_Quad td_dummy; // Align structure 16-byte size since allocated just before kmp_task_t
#else
kmp_uint32 td_dummy[2];
#endif
}; // struct kmp_taskdata
// Make sure padding above worked
KMP_BUILD_ASSERT( sizeof(kmp_taskdata_t) % sizeof(void *) == 0 );
// Data for task team but per thread
typedef struct kmp_base_thread_data {
kmp_info_p * td_thr; // Pointer back to thread info
// Used only in __kmp_execute_tasks, maybe not avail until task is queued?
kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
kmp_taskdata_t ** td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
kmp_uint32 td_deque_head; // Head of deque (will wrap)
kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
kmp_int32 td_deque_ntasks; // Number of tasks in deque
// GEH: shouldn't this be volatile since used in while-spin?
kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
#ifdef BUILD_TIED_TASK_STACK
kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task scheduling constraint
#endif // BUILD_TIED_TASK_STACK
} kmp_base_thread_data_t;
typedef union KMP_ALIGN_CACHE kmp_thread_data {
kmp_base_thread_data_t td;
double td_align; /* use worst case alignment */
char td_pad[ KMP_PAD(kmp_base_thread_data_t, CACHE_LINE) ];
} kmp_thread_data_t;
// Data for task teams which are used when tasking is enabled for the team
typedef struct kmp_base_task_team {
kmp_bootstrap_lock_t tt_threads_lock; /* Lock used to allocate per-thread part of task team */
/* must be bootstrap lock since used at library shutdown*/
kmp_task_team_t * tt_next; /* For linking the task team free list */
kmp_thread_data_t * tt_threads_data; /* Array of per-thread structures for task team */
/* Data survives task team deallocation */
kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while executing this team? */
/* TRUE means tt_threads_data is set up and initialized */
kmp_int32 tt_nproc; /* #threads in team */
kmp_int32 tt_max_threads; /* number of entries allocated for threads_data array */
KMP_ALIGN_CACHE
volatile kmp_uint32 tt_unfinished_threads; /* #threads still active */
KMP_ALIGN_CACHE
volatile kmp_uint32 tt_active; /* is the team still actively executing tasks */
KMP_ALIGN_CACHE
volatile kmp_uint32 tt_ref_ct; /* #threads accessing struct */
/* (not incl. master) */
kmp_int32 tt_state; /* alternating 0/1 for task team identification */
/* Note: VERY sensitive to padding! */
} kmp_base_task_team_t;
union KMP_ALIGN_CACHE kmp_task_team {
kmp_base_task_team_t tt;
double tt_align; /* use worst case alignment */
char tt_pad[ KMP_PAD(kmp_base_task_team_t, CACHE_LINE) ];
};
#endif // OMP_30_ENABLED
#if ( USE_FAST_MEMORY == 3 ) || ( USE_FAST_MEMORY == 5 )
// Free lists keep same-size free memory slots for fast memory allocation routines
typedef struct kmp_free_list {
void *th_free_list_self; // Self-allocated tasks free list
void *th_free_list_sync; // Self-allocated tasks stolen/returned by other threads
void *th_free_list_other; // Non-self free list (to be returned to owner's sync list)
} kmp_free_list_t;
#endif
/* ------------------------------------------------------------------------ */
// OpenMP thread data structures
//
typedef struct KMP_ALIGN_CACHE kmp_base_info {
/*
* Start with the readonly data which is cache aligned and padded.
* this is written before the thread starts working by the master.
* (uber masters may update themselves later)
* (usage does not consider serialized regions)
*/
kmp_desc_t th_info;
kmp_team_p *th_team; /* team we belong to */
kmp_root_p *th_root; /* pointer to root of task hierarchy */
kmp_info_p *th_next_pool; /* next available thread in the pool */
kmp_disp_t *th_dispatch; /* thread's dispatch data */
int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
/* The following are cached from the team info structure */
/* TODO use these in more places as determined to be needed via profiling */
int th_team_nproc; /* number of threads in a team */
kmp_info_p *th_team_master; /* the team's master thread */
int th_team_serialized; /* team is serialized */
#if OMP_40_ENABLED
microtask_t th_team_microtask; /* save entry address for teams construct */
int th_teams_level; /* save initial level of teams construct */
/* it is 0 on device but may be any on host */
#endif
/* The blocktime info is copied from the team struct to the thread sruct */
/* at the start of a barrier, and the values stored in the team are used */
/* at points in the code where the team struct is no longer guaranteed */
/* to exist (from the POV of worker threads). */
int th_team_bt_intervals;
int th_team_bt_set;
kmp_internal_control_t th_fixed_icvs; /* Initial ICVs for the thread */
#if KMP_AFFINITY_SUPPORTED
kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
#endif
/*
* The data set by the master at reinit, then R/W by the worker
*/
KMP_ALIGN_CACHE int th_set_nproc; /* if > 0, then only use this request for the next fork */
#if OMP_40_ENABLED
int th_set_nth_teams; /* number of threads in parallel nested in teams construct */
kmp_proc_bind_t th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
# if KMP_AFFINITY_SUPPORTED
int th_current_place; /* place currently bound to */
int th_new_place; /* place to bind to in par reg */
int th_first_place; /* first place in partition */
int th_last_place; /* last place in partition */
# endif
#endif
#if USE_ITT_BUILD
kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
kmp_uint64 th_frame_time; /* frame timestamp */
kmp_uint64 th_frame_time_serialized; /* frame timestamp in serialized parallel */
#endif /* USE_ITT_BUILD */
kmp_local_t th_local;
struct private_common *th_pri_head;
/*
* Now the data only used by the worker (after initial allocation)
*/
/* TODO the first serial team should actually be stored in the info_t
* structure. this will help reduce initial allocation overhead */
KMP_ALIGN_CACHE kmp_team_p *th_serial_team; /*serialized team held in reserve*/
/* The following are also read by the master during reinit */
struct common_table *th_pri_common;
volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
/* while awaiting queuing lock acquire */
volatile kmp_uint32 *th_sleep_loc;
/*
* Two variables used for consistency check - struct cons_header *th_cons and inte th_first moved below
* from here in order to avoid performance regression
*/
ident_t *th_ident;
unsigned th_x; // Random number generator data
unsigned th_a; // Random number generator data
#if OMP_30_ENABLED
/*
* Tasking-related data for the thread
*/
kmp_task_team_t * th_task_team; // Task team struct
kmp_taskdata_t * th_current_task; // Innermost Task being executed
kmp_uint8 th_task_state; // alternating 0/1 for task team identification
#endif // OMP_30_ENABLED
/*
* More stuff for keeping track of active/sleeping threads
* (this part is written by the worker thread)
*/
kmp_uint8 th_active_in_pool; // included in count of
// #active threads in pool
int th_active; // ! sleeping
// 32 bits for TCR/TCW
struct cons_header * th_cons;
int th_first;
/*
* Add the syncronizing data which is cache aligned and padded.
*/
KMP_ALIGN_CACHE kmp_balign_t th_bar[ bs_last_barrier ];
KMP_ALIGN_CACHE volatile kmp_int32 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
#if ( USE_FAST_MEMORY == 3 ) || ( USE_FAST_MEMORY == 5 )
#define NUM_LISTS 4
kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory allocation routines
#endif
#if KMP_OS_WINDOWS
kmp_win32_cond_t th_suspend_cv;
kmp_win32_mutex_t th_suspend_mx;
int th_suspend_init;
#endif
#if KMP_OS_UNIX
kmp_cond_align_t th_suspend_cv;
kmp_mutex_align_t th_suspend_mx;
int th_suspend_init_count;
#endif
#if USE_ITT_BUILD
kmp_itt_mark_t th_itt_mark_single;
// alignment ???
#endif /* USE_ITT_BUILD */
} kmp_base_info_t;
typedef union KMP_ALIGN_CACHE kmp_info {
double th_align; /* use worst case alignment */
char th_pad[ KMP_PAD(kmp_base_info_t, CACHE_LINE) ];
kmp_base_info_t th;
} kmp_info_t;
/* ------------------------------------------------------------------------ */
// OpenMP thread team data structures
//
typedef struct kmp_base_data {
volatile kmp_uint32 t_value;
} kmp_base_data_t;
typedef union KMP_ALIGN_CACHE kmp_sleep_team {
double dt_align; /* use worst case alignment */
char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ];
kmp_base_data_t dt;
} kmp_sleep_team_t;
typedef union KMP_ALIGN_CACHE kmp_ordered_team {
double dt_align; /* use worst case alignment */
char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ];
kmp_base_data_t dt;
} kmp_ordered_team_t;
typedef int (*launch_t)( int gtid );
/* Minimum number of ARGV entries to malloc if necessary */
#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
#if KMP_MIC && OMP_30_ENABLED
# define KMP_BARRIER_ICV_PULL 1
#else
# define KMP_BARRIER_ICV_PULL 0
#endif
#if (KMP_PERF_V106 == KMP_ON)
//
// Set up how many argv pointers will fit in cache lines containing
// *t_inline_argv. Historically, we have supported at least 96 bytes.
//
// Using a larger value for more space between the master write/worker read
// section and read/write by all section seems to buy more performance
// on EPCC PARALLEL.
//
//# define KMP_INLINE_ARGV_BYTES ( 2 * CACHE_LINE )
# if KMP_BARRIER_ICV_PULL
# define KMP_INLINE_ARGV_BYTES 192
//# define KMP_INLINE_ARGV_BYTES ( 2 * CACHE_LINE - ( ( 5 * KMP_PTR_SKIP + 10 * sizeof(int) + sizeof(kmp_int64) ) % CACHE_LINE ) )
# elif KMP_ARCH_X86 || KMP_ARCH_X86_64
# define KMP_INLINE_ARGV_BYTES ( 4 * CACHE_LINE - ( ( 3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + sizeof(kmp_int16) + sizeof(kmp_uint32) ) % CACHE_LINE ) )
# else
# define KMP_INLINE_ARGV_BYTES ( 2 * CACHE_LINE - ( ( 3 * KMP_PTR_SKIP + 2 * sizeof(int) ) % CACHE_LINE ) )
# endif
# define KMP_INLINE_ARGV_ENTRIES (int)( KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP )
#endif
typedef struct KMP_ALIGN_CACHE kmp_base_team {
/*
* Synchronization Data
*/
KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
kmp_balign_team_t t_bar[ bs_last_barrier ];
/* count of single directive encountered by team */
volatile int t_construct;
kmp_lock_t t_single_lock; /* team specific lock */
/*
* Master only
*/
KMP_ALIGN_CACHE int t_master_tid; /* tid of master in parent team */
int t_master_this_cons; /* "this_construct" single counter of master in parent team */
int t_master_last_cons; /* "last_construct" single counter of master in parent team */
ident_t *t_ident; /* if volatile, have to change too much other crud to volatile too */
kmp_team_p *t_parent; /* parent team */
kmp_team_p *t_next_pool; /* next free team in the team pool */
kmp_disp_t *t_dispatch; /* thread's dispatch data */
#if OMP_30_ENABLED
kmp_task_team_t *t_task_team; /* Task team struct */
#endif /* OMP_30_ENABLED */
#if OMP_40_ENABLED
kmp_proc_bind_t t_proc_bind; /* bind type for par region */
#endif // OMP_40_ENABLED
/*
* Master write, workers read
*/
KMP_ALIGN_CACHE
void **t_argv;
int t_argc;
#if (KMP_PERF_V106 == KMP_ON)
/* swap cache lines for t_nproc and t_max_argc */
int t_nproc; /* number of threads in team */
#else
int t_max_argc;
#endif
microtask_t t_pkfn;
launch_t t_invoke; /* procedure to launch the microtask */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
kmp_int8 t_fp_control_saved;
kmp_int8 t_pad2b;
kmp_int16 t_x87_fpu_control_word; /* FP control regs */
kmp_uint32 t_mxcsr;
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#if (KMP_PERF_V106 == KMP_ON)
void *t_inline_argv[ KMP_INLINE_ARGV_ENTRIES ];
#endif
#if (KMP_PERF_V19 == KMP_ON)
KMP_ALIGN_CACHE
#endif
kmp_info_t **t_threads;
#if (KMP_PERF_V106 == KMP_ON)
/* swap cache lines for t_nproc and t_max_argc */
int t_max_argc;
#else
int t_nproc; /* number of threads in team */
#endif
int t_max_nproc; /* maximum threads this team can handle (this is dynamicly expandable) */
int t_serialized; /* levels deep of serialized teams */
dispatch_shared_info_t *t_disp_buffer; /* buffers for dispatch system */
int t_id; // team's id, assigned by debugger.
#if OMP_30_ENABLED
int t_level; /* nested parallel level */
int t_active_level; /* nested active parallel level */
kmp_r_sched_t t_sched; /* run-time schedule for the team */
#endif // OMP_30_ENABLED
#if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
int t_first_place; /* first & last place in */
int t_last_place; /* parent thread's partition. */
/* Restore these values to */
/* master after par region. */
#endif // OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
#if KMP_MIC
int t_size_changed; /* team size was changed?: 0 - no, 1 - yes, -1 - changed via omp_set_num_threads() call */
#endif
/*
* Read/write by workers as well
*/
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
// Using CACHE_LINE=64 reduces memory footprint,
// but causes a big perf regression of epcc 'parallel' and 'barrier' on fxe256lin01.
// This extra padding serves to fix the performance of epcc 'parallel' and 'barrier' when CACHE_LINE=64.
// TODO: investigate more and get rid if this padding.
char dummy_padding[1024];
#endif
KMP_ALIGN_CACHE
#if OMP_30_ENABLED
kmp_taskdata_t *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
#else
// Internal control variables for current thread team
// TODO Convert these fields to an array of kmp_internal_control_t which simplifies parameter passing
// and also prevents performance degradation due to false sharing when all threads set a control var
int *t_set_nproc; /* internal control for # of threads for next
parallel region (per thread) */
int *t_set_nested; /* internal control for nested parallelism (per thread) */
int *t_set_dynamic; /* internal control for dynamic adjustment of threads (per thread) */
int *t_set_blocktime; /* internal control for blocktime */
int *t_set_bt_intervals; /* internal control for blocktime intervals */
int *t_set_bt_set; /* internal control for whether blocktime is explicitly set */
#endif // OMP_30_ENABLED
kmp_internal_control_t *t_control_stack_top; /* internal control stack for additional nested teams.
for SERIALIZED teams nested 2 or more levels deep */
#if OMP_40_ENABLED
kmp_int32 t_cancel_request; /* typed flag to store request state of cancellation */
#endif
int t_master_active;/* save on fork, restore on join */
kmp_taskq_t t_taskq; /* this team's task queue */
void *t_copypriv_data; /* team specific pointer to copyprivate data array */
kmp_uint32 t_copyin_counter;
#if USE_ITT_BUILD
void *t_stack_id; /* team specific stack stitching id (for ittnotify) */
#endif /* USE_ITT_BUILD */
} kmp_base_team_t;
union KMP_ALIGN_CACHE kmp_team {
kmp_base_team_t t;
double t_align; /* use worst case alignment */
char t_pad[ KMP_PAD(kmp_base_team_t, CACHE_LINE) ];
};
typedef union KMP_ALIGN_CACHE kmp_time_global {
double dt_align; /* use worst case alignment */
char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ];
kmp_base_data_t dt;
} kmp_time_global_t;
typedef struct kmp_base_global {
/* cache-aligned */
kmp_time_global_t g_time;
/* non cache-aligned */
volatile int g_abort;
volatile int g_done;
int g_dynamic;
enum dynamic_mode g_dynamic_mode;
} kmp_base_global_t;
typedef union KMP_ALIGN_CACHE kmp_global {
kmp_base_global_t g;
double g_align; /* use worst case alignment */
char g_pad[ KMP_PAD(kmp_base_global_t, CACHE_LINE) ];
} kmp_global_t;
typedef struct kmp_base_root {
// TODO: GEH - combine r_active with r_in_parallel then r_active == (r_in_parallel>= 0)
// TODO: GEH - then replace r_active with t_active_levels if we can to reduce the synch
// overhead or keeping r_active
volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
// GEH: This is misnamed, should be r_in_parallel
volatile int r_nested; // TODO: GEH - This is unused, just remove it entirely.
int r_in_parallel; /* keeps a count of active parallel regions per root */
// GEH: This is misnamed, should be r_active_levels
kmp_team_t *r_root_team;
kmp_team_t *r_hot_team;
kmp_info_t *r_uber_thread;
kmp_lock_t r_begin_lock;
volatile int r_begin;
int r_blocktime; /* blocktime for this root and descendants */
} kmp_base_root_t;
typedef union KMP_ALIGN_CACHE kmp_root {
kmp_base_root_t r;
double r_align; /* use worst case alignment */
char r_pad[ KMP_PAD(kmp_base_root_t, CACHE_LINE) ];
} kmp_root_t;
struct fortran_inx_info {
kmp_int32 data;
};
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
extern int __kmp_settings;
extern int __kmp_duplicate_library_ok;
#if USE_ITT_BUILD
extern int __kmp_forkjoin_frames;
extern int __kmp_forkjoin_frames_mode;
#endif
extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
extern int __kmp_determ_red;
#ifdef KMP_DEBUG
extern int kmp_a_debug;
extern int kmp_b_debug;
extern int kmp_c_debug;
extern int kmp_d_debug;
extern int kmp_e_debug;
extern int kmp_f_debug;
#endif /* KMP_DEBUG */
/* For debug information logging using rotating buffer */
#define KMP_DEBUG_BUF_LINES_INIT 512
#define KMP_DEBUG_BUF_LINES_MIN 1
#define KMP_DEBUG_BUF_CHARS_INIT 128
#define KMP_DEBUG_BUF_CHARS_MIN 2
extern int __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
extern int __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer entry pointer */
extern char *__kmp_debug_buffer; /* Debug buffer itself */
extern int __kmp_debug_count; /* Counter for number of lines printed in buffer so far */
extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase recommended in warnings */
/* end rotating debug buffer */
extern int __kmp_par_range; /* +1 => only go par for constructs in range */
#define KMP_PAR_RANGE_ROUTINE_LEN 1024
extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
#define KMP_PAR_RANGE_FILENAME_LEN 1024
extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
extern int __kmp_par_range_lb;
extern int __kmp_par_range_ub;
/* For printing out dynamic storage map for threads and teams */
extern int __kmp_storage_map; /* True means print storage map for threads and teams */
extern int __kmp_storage_map_verbose; /* True means storage map includes placement info */
extern int __kmp_storage_map_verbose_specified;
extern kmp_cpuinfo_t __kmp_cpuinfo;
extern volatile int __kmp_init_serial;
extern volatile int __kmp_init_gtid;
extern volatile int __kmp_init_common;
extern volatile int __kmp_init_middle;
extern volatile int __kmp_init_parallel;
extern volatile int __kmp_init_monitor;
extern volatile int __kmp_init_user_locks;
extern int __kmp_init_counter;
extern int __kmp_root_counter;
extern int __kmp_version;
/* list of address of allocated caches for commons */
extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
/* Barrier algorithm types and options */
extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
extern kmp_uint32 __kmp_barrier_release_bb_dflt;
extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
extern kmp_uint32 __kmp_barrier_gather_branch_bits [ bs_last_barrier ];
extern kmp_uint32 __kmp_barrier_release_branch_bits [ bs_last_barrier ];
extern kmp_bar_pat_e __kmp_barrier_gather_pattern [ bs_last_barrier ];
extern kmp_bar_pat_e __kmp_barrier_release_pattern [ bs_last_barrier ];
extern char const *__kmp_barrier_branch_bit_env_name [ bs_last_barrier ];
extern char const *__kmp_barrier_pattern_env_name [ bs_last_barrier ];
extern char const *__kmp_barrier_type_name [ bs_last_barrier ];
extern char const *__kmp_barrier_pattern_name [ bp_last_bar ];
/* Global Locks */
extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access and load calculation if rml is used*/
extern kmp_bootstrap_lock_t __kmp_exit_lock; /* exit() is not always thread-safe */
extern kmp_bootstrap_lock_t __kmp_monitor_lock; /* control monitor thread creation */
extern kmp_bootstrap_lock_t __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and __kmp_threads expansion to co-exist */
extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
/* used for yielding spin-waits */
extern unsigned int __kmp_init_wait; /* initial number of spin-tests */
extern unsigned int __kmp_next_wait; /* susequent number of spin-tests */
extern enum library_type __kmp_library;
extern enum sched_type __kmp_sched; /* default runtime scheduling */
extern enum sched_type __kmp_static; /* default static scheduling method */
extern enum sched_type __kmp_guided; /* default guided scheduling method */
#if OMP_30_ENABLED
extern enum sched_type __kmp_auto; /* default auto scheduling method */
#endif // OMP_30_ENABLED
extern int __kmp_chunk; /* default runtime chunk size */
extern size_t __kmp_stksize; /* stack size per thread */
extern size_t __kmp_monitor_stksize;/* stack size for monitor thread */
extern size_t __kmp_stkoffset; /* stack offset per thread */
extern size_t __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
extern int __kmp_env_chunk; /* was KMP_CHUNK specified? */
extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
extern int __kmp_env_omp_stksize;/* was OMP_STACKSIZE specified? */
extern int __kmp_env_all_threads; /* was KMP_ALL_THREADS or KMP_MAX_THREADS specified? */
extern int __kmp_env_omp_all_threads;/* was OMP_THREAD_LIMIT specified? */
extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
extern int __kmp_env_consistency_check; /* was KMP_CONSISTENCY_CHECK specified? */
extern int __kmp_generate_warnings; /* should we issue warnings? */
extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
#ifdef DEBUG_SUSPEND
extern int __kmp_suspend_count; /* count inside __kmp_suspend() */
#endif
extern kmp_uint32 __kmp_yield_init;
extern kmp_uint32 __kmp_yield_next;
extern kmp_uint32 __kmp_yielding_on;
extern kmp_uint32 __kmp_yield_cycle;
extern kmp_int32 __kmp_yield_on_count;
extern kmp_int32 __kmp_yield_off_count;
/* ------------------------------------------------------------------------- */
extern int __kmp_allThreadsSpecified;
extern size_t __kmp_align_alloc;
/* following data protected by initialization routines */
extern int __kmp_xproc; /* number of processors in the system */
extern int __kmp_avail_proc; /* number of processors available to the process */
extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
extern int __kmp_max_nth; /* maximum total number of concurrently-existing threads */
extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and __kmp_root */
extern int __kmp_dflt_team_nth; /* default number of threads in a parallel region a la OMP_NUM_THREADS */
extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial initialization */
extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is used (fixed) */
extern int __kmp_tp_cached; /* whether threadprivate cache has been created (__kmpc_threadprivate_cached()) */
extern int __kmp_dflt_nested; /* nested parallelism enabled by default a la OMP_NESTED */
extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before blocking (env setting) */
extern int __kmp_monitor_wakeups;/* number of times monitor wakes up per second */
extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before blocking */
#ifdef KMP_ADJUST_BLOCKTIME
extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
#endif /* KMP_ADJUST_BLOCKTIME */
extern int __kmp_ht_capable; /* whether CPUs support Intel(R) Hyper-Threading Technology */
extern int __kmp_ht_enabled; /* whether Intel(R) Hyper-Threading Technology is enabled in OS */
extern int __kmp_ncores; /* Number of physical procs in HT machine */
extern int __kmp_ht_log_per_phy; /* Maximum possible number of logical processors per package */
extern int __kmp_nThreadsPerCore;/* Number of hyperthreads per core in HT machine. */
extern int __kmp_abort_delay; /* Number of millisecs to delay on abort for VTune */
extern int __kmp_need_register_atfork_specified;
extern int __kmp_need_register_atfork;/* At initialization, call pthread_atfork to install fork handler */
extern int __kmp_gtid_mode; /* Method of getting gtid, values:
0 - not set, will be set at runtime
1 - using stack search
2 - dynamic TLS (pthread_getspecific(Linux* OS/OS X*) or TlsGetValue(Windows* OS))
3 - static TLS (__declspec(thread) __kmp_gtid), Linux* OS .so only.
*/
extern int __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
#ifdef KMP_TDATA_GTID
#if KMP_OS_WINDOWS
extern __declspec(thread) int __kmp_gtid; /* This thread's gtid, if __kmp_gtid_mode == 3 */
#else
extern __thread int __kmp_gtid;
#endif /* KMP_OS_WINDOWS - workaround because Intel(R) Many Integrated Core compiler 20110316 doesn't accept __declspec */
#endif
extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
extern int __kmp_foreign_tp; /* If true, separate TP var for each foreign thread */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
extern int __kmp_inherit_fp_control; /* copy fp creg(s) parent->workers at fork */
extern kmp_int16 __kmp_init_x87_fpu_control_word; /* init thread's FP control reg */
extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#if OMP_30_ENABLED
extern int __kmp_dflt_max_active_levels; /* max_active_levels for nested parallelism enabled by default a la OMP_MAX_ACTIVE_LEVELS */
#endif // OMP_30_ENABLED
# if KMP_OS_LINUX
extern enum clock_function_type __kmp_clock_function;
extern int __kmp_clock_function_param;
# endif /* KMP_OS_LINUX */
# ifdef USE_LOAD_BALANCE
extern double __kmp_load_balance_interval; /* Interval for the load balance algorithm */
# endif /* USE_LOAD_BALANCE */
// OpenMP 3.1 - Nested num threads array
typedef struct kmp_nested_nthreads_t {
int * nth;
int size;
int used;
} kmp_nested_nthreads_t;
extern kmp_nested_nthreads_t __kmp_nested_nth;
#if KMP_USE_ADAPTIVE_LOCKS
// Parameters for the speculative lock backoff system.
struct kmp_adaptive_backoff_params_t {
// Number of soft retries before it counts as a hard retry.
kmp_uint32 max_soft_retries;
// Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to the right
kmp_uint32 max_badness;
};
extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
#if KMP_DEBUG_ADAPTIVE_LOCKS
extern char * __kmp_speculative_statsfile;
#endif
#endif // KMP_USE_ADAPTIVE_LOCKS
#if OMP_40_ENABLED
extern int __kmp_display_env; /* TRUE or FALSE */
extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
extern int __kmp_omp_cancellation; /* TRUE or FALSE */
#endif
/* ------------------------------------------------------------------------- */
/* --------------------------------------------------------------------------- */
/* the following are protected by the fork/join lock */
/* write: lock read: anytime */
extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
/* read/write: lock */
extern volatile kmp_team_t * __kmp_team_pool;
extern volatile kmp_info_t * __kmp_thread_pool;
/* total number of threads reachable from some root thread including all root threads*/
extern volatile int __kmp_nth;
/* total number of threads reachable from some root thread including all root threads,
and those in the thread pool */
extern volatile int __kmp_all_nth;
extern int __kmp_thread_pool_nth;
extern volatile int __kmp_thread_pool_active_nth;
extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
/* end data protected by fork/join lock */
/* --------------------------------------------------------------------------- */
extern kmp_global_t __kmp_global; /* global status */
extern kmp_info_t __kmp_monitor;
extern volatile kmp_uint32 __kmp_team_counter; // Used by Debugging Support Library.
extern volatile kmp_uint32 __kmp_task_counter; // Used by Debugging Support Library.
#define _KMP_GEN_ID( counter ) \
( \
~ 0 \
)
#define KMP_GEN_TASK_ID() _KMP_GEN_ID( __kmp_task_counter )
#define KMP_GEN_TEAM_ID() _KMP_GEN_ID( __kmp_team_counter )
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
extern void __kmp_print_storage_map_gtid( int gtid, void *p1, void* p2, size_t size, char const *format, ... );
extern void __kmp_serial_initialize( void );
extern void __kmp_middle_initialize( void );
extern void __kmp_parallel_initialize( void );
extern void __kmp_internal_begin( void );
extern void __kmp_internal_end_library( int gtid );
extern void __kmp_internal_end_thread( int gtid );
extern void __kmp_internal_end_atexit( void );
extern void __kmp_internal_end_fini( void );
extern void __kmp_internal_end_dtor( void );
extern void __kmp_internal_end_dest( void* );
extern int __kmp_register_root( int initial_thread );
extern void __kmp_unregister_root( int gtid );
extern int __kmp_ignore_mppbeg( void );
extern int __kmp_ignore_mppend( void );
extern int __kmp_enter_single( int gtid, ident_t *id_ref, int push_ws );
extern void __kmp_exit_single( int gtid );
extern void __kmp_parallel_deo( int *gtid_ref, int *cid_ref, ident_t *loc_ref );
extern void __kmp_parallel_dxo( int *gtid_ref, int *cid_ref, ident_t *loc_ref );
#ifdef USE_LOAD_BALANCE
extern int __kmp_get_load_balance( int );
#endif
#ifdef BUILD_TV
extern void __kmp_tv_threadprivate_store( kmp_info_t *th, void *global_addr, void *thread_addr );
#endif
extern int __kmp_get_global_thread_id( void );
extern int __kmp_get_global_thread_id_reg( void );
extern void __kmp_exit_thread( int exit_status );
extern void __kmp_abort( char const * format, ... );
extern void __kmp_abort_thread( void );
extern void __kmp_abort_process( void );
extern void __kmp_warn( char const * format, ... );
extern void __kmp_set_num_threads( int new_nth, int gtid );
// Returns current thread (pointer to kmp_info_t). Current thread *must* be registered.
static inline kmp_info_t * __kmp_entry_thread()
{
int gtid = __kmp_entry_gtid();
return __kmp_threads[gtid];
}
#if OMP_30_ENABLED
extern void __kmp_set_max_active_levels( int gtid, int new_max_active_levels );
extern int __kmp_get_max_active_levels( int gtid );
extern int __kmp_get_ancestor_thread_num( int gtid, int level );
extern int __kmp_get_team_size( int gtid, int level );
extern void __kmp_set_schedule( int gtid, kmp_sched_t new_sched, int chunk );
extern void __kmp_get_schedule( int gtid, kmp_sched_t * sched, int * chunk );
#endif // OMP_30_ENABLED
extern unsigned short __kmp_get_random( kmp_info_t * thread );
extern void __kmp_init_random( kmp_info_t * thread );
extern kmp_r_sched_t __kmp_get_schedule_global( void );
extern void __kmp_adjust_num_threads( int new_nproc );
extern void * ___kmp_allocate( size_t size KMP_SRC_LOC_DECL );
extern void * ___kmp_page_allocate( size_t size KMP_SRC_LOC_DECL );
extern void ___kmp_free( void * ptr KMP_SRC_LOC_DECL );
#define __kmp_allocate( size ) ___kmp_allocate( (size) KMP_SRC_LOC_CURR )
#define __kmp_page_allocate( size ) ___kmp_page_allocate( (size) KMP_SRC_LOC_CURR )
#define __kmp_free( ptr ) ___kmp_free( (ptr) KMP_SRC_LOC_CURR )
#if USE_FAST_MEMORY
extern void * ___kmp_fast_allocate( kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL );
extern void ___kmp_fast_free( kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL );
extern void __kmp_free_fast_memory( kmp_info_t *this_thr );
extern void __kmp_initialize_fast_memory( kmp_info_t *this_thr );
#define __kmp_fast_allocate( this_thr, size ) ___kmp_fast_allocate( (this_thr), (size) KMP_SRC_LOC_CURR )
#define __kmp_fast_free( this_thr, ptr ) ___kmp_fast_free( (this_thr), (ptr) KMP_SRC_LOC_CURR )
#endif
extern void * ___kmp_thread_malloc( kmp_info_t *th, size_t size KMP_SRC_LOC_DECL );
extern void * ___kmp_thread_calloc( kmp_info_t *th, size_t nelem, size_t elsize KMP_SRC_LOC_DECL );
extern void * ___kmp_thread_realloc( kmp_info_t *th, void *ptr, size_t size KMP_SRC_LOC_DECL );
extern void ___kmp_thread_free( kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL );
#define __kmp_thread_malloc( th, size ) ___kmp_thread_malloc( (th), (size) KMP_SRC_LOC_CURR )
#define __kmp_thread_calloc( th, nelem, elsize ) ___kmp_thread_calloc( (th), (nelem), (elsize) KMP_SRC_LOC_CURR )
#define __kmp_thread_realloc( th, ptr, size ) ___kmp_thread_realloc( (th), (ptr), (size) KMP_SRC_LOC_CURR )
#define __kmp_thread_free( th, ptr ) ___kmp_thread_free( (th), (ptr) KMP_SRC_LOC_CURR )
#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
#define KMP_INTERNAL_FREE(p) free(p)
#define KMP_INTERNAL_REALLOC(p,sz) realloc((p),(sz))
#define KMP_INTERNAL_CALLOC(n,sz) calloc((n),(sz))
extern void __kmp_push_num_threads( ident_t *loc, int gtid, int num_threads );
#if OMP_40_ENABLED
extern void __kmp_push_proc_bind( ident_t *loc, int gtid, kmp_proc_bind_t proc_bind );
extern void __kmp_push_num_teams( ident_t *loc, int gtid, int num_teams, int num_threads );
#endif
extern void __kmp_yield( int cond );
extern void __kmp_release( kmp_info_t *target_thr, volatile kmp_uint *spin,
enum kmp_mem_fence_type fetchadd_fence );
extern void __kmpc_dispatch_init_4( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st,
kmp_int32 chunk );
extern void __kmpc_dispatch_init_4u( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st,
kmp_int32 chunk );
extern void __kmpc_dispatch_init_8( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st,
kmp_int64 chunk );
extern void __kmpc_dispatch_init_8u( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st,
kmp_int64 chunk );
extern int __kmpc_dispatch_next_4( ident_t *loc, kmp_int32 gtid,
kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st );
extern int __kmpc_dispatch_next_4u( ident_t *loc, kmp_int32 gtid,
kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st );
extern int __kmpc_dispatch_next_8( ident_t *loc, kmp_int32 gtid,
kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st );
extern int __kmpc_dispatch_next_8u( ident_t *loc, kmp_int32 gtid,
kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st );
extern void __kmpc_dispatch_fini_4( ident_t *loc, kmp_int32 gtid );
extern void __kmpc_dispatch_fini_8( ident_t *loc, kmp_int32 gtid );
extern void __kmpc_dispatch_fini_4u( ident_t *loc, kmp_int32 gtid );
extern void __kmpc_dispatch_fini_8u( ident_t *loc, kmp_int32 gtid );
#ifdef KMP_GOMP_COMPAT
extern void __kmp_aux_dispatch_init_4( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st,
kmp_int32 chunk, int push_ws );
extern void __kmp_aux_dispatch_init_4u( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st,
kmp_int32 chunk, int push_ws );
extern void __kmp_aux_dispatch_init_8( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st,
kmp_int64 chunk, int push_ws );
extern void __kmp_aux_dispatch_init_8u( ident_t *loc, kmp_int32 gtid,
enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st,
kmp_int64 chunk, int push_ws );
extern void __kmp_aux_dispatch_fini_chunk_4( ident_t *loc, kmp_int32 gtid );
extern void __kmp_aux_dispatch_fini_chunk_8( ident_t *loc, kmp_int32 gtid );
extern void __kmp_aux_dispatch_fini_chunk_4u( ident_t *loc, kmp_int32 gtid );
extern void __kmp_aux_dispatch_fini_chunk_8u( ident_t *loc, kmp_int32 gtid );
#endif /* KMP_GOMP_COMPAT */
extern kmp_uint32 __kmp_eq_4( kmp_uint32 value, kmp_uint32 checker );
extern kmp_uint32 __kmp_neq_4( kmp_uint32 value, kmp_uint32 checker );
extern kmp_uint32 __kmp_lt_4( kmp_uint32 value, kmp_uint32 checker );
extern kmp_uint32 __kmp_ge_4( kmp_uint32 value, kmp_uint32 checker );
extern kmp_uint32 __kmp_le_4( kmp_uint32 value, kmp_uint32 checker );
extern kmp_uint32 __kmp_eq_8( kmp_uint64 value, kmp_uint64 checker );
extern kmp_uint32 __kmp_neq_8( kmp_uint64 value, kmp_uint64 checker );
extern kmp_uint32 __kmp_lt_8( kmp_uint64 value, kmp_uint64 checker );
extern kmp_uint32 __kmp_ge_8( kmp_uint64 value, kmp_uint64 checker );
extern kmp_uint32 __kmp_le_8( kmp_uint64 value, kmp_uint64 checker );
extern kmp_uint32 __kmp_wait_yield_4( kmp_uint32 volatile * spinner, kmp_uint32 checker, kmp_uint32 (*pred) (kmp_uint32, kmp_uint32), void * obj );
extern kmp_uint64 __kmp_wait_yield_8( kmp_uint64 volatile * spinner, kmp_uint64 checker, kmp_uint32 (*pred) (kmp_uint64, kmp_uint64), void * obj );
extern void __kmp_wait_sleep( kmp_info_t *this_thr, volatile kmp_uint *spinner, kmp_uint checker, kmp_int final_spin
#if USE_ITT_BUILD
, void * itt_sync_obj
#endif /* USE_ITT_BUILD */
);
extern void __kmp_infinite_loop( void );
extern void __kmp_cleanup( void );
#if KMP_HANDLE_SIGNALS
extern int __kmp_handle_signals;
extern void __kmp_install_signals( int parallel_init );
extern void __kmp_remove_signals( void );
#endif
extern void __kmp_clear_system_time( void );
extern void __kmp_read_system_time( double *delta );
extern void __kmp_check_stack_overlap( kmp_info_t *thr );
extern void __kmp_expand_host_name( char *buffer, size_t size );
extern void __kmp_expand_file_name( char *result, size_t rlen, char *pattern );
#if KMP_OS_WINDOWS
extern void __kmp_initialize_system_tick( void ); /* Initialize timer tick value */
#endif
extern void __kmp_runtime_initialize( void ); /* machine specific initialization */
extern void __kmp_runtime_destroy( void );
#if KMP_AFFINITY_SUPPORTED
extern char *__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask);
extern void __kmp_affinity_initialize(void);
extern void __kmp_affinity_uninitialize(void);
extern void __kmp_affinity_set_init_mask(int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
#if OMP_40_ENABLED
extern void __kmp_affinity_set_place(int gtid);
#endif
extern void __kmp_change_thread_affinity_mask( int gtid, kmp_affin_mask_t *new_mask,
kmp_affin_mask_t *old_mask );
extern void __kmp_affinity_determine_capable( const char *env_var );
extern int __kmp_aux_set_affinity(void **mask);
extern int __kmp_aux_get_affinity(void **mask);
extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
extern void __kmp_balanced_affinity( int tid, int team_size );
#endif /* KMP_AFFINITY_SUPPORTED */
#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
extern int __kmp_futex_determine_capable( void );
#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
extern void __kmp_gtid_set_specific( int gtid );
extern int __kmp_gtid_get_specific( void );
extern double __kmp_read_cpu_time( void );
extern int __kmp_read_system_info( struct kmp_sys_info *info );
extern void __kmp_create_monitor( kmp_info_t *th );
extern void *__kmp_launch_thread( kmp_info_t *thr );
extern void __kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size );
#if KMP_OS_WINDOWS
extern int __kmp_still_running(kmp_info_t *th);
extern int __kmp_is_thread_alive( kmp_info_t * th, DWORD *exit_val );
extern void __kmp_free_handle( kmp_thread_t tHandle );
#endif
extern void __kmp_reap_monitor( kmp_info_t *th );
extern void __kmp_reap_worker( kmp_info_t *th );
extern void __kmp_terminate_thread( int gtid );
extern void __kmp_suspend( int th_gtid, volatile kmp_uint *spinner, kmp_uint checker );
extern void __kmp_resume( int target_gtid, volatile kmp_uint *spinner );
extern void __kmp_elapsed( double * );
extern void __kmp_elapsed_tick( double * );
extern void __kmp_enable( int old_state );
extern void __kmp_disable( int *old_state );
extern void __kmp_thread_sleep( int millis );
extern void __kmp_common_initialize( void );
extern void __kmp_common_destroy( void );
extern void __kmp_common_destroy_gtid( int gtid );
#if KMP_OS_UNIX
extern void __kmp_register_atfork( void );
#endif
extern void __kmp_suspend_initialize( void );
extern void __kmp_suspend_uninitialize_thread( kmp_info_t *th );
extern kmp_info_t * __kmp_allocate_thread( kmp_root_t *root,
kmp_team_t *team, int tid);
#if OMP_40_ENABLED
extern kmp_team_t * __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc,
kmp_proc_bind_t proc_bind,
kmp_internal_control_t *new_icvs,
int argc );
#elif OMP_30_ENABLED
extern kmp_team_t * __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc,
kmp_internal_control_t *new_icvs,
int argc );
#else
extern kmp_team_t * __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc,
int new_set_nproc, int new_set_dynamic, int new_set_nested,
int new_set_blocktime, int new_bt_intervals, int new_bt_set,
int argc );
#endif // OMP_30_ENABLED
extern void __kmp_free_thread( kmp_info_t * );
extern void __kmp_free_team( kmp_root_t *, kmp_team_t * );
extern kmp_team_t * __kmp_reap_team( kmp_team_t * );
/* ------------------------------------------------------------------------ */
extern void __kmp_initialize_bget( kmp_info_t *th );
extern void __kmp_finalize_bget( kmp_info_t *th );
KMP_EXPORT void *kmpc_malloc( size_t size );
KMP_EXPORT void *kmpc_calloc( size_t nelem, size_t elsize );
KMP_EXPORT void *kmpc_realloc( void *ptr, size_t size );
KMP_EXPORT void kmpc_free( void *ptr );
/* ------------------------------------------------------------------------ */
/* declarations for internal use */
extern int __kmp_barrier( enum barrier_type bt, int gtid, int is_split,
size_t reduce_size, void *reduce_data, void (*reduce)(void *, void *) );
extern void __kmp_end_split_barrier ( enum barrier_type bt, int gtid );
extern int __kmp_fork_call( ident_t *loc, int gtid, int exec_master,
kmp_int32 argc, microtask_t microtask, launch_t invoker,
/* TODO: revert workaround for Intel(R) 64 tracker #96 */
#if (KMP_ARCH_ARM || KMP_ARCH_X86_64) && KMP_OS_LINUX
va_list *ap
#else
va_list ap
#endif
);
extern void __kmp_join_call( ident_t *loc, int gtid
#if OMP_40_ENABLED
, int exit_teams = 0
#endif
);
extern void __kmp_internal_fork( ident_t *id, int gtid, kmp_team_t *team );
extern void __kmp_internal_join( ident_t *id, int gtid, kmp_team_t *team );
extern int __kmp_invoke_task_func( int gtid );
extern void __kmp_run_before_invoked_task( int gtid, int tid, kmp_info_t *this_thr, kmp_team_t *team );
extern void __kmp_run_after_invoked_task( int gtid, int tid, kmp_info_t *this_thr, kmp_team_t *team );
// should never have been exported
KMP_EXPORT int __kmpc_invoke_task_func( int gtid );
#if OMP_40_ENABLED
extern int __kmp_invoke_teams_master( int gtid );
extern void __kmp_teams_master( microtask_t microtask, int gtid );
#endif
extern void __kmp_save_internal_controls( kmp_info_t * thread );
extern void __kmp_user_set_library (enum library_type arg);
extern void __kmp_aux_set_library (enum library_type arg);
extern void __kmp_aux_set_stacksize( size_t arg);
extern void __kmp_aux_set_blocktime (int arg, kmp_info_t *thread, int tid);
extern void __kmp_aux_set_defaults( char const * str, int len );
/* Functions below put here to call them from __kmp_aux_env_initialize() in kmp_settings.c */
void kmpc_set_blocktime (int arg);
void ompc_set_nested( int flag );
void ompc_set_dynamic( int flag );
void ompc_set_num_threads( int arg );
#if OMP_30_ENABLED
extern void __kmp_push_current_task_to_thread( kmp_info_t *this_thr,
kmp_team_t *team, int tid );
extern void __kmp_pop_current_task_from_thread( kmp_info_t *this_thr );
extern kmp_task_t* __kmp_task_alloc( ident_t *loc_ref, kmp_int32 gtid,
kmp_tasking_flags_t *flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
kmp_routine_entry_t task_entry );
extern void __kmp_init_implicit_task( ident_t *loc_ref, kmp_info_t *this_thr,
kmp_team_t *team, int tid, int set_curr_task );
extern int __kmp_execute_tasks( kmp_info_t *thread, kmp_int32 gtid, volatile kmp_uint *spinner,
kmp_uint checker, int final_spin, int *thread_finished,
#if USE_ITT_BUILD
void * itt_sync_obj,
#endif /* USE_ITT_BUILD */
int c );
extern void __kmp_reap_task_teams( void );
extern void __kmp_unref_task_team( kmp_task_team_t *task_team, kmp_info_t *thread );
extern void __kmp_wait_to_unref_task_teams( void );
extern void __kmp_task_team_setup ( kmp_info_t *this_thr, kmp_team_t *team );
extern void __kmp_task_team_sync ( kmp_info_t *this_thr, kmp_team_t *team );
extern void __kmp_task_team_wait ( kmp_info_t *this_thr, kmp_team_t *team
#if USE_ITT_BUILD
, void * itt_sync_obj
#endif /* USE_ITT_BUILD */
);
extern void __kmp_tasking_barrier( kmp_team_t *team, kmp_info_t *thread, int gtid );
#endif // OMP_30_ENABLED
extern int __kmp_is_address_mapped( void *addr );
extern kmp_uint64 __kmp_hardware_timestamp(void);
#if KMP_OS_UNIX
extern int __kmp_read_from_file( char const *path, char const *format, ... );
#endif
/* ------------------------------------------------------------------------ */
//
// Assembly routines that have no compiler intrinsic replacement
//
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
extern void __kmp_query_cpuid( kmp_cpuinfo_t *p );
#define __kmp_load_mxcsr(p) _mm_setcsr(*(p))
static inline void __kmp_store_mxcsr( kmp_uint32 *p ) { *p = _mm_getcsr(); }
extern void __kmp_load_x87_fpu_control_word( kmp_int16 *p );
extern void __kmp_store_x87_fpu_control_word( kmp_int16 *p );
extern void __kmp_clear_x87_fpu_status_word();
# define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
extern int __kmp_invoke_microtask( microtask_t pkfn, int gtid, int npr, int argc, void *argv[] );
/* ------------------------------------------------------------------------ */
KMP_EXPORT void __kmpc_begin ( ident_t *, kmp_int32 flags );
KMP_EXPORT void __kmpc_end ( ident_t * );
KMP_EXPORT void __kmpc_threadprivate_register_vec ( ident_t *, void * data, kmpc_ctor_vec ctor,
kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length );
KMP_EXPORT void __kmpc_threadprivate_register ( ident_t *, void * data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor );
KMP_EXPORT void * __kmpc_threadprivate ( ident_t *, kmp_int32 global_tid, void * data, size_t size );
KMP_EXPORT kmp_int32 __kmpc_global_thread_num ( ident_t * );
KMP_EXPORT kmp_int32 __kmpc_global_num_threads ( ident_t * );
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num ( ident_t * );
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads ( ident_t * );
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork ( ident_t * );
KMP_EXPORT void __kmpc_fork_call ( ident_t *, kmp_int32 nargs, kmpc_micro microtask, ... );
KMP_EXPORT void __kmpc_serialized_parallel ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_end_serialized_parallel ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_flush ( ident_t *, ... );
KMP_EXPORT void __kmpc_barrier ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT kmp_int32 __kmpc_master ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_end_master ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_ordered ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_end_ordered ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_critical ( ident_t *, kmp_int32 global_tid, kmp_critical_name * );
KMP_EXPORT void __kmpc_end_critical ( ident_t *, kmp_int32 global_tid, kmp_critical_name * );
KMP_EXPORT kmp_int32 __kmpc_barrier_master ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_end_barrier_master ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT kmp_int32 __kmpc_single ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_end_single ( ident_t *, kmp_int32 global_tid );
KMP_EXPORT void KMPC_FOR_STATIC_INIT ( ident_t *loc, kmp_int32 global_tid, kmp_int32 schedtype, kmp_int32 *plastiter,
kmp_int *plower, kmp_int *pupper, kmp_int *pstride, kmp_int incr, kmp_int chunk );
KMP_EXPORT void __kmpc_for_static_fini ( ident_t *loc, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_copyprivate( ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void*,void*), kmp_int32 didit );
extern void KMPC_SET_NUM_THREADS ( int arg );
extern void KMPC_SET_DYNAMIC ( int flag );
extern void KMPC_SET_NESTED ( int flag );
/* --------------------------------------------------------------------------- */
/*
* Taskq interface routines
*/
KMP_EXPORT kmpc_thunk_t * __kmpc_taskq (ident_t *loc, kmp_int32 global_tid, kmpc_task_t taskq_task, size_t sizeof_thunk,
size_t sizeof_shareds, kmp_int32 flags, kmpc_shared_vars_t **shareds);
KMP_EXPORT void __kmpc_end_taskq (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk);
KMP_EXPORT kmp_int32 __kmpc_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk);
KMP_EXPORT void __kmpc_taskq_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, kmp_int32 status);
KMP_EXPORT void __kmpc_end_taskq_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk);
KMP_EXPORT kmpc_thunk_t * __kmpc_task_buffer (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk, kmpc_task_t task);
/* ------------------------------------------------------------------------ */
#if OMP_30_ENABLED
/*
* OMP 3.0 tasking interface routines
*/
KMP_EXPORT kmp_int32
__kmpc_omp_task( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task );
KMP_EXPORT kmp_task_t*
__kmpc_omp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags,
size_t sizeof_kmp_task_t, size_t sizeof_shareds,
kmp_routine_entry_t task_entry );
KMP_EXPORT void
__kmpc_omp_task_begin_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task );
KMP_EXPORT void
__kmpc_omp_task_complete_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task );
KMP_EXPORT kmp_int32
__kmpc_omp_task_parts( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task );
KMP_EXPORT kmp_int32
__kmpc_omp_taskwait( ident_t *loc_ref, kmp_int32 gtid );
KMP_EXPORT kmp_int32
__kmpc_omp_taskyield( ident_t *loc_ref, kmp_int32 gtid, int end_part );
#if TASK_UNUSED
void __kmpc_omp_task_begin( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task );
void __kmpc_omp_task_complete( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task );
#endif // TASK_UNUSED
/* ------------------------------------------------------------------------ */
#endif // OMP_30_ENABLED
#if OMP_40_ENABLED
KMP_EXPORT void __kmpc_taskgroup( ident_t * loc, int gtid );
KMP_EXPORT void __kmpc_end_taskgroup( ident_t * loc, int gtid );
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task,
kmp_int32 ndeps, kmp_depend_info_t *dep_list,
kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list );
KMP_EXPORT void __kmpc_omp_wait_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list );
extern void __kmp_release_deps ( kmp_int32 gtid, kmp_taskdata_t *task );
#endif
#if OMP_40_ENABLED
KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t* loc_ref, kmp_int32 gtid, kmp_int32 cncl_kind);
KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t* loc_ref, kmp_int32 gtid, kmp_int32 cncl_kind);
KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t* loc_ref, kmp_int32 gtid);
KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
#endif
/*
* Lock interface routines (fast versions with gtid passed in)
*/
KMP_EXPORT void __kmpc_init_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_init_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_destroy_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_destroy_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_set_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_set_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_unset_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT void __kmpc_unset_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT int __kmpc_test_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
KMP_EXPORT int __kmpc_test_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock );
/* ------------------------------------------------------------------------ */
/*
* Interface to fast scalable reduce methods routines
*/
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( ident_t *loc, kmp_int32 global_tid,
kmp_int32 num_vars, size_t reduce_size,
void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
kmp_critical_name *lck );
KMP_EXPORT void __kmpc_end_reduce_nowait( ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck );
KMP_EXPORT kmp_int32 __kmpc_reduce( ident_t *loc, kmp_int32 global_tid,
kmp_int32 num_vars, size_t reduce_size,
void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
kmp_critical_name *lck );
KMP_EXPORT void __kmpc_end_reduce( ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck );
/*
* internal fast reduction routines
*/
extern PACKED_REDUCTION_METHOD_T
__kmp_determine_reduction_method( ident_t *loc, kmp_int32 global_tid,
kmp_int32 num_vars, size_t reduce_size,
void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
kmp_critical_name *lck );
// this function is for testing set/get/determine reduce method
KMP_EXPORT kmp_int32 __kmp_get_reduce_method( void );
KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
KMP_EXPORT void __kmpc_place_threads(int,int,int);
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
// C++ port
// missing 'extern "C"' declarations
KMP_EXPORT kmp_int32 __kmpc_in_parallel( ident_t *loc );
KMP_EXPORT void __kmpc_pop_num_threads( ident_t *loc, kmp_int32 global_tid );
KMP_EXPORT void __kmpc_push_num_threads( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads );
#if OMP_40_ENABLED
KMP_EXPORT void __kmpc_push_proc_bind( ident_t *loc, kmp_int32 global_tid, int proc_bind );
KMP_EXPORT void __kmpc_push_num_teams( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads );
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...);
#endif
KMP_EXPORT void*
__kmpc_threadprivate_cached( ident_t * loc, kmp_int32 global_tid,
void * data, size_t size, void *** cache );
// Symbols for MS mutual detection.
extern int _You_must_link_with_exactly_one_OpenMP_library;
extern int _You_must_link_with_Intel_OpenMP_library;
#if KMP_OS_WINDOWS && ( KMP_VERSION_MAJOR > 4 )
extern int _You_must_link_with_Microsoft_OpenMP_library;
#endif
// The routines below are not exported.
// Consider making them 'static' in corresponding source files.
void
kmp_threadprivate_insert_private_data( int gtid, void *pc_addr, void *data_addr, size_t pc_size );
struct private_common *
kmp_threadprivate_insert( int gtid, void *pc_addr, void *data_addr, size_t pc_size );
//
// ompc_, kmpc_ entries moved from omp.h.
//
#if KMP_OS_WINDOWS
# define KMPC_CONVENTION __cdecl
#else
# define KMPC_CONVENTION
#endif
#if OMP_30_ENABLED
#ifndef __OMP_H
typedef enum omp_sched_t {
omp_sched_static = 1,
omp_sched_dynamic = 2,
omp_sched_guided = 3,
omp_sched_auto = 4
} omp_sched_t;
typedef void * kmp_affinity_mask_t;
#endif
KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
KMP_EXPORT int KMPC_CONVENTION kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
KMP_EXPORT int KMPC_CONVENTION kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
KMP_EXPORT int KMPC_CONVENTION kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
#endif // OMP_30_ENABLED
KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
#ifdef __cplusplus
}
#endif
#endif /* KMP_H */