blob: 1e8f94266dbefa315239c5b6ec36015f4d758771 [file] [log] [blame]
//===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the interface to be used by Clang during the codegen of a
// target region.
//
//===----------------------------------------------------------------------===//
#include <omptarget.h>
#include "device.h"
#include "private.h"
#include "rtl.h"
#include <cassert>
#include <vector>
#ifdef OMPTARGET_DEBUG
int DebugLevel = 0;
#endif // OMPTARGET_DEBUG
/* All begin addresses for partially mapped structs must be 8-aligned in order
* to ensure proper alignment of members. E.g.
*
* struct S {
* int a; // 4-aligned
* int b; // 4-aligned
* int *p; // 8-aligned
* } s1;
* ...
* #pragma omp target map(tofrom: s1.b, s1.p[0:N])
* {
* s1.b = 5;
* for (int i...) s1.p[i] = ...;
* }
*
* Here we are mapping s1 starting from member b, so BaseAddress=&s1=&s1.a and
* BeginAddress=&s1.b. Let's assume that the struct begins at address 0x100,
* then &s1.a=0x100, &s1.b=0x104, &s1.p=0x108. Each member obeys the alignment
* requirements for its type. Now, when we allocate memory on the device, in
* CUDA's case cuMemAlloc() returns an address which is at least 256-aligned.
* This means that the chunk of the struct on the device will start at a
* 256-aligned address, let's say 0x200. Then the address of b will be 0x200 and
* address of p will be a misaligned 0x204 (on the host there was no need to add
* padding between b and p, so p comes exactly 4 bytes after b). If the device
* kernel tries to access s1.p, a misaligned address error occurs (as reported
* by the CUDA plugin). By padding the begin address down to a multiple of 8 and
* extending the size of the allocated chuck accordingly, the chuck on the
* device will start at 0x200 with the padding (4 bytes), then &s1.b=0x204 and
* &s1.p=0x208, as they should be to satisfy the alignment requirements.
*/
static const int64_t alignment = 8;
/// Map global data and execute pending ctors
static int InitLibrary(DeviceTy& Device) {
/*
* Map global data
*/
int32_t device_id = Device.DeviceID;
int rc = OFFLOAD_SUCCESS;
Device.PendingGlobalsMtx.lock();
TrlTblMtx.lock();
for (HostEntriesBeginToTransTableTy::iterator
ii = HostEntriesBeginToTransTable.begin();
ii != HostEntriesBeginToTransTable.end(); ++ii) {
TranslationTable *TransTable = &ii->second;
if (TransTable->TargetsTable[device_id] != 0) {
// Library entries have already been processed
continue;
}
// 1) get image.
assert(TransTable->TargetsImages.size() > (size_t)device_id &&
"Not expecting a device ID outside the table's bounds!");
__tgt_device_image *img = TransTable->TargetsImages[device_id];
if (!img) {
DP("No image loaded for device id %d.\n", device_id);
rc = OFFLOAD_FAIL;
break;
}
// 2) load image into the target table.
__tgt_target_table *TargetTable =
TransTable->TargetsTable[device_id] = Device.load_binary(img);
// Unable to get table for this image: invalidate image and fail.
if (!TargetTable) {
DP("Unable to generate entries table for device id %d.\n", device_id);
TransTable->TargetsImages[device_id] = 0;
rc = OFFLOAD_FAIL;
break;
}
// Verify whether the two table sizes match.
size_t hsize =
TransTable->HostTable.EntriesEnd - TransTable->HostTable.EntriesBegin;
size_t tsize = TargetTable->EntriesEnd - TargetTable->EntriesBegin;
// Invalid image for these host entries!
if (hsize != tsize) {
DP("Host and Target tables mismatch for device id %d [%zx != %zx].\n",
device_id, hsize, tsize);
TransTable->TargetsImages[device_id] = 0;
TransTable->TargetsTable[device_id] = 0;
rc = OFFLOAD_FAIL;
break;
}
// process global data that needs to be mapped.
Device.DataMapMtx.lock();
__tgt_target_table *HostTable = &TransTable->HostTable;
for (__tgt_offload_entry *CurrDeviceEntry = TargetTable->EntriesBegin,
*CurrHostEntry = HostTable->EntriesBegin,
*EntryDeviceEnd = TargetTable->EntriesEnd;
CurrDeviceEntry != EntryDeviceEnd;
CurrDeviceEntry++, CurrHostEntry++) {
if (CurrDeviceEntry->size != 0) {
// has data.
assert(CurrDeviceEntry->size == CurrHostEntry->size &&
"data size mismatch");
// Fortran may use multiple weak declarations for the same symbol,
// therefore we must allow for multiple weak symbols to be loaded from
// the fat binary. Treat these mappings as any other "regular" mapping.
// Add entry to map.
if (Device.getTgtPtrBegin(CurrHostEntry->addr, CurrHostEntry->size))
continue;
DP("Add mapping from host " DPxMOD " to device " DPxMOD " with size %zu"
"\n", DPxPTR(CurrHostEntry->addr), DPxPTR(CurrDeviceEntry->addr),
CurrDeviceEntry->size);
Device.HostDataToTargetMap.push_front(HostDataToTargetTy(
(uintptr_t)CurrHostEntry->addr /*HstPtrBase*/,
(uintptr_t)CurrHostEntry->addr /*HstPtrBegin*/,
(uintptr_t)CurrHostEntry->addr + CurrHostEntry->size /*HstPtrEnd*/,
(uintptr_t)CurrDeviceEntry->addr /*TgtPtrBegin*/,
INF_REF_CNT /*RefCount*/));
}
}
Device.DataMapMtx.unlock();
}
TrlTblMtx.unlock();
if (rc != OFFLOAD_SUCCESS) {
Device.PendingGlobalsMtx.unlock();
return rc;
}
/*
* Run ctors for static objects
*/
if (!Device.PendingCtorsDtors.empty()) {
// Call all ctors for all libraries registered so far
for (auto &lib : Device.PendingCtorsDtors) {
if (!lib.second.PendingCtors.empty()) {
DP("Has pending ctors... call now\n");
for (auto &entry : lib.second.PendingCtors) {
void *ctor = entry;
int rc = target(device_id, ctor, 0, NULL, NULL, NULL,
NULL, 1, 1, true /*team*/);
if (rc != OFFLOAD_SUCCESS) {
DP("Running ctor " DPxMOD " failed.\n", DPxPTR(ctor));
Device.PendingGlobalsMtx.unlock();
return OFFLOAD_FAIL;
}
}
// Clear the list to indicate that this device has been used
lib.second.PendingCtors.clear();
DP("Done with pending ctors for lib " DPxMOD "\n", DPxPTR(lib.first));
}
}
}
Device.HasPendingGlobals = false;
Device.PendingGlobalsMtx.unlock();
return OFFLOAD_SUCCESS;
}
// Check whether a device has been initialized, global ctors have been
// executed and global data has been mapped; do so if not already done.
int CheckDeviceAndCtors(int64_t device_id) {
// Is device ready?
if (!device_is_ready(device_id)) {
DP("Device %" PRId64 " is not ready.\n", device_id);
return OFFLOAD_FAIL;
}
// Get device info.
DeviceTy &Device = Devices[device_id];
// Check whether global data has been mapped for this device
Device.PendingGlobalsMtx.lock();
bool hasPendingGlobals = Device.HasPendingGlobals;
Device.PendingGlobalsMtx.unlock();
if (hasPendingGlobals && InitLibrary(Device) != OFFLOAD_SUCCESS) {
DP("Failed to init globals on device %" PRId64 "\n", device_id);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
static int32_t member_of(int64_t type) {
return ((type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1;
}
/// Internal function to do the mapping and transfer the data to the device
int target_data_begin(DeviceTy &Device, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types) {
// process each input.
for (int32_t i = 0; i < arg_num; ++i) {
// Ignore private variables and arrays - there is no mapping for them.
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
void *HstPtrBase = args_base[i];
int64_t data_size = arg_sizes[i];
// Adjust for proper alignment if this is a combined entry (for structs).
// Look at the next argument - if that is MEMBER_OF this one, then this one
// is a combined entry.
int64_t padding = 0;
const int next_i = i+1;
if (member_of(arg_types[i]) < 0 && next_i < arg_num &&
member_of(arg_types[next_i]) == i) {
padding = (int64_t)HstPtrBegin % alignment;
if (padding) {
DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD
"\n", padding, DPxPTR(HstPtrBegin));
HstPtrBegin = (char *) HstPtrBegin - padding;
data_size += padding;
}
}
// Address of pointer on the host and device, respectively.
void *Pointer_HstPtrBegin, *Pointer_TgtPtrBegin;
bool IsNew, Pointer_IsNew;
bool IsImplicit = arg_types[i] & OMP_TGT_MAPTYPE_IMPLICIT;
// UpdateRef is based on MEMBER_OF instead of TARGET_PARAM because if we
// have reached this point via __tgt_target_data_begin and not __tgt_target
// then no argument is marked as TARGET_PARAM ("omp target data map" is not
// associated with a target region, so there are no target parameters). This
// may be considered a hack, we could revise the scheme in the future.
bool UpdateRef = !(arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF);
if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
DP("Has a pointer entry: \n");
// base is address of pointer.
Pointer_TgtPtrBegin = Device.getOrAllocTgtPtr(HstPtrBase, HstPtrBase,
sizeof(void *), Pointer_IsNew, IsImplicit, UpdateRef);
if (!Pointer_TgtPtrBegin) {
DP("Call to getOrAllocTgtPtr returned null pointer (device failure or "
"illegal mapping).\n");
return OFFLOAD_FAIL;
}
DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new"
"\n", sizeof(void *), DPxPTR(Pointer_TgtPtrBegin),
(Pointer_IsNew ? "" : " not"));
Pointer_HstPtrBegin = HstPtrBase;
// modify current entry.
HstPtrBase = *(void **)HstPtrBase;
UpdateRef = true; // subsequently update ref count of pointee
}
void *TgtPtrBegin = Device.getOrAllocTgtPtr(HstPtrBegin, HstPtrBase,
data_size, IsNew, IsImplicit, UpdateRef);
if (!TgtPtrBegin && data_size) {
// If data_size==0, then the argument could be a zero-length pointer to
// NULL, so getOrAlloc() returning NULL is not an error.
DP("Call to getOrAllocTgtPtr returned null pointer (device failure or "
"illegal mapping).\n");
}
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s new\n", data_size, DPxPTR(TgtPtrBegin),
(IsNew ? "" : " not"));
if (arg_types[i] & OMP_TGT_MAPTYPE_RETURN_PARAM) {
uintptr_t Delta = (uintptr_t)HstPtrBegin - (uintptr_t)HstPtrBase;
void *TgtPtrBase = (void *)((uintptr_t)TgtPtrBegin - Delta);
DP("Returning device pointer " DPxMOD "\n", DPxPTR(TgtPtrBase));
args_base[i] = TgtPtrBase;
}
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
bool copy = false;
if (IsNew || (arg_types[i] & OMP_TGT_MAPTYPE_ALWAYS)) {
copy = true;
} else if (arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) {
// Copy data only if the "parent" struct has RefCount==1.
int32_t parent_idx = member_of(arg_types[i]);
long parent_rc = Device.getMapEntryRefCnt(args[parent_idx]);
assert(parent_rc > 0 && "parent struct not found");
if (parent_rc == 1) {
copy = true;
}
}
if (copy) {
DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
data_size, DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
int rt = Device.data_submit(TgtPtrBegin, HstPtrBegin, data_size);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
}
}
if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n",
DPxPTR(Pointer_TgtPtrBegin), DPxPTR(TgtPtrBegin));
uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
void *TgtPtrBase = (void *)((uint64_t)TgtPtrBegin - Delta);
int rt = Device.data_submit(Pointer_TgtPtrBegin, &TgtPtrBase,
sizeof(void *));
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
// create shadow pointers for this entry
Device.ShadowMtx.lock();
Device.ShadowPtrMap[Pointer_HstPtrBegin] = {HstPtrBase,
Pointer_TgtPtrBegin, TgtPtrBase};
Device.ShadowMtx.unlock();
}
}
return OFFLOAD_SUCCESS;
}
/// Internal function to undo the mapping and retrieve the data from the device.
int target_data_end(DeviceTy &Device, int32_t arg_num, void **args_base,
void **args, int64_t *arg_sizes, int64_t *arg_types) {
// process each input.
for (int32_t i = arg_num - 1; i >= 0; --i) {
// Ignore private variables and arrays - there is no mapping for them.
// Also, ignore the use_device_ptr directive, it has no effect here.
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
int64_t data_size = arg_sizes[i];
// Adjust for proper alignment if this is a combined entry (for structs).
// Look at the next argument - if that is MEMBER_OF this one, then this one
// is a combined entry.
int64_t padding = 0;
const int next_i = i+1;
if (member_of(arg_types[i]) < 0 && next_i < arg_num &&
member_of(arg_types[next_i]) == i) {
padding = (int64_t)HstPtrBegin % alignment;
if (padding) {
DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD
"\n", padding, DPxPTR(HstPtrBegin));
HstPtrBegin = (char *) HstPtrBegin - padding;
data_size += padding;
}
}
bool IsLast;
bool UpdateRef = !(arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ);
bool ForceDelete = arg_types[i] & OMP_TGT_MAPTYPE_DELETE;
// If PTR_AND_OBJ, HstPtrBegin is address of pointee
void *TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, data_size, IsLast,
UpdateRef);
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s last\n", data_size, DPxPTR(TgtPtrBegin),
(IsLast ? "" : " not"));
bool DelEntry = IsLast || ForceDelete;
if ((arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
!(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
DelEntry = false; // protect parent struct from being deallocated
}
if ((arg_types[i] & OMP_TGT_MAPTYPE_FROM) || DelEntry) {
// Move data back to the host
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
bool Always = arg_types[i] & OMP_TGT_MAPTYPE_ALWAYS;
bool CopyMember = false;
if ((arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
!(arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
// Copy data only if the "parent" struct has RefCount==1.
int32_t parent_idx = member_of(arg_types[i]);
long parent_rc = Device.getMapEntryRefCnt(args[parent_idx]);
assert(parent_rc > 0 && "parent struct not found");
if (parent_rc == 1) {
CopyMember = true;
}
}
if (DelEntry || Always || CopyMember) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
data_size, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
int rt = Device.data_retrieve(HstPtrBegin, TgtPtrBegin, data_size);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data from device failed.\n");
return OFFLOAD_FAIL;
}
}
}
// If we copied back to the host a struct/array containing pointers, we
// need to restore the original host pointer values from their shadow
// copies. If the struct is going to be deallocated, remove any remaining
// shadow pointer entries for this struct.
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + data_size;
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end();) {
void **ShadowHstPtrAddr = (void**) it->first;
// An STL map is sorted on its keys; use this property
// to quickly determine when to break out of the loop.
if ((uintptr_t) ShadowHstPtrAddr < lb) {
++it;
continue;
}
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
// If we copied the struct to the host, we need to restore the pointer.
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
DP("Restoring original host pointer value " DPxMOD " for host "
"pointer " DPxMOD "\n", DPxPTR(it->second.HstPtrVal),
DPxPTR(ShadowHstPtrAddr));
*ShadowHstPtrAddr = it->second.HstPtrVal;
}
// If the struct is to be deallocated, remove the shadow entry.
if (DelEntry) {
DP("Removing shadow pointer " DPxMOD "\n", DPxPTR(ShadowHstPtrAddr));
it = Device.ShadowPtrMap.erase(it);
} else {
++it;
}
}
Device.ShadowMtx.unlock();
// Deallocate map
if (DelEntry) {
int rt = Device.deallocTgtPtr(HstPtrBegin, data_size, ForceDelete);
if (rt != OFFLOAD_SUCCESS) {
DP("Deallocating data from device failed.\n");
return OFFLOAD_FAIL;
}
}
}
}
return OFFLOAD_SUCCESS;
}
/// Internal function to pass data to/from the target.
int target_data_update(DeviceTy &Device, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types) {
// process each input.
for (int32_t i = 0; i < arg_num; ++i) {
if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) ||
(arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
void *HstPtrBegin = args[i];
int64_t MapSize = arg_sizes[i];
bool IsLast;
void *TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, MapSize, IsLast,
false);
if (!TgtPtrBegin) {
DP("hst data:" DPxMOD " not found, becomes a noop\n", DPxPTR(HstPtrBegin));
continue;
}
if (arg_types[i] & OMP_TGT_MAPTYPE_FROM) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
int rt = Device.data_retrieve(HstPtrBegin, TgtPtrBegin, MapSize);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data from device failed.\n");
return OFFLOAD_FAIL;
}
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + MapSize;
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end(); ++it) {
void **ShadowHstPtrAddr = (void**) it->first;
if ((uintptr_t) ShadowHstPtrAddr < lb)
continue;
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
DP("Restoring original host pointer value " DPxMOD " for host pointer "
DPxMOD "\n", DPxPTR(it->second.HstPtrVal),
DPxPTR(ShadowHstPtrAddr));
*ShadowHstPtrAddr = it->second.HstPtrVal;
}
Device.ShadowMtx.unlock();
}
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
arg_sizes[i], DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
int rt = Device.data_submit(TgtPtrBegin, HstPtrBegin, MapSize);
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
uintptr_t lb = (uintptr_t) HstPtrBegin;
uintptr_t ub = (uintptr_t) HstPtrBegin + MapSize;
Device.ShadowMtx.lock();
for (ShadowPtrListTy::iterator it = Device.ShadowPtrMap.begin();
it != Device.ShadowPtrMap.end(); ++it) {
void **ShadowHstPtrAddr = (void**) it->first;
if ((uintptr_t) ShadowHstPtrAddr < lb)
continue;
if ((uintptr_t) ShadowHstPtrAddr >= ub)
break;
DP("Restoring original target pointer value " DPxMOD " for target "
"pointer " DPxMOD "\n", DPxPTR(it->second.TgtPtrVal),
DPxPTR(it->second.TgtPtrAddr));
rt = Device.data_submit(it->second.TgtPtrAddr,
&it->second.TgtPtrVal, sizeof(void *));
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
Device.ShadowMtx.unlock();
return OFFLOAD_FAIL;
}
}
Device.ShadowMtx.unlock();
}
}
return OFFLOAD_SUCCESS;
}
static const unsigned LambdaMapping = OMP_TGT_MAPTYPE_PTR_AND_OBJ |
OMP_TGT_MAPTYPE_LITERAL |
OMP_TGT_MAPTYPE_IMPLICIT;
static bool isLambdaMapping(int64_t Mapping) {
return (Mapping & LambdaMapping) == LambdaMapping;
}
/// performs the same actions as data_begin in case arg_num is
/// non-zero and initiates run of the offloaded region on the target platform;
/// if arg_num is non-zero after the region execution is done it also
/// performs the same action as data_update and data_end above. This function
/// returns 0 if it was able to transfer the execution to a target and an
/// integer different from zero otherwise.
int target(int64_t device_id, void *host_ptr, int32_t arg_num,
void **args_base, void **args, int64_t *arg_sizes, int64_t *arg_types,
int32_t team_num, int32_t thread_limit, int IsTeamConstruct) {
DeviceTy &Device = Devices[device_id];
// Find the table information in the map or look it up in the translation
// tables.
TableMap *TM = 0;
TblMapMtx.lock();
HostPtrToTableMapTy::iterator TableMapIt = HostPtrToTableMap.find(host_ptr);
if (TableMapIt == HostPtrToTableMap.end()) {
// We don't have a map. So search all the registered libraries.
TrlTblMtx.lock();
for (HostEntriesBeginToTransTableTy::iterator
ii = HostEntriesBeginToTransTable.begin(),
ie = HostEntriesBeginToTransTable.end();
!TM && ii != ie; ++ii) {
// get the translation table (which contains all the good info).
TranslationTable *TransTable = &ii->second;
// iterate over all the host table entries to see if we can locate the
// host_ptr.
__tgt_offload_entry *begin = TransTable->HostTable.EntriesBegin;
__tgt_offload_entry *end = TransTable->HostTable.EntriesEnd;
__tgt_offload_entry *cur = begin;
for (uint32_t i = 0; cur < end; ++cur, ++i) {
if (cur->addr != host_ptr)
continue;
// we got a match, now fill the HostPtrToTableMap so that we
// may avoid this search next time.
TM = &HostPtrToTableMap[host_ptr];
TM->Table = TransTable;
TM->Index = i;
break;
}
}
TrlTblMtx.unlock();
} else {
TM = &TableMapIt->second;
}
TblMapMtx.unlock();
// No map for this host pointer found!
if (!TM) {
DP("Host ptr " DPxMOD " does not have a matching target pointer.\n",
DPxPTR(host_ptr));
return OFFLOAD_FAIL;
}
// get target table.
TrlTblMtx.lock();
assert(TM->Table->TargetsTable.size() > (size_t)device_id &&
"Not expecting a device ID outside the table's bounds!");
__tgt_target_table *TargetTable = TM->Table->TargetsTable[device_id];
TrlTblMtx.unlock();
assert(TargetTable && "Global data has not been mapped\n");
// Move data to device.
int rc = target_data_begin(Device, arg_num, args_base, args, arg_sizes,
arg_types);
if (rc != OFFLOAD_SUCCESS) {
DP("Call to target_data_begin failed, abort target.\n");
return OFFLOAD_FAIL;
}
std::vector<void *> tgt_args;
std::vector<ptrdiff_t> tgt_offsets;
// List of (first-)private arrays allocated for this target region
std::vector<void *> fpArrays;
std::vector<int> tgtArgsPositions(arg_num, -1);
for (int32_t i = 0; i < arg_num; ++i) {
if (!(arg_types[i] & OMP_TGT_MAPTYPE_TARGET_PARAM)) {
// This is not a target parameter, do not push it into tgt_args.
// Check for lambda mapping.
if (isLambdaMapping(arg_types[i])) {
assert((arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
"PTR_AND_OBJ must be also MEMBER_OF.");
unsigned idx = member_of(arg_types[i]);
int tgtIdx = tgtArgsPositions[idx];
assert(tgtIdx != -1 && "Base address must be translated already.");
// The parent lambda must be processed already and it must be the last
// in tgt_args and tgt_offsets arrays.
void *HstPtrVal = args[i];
void *HstPtrBegin = args_base[i];
void *HstPtrBase = args[idx];
bool IsLast; // unused.
void *TgtPtrBase =
(void *)((intptr_t)tgt_args[tgtIdx] + tgt_offsets[tgtIdx]);
DP("Parent lambda base " DPxMOD "\n", DPxPTR(TgtPtrBase));
uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
void *TgtPtrBegin = (void *)((uintptr_t)TgtPtrBase + Delta);
void *Pointer_TgtPtrBegin =
Device.getTgtPtrBegin(HstPtrVal, arg_sizes[i], IsLast, false);
if (!Pointer_TgtPtrBegin) {
DP("No lambda captured variable mapped (" DPxMOD ") - ignored\n",
DPxPTR(HstPtrVal));
continue;
}
DP("Update lambda reference (" DPxMOD ") -> [" DPxMOD "]\n",
DPxPTR(Pointer_TgtPtrBegin), DPxPTR(TgtPtrBegin));
int rt = Device.data_submit(TgtPtrBegin, &Pointer_TgtPtrBegin,
sizeof(void *));
if (rt != OFFLOAD_SUCCESS) {
DP("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
}
continue;
}
void *HstPtrBegin = args[i];
void *HstPtrBase = args_base[i];
void *TgtPtrBegin;
ptrdiff_t TgtBaseOffset;
bool IsLast; // unused.
if (arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) {
DP("Forwarding first-private value " DPxMOD " to the target construct\n",
DPxPTR(HstPtrBase));
TgtPtrBegin = HstPtrBase;
TgtBaseOffset = 0;
} else if (arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE) {
// Allocate memory for (first-)private array
TgtPtrBegin = Device.RTL->data_alloc(Device.RTLDeviceID,
arg_sizes[i], HstPtrBegin);
if (!TgtPtrBegin) {
DP ("Data allocation for %sprivate array " DPxMOD " failed, "
"abort target.\n",
(arg_types[i] & OMP_TGT_MAPTYPE_TO ? "first-" : ""),
DPxPTR(HstPtrBegin));
return OFFLOAD_FAIL;
}
fpArrays.push_back(TgtPtrBegin);
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD " for "
"%sprivate array " DPxMOD " - pushing target argument " DPxMOD "\n",
arg_sizes[i], DPxPTR(TgtPtrBegin),
(arg_types[i] & OMP_TGT_MAPTYPE_TO ? "first-" : ""),
DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBase));
#endif
// If first-private, copy data from host
if (arg_types[i] & OMP_TGT_MAPTYPE_TO) {
int rt = Device.data_submit(TgtPtrBegin, HstPtrBegin, arg_sizes[i]);
if (rt != OFFLOAD_SUCCESS) {
DP ("Copying data to device failed, failed.\n");
return OFFLOAD_FAIL;
}
}
} else if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBase, sizeof(void *), IsLast,
false);
TgtBaseOffset = 0; // no offset for ptrs.
DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD " to "
"object " DPxMOD "\n", DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBase),
DPxPTR(HstPtrBase));
} else {
TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, arg_sizes[i], IsLast,
false);
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n",
DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin));
#endif
}
tgtArgsPositions[i] = tgt_args.size();
tgt_args.push_back(TgtPtrBegin);
tgt_offsets.push_back(TgtBaseOffset);
}
assert(tgt_args.size() == tgt_offsets.size() &&
"Size mismatch in arguments and offsets");
// Pop loop trip count
uint64_t ltc = 0;
TblMapMtx.lock();
auto I = Device.loopTripCnt.find(__kmpc_global_thread_num(NULL));
if (I != Device.loopTripCnt.end())
std::swap(ltc, I->second);
TblMapMtx.unlock();
// Launch device execution.
DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
TargetTable->EntriesBegin[TM->Index].name,
DPxPTR(TargetTable->EntriesBegin[TM->Index].addr), TM->Index);
if (IsTeamConstruct) {
rc = Device.run_team_region(TargetTable->EntriesBegin[TM->Index].addr,
&tgt_args[0], &tgt_offsets[0], tgt_args.size(), team_num,
thread_limit, ltc);
} else {
rc = Device.run_region(TargetTable->EntriesBegin[TM->Index].addr,
&tgt_args[0], &tgt_offsets[0], tgt_args.size());
}
if (rc != OFFLOAD_SUCCESS) {
DP ("Executing target region abort target.\n");
return OFFLOAD_FAIL;
}
// Deallocate (first-)private arrays
for (auto it : fpArrays) {
int rt = Device.RTL->data_delete(Device.RTLDeviceID, it);
if (rt != OFFLOAD_SUCCESS) {
DP("Deallocation of (first-)private arrays failed.\n");
return OFFLOAD_FAIL;
}
}
// Move data from device.
int rt = target_data_end(Device, arg_num, args_base, args, arg_sizes,
arg_types);
if (rt != OFFLOAD_SUCCESS) {
DP("Call to target_data_end failed, abort targe.\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}