blob: f12e6da7d21cdc6d8e07c3e633c10b48ad5726f5 [file] [log] [blame]
//===- Object.h -------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_OBJCOPY_OBJECT_H
#define LLVM_TOOLS_OBJCOPY_OBJECT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <vector>
namespace llvm {
class FileOutputBuffer;
class SectionBase;
class Segment;
class SectionTableRef {
private:
ArrayRef<std::unique_ptr<SectionBase>> Sections;
public:
SectionTableRef(ArrayRef<std::unique_ptr<SectionBase>> Secs)
: Sections(Secs) {}
SectionTableRef(const SectionTableRef &) = default;
SectionBase *getSection(uint16_t Index, Twine ErrMsg);
template <class T>
T *getSectionOfType(uint16_t Index, Twine IndexErrMsg, Twine TypeErrMsg);
};
class SectionBase {
public:
StringRef Name;
Segment *ParentSegment = nullptr;
uint64_t HeaderOffset;
uint64_t OriginalOffset;
uint32_t Index;
uint64_t Addr = 0;
uint64_t Align = 1;
uint32_t EntrySize = 0;
uint64_t Flags = 0;
uint64_t Info = 0;
uint64_t Link = ELF::SHN_UNDEF;
uint64_t NameIndex = 0;
uint64_t Offset = 0;
uint64_t Size = 0;
uint64_t Type = ELF::SHT_NULL;
virtual ~SectionBase() = default;
virtual void initialize(SectionTableRef SecTable);
virtual void finalize();
virtual void removeSectionReferences(const SectionBase *Sec);
template <class ELFT> void writeHeader(FileOutputBuffer &Out) const;
virtual void writeSection(FileOutputBuffer &Out) const = 0;
};
class Segment {
private:
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const {
// Some sections might have the same address if one of them is empty. To
// fix this we can use the lexicographic ordering on ->Addr and the
// address of the actully stored section.
if (Lhs->OriginalOffset == Rhs->OriginalOffset)
return Lhs < Rhs;
return Lhs->OriginalOffset < Rhs->OriginalOffset;
}
};
std::set<const SectionBase *, SectionCompare> Sections;
ArrayRef<uint8_t> Contents;
public:
uint64_t Align;
uint64_t FileSize;
uint32_t Flags;
uint32_t Index;
uint64_t MemSize;
uint64_t Offset;
uint64_t PAddr;
uint64_t Type;
uint64_t VAddr;
uint64_t OriginalOffset;
Segment *ParentSegment = nullptr;
Segment(ArrayRef<uint8_t> Data) : Contents(Data) {}
const SectionBase *firstSection() const {
if (!Sections.empty())
return *Sections.begin();
return nullptr;
}
void removeSection(const SectionBase *Sec) { Sections.erase(Sec); }
void addSection(const SectionBase *Sec) { Sections.insert(Sec); }
template <class ELFT> void writeHeader(FileOutputBuffer &Out) const;
void writeSegment(FileOutputBuffer &Out) const;
};
class Section : public SectionBase {
private:
ArrayRef<uint8_t> Contents;
public:
Section(ArrayRef<uint8_t> Data) : Contents(Data) {}
void writeSection(FileOutputBuffer &Out) const override;
};
// There are two types of string tables that can exist, dynamic and not dynamic.
// In the dynamic case the string table is allocated. Changing a dynamic string
// table would mean altering virtual addresses and thus the memory image. So
// dynamic string tables should not have an interface to modify them or
// reconstruct them. This type lets us reconstruct a string table. To avoid
// this class being used for dynamic string tables (which has happened) the
// classof method checks that the particular instance is not allocated. This
// then agrees with the makeSection method used to construct most sections.
class StringTableSection : public SectionBase {
private:
StringTableBuilder StrTabBuilder;
public:
StringTableSection() : StrTabBuilder(StringTableBuilder::ELF) {
Type = ELF::SHT_STRTAB;
}
void addString(StringRef Name);
uint32_t findIndex(StringRef Name) const;
void finalize() override;
void writeSection(FileOutputBuffer &Out) const override;
static bool classof(const SectionBase *S) {
if (S->Flags & ELF::SHF_ALLOC)
return false;
return S->Type == ELF::SHT_STRTAB;
}
};
// Symbols have a st_shndx field that normally stores an index but occasionally
// stores a different special value. This enum keeps track of what the st_shndx
// field means. Most of the values are just copies of the special SHN_* values.
// SYMBOL_SIMPLE_INDEX means that the st_shndx is just an index of a section.
enum SymbolShndxType {
SYMBOL_SIMPLE_INDEX = 0,
SYMBOL_ABS = ELF::SHN_ABS,
SYMBOL_COMMON = ELF::SHN_COMMON,
SYMBOL_HEXAGON_SCOMMON = ELF::SHN_HEXAGON_SCOMMON,
SYMBOL_HEXAGON_SCOMMON_2 = ELF::SHN_HEXAGON_SCOMMON_2,
SYMBOL_HEXAGON_SCOMMON_4 = ELF::SHN_HEXAGON_SCOMMON_4,
SYMBOL_HEXAGON_SCOMMON_8 = ELF::SHN_HEXAGON_SCOMMON_8,
};
struct Symbol {
uint8_t Binding;
SectionBase *DefinedIn = nullptr;
SymbolShndxType ShndxType;
uint32_t Index;
StringRef Name;
uint32_t NameIndex;
uint64_t Size;
uint8_t Type;
uint64_t Value;
uint16_t getShndx() const;
};
class SymbolTableSection : public SectionBase {
protected:
std::vector<std::unique_ptr<Symbol>> Symbols;
StringTableSection *SymbolNames = nullptr;
using SymPtr = std::unique_ptr<Symbol>;
public:
void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
void addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
SectionBase *DefinedIn, uint64_t Value, uint16_t Shndx,
uint64_t Sz);
void addSymbolNames();
const Symbol *getSymbolByIndex(uint32_t Index) const;
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_SYMTAB;
}
};
// Only writeSection depends on the ELF type so we implement it in a subclass.
template <class ELFT> class SymbolTableSectionImpl : public SymbolTableSection {
void writeSection(FileOutputBuffer &Out) const override;
};
struct Relocation {
const Symbol *RelocSymbol = nullptr;
uint64_t Offset;
uint64_t Addend;
uint32_t Type;
};
// All relocation sections denote relocations to apply to another section.
// However, some relocation sections use a dynamic symbol table and others use
// a regular symbol table. Because the types of the two symbol tables differ in
// our system (because they should behave differently) we can't uniformly
// represent all relocations with the same base class if we expose an interface
// that mentions the symbol table type. So we split the two base types into two
// different classes, one which handles the section the relocation is applied to
// and another which handles the symbol table type. The symbol table type is
// taken as a type parameter to the class (see RelocSectionWithSymtabBase).
class RelocationSectionBase : public SectionBase {
protected:
SectionBase *SecToApplyRel = nullptr;
public:
const SectionBase *getSection() const { return SecToApplyRel; }
void setSection(SectionBase *Sec) { SecToApplyRel = Sec; }
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
// Takes the symbol table type to use as a parameter so that we can deduplicate
// that code between the two symbol table types.
template <class SymTabType>
class RelocSectionWithSymtabBase : public RelocationSectionBase {
private:
SymTabType *Symbols = nullptr;
protected:
RelocSectionWithSymtabBase() = default;
public:
void setSymTab(SymTabType *StrTab) { Symbols = StrTab; }
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
};
template <class ELFT>
class RelocationSection
: public RelocSectionWithSymtabBase<SymbolTableSection> {
private:
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
std::vector<Relocation> Relocations;
template <class T> void writeRel(T *Buf) const;
public:
void addRelocation(Relocation Rel) { Relocations.push_back(Rel); }
void writeSection(FileOutputBuffer &Out) const override;
static bool classof(const SectionBase *S) {
if (S->Flags & ELF::SHF_ALLOC)
return false;
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
class SectionWithStrTab : public Section {
private:
const SectionBase *StrTab = nullptr;
public:
SectionWithStrTab(ArrayRef<uint8_t> Data) : Section(Data) {}
void setStrTab(const SectionBase *StringTable) { StrTab = StringTable; }
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
static bool classof(const SectionBase *S);
};
class DynamicSymbolTableSection : public SectionWithStrTab {
public:
DynamicSymbolTableSection(ArrayRef<uint8_t> Data) : SectionWithStrTab(Data) {}
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_DYNSYM;
}
};
class DynamicSection : public SectionWithStrTab {
public:
DynamicSection(ArrayRef<uint8_t> Data) : SectionWithStrTab(Data) {}
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_DYNAMIC;
}
};
class DynamicRelocationSection
: public RelocSectionWithSymtabBase<DynamicSymbolTableSection> {
private:
ArrayRef<uint8_t> Contents;
public:
DynamicRelocationSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
void writeSection(FileOutputBuffer &Out) const override;
static bool classof(const SectionBase *S) {
if (!(S->Flags & ELF::SHF_ALLOC))
return false;
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
template <class ELFT> class Object {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Ehdr = typename ELFT::Ehdr;
using Elf_Phdr = typename ELFT::Phdr;
void initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
SymbolTableSection *SymTab, SectionTableRef SecTable);
SecPtr makeSection(const object::ELFFile<ELFT> &ElfFile,
const Elf_Shdr &Shdr);
void readProgramHeaders(const object::ELFFile<ELFT> &ElfFile);
SectionTableRef readSectionHeaders(const object::ELFFile<ELFT> &ElfFile);
protected:
StringTableSection *SectionNames = nullptr;
SymbolTableSection *SymbolTable = nullptr;
std::vector<SecPtr> Sections;
std::vector<SegPtr> Segments;
void writeHeader(FileOutputBuffer &Out) const;
void writeProgramHeaders(FileOutputBuffer &Out) const;
void writeSectionData(FileOutputBuffer &Out) const;
void writeSectionHeaders(FileOutputBuffer &Out) const;
public:
uint8_t Ident[16];
uint64_t Entry;
uint64_t SHOffset;
uint32_t Type;
uint32_t Machine;
uint32_t Version;
uint32_t Flags;
bool WriteSectionHeaders = true;
Object(const object::ELFObjectFile<ELFT> &Obj);
virtual ~Object() = default;
const SectionBase *getSectionHeaderStrTab() const { return SectionNames; }
void removeSections(std::function<bool(const SectionBase &)> ToRemove);
virtual size_t totalSize() const = 0;
virtual void finalize() = 0;
virtual void write(FileOutputBuffer &Out) const = 0;
};
template <class ELFT> class ELFObject : public Object<ELFT> {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Ehdr = typename ELFT::Ehdr;
using Elf_Phdr = typename ELFT::Phdr;
void sortSections();
void assignOffsets();
public:
ELFObject(const object::ELFObjectFile<ELFT> &Obj) : Object<ELFT>(Obj) {}
void finalize() override;
size_t totalSize() const override;
void write(FileOutputBuffer &Out) const override;
};
template <class ELFT> class BinaryObject : public Object<ELFT> {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
uint64_t TotalSize;
public:
BinaryObject(const object::ELFObjectFile<ELFT> &Obj) : Object<ELFT>(Obj) {}
void finalize() override;
size_t totalSize() const override;
void write(FileOutputBuffer &Out) const override;
};
} // end namespace llvm
#endif // LLVM_TOOLS_OBJCOPY_OBJECT_H