blob: ed7b327124d749ac76e27e5b8865ee07422bfdae [file] [log] [blame]
//===- RTDyldObjectLinkingLayerTest.cpp - RTDyld linking layer unit tests -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "OrcTestCommon.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/NullResolver.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::orc;
namespace {
class RTDyldObjectLinkingLayerExecutionTest : public testing::Test,
public OrcExecutionTest {
};
class SectionMemoryManagerWrapper : public SectionMemoryManager {
public:
int FinalizationCount = 0;
int NeedsToReserveAllocationSpaceCount = 0;
bool needsToReserveAllocationSpace() override {
++NeedsToReserveAllocationSpaceCount;
return SectionMemoryManager::needsToReserveAllocationSpace();
}
bool finalizeMemory(std::string *ErrMsg = nullptr) override {
++FinalizationCount;
return SectionMemoryManager::finalizeMemory(ErrMsg);
}
};
TEST(RTDyldObjectLinkingLayerTest, TestSetProcessAllSections) {
class MemoryManagerWrapper : public SectionMemoryManager {
public:
MemoryManagerWrapper(bool &DebugSeen) : DebugSeen(DebugSeen) {}
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) override {
if (SectionName == ".debug_str")
DebugSeen = true;
return SectionMemoryManager::allocateDataSection(Size, Alignment,
SectionID,
SectionName,
IsReadOnly);
}
private:
bool &DebugSeen;
};
bool DebugSectionSeen = false;
auto MM = std::make_shared<MemoryManagerWrapper>(DebugSectionSeen);
RTDyldObjectLinkingLayer ObjLayer([&MM]() { return MM; });
LLVMContext Context;
auto M = llvm::make_unique<Module>("", Context);
M->setTargetTriple("x86_64-unknown-linux-gnu");
Type *Int32Ty = IntegerType::get(Context, 32);
GlobalVariable *GV =
new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
ConstantInt::get(Int32Ty, 42), "foo");
GV->setSection(".debug_str");
// Initialize the native target in case this is the first unit test
// to try to build a TM.
OrcNativeTarget::initialize();
std::unique_ptr<TargetMachine> TM(
EngineBuilder().selectTarget(Triple(M->getTargetTriple()), "", "",
SmallVector<std::string, 1>()));
if (!TM)
return;
auto Obj =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
SimpleCompiler(*TM)(*M));
auto Resolver =
createLambdaResolver(
[](const std::string &Name) {
return JITSymbol(nullptr);
},
[](const std::string &Name) {
return JITSymbol(nullptr);
});
{
// Test with ProcessAllSections = false (the default).
auto H = cantFail(ObjLayer.addObject(Obj, Resolver));
cantFail(ObjLayer.emitAndFinalize(H));
EXPECT_EQ(DebugSectionSeen, false)
<< "Unexpected debug info section";
cantFail(ObjLayer.removeObject(H));
}
{
// Test with ProcessAllSections = true.
ObjLayer.setProcessAllSections(true);
auto H = cantFail(ObjLayer.addObject(Obj, Resolver));
cantFail(ObjLayer.emitAndFinalize(H));
EXPECT_EQ(DebugSectionSeen, true)
<< "Expected debug info section not seen";
cantFail(ObjLayer.removeObject(H));
}
}
TEST_F(RTDyldObjectLinkingLayerExecutionTest, NoDuplicateFinalization) {
if (!TM)
return;
auto MM = std::make_shared<SectionMemoryManagerWrapper>();
RTDyldObjectLinkingLayer ObjLayer([&MM]() { return MM; });
SimpleCompiler Compile(*TM);
// Create a pair of modules that will trigger recursive finalization:
// Module 1:
// int bar() { return 42; }
// Module 2:
// int bar();
// int foo() { return bar(); }
//
// Verify that the memory manager is only finalized once (for Module 2).
// Failure suggests that finalize is being called on the inner RTDyld
// instance (for Module 1) which is unsafe, as it will prevent relocation of
// Module 2.
ModuleBuilder MB1(Context, "", "dummy");
{
MB1.getModule()->setDataLayout(TM->createDataLayout());
Function *BarImpl = MB1.createFunctionDecl<int32_t(void)>("bar");
BasicBlock *BarEntry = BasicBlock::Create(Context, "entry", BarImpl);
IRBuilder<> Builder(BarEntry);
IntegerType *Int32Ty = IntegerType::get(Context, 32);
Value *FourtyTwo = ConstantInt::getSigned(Int32Ty, 42);
Builder.CreateRet(FourtyTwo);
}
auto Obj1 =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
Compile(*MB1.getModule()));
ModuleBuilder MB2(Context, "", "dummy");
{
MB2.getModule()->setDataLayout(TM->createDataLayout());
Function *BarDecl = MB2.createFunctionDecl<int32_t(void)>("bar");
Function *FooImpl = MB2.createFunctionDecl<int32_t(void)>("foo");
BasicBlock *FooEntry = BasicBlock::Create(Context, "entry", FooImpl);
IRBuilder<> Builder(FooEntry);
Builder.CreateRet(Builder.CreateCall(BarDecl));
}
auto Obj2 =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
Compile(*MB2.getModule()));
auto Resolver =
createLambdaResolver(
[&](const std::string &Name) {
if (auto Sym = ObjLayer.findSymbol(Name, true))
return Sym;
return JITSymbol(nullptr);
},
[](const std::string &Name) {
return JITSymbol(nullptr);
});
cantFail(ObjLayer.addObject(std::move(Obj1), Resolver));
auto H = cantFail(ObjLayer.addObject(std::move(Obj2), Resolver));
cantFail(ObjLayer.emitAndFinalize(H));
cantFail(ObjLayer.removeObject(H));
// Finalization of module 2 should trigger finalization of module 1.
// Verify that finalize on SMMW is only called once.
EXPECT_EQ(MM->FinalizationCount, 1)
<< "Extra call to finalize";
}
TEST_F(RTDyldObjectLinkingLayerExecutionTest, NoPrematureAllocation) {
if (!TM)
return;
auto MM = std::make_shared<SectionMemoryManagerWrapper>();
RTDyldObjectLinkingLayer ObjLayer([&MM]() { return MM; });
SimpleCompiler Compile(*TM);
// Create a pair of unrelated modules:
//
// Module 1:
// int foo() { return 42; }
// Module 2:
// int bar() { return 7; }
//
// Both modules will share a memory manager. We want to verify that the
// second object is not loaded before the first one is finalized. To do this
// in a portable way, we abuse the
// RuntimeDyld::MemoryManager::needsToReserveAllocationSpace hook, which is
// called once per object before any sections are allocated.
ModuleBuilder MB1(Context, "", "dummy");
{
MB1.getModule()->setDataLayout(TM->createDataLayout());
Function *BarImpl = MB1.createFunctionDecl<int32_t(void)>("foo");
BasicBlock *BarEntry = BasicBlock::Create(Context, "entry", BarImpl);
IRBuilder<> Builder(BarEntry);
IntegerType *Int32Ty = IntegerType::get(Context, 32);
Value *FourtyTwo = ConstantInt::getSigned(Int32Ty, 42);
Builder.CreateRet(FourtyTwo);
}
auto Obj1 =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
Compile(*MB1.getModule()));
ModuleBuilder MB2(Context, "", "dummy");
{
MB2.getModule()->setDataLayout(TM->createDataLayout());
Function *BarImpl = MB2.createFunctionDecl<int32_t(void)>("bar");
BasicBlock *BarEntry = BasicBlock::Create(Context, "entry", BarImpl);
IRBuilder<> Builder(BarEntry);
IntegerType *Int32Ty = IntegerType::get(Context, 32);
Value *Seven = ConstantInt::getSigned(Int32Ty, 7);
Builder.CreateRet(Seven);
}
auto Obj2 =
std::make_shared<object::OwningBinary<object::ObjectFile>>(
Compile(*MB2.getModule()));
auto NR = std::make_shared<NullResolver>();
auto H = cantFail(ObjLayer.addObject(std::move(Obj1), NR));
cantFail(ObjLayer.addObject(std::move(Obj2), NR));
cantFail(ObjLayer.emitAndFinalize(H));
cantFail(ObjLayer.removeObject(H));
// Only one call to needsToReserveAllocationSpace should have been made.
EXPECT_EQ(MM->NeedsToReserveAllocationSpaceCount, 1)
<< "More than one call to needsToReserveAllocationSpace "
"(multiple unrelated objects loaded prior to finalization)";
}
TEST_F(RTDyldObjectLinkingLayerExecutionTest, TestNotifyLoadedSignature) {
RTDyldObjectLinkingLayer ObjLayer(
[]() { return nullptr; },
[](RTDyldObjectLinkingLayer::ObjHandleT,
const RTDyldObjectLinkingLayer::ObjectPtr &obj,
const RuntimeDyld::LoadedObjectInfo &info) {});
}
} // end anonymous namespace