blob: cafcbeb57de57849d95c389bf3cd4c5ebc41ae78 [file] [log] [blame]
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <string>
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
/// A unique identifier for a MatchTable.
static unsigned CurrentMatchTableID = 0;
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
"warn-on-skipped-patterns",
cl::desc("Explain why a pattern was skipped for inclusion "
"in the GlobalISel selector"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
namespace {
//===- Helper functions ---------------------------------------------------===//
/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
LLT Ty;
public:
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
void emitCxxEnumValue(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "GILLT_s" << Ty.getSizeInBits();
return;
}
if (Ty.isVector()) {
OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
return;
}
llvm_unreachable("Unhandled LLT");
}
void emitCxxConstructorCall(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
return;
}
if (Ty.isVector()) {
OS << "LLT::vector(" << Ty.getNumElements() << ", "
<< Ty.getScalarSizeInBits() << ")";
return;
}
llvm_unreachable("Unhandled LLT");
}
const LLT &get() const { return Ty; }
/// This ordering is used for std::unique() and std::sort(). There's no
/// particular logic behind the order.
bool operator<(const LLTCodeGen &Other) const {
if (!Ty.isValid())
return Other.Ty.isValid();
if (Ty.isScalar()) {
if (!Other.Ty.isValid())
return false;
if (Other.Ty.isScalar())
return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
return false;
}
if (Ty.isVector()) {
if (!Other.Ty.isValid() || Other.Ty.isScalar())
return false;
if (Other.Ty.isVector()) {
if (Ty.getNumElements() < Other.Ty.getNumElements())
return true;
if (Ty.getNumElements() > Other.Ty.getNumElements())
return false;
return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
}
return false;
}
llvm_unreachable("Unhandled LLT");
}
};
class InstructionMatcher;
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
MVT VT(SVT);
if (VT.isVector() && VT.getVectorNumElements() != 1)
return LLTCodeGen(
LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
if (VT.isInteger() || VT.isFloatingPoint())
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
return None;
}
static std::string explainPredicates(const TreePatternNode *N) {
std::string Explanation = "";
StringRef Separator = "";
for (const auto &P : N->getPredicateFns()) {
Explanation +=
(Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
if (P.isAlwaysTrue())
Explanation += " always-true";
if (P.isImmediatePattern())
Explanation += " immediate";
}
return Explanation;
}
std::string explainOperator(Record *Operator) {
if (Operator->isSubClassOf("SDNode"))
return (" (" + Operator->getValueAsString("Opcode") + ")").str();
if (Operator->isSubClassOf("Intrinsic"))
return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
return " (Operator not understood)";
}
/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
return make_error<StringError>(Reason, inconvertibleErrorCode());
}
static Error isTrivialOperatorNode(const TreePatternNode *N) {
std::string Explanation = "";
std::string Separator = "";
if (N->isLeaf()) {
if (isa<IntInit>(N->getLeafValue()))
return Error::success();
Explanation = "Is a leaf";
Separator = ", ";
}
if (N->hasAnyPredicate()) {
Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
Separator = ", ";
}
if (N->getTransformFn()) {
Explanation += Separator + "Has a transform function";
Separator = ", ";
}
if (!N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn())
return Error::success();
return failedImport(Explanation);
}
static Record *getInitValueAsRegClass(Init *V) {
if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
return VDefInit->getDef()->getValueAsDef("RegClass");
if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
return VDefInit->getDef();
}
return nullptr;
}
std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
std::string Name = "GIFBS";
for (const auto &Feature : FeatureBitset)
Name += ("_" + Feature->getName()).str();
return Name;
}
//===- Matchers -----------------------------------------------------------===//
class OperandMatcher;
class MatchAction;
/// Generates code to check that a match rule matches.
class RuleMatcher {
/// A list of matchers that all need to succeed for the current rule to match.
/// FIXME: This currently supports a single match position but could be
/// extended to support multiple positions to support div/rem fusion or
/// load-multiple instructions.
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
/// A list of actions that need to be taken when all predicates in this rule
/// have succeeded.
std::vector<std::unique_ptr<MatchAction>> Actions;
/// A map of instruction matchers to the local variables created by
/// emitCaptureOpcodes().
std::map<const InstructionMatcher *, unsigned> InsnVariableIDs;
/// ID for the next instruction variable defined with defineInsnVar()
unsigned NextInsnVarID;
std::vector<Record *> RequiredFeatures;
public:
RuleMatcher()
: Matchers(), Actions(), InsnVariableIDs(), NextInsnVarID(0) {}
RuleMatcher(RuleMatcher &&Other) = default;
RuleMatcher &operator=(RuleMatcher &&Other) = default;
InstructionMatcher &addInstructionMatcher();
void addRequiredFeature(Record *Feature);
const std::vector<Record *> &getRequiredFeatures() const;
template <class Kind, class... Args> Kind &addAction(Args &&... args);
/// Define an instruction without emitting any code to do so.
/// This is used for the root of the match.
unsigned implicitlyDefineInsnVar(const InstructionMatcher &Matcher);
/// Define an instruction and emit corresponding state-machine opcodes.
unsigned defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher,
unsigned InsnVarID, unsigned OpIdx);
unsigned getInsnVarID(const InstructionMatcher &InsnMatcher) const;
void emitCaptureOpcodes(raw_ostream &OS);
void emit(raw_ostream &OS);
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;
/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countRendererFns() const;
// FIXME: Remove this as soon as possible
InstructionMatcher &insnmatcher_front() const { return *Matchers.front(); }
};
template <class PredicateTy> class PredicateListMatcher {
private:
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
PredicateVec Predicates;
public:
/// Construct a new operand predicate and add it to the matcher.
template <class Kind, class... Args>
Kind &addPredicate(Args&&... args) {
Predicates.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Predicates.back().get());
}
typename PredicateVec::const_iterator predicates_begin() const {
return Predicates.begin();
}
typename PredicateVec::const_iterator predicates_end() const {
return Predicates.end();
}
iterator_range<typename PredicateVec::const_iterator> predicates() const {
return make_range(predicates_begin(), predicates_end());
}
typename PredicateVec::size_type predicates_size() const {
return Predicates.size();
}
/// Emit MatchTable opcodes that tests whether all the predicates are met.
template <class... Args>
void emitPredicateListOpcodes(raw_ostream &OS, Args &&... args) const {
if (Predicates.empty()) {
OS << "// No predicates\n";
return;
}
for (const auto &Predicate : predicates())
Predicate->emitPredicateOpcodes(OS, std::forward<Args>(args)...);
}
};
/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher {
public:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
///
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
/// but OPM_Int must have priority over OPM_RegBank since constant integers
/// are represented by a virtual register defined by a G_CONSTANT instruction.
enum PredicateKind {
OPM_ComplexPattern,
OPM_Instruction,
OPM_IntrinsicID,
OPM_Int,
OPM_LiteralInt,
OPM_LLT,
OPM_RegBank,
OPM_MBB,
};
protected:
PredicateKind Kind;
public:
OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~OperandPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Return the OperandMatcher for the specified operand or nullptr if there
/// isn't one by that name in this operand predicate matcher.
///
/// InstructionOperandMatcher is the only subclass that can return non-null
/// for this.
virtual Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
return None;
}
/// Emit MatchTable opcodes to capture instructions into the MIs table.
///
/// Only InstructionOperandMatcher needs to do anything for this method the
/// rest just walk the tree.
virtual void emitCaptureOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const {}
/// Emit MatchTable opcodes that check the predicate for the given operand.
virtual void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID,
unsigned OpIdx) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countRendererFns() const { return 0; }
};
/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
LLTCodeGen Ty;
public:
LLTOperandMatcher(const LLTCodeGen &Ty)
: OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_LLT;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckType, /*MI*/" << InsnVarID << ", /*Op*/" << OpIdx
<< ", /*Type*/";
Ty.emitCxxEnumValue(OS);
OS << ", \n";
}
};
/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
const OperandMatcher &Operand;
const Record &TheDef;
unsigned getAllocatedTemporariesBaseID() const;
public:
ComplexPatternOperandMatcher(const OperandMatcher &Operand,
const Record &TheDef)
: OperandPredicateMatcher(OPM_ComplexPattern), Operand(Operand),
TheDef(TheDef) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_ComplexPattern;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
unsigned ID = getAllocatedTemporariesBaseID();
OS << " GIM_CheckComplexPattern, /*MI*/" << InsnVarID << ", /*Op*/"
<< OpIdx << ", /*Renderer*/" << ID << ", GICP_"
<< TheDef.getName() << ",\n";
}
unsigned countRendererFns() const override {
return 1;
}
};
/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenRegisterClass &RC;
public:
RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
: OperandPredicateMatcher(OPM_RegBank), RC(RC) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_RegBank;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckRegBankForClass, /*MI*/" << InsnVarID << ", /*Op*/"
<< OpIdx << ", /*RC*/" << RC.getQualifiedName() << "RegClassID,\n";
}
};
/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_MBB;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckIsMBB, /*MI*/" << InsnVarID << ", /*Op*/" << OpIdx << ",\n";
}
};
/// Generates code to check that an operand is a G_CONSTANT with a particular
/// int.
class ConstantIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
ConstantIntOperandMatcher(int64_t Value)
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_Int;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckConstantInt, /*MI*/" << InsnVarID << ", /*Op*/"
<< OpIdx << ", " << Value << ",\n";
}
};
/// Generates code to check that an operand is a raw int (where MO.isImm() or
/// MO.isCImm() is true).
class LiteralIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
LiteralIntOperandMatcher(int64_t Value)
: OperandPredicateMatcher(OPM_LiteralInt), Value(Value) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_LiteralInt;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckLiteralInt, /*MI*/" << InsnVarID << ", /*Op*/"
<< OpIdx << ", " << Value << ",\n";
}
};
/// Generates code to check that an operand is an intrinsic ID.
class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenIntrinsic *II;
public:
IntrinsicIDOperandMatcher(const CodeGenIntrinsic *II)
: OperandPredicateMatcher(OPM_IntrinsicID), II(II) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_IntrinsicID;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID, unsigned OpIdx) const override {
OS << " GIM_CheckIntrinsicID, /*MI*/" << InsnVarID << ", /*Op*/"
<< OpIdx << ", Intrinsic::" << II->EnumName << ",\n";
}
};
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
InstructionMatcher &Insn;
unsigned OpIdx;
std::string SymbolicName;
/// The index of the first temporary variable allocated to this operand. The
/// number of allocated temporaries can be found with
/// countRendererFns().
unsigned AllocatedTemporariesBaseID;
public:
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID)
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
bool hasSymbolicName() const { return !SymbolicName.empty(); }
const StringRef getSymbolicName() const { return SymbolicName; }
void setSymbolicName(StringRef Name) {
assert(SymbolicName.empty() && "Operand already has a symbolic name");
SymbolicName = Name;
}
unsigned getOperandIndex() const { return OpIdx; }
std::string getOperandExpr(unsigned InsnVarID) const {
return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
llvm::to_string(OpIdx) + ")";
}
Optional<const OperandMatcher *>
getOptionalOperand(StringRef DesiredSymbolicName) const {
assert(!DesiredSymbolicName.empty() && "Cannot lookup unnamed operand");
if (DesiredSymbolicName == SymbolicName)
return this;
for (const auto &OP : predicates()) {
const auto &MaybeOperand = OP->getOptionalOperand(DesiredSymbolicName);
if (MaybeOperand.hasValue())
return MaybeOperand.getValue();
}
return None;
}
InstructionMatcher &getInstructionMatcher() const { return Insn; }
/// Emit MatchTable opcodes to capture instructions into the MIs table.
void emitCaptureOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID) const {
for (const auto &Predicate : predicates())
Predicate->emitCaptureOpcodes(OS, Rule, InsnVarID, OpIdx);
}
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarID matches all the predicates and all the operands.
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID) const {
OS << " // MIs[" << InsnVarID << "] ";
if (SymbolicName.empty())
OS << "Operand " << OpIdx;
else
OS << SymbolicName;
OS << "\n";
emitPredicateListOpcodes(OS, Rule, InsnVarID, OpIdx);
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const OperandMatcher &B) const {
// Operand matchers involving more predicates have higher priority.
if (predicates_size() > B.predicates_size())
return true;
if (predicates_size() < B.predicates_size())
return false;
// This assumes that predicates are added in a consistent order.
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the operand
/// matcher.
unsigned countRendererFns() const {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
return A + Predicate->countRendererFns();
});
}
unsigned getAllocatedTemporariesBaseID() const {
return AllocatedTemporariesBaseID;
}
};
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
return Operand.getAllocatedTemporariesBaseID();
}
/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher {
protected:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
enum PredicateKind {
IPM_Opcode,
};
PredicateKind Kind;
public:
InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~InstructionPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarID matches the predicate.
virtual void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countRendererFns() const { return 0; }
};
/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
const CodeGenInstruction *I;
public:
InstructionOpcodeMatcher(const CodeGenInstruction *I)
: InstructionPredicateMatcher(IPM_Opcode), I(I) {}
static bool classof(const InstructionPredicateMatcher *P) {
return P->getKind() == IPM_Opcode;
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID) const override {
OS << " GIM_CheckOpcode, /*MI*/" << InsnVarID << ", " << I->Namespace
<< "::" << I->TheDef->getName() << ",\n";
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
return false;
// Prioritize opcodes for cosmetic reasons in the generated source. Although
// this is cosmetic at the moment, we may want to drive a similar ordering
// using instruction frequency information to improve compile time.
if (const InstructionOpcodeMatcher *BO =
dyn_cast<InstructionOpcodeMatcher>(&B))
return I->TheDef->getName() < BO->I->TheDef->getName();
return false;
};
};
/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher
: public PredicateListMatcher<InstructionPredicateMatcher> {
protected:
typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
/// The operands to match. All rendered operands must be present even if the
/// condition is always true.
OperandVec Operands;
public:
/// Add an operand to the matcher.
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID) {
Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
AllocatedTemporariesBaseID));
return *Operands.back();
}
OperandMatcher &getOperand(unsigned OpIdx) {
auto I = std::find_if(Operands.begin(), Operands.end(),
[&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
return X->getOperandIndex() == OpIdx;
});
if (I != Operands.end())
return **I;
llvm_unreachable("Failed to lookup operand");
}
Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
for (const auto &Operand : Operands) {
const auto &OM = Operand->getOptionalOperand(SymbolicName);
if (OM.hasValue())
return OM.getValue();
}
return None;
}
const OperandMatcher &getOperand(StringRef SymbolicName) const {
Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName);
if (OM.hasValue())
return *OM.getValue();
llvm_unreachable("Failed to lookup operand");
}
unsigned getNumOperands() const { return Operands.size(); }
OperandVec::iterator operands_begin() { return Operands.begin(); }
OperandVec::iterator operands_end() { return Operands.end(); }
iterator_range<OperandVec::iterator> operands() {
return make_range(operands_begin(), operands_end());
}
OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
OperandVec::const_iterator operands_end() const { return Operands.end(); }
iterator_range<OperandVec::const_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
/// Emit MatchTable opcodes to check the shape of the match and capture
/// instructions into the MIs table.
void emitCaptureOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnID) {
OS << " GIM_CheckNumOperands, /*MI*/" << InsnID << ", /*Expected*/"
<< getNumOperands() << ",\n";
for (const auto &Operand : Operands)
Operand->emitCaptureOpcodes(OS, Rule, InsnID);
}
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarName matches all the predicates and all the operands.
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID) const {
emitPredicateListOpcodes(OS, Rule, InsnVarID);
for (const auto &Operand : Operands)
Operand->emitPredicateOpcodes(OS, Rule, InsnVarID);
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionMatcher &B) const {
// Instruction matchers involving more operands have higher priority.
if (Operands.size() > B.Operands.size())
return true;
if (Operands.size() < B.Operands.size())
return false;
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
for (const auto &Operand : zip(Operands, B.Operands)) {
if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
return true;
if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the instruction
/// matcher.
unsigned countRendererFns() const {
return std::accumulate(predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<InstructionPredicateMatcher>
&Predicate) {
return A + Predicate->countRendererFns();
}) +
std::accumulate(
Operands.begin(), Operands.end(), 0,
[](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
return A + Operand->countRendererFns();
});
}
};
/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
/// (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
std::unique_ptr<InstructionMatcher> InsnMatcher;
public:
InstructionOperandMatcher()
: OperandPredicateMatcher(OPM_Instruction),
InsnMatcher(new InstructionMatcher()) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_Instruction;
}
InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const override {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
return InsnMatcher->getOptionalOperand(SymbolicName);
}
void emitCaptureOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnID, unsigned OpIdx) const override {
unsigned InsnVarID = Rule.defineInsnVar(OS, *InsnMatcher, InsnID, OpIdx);
InsnMatcher->emitCaptureOpcodes(OS, Rule, InsnVarID);
}
void emitPredicateOpcodes(raw_ostream &OS, RuleMatcher &Rule,
unsigned InsnVarID_,
unsigned OpIdx_) const override {
unsigned InsnVarID = Rule.getInsnVarID(*InsnMatcher);
InsnMatcher->emitPredicateOpcodes(OS, Rule, InsnVarID);
}
};
//===- Actions ------------------------------------------------------------===//
class OperandRenderer {
public:
enum RendererKind {
OR_Copy,
OR_CopySubReg,
OR_Imm,
OR_Register,
OR_ComplexPattern
};
protected:
RendererKind Kind;
public:
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
virtual ~OperandRenderer() {}
RendererKind getKind() const { return Kind; }
virtual void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const = 0;
};
/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The matcher for the instruction that this operand is copied from.
/// This provides the facility for looking up an a operand by it's name so
/// that it can be used as a source for the instruction being built.
const InstructionMatcher &Matched;
/// The name of the operand.
const StringRef SymbolicName;
public:
CopyRenderer(unsigned NewInsnID, const InstructionMatcher &Matched,
StringRef SymbolicName)
: OperandRenderer(OR_Copy), NewInsnID(NewInsnID), Matched(Matched),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Copy;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
OS << " GIR_Copy, /*NewInsnID*/" << NewInsnID << ", /*OldInsnID*/"
<< OldInsnVarID << ", /*OpIdx*/" << Operand.getOperandIndex() << ", // "
<< SymbolicName << "\n";
}
};
/// A CopySubRegRenderer emits code to copy a single register operand from an
/// existing instruction to the one being built and indicate that only a
/// subregister should be copied.
class CopySubRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The matcher for the instruction that this operand is copied from.
/// This provides the facility for looking up an a operand by it's name so
/// that it can be used as a source for the instruction being built.
const InstructionMatcher &Matched;
/// The name of the operand.
const StringRef SymbolicName;
/// The subregister to extract.
const CodeGenSubRegIndex *SubReg;
public:
CopySubRegRenderer(unsigned NewInsnID, const InstructionMatcher &Matched,
StringRef SymbolicName, const CodeGenSubRegIndex *SubReg)
: OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), Matched(Matched),
SymbolicName(SymbolicName), SubReg(SubReg) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopySubReg;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
OS << " GIR_CopySubReg, /*NewInsnID*/" << NewInsnID
<< ", /*OldInsnID*/" << OldInsnVarID << ", /*OpIdx*/"
<< Operand.getOperandIndex() << ", /*SubRegIdx*/" << SubReg->EnumValue
<< ", // " << SymbolicName << "\n";
}
};
/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const Record *RegisterDef;
public:
AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
: OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Register;
}
void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const override {
OS << " GIR_AddRegister, /*InsnID*/" << InsnID << ", "
<< (RegisterDef->getValue("Namespace")
? RegisterDef->getValueAsString("Namespace")
: "")
<< "::" << RegisterDef->getName() << ",\n";
}
};
/// Adds a specific immediate to the instruction being built.
class ImmRenderer : public OperandRenderer {
protected:
unsigned InsnID;
int64_t Imm;
public:
ImmRenderer(unsigned InsnID, int64_t Imm)
: OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Imm;
}
void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const override {
OS << " GIR_AddImm, /*InsnID*/" << InsnID << ", /*Imm*/" << Imm
<< ",\n";
}
};
/// Adds operands by calling a renderer function supplied by the ComplexPattern
/// matcher function.
class RenderComplexPatternOperand : public OperandRenderer {
private:
unsigned InsnID;
const Record &TheDef;
/// The name of the operand.
const StringRef SymbolicName;
/// The renderer number. This must be unique within a rule since it's used to
/// identify a temporary variable to hold the renderer function.
unsigned RendererID;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
StringRef SymbolicName, unsigned RendererID)
: OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
SymbolicName(SymbolicName), RendererID(RendererID) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_ComplexPattern;
}
void emitRenderOpcodes(raw_ostream &OS, RuleMatcher &Rule) const override {
OS << " GIR_ComplexRenderer, /*InsnID*/" << InsnID << ", /*RendererID*/"
<< RendererID << ",\n";
}
};
/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
virtual ~MatchAction() {}
/// Emit the C++ statements to implement the action.
///
/// \param RecycleInsnID If given, it's an instruction to recycle. The
/// requirements on the instruction vary from action to
/// action.
virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
unsigned RecycleInsnID) const = 0;
};
/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
const PatternToMatch &P;
public:
DebugCommentAction(const PatternToMatch &P) : P(P) {}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
unsigned RecycleInsnID) const override {
OS << " // " << *P.getSrcPattern() << " => " << *P.getDstPattern()
<< "\n";
}
};
/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
unsigned InsnID;
const CodeGenInstruction *I;
const InstructionMatcher &Matched;
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
/// True if the instruction can be built solely by mutating the opcode.
bool canMutate() const {
if (OperandRenderers.size() != Matched.getNumOperands())
return false;
for (const auto &Renderer : enumerate(OperandRenderers)) {
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
const OperandMatcher &OM = Matched.getOperand(Copy->getSymbolicName());
if (&Matched != &OM.getInstructionMatcher() ||
OM.getOperandIndex() != Renderer.index())
return false;
} else
return false;
}
return true;
}
public:
BuildMIAction(unsigned InsnID, const CodeGenInstruction *I,
const InstructionMatcher &Matched)
: InsnID(InsnID), I(I), Matched(Matched) {}
template <class Kind, class... Args>
Kind &addRenderer(Args&&... args) {
OperandRenderers.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(OperandRenderers.back().get());
}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
unsigned RecycleInsnID) const override {
if (canMutate()) {
OS << " GIR_MutateOpcode, /*InsnID*/" << InsnID
<< ", /*RecycleInsnID*/ " << RecycleInsnID << ", /*Opcode*/"
<< I->Namespace << "::" << I->TheDef->getName() << ",\n";
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
for (auto Def : I->ImplicitDefs) {
auto Namespace = Def->getValue("Namespace")
? Def->getValueAsString("Namespace")
: "";
OS << " GIR_AddImplicitDef, " << InsnID << ", " << Namespace
<< "::" << Def->getName() << ",\n";
}
for (auto Use : I->ImplicitUses) {
auto Namespace = Use->getValue("Namespace")
? Use->getValueAsString("Namespace")
: "";
OS << " GIR_AddImplicitUse, " << InsnID << ", " << Namespace
<< "::" << Use->getName() << ",\n";
}
}
return;
}
// TODO: Simple permutation looks like it could be almost as common as
// mutation due to commutative operations.
OS << " GIR_BuildMI, /*InsnID*/" << InsnID << ", /*Opcode*/"
<< I->Namespace << "::" << I->TheDef->getName() << ",\n";
for (const auto &Renderer : OperandRenderers)
Renderer->emitRenderOpcodes(OS, Rule);
OS << " GIR_MergeMemOperands, /*InsnID*/" << InsnID << ",\n"
<< " GIR_EraseFromParent, /*InsnID*/" << RecycleInsnID << ",\n";
}
};
/// Generates code to constrain the operands of an output instruction to the
/// register classes specified by the definition of that instruction.
class ConstrainOperandsToDefinitionAction : public MatchAction {
unsigned InsnID;
public:
ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
unsigned RecycleInsnID) const override {
OS << " GIR_ConstrainSelectedInstOperands, /*InsnID*/" << InsnID << ",\n";
}
};
/// Generates code to constrain the specified operand of an output instruction
/// to the specified register class.
class ConstrainOperandToRegClassAction : public MatchAction {
unsigned InsnID;
unsigned OpIdx;
const CodeGenRegisterClass &RC;
public:
ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
const CodeGenRegisterClass &RC)
: InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
unsigned RecycleInsnID) const override {
OS << " GIR_ConstrainOperandRC, /*InsnID*/" << InsnID << ", /*Op*/"
<< OpIdx << ", /*RC " << RC.getName() << "*/ " << RC.EnumValue << ",\n";
}
};
InstructionMatcher &RuleMatcher::addInstructionMatcher() {
Matchers.emplace_back(new InstructionMatcher());
return *Matchers.back();
}
void RuleMatcher::addRequiredFeature(Record *Feature) {
RequiredFeatures.push_back(Feature);
}
const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
return RequiredFeatures;
}
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Actions.back().get());
}
unsigned
RuleMatcher::implicitlyDefineInsnVar(const InstructionMatcher &Matcher) {
unsigned NewInsnVarID = NextInsnVarID++;
InsnVariableIDs[&Matcher] = NewInsnVarID;
return NewInsnVarID;
}
unsigned RuleMatcher::defineInsnVar(raw_ostream &OS,
const InstructionMatcher &Matcher,
unsigned InsnID, unsigned OpIdx) {
unsigned NewInsnVarID = implicitlyDefineInsnVar(Matcher);
OS << " GIM_RecordInsn, /*DefineMI*/" << NewInsnVarID << ", /*MI*/"
<< InsnID << ", /*OpIdx*/" << OpIdx << ", // MIs[" << NewInsnVarID
<< "]\n";
return NewInsnVarID;
}
unsigned RuleMatcher::getInsnVarID(const InstructionMatcher &InsnMatcher) const {
const auto &I = InsnVariableIDs.find(&InsnMatcher);
if (I != InsnVariableIDs.end())
return I->second;
llvm_unreachable("Matched Insn was not captured in a local variable");
}
/// Emit MatchTable opcodes to check the shape of the match and capture
/// instructions into local variables.
void RuleMatcher::emitCaptureOpcodes(raw_ostream &OS) {
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
unsigned InsnVarID = implicitlyDefineInsnVar(*Matchers.front());
Matchers.front()->emitCaptureOpcodes(OS, *this, InsnVarID);
}
void RuleMatcher::emit(raw_ostream &OS) {
if (Matchers.empty())
llvm_unreachable("Unexpected empty matcher!");
// The representation supports rules that require multiple roots such as:
// %ptr(p0) = ...
// %elt0(s32) = G_LOAD %ptr
// %1(p0) = G_ADD %ptr, 4
// %elt1(s32) = G_LOAD p0 %1
// which could be usefully folded into:
// %ptr(p0) = ...
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
// on some targets but we don't need to make use of that yet.
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
OS << " const static int64_t MatchTable" << CurrentMatchTableID << "[] = {\n";
if (!RequiredFeatures.empty()) {
OS << " GIM_CheckFeatures, " << getNameForFeatureBitset(RequiredFeatures)
<< ",\n";
}
emitCaptureOpcodes(OS);
Matchers.front()->emitPredicateOpcodes(OS, *this,
getInsnVarID(*Matchers.front()));
// We must also check if it's safe to fold the matched instructions.
if (InsnVariableIDs.size() >= 2) {
// Invert the map to create stable ordering (by var names)
SmallVector<unsigned, 2> InsnIDs;
for (const auto &Pair : InsnVariableIDs) {
// Skip the root node since it isn't moving anywhere. Everything else is
// sinking to meet it.
if (Pair.first == Matchers.front().get())
continue;
InsnIDs.push_back(Pair.second);
}
std::sort(InsnIDs.begin(), InsnIDs.end());
for (const auto &InsnID : InsnIDs) {
// Reject the difficult cases until we have a more accurate check.
OS << " GIM_CheckIsSafeToFold, /*InsnID*/" << InsnID << ",\n";
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
// account for unsafe cases.
//
// Example:
// MI1--> %0 = ...
// %1 = ... %0
// MI0--> %2 = ... %0
// It's not safe to erase MI1. We currently handle this by not
// erasing %0 (even when it's dead).
//
// Example:
// MI1--> %0 = load volatile @a
// %1 = load volatile @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// MI1--> %0 = load @a
// %1 = store @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// G_CONDBR %cond, @BB1
// BB0:
// MI1--> %0 = load @a
// G_BR @BB1
// BB1:
// MI0--> %2 = ... %0
// It's not always safe to sink %0 across control flow. In this
// case it may introduce a memory fault. We currentl handle this
// by rejecting all loads.
}
}
for (const auto &MA : Actions)
MA->emitCxxActionStmts(OS, *this, 0);
OS << " GIR_Done,\n"
<< " };\n"
<< " State.MIs.resize(1);\n"
<< " DEBUG(dbgs() << \"Processing MatchTable" << CurrentMatchTableID
<< "\\n\");\n"
<< " if (executeMatchTable(*this, OutMIs, State, MatcherInfo, MatchTable"
<< CurrentMatchTableID << ", TII, MRI, TRI, RBI, AvailableFeatures)) {\n"
<< " return true;\n"
<< " }\n\n";
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
// Rules involving more match roots have higher priority.
if (Matchers.size() > B.Matchers.size())
return true;
if (Matchers.size() < B.Matchers.size())
return false;
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
return true;
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
return false;
}
return false;
}
unsigned RuleMatcher::countRendererFns() const {
return std::accumulate(
Matchers.begin(), Matchers.end(), 0,
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
return A + Matcher->countRendererFns();
});
}
//===- GlobalISelEmitter class --------------------------------------------===//
class GlobalISelEmitter {
public:
explicit GlobalISelEmitter(RecordKeeper &RK);
void run(raw_ostream &OS);
private:
const RecordKeeper &RK;
const CodeGenDAGPatterns CGP;
const CodeGenTarget &Target;
CodeGenRegBank CGRegs;
/// Keep track of the equivalence between SDNodes and Instruction.
/// This is defined using 'GINodeEquiv' in the target description.
DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;
/// Keep track of the equivalence between ComplexPattern's and
/// GIComplexOperandMatcher. Map entries are specified by subclassing
/// GIComplexPatternEquiv.
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
// Map of predicates to their subtarget features.
SubtargetFeatureInfoMap SubtargetFeatures;
void gatherNodeEquivs();
const CodeGenInstruction *findNodeEquiv(Record *N) const;
Error importRulePredicates(RuleMatcher &M, ArrayRef<Init *> Predicates);
Expected<InstructionMatcher &>
createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *Src,
unsigned &TempOpIdx) const;
Error importChildMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild, unsigned OpIdx,
unsigned &TempOpIdx) const;
Expected<BuildMIAction &>
createAndImportInstructionRenderer(RuleMatcher &M, const TreePatternNode *Dst,
const InstructionMatcher &InsnMatcher);
Error importExplicitUseRenderer(BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild,
const InstructionMatcher &InsnMatcher) const;
Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
DagInit *DefaultOps) const;
Error
importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const;
/// Analyze pattern \p P, returning a matcher for it if possible.
/// Otherwise, return an Error explaining why we don't support it.
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
void declareSubtargetFeature(Record *Predicate);
};
void GlobalISelEmitter::gatherNodeEquivs() {
assert(NodeEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
NodeEquivs[Equiv->getValueAsDef("Node")] =
&Target.getInstruction(Equiv->getValueAsDef("I"));
assert(ComplexPatternEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
}
}
const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const {
return NodeEquivs.lookup(N);
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()), CGRegs(RK) {}
//===- Emitter ------------------------------------------------------------===//
Error
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
ArrayRef<Init *> Predicates) {
for (const Init *Predicate : Predicates) {
const DefInit *PredicateDef = static_cast<const DefInit *>(Predicate);
declareSubtargetFeature(PredicateDef->getDef());
M.addRequiredFeature(PredicateDef->getDef());
}
return Error::success();
}
Expected<InstructionMatcher &>
GlobalISelEmitter::createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *Src,
unsigned &TempOpIdx) const {
const CodeGenInstruction *SrcGIOrNull = nullptr;
// Start with the defined operands (i.e., the results of the root operator).
if (Src->getExtTypes().size() > 1)
return failedImport("Src pattern has multiple results");
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (isa<IntInit>(SrcInit)) {
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
&Target.getInstruction(RK.getDef("G_CONSTANT")));
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
SrcGIOrNull = findNodeEquiv(Src->getOperator());
if (!SrcGIOrNull)
return failedImport("Pattern operator lacks an equivalent Instruction" +
explainOperator(Src->getOperator()));
auto &SrcGI = *SrcGIOrNull;
// The operators look good: match the opcode
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
}
unsigned OpIdx = 0;
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
auto OpTyOrNone = MVTToLLT(Ty.getConcrete());
if (!OpTyOrNone)
return failedImport(
"Result of Src pattern operator has an unsupported type");
// Results don't have a name unless they are the root node. The caller will
// set the name if appropriate.
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
}
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
assert(SrcGIOrNull &&
"Expected to have already found an equivalent Instruction");
// Match the used operands (i.e. the children of the operator).
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
TreePatternNode *SrcChild = Src->getChild(i);
// For G_INTRINSIC, the operand immediately following the defs is an
// intrinsic ID.
if (SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" && i == 0) {
if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
OM.addPredicate<IntrinsicIDOperandMatcher>(II);
continue;
}
return failedImport("Expected IntInit containing instrinsic ID)");
}
if (auto Error =
importChildMatcher(InsnMatcher, SrcChild, OpIdx++, TempOpIdx))
return std::move(Error);
}
}
return InsnMatcher;
}
Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild,
unsigned OpIdx,
unsigned &TempOpIdx) const {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
if (SrcChild->hasAnyPredicate())
return failedImport("Src pattern child has predicate (" +
explainPredicates(SrcChild) + ")");
ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Src pattern child has multiple results");
// Check MBB's before the type check since they are not a known type.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
OM.addPredicate<MBBOperandMatcher>();
return Error::success();
}
}
}
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Src operand has an unsupported type (" + to_string(*SrcChild) + ")");
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
// Check for nested instructions.
if (!SrcChild->isLeaf()) {
// Map the node to a gMIR instruction.
InstructionOperandMatcher &InsnOperand =
OM.addPredicate<InstructionOperandMatcher>();
auto InsnMatcherOrError = createAndImportSelDAGMatcher(
InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return Error;
return Error::success();
}
// Check for constant immediates.
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
return Error::success();
}
// Check for def's like register classes or ComplexPattern's.
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
// Check for register classes.
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand")) {
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
return Error::success();
}
// Check for ComplexPattern's.
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport("SelectionDAG ComplexPattern (" +
ChildRec->getName() + ") not mapped to GlobalISel");
OM.addPredicate<ComplexPatternOperandMatcher>(OM,
*ComplexPattern->second);
TempOpIdx++;
return Error::success();
}
if (ChildRec->isSubClassOf("ImmLeaf")) {
return failedImport(
"Src pattern child def is an unsupported tablegen class (ImmLeaf)");
}
return failedImport(
"Src pattern child def is an unsupported tablegen class");
}
return failedImport("Src pattern child is an unsupported kind");
}
Error GlobalISelEmitter::importExplicitUseRenderer(
BuildMIAction &DstMIBuilder, TreePatternNode *DstChild,
const InstructionMatcher &InsnMatcher) const {
// The only non-leaf child we accept is 'bb': it's an operator because
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
if (!DstChild->isLeaf()) {
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
DstMIBuilder.addRenderer<CopyRenderer>(0, InsnMatcher,
DstChild->getName());
return Error::success();
}
}
return failedImport("Dst pattern child isn't a leaf node or an MBB");
}
// Otherwise, we're looking for a bog-standard RegisterClass operand.
if (DstChild->hasAnyPredicate())
return failedImport("Dst pattern child has predicate (" +
explainPredicates(DstChild) + ")");
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
if (ChildRec->isSubClassOf("Register")) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(0, ChildRec);
return Error::success();
}
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand")) {
DstMIBuilder.addRenderer<CopyRenderer>(0, InsnMatcher,
DstChild->getName());
return Error::success();
}
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
const OperandMatcher &OM = InsnMatcher.getOperand(DstChild->getName());
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
0, *ComplexPattern->second, DstChild->getName(),
OM.getAllocatedTemporariesBaseID());
return Error::success();
}
if (ChildRec->isSubClassOf("SDNodeXForm"))
return failedImport("Dst pattern child def is an unsupported tablegen "
"class (SDNodeXForm)");
return failedImport(
"Dst pattern child def is an unsupported tablegen class");
}
return failedImport("Dst pattern child is an unsupported kind");
}
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
RuleMatcher &M, const TreePatternNode *Dst,
const InstructionMatcher &InsnMatcher) {
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction")) {
if (DstOp->isSubClassOf("ValueType"))
return failedImport(
"Pattern operator isn't an instruction (it's a ValueType)");
return failedImport("Pattern operator isn't an instruction");
}
CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
unsigned DstINumUses = DstI->Operands.size() - DstI->Operands.NumDefs;
unsigned ExpectedDstINumUses = Dst->getNumChildren();
bool IsExtractSubReg = false;
// COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
// attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
if (DstI->TheDef->getName() == "COPY_TO_REGCLASS") {
DstI = &Target.getInstruction(RK.getDef("COPY"));
DstINumUses--; // Ignore the class constraint.
ExpectedDstINumUses--;
} else if (DstI->TheDef->getName() == "EXTRACT_SUBREG") {
DstI = &Target.getInstruction(RK.getDef("COPY"));
IsExtractSubReg = true;
}
auto &DstMIBuilder = M.addAction<BuildMIAction>(0, DstI, InsnMatcher);
// Render the explicit defs.
for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
DstMIBuilder.addRenderer<CopyRenderer>(0, InsnMatcher, DstIOperand.Name);
}
// EXTRACT_SUBREG needs to use a subregister COPY.
if (IsExtractSubReg) {
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
if (DefInit *SubRegInit =
dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
CodeGenRegisterClass *RC = CGRegs.getRegClass(
getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()));
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
const auto &SrcRCDstRCPair =
RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
if (SrcRCDstRCPair.hasValue()) {
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
if (SrcRCDstRCPair->first != RC)
return failedImport("EXTRACT_SUBREG requires an additional COPY");
}
DstMIBuilder.addRenderer<CopySubRegRenderer>(
0, InsnMatcher, Dst->getChild(0)->getName(), SubIdx);
return DstMIBuilder;
}
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
}
// Render the explicit uses.
unsigned Child = 0;
unsigned NumDefaultOps = 0;
for (unsigned I = 0; I != DstINumUses; ++I) {
const CGIOperandList::OperandInfo &DstIOperand =
DstI->Operands[DstI->Operands.NumDefs + I];
// If the operand has default values, introduce them now.
// FIXME: Until we have a decent test case that dictates we should do
// otherwise, we're going to assume that operands with default values cannot
// be specified in the patterns. Therefore, adding them will not cause us to
// end up with too many rendered operands.
if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
return std::move(Error);
++NumDefaultOps;
continue;
}
if (auto Error = importExplicitUseRenderer(
DstMIBuilder, Dst->getChild(Child), InsnMatcher))
return std::move(Error);
++Child;
}
if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
return failedImport("Expected " + llvm::to_string(DstINumUses) +
" used operands but found " +
llvm::to_string(ExpectedDstINumUses) +
" explicit ones and " + llvm::to_string(NumDefaultOps) +
" default ones");
return DstMIBuilder;
}
Error GlobalISelEmitter::importDefaultOperandRenderers(
BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
for (const auto *DefaultOp : DefaultOps->getArgs()) {
// Look through ValueType operators.
if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
if (const DefInit *DefaultDagOperator =
dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
DefaultOp = DefaultDagOp->getArg(0);
}
}
if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(0, DefaultDefOp->getDef());
continue;
}
if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
DstMIBuilder.addRenderer<ImmRenderer>(0, DefaultIntOp->getValue());
continue;
}
return failedImport("Could not add default op");
}
return Error::success();
}
Error GlobalISelEmitter::importImplicitDefRenderers(
BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const {
if (!ImplicitDefs.empty())
return failedImport("Pattern defines a physical register");
return Error::success();
}
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
// Keep track of the matchers and actions to emit.
RuleMatcher M;
M.addAction<DebugCommentAction>(P);
if (auto Error = importRulePredicates(M, P.getPredicates()->getValues()))
return std::move(Error);
// Next, analyze the pattern operators.
TreePatternNode *Src = P.getSrcPattern();
TreePatternNode *Dst = P.getDstPattern();
// If the root of either pattern isn't a simple operator, ignore it.
if (auto Err = isTrivialOperatorNode(Dst))
return failedImport("Dst pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
if (auto Err = isTrivialOperatorNode(Src))
return failedImport("Src pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
if (Dst->isLeaf())
return failedImport("Dst pattern root isn't a known leaf");
// Start with the defined operands (i.e., the results of the root operator).
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
return failedImport("Src pattern results and dst MI defs are different (" +
to_string(Src->getExtTypes().size()) + " def(s) vs " +
to_string(DstI.Operands.NumDefs) + " def(s))");
InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher();
unsigned TempOpIdx = 0;
auto InsnMatcherOrError =
createAndImportSelDAGMatcher(InsnMatcherTemp, Src, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return std::move(Error);
InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
// The root of the match also has constraints on the register bank so that it
// matches the result instruction.
unsigned OpIdx = 0;
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
(void)Ty;
const auto &DstIOperand = DstI.Operands[OpIdx];
Record *DstIOpRec = DstIOperand.Rec;
if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport(
"COPY_TO_REGCLASS operand #1 isn't a register class");
} else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
// We can assume that a subregister is in the same bank as it's super
// register.
DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport(
"EXTRACT_SUBREG operand #0 isn't a register class");
} else if (DstIOpRec->isSubClassOf("RegisterOperand"))
DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
else if (!DstIOpRec->isSubClassOf("RegisterClass"))
return failedImport("Dst MI def isn't a register class" +
to_string(*Dst));
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(DstIOpRec));
++OpIdx;
}
auto DstMIBuilderOrError =
createAndImportInstructionRenderer(M, Dst, InsnMatcher);
if (auto Error = DstMIBuilderOrError.takeError())
return std::move(Error);
BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
// Render the implicit defs.
// These are only added to the root of the result.
if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
return std::move(Error);
// Constrain the registers to classes. This is normally derived from the
// emitted instruction but a few instructions require special handling.
if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
// COPY_TO_REGCLASS does not provide operand constraints itself but the
// result is constrained to the class given by the second child.
Record *DstIOpRec =
getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
M.addAction<ConstrainOperandToRegClassAction>(
0, 0, Target.getRegisterClass(DstIOpRec));
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
// EXTRACT_SUBREG selects into a subregister COPY but unlike most
// instructions, the result register class is controlled by the
// subregisters of the operand. As a result, we must constrain the result
// class rather than check that it's already the right one.
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
if (!SubRegInit)
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
// Constrain the result to the same register bank as the operand.
Record *DstIOpRec =
getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
// It would be nice to leave this constraint implicit but we're required
// to pick a register class so constrain the result to a register class
// that can hold the correct MVT.
//
// FIXME: This may introduce an extra copy if the chosen class doesn't
// actually contain the subregisters.
assert(Src->getExtTypes().size() == 1 &&
"Expected Src of EXTRACT_SUBREG to have one result type");
const auto &SrcRCDstRCPair =
SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
M.addAction<ConstrainOperandsToDefinitionAction>(0);
// We're done with this pattern! It's eligible for GISel emission; return it.
++NumPatternImported;
return std::move(M);
}
void GlobalISelEmitter::run(raw_ostream &OS) {
// Track the GINodeEquiv definitions.
gatherNodeEquivs();
emitSourceFileHeader(("Global Instruction Selector for the " +
Target.getName() + " target").str(), OS);
std::vector<RuleMatcher> Rules;
// Look through the SelectionDAG patterns we found, possibly emitting some.
for (const PatternToMatch &Pat : CGP.ptms()) {
++NumPatternTotal;
auto MatcherOrErr = runOnPattern(Pat);
// The pattern analysis can fail, indicating an unsupported pattern.
// Report that if we've been asked to do so.
if (auto Err = MatcherOrErr.takeError()) {
if (WarnOnSkippedPatterns) {
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Skipped pattern: " + toString(std::move(Err)));
} else {
consumeError(std::move(Err));
}
++NumPatternImportsSkipped;
continue;
}
Rules.push_back(std::move(MatcherOrErr.get()));
}
std::stable_sort(Rules.begin(), Rules.end(),
[&](const RuleMatcher &A, const RuleMatcher &B) {
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
std::vector<Record *> ComplexPredicates =
RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
std::sort(ComplexPredicates.begin(), ComplexPredicates.end(),
[](const Record *A, const Record *B) {
if (A->getName() < B->getName())
return true;
return false;
});
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
<< "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
<< ";\n"
<< "using PredicateBitset = "
"llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
<< " mutable MatcherState State;\n"
<< " typedef "
"ComplexRendererFn("
<< Target.getName()
<< "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
<< "const MatcherInfoTy<PredicateBitset, ComplexMatcherMemFn> "
"MatcherInfo;\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
<< ", State(" << MaxTemporaries << "),\n"
<< "MatcherInfo({TypeObjects, FeatureBitsets, {\n"
<< " nullptr, // GICP_Invalid\n";
for (const auto &Record : ComplexPredicates)
OS << " &" << Target.getName()
<< "InstructionSelector::" << Record->getValueAsString("MatcherFn")
<< ", // " << Record->getName() << "\n";
OS << "}})\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
OS << "#ifdef GET_GLOBALISEL_IMPL\n";
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
OS);
// Separate subtarget features by how often they must be recomputed.
SubtargetFeatureInfoMap ModuleFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(ModuleFeatures, ModuleFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return !X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfoMap FunctionFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(FunctionFeatures, FunctionFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
ModuleFeatures, OS);
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector",
"computeAvailableFunctionFeatures", FunctionFeatures, OS,
"const MachineFunction *MF");
// Emit a table containing the LLT objects needed by the matcher and an enum
// for the matcher to reference them with.
std::vector<LLTCodeGen> TypeObjects = {
LLT::scalar(8), LLT::scalar(16), LLT::scalar(32),
LLT::scalar(64), LLT::scalar(80), LLT::vector(8, 1),
LLT::vector(16, 1), LLT::vector(32, 1), LLT::vector(64, 1),
LLT::vector(8, 8), LLT::vector(16, 8), LLT::vector(32, 8),
LLT::vector(64, 8), LLT::vector(4, 16), LLT::vector(8, 16),
LLT::vector(16, 16), LLT::vector(32, 16), LLT::vector(2, 32),
LLT::vector(4, 32), LLT::vector(8, 32), LLT::vector(16, 32),
LLT::vector(2, 64), LLT::vector(4, 64), LLT::vector(8, 64),
};
std::sort(TypeObjects.begin(), TypeObjects.end());
OS << "enum {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxEnumValue(OS);
OS << ",\n";
}
OS << "};\n"
<< "const static LLT TypeObjects[] = {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxConstructorCall(OS);
OS << ",\n";
}
OS << "};\n\n";
// Emit a table containing the PredicateBitsets objects needed by the matcher
// and an enum for the matcher to reference them with.
std::vector<std::vector<Record *>> FeatureBitsets;
for (auto &Rule : Rules)
FeatureBitsets.push_back(Rule.getRequiredFeatures());
std::sort(
FeatureBitsets.begin(), FeatureBitsets.end(),
[&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
if (A.size() < B.size())
return true;
if (A.size() > B.size())
return false;
for (const auto &Pair : zip(A, B)) {
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
return true;
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
return false;
}
return false;
});
FeatureBitsets.erase(
std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
FeatureBitsets.end());
OS << "enum {\n"
<< " GIFBS_Invalid,\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
}
OS << "};\n"
<< "const static PredicateBitset FeatureBitsets[] {\n"
<< " {}, // GIFBS_Invalid\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " {";
for (const auto &Feature : FeatureBitset) {
const auto &I = SubtargetFeatures.find(Feature);
assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
OS << I->second.getEnumBitName() << ", ";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit complex predicate table and an enum to reference them with.
OS << "enum {\n"
<< " GICP_Invalid,\n";
for (const auto &Record : ComplexPredicates)
OS << " GICP_" << Record->getName() << ",\n";
OS << "};\n"
<< "// See constructor for table contents\n\n";
OS << "bool " << Target.getName()
<< "InstructionSelector::selectImpl(MachineInstr &I) const {\n"
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
<< " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
<< " // FIXME: This should be computed on a per-function basis rather "
"than per-insn.\n"
<< " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
"&MF);\n"
<< " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
<< " NewMIVector OutMIs;\n"
<< " State.MIs.clear();\n"
<< " State.MIs.push_back(&I);\n\n";
for (auto &Rule : Rules) {
Rule.emit(OS);
++CurrentMatchTableID;
++NumPatternEmitted;
assert(CurrentMatchTableID == NumPatternEmitted &&
"Statistic deviates from number of emitted tables");
}
OS << " return false;\n"
<< "}\n"
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
<< "PredicateBitset AvailableModuleFeatures;\n"
<< "mutable PredicateBitset AvailableFunctionFeatures;\n"
<< "PredicateBitset getAvailableFeatures() const {\n"
<< " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
<< "}\n"
<< "PredicateBitset\n"
<< "computeAvailableModuleFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const;\n"
<< "PredicateBitset\n"
<< "computeAvailableFunctionFeatures(const " << Target.getName()
<< "Subtarget *Subtarget,\n"
<< " const MachineFunction *MF) const;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
<< "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
<< "AvailableFunctionFeatures()\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}
void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
if (SubtargetFeatures.count(Predicate) == 0)
SubtargetFeatures.emplace(
Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace