blob: 1c62559739f9bd34c7e5b73fe36510cdd3f561ce [file] [log] [blame]
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <map>
#include <set>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "simplifycfg"
static cl::opt<unsigned>
PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
cl::desc("Control the amount of phi node folding to perform (default = 1)"));
static cl::opt<bool>
DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
cl::desc("Duplicate return instructions into unconditional branches"));
static cl::opt<bool>
SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
cl::desc("Sink common instructions down to the end block"));
static cl::opt<bool> HoistCondStores(
"simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
cl::desc("Hoist conditional stores if an unconditional store precedes"));
STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
STATISTIC(NumSpeculations, "Number of speculative executed instructions");
namespace {
/// ValueEqualityComparisonCase - Represents a case of a switch.
struct ValueEqualityComparisonCase {
ConstantInt *Value;
BasicBlock *Dest;
ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
: Value(Value), Dest(Dest) {}
bool operator<(ValueEqualityComparisonCase RHS) const {
// Comparing pointers is ok as we only rely on the order for uniquing.
return Value < RHS.Value;
}
bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
};
class SimplifyCFGOpt {
const TargetTransformInfo &TTI;
const DataLayout *const DL;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
std::vector<ValueEqualityComparisonCase> &Cases);
bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
BasicBlock *Pred,
IRBuilder<> &Builder);
bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
IRBuilder<> &Builder);
bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
bool SimplifyUnreachable(UnreachableInst *UI);
bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
bool SimplifyIndirectBr(IndirectBrInst *IBI);
bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
: TTI(TTI), DL(DL) {}
bool run(BasicBlock *BB);
};
}
/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
if (SI1 == SI2) return false; // Can't merge with self!
// It is not safe to merge these two switch instructions if they have a common
// successor, and if that successor has a PHI node, and if *that* PHI node has
// conflicting incoming values from the two switch blocks.
BasicBlock *SI1BB = SI1->getParent();
BasicBlock *SI2BB = SI2->getParent();
SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
if (SI1Succs.count(*I))
for (BasicBlock::iterator BBI = (*I)->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
if (PN->getIncomingValueForBlock(SI1BB) !=
PN->getIncomingValueForBlock(SI2BB))
return false;
}
return true;
}
/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
/// to merge these two terminator instructions together, where SI1 is an
/// unconditional branch. PhiNodes will store all PHI nodes in common
/// successors.
///
static bool isProfitableToFoldUnconditional(BranchInst *SI1,
BranchInst *SI2,
Instruction *Cond,
SmallVectorImpl<PHINode*> &PhiNodes) {
if (SI1 == SI2) return false; // Can't merge with self!
assert(SI1->isUnconditional() && SI2->isConditional());
// We fold the unconditional branch if we can easily update all PHI nodes in
// common successors:
// 1> We have a constant incoming value for the conditional branch;
// 2> We have "Cond" as the incoming value for the unconditional branch;
// 3> SI2->getCondition() and Cond have same operands.
CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
if (!Ci2) return false;
if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
Cond->getOperand(1) == Ci2->getOperand(1)) &&
!(Cond->getOperand(0) == Ci2->getOperand(1) &&
Cond->getOperand(1) == Ci2->getOperand(0)))
return false;
BasicBlock *SI1BB = SI1->getParent();
BasicBlock *SI2BB = SI2->getParent();
SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
if (SI1Succs.count(*I))
for (BasicBlock::iterator BBI = (*I)->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
!isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
return false;
PhiNodes.push_back(PN);
}
return true;
}
/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block. The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
BasicBlock *ExistPred) {
if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
PHINode *PN;
for (BasicBlock::iterator I = Succ->begin();
(PN = dyn_cast<PHINode>(I)); ++I)
PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
}
/// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
/// given instruction, which is assumed to be safe to speculate. 1 means
/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
assert(isSafeToSpeculativelyExecute(I, DL) &&
"Instruction is not safe to speculatively execute!");
switch (Operator::getOpcode(I)) {
default:
// In doubt, be conservative.
return UINT_MAX;
case Instruction::GetElementPtr:
// GEPs are cheap if all indices are constant.
if (!cast<GEPOperator>(I)->hasAllConstantIndices())
return UINT_MAX;
return 1;
case Instruction::ExtractValue:
case Instruction::Load:
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::ICmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::BitCast:
case Instruction::ExtractElement:
case Instruction::InsertElement:
return 1; // These are all cheap.
case Instruction::Call:
case Instruction::Select:
return 2;
}
}
/// DominatesMergePoint - If we have a merge point of an "if condition" as
/// accepted above, return true if the specified value dominates the block. We
/// don't handle the true generality of domination here, just a special case
/// which works well enough for us.
///
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
/// see if V (which must be an instruction) and its recursive operands
/// that do not dominate BB have a combined cost lower than CostRemaining and
/// are non-trapping. If both are true, the instruction is inserted into the
/// set and true is returned.
///
/// The cost for most non-trapping instructions is defined as 1 except for
/// Select whose cost is 2.
///
/// After this function returns, CostRemaining is decreased by the cost of
/// V plus its non-dominating operands. If that cost is greater than
/// CostRemaining, false is returned and CostRemaining is undefined.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
SmallPtrSet<Instruction*, 4> *AggressiveInsts,
unsigned &CostRemaining,
const DataLayout *DL) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
// Non-instructions all dominate instructions, but not all constantexprs
// can be executed unconditionally.
if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
if (C->canTrap())
return false;
return true;
}
BasicBlock *PBB = I->getParent();
// We don't want to allow weird loops that might have the "if condition" in
// the bottom of this block.
if (PBB == BB) return false;
// If this instruction is defined in a block that contains an unconditional
// branch to BB, then it must be in the 'conditional' part of the "if
// statement". If not, it definitely dominates the region.
BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
return true;
// If we aren't allowing aggressive promotion anymore, then don't consider
// instructions in the 'if region'.
if (!AggressiveInsts) return false;
// If we have seen this instruction before, don't count it again.
if (AggressiveInsts->count(I)) return true;
// Okay, it looks like the instruction IS in the "condition". Check to
// see if it's a cheap instruction to unconditionally compute, and if it
// only uses stuff defined outside of the condition. If so, hoist it out.
if (!isSafeToSpeculativelyExecute(I, DL))
return false;
unsigned Cost = ComputeSpeculationCost(I, DL);
if (Cost > CostRemaining)
return false;
CostRemaining -= Cost;
// Okay, we can only really hoist these out if their operands do
// not take us over the cost threshold.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
return false;
// Okay, it's safe to do this! Remember this instruction.
AggressiveInsts->insert(I);
return true;
}
/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
// Normal constant int.
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
return CI;
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))
return ConstantInt::get(PtrTy, 0);
// IntToPtr const int.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::IntToPtr)
if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
// The constant is very likely to have the right type already.
if (CI->getType() == PtrTy)
return CI;
else
return cast<ConstantInt>
(ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
}
return nullptr;
}
/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
/// collection of icmp eq/ne instructions that compare a value against a
/// constant, return the value being compared, and stick the constant into the
/// Values vector.
static Value *
GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return nullptr;
// If this is an icmp against a constant, handle this as one of the cases.
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
Value *RHSVal;
ConstantInt *RHSC;
if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
// (x & ~2^x) == y --> x == y || x == y|2^x
// This undoes a transformation done by instcombine to fuse 2 compares.
if (match(ICI->getOperand(0),
m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
APInt Not = ~RHSC->getValue();
if (Not.isPowerOf2()) {
Vals.push_back(C);
Vals.push_back(
ConstantInt::get(C->getContext(), C->getValue() | Not));
UsedICmps++;
return RHSVal;
}
}
UsedICmps++;
Vals.push_back(C);
return I->getOperand(0);
}
// If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
// the set.
ConstantRange Span =
ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
// Shift the range if the compare is fed by an add. This is the range
// compare idiom as emitted by instcombine.
bool hasAdd =
match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
if (hasAdd)
Span = Span.subtract(RHSC->getValue());
// If this is an and/!= check then we want to optimize "x ugt 2" into
// x != 0 && x != 1.
if (!isEQ)
Span = Span.inverse();
// If there are a ton of values, we don't want to make a ginormous switch.
if (Span.getSetSize().ugt(8) || Span.isEmptySet())
return nullptr;
for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
UsedICmps++;
return hasAdd ? RHSVal : I->getOperand(0);
}
return nullptr;
}
// Otherwise, we can only handle an | or &, depending on isEQ.
if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
return nullptr;
unsigned NumValsBeforeLHS = Vals.size();
unsigned UsedICmpsBeforeLHS = UsedICmps;
if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
isEQ, UsedICmps)) {
unsigned NumVals = Vals.size();
unsigned UsedICmpsBeforeRHS = UsedICmps;
if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
isEQ, UsedICmps)) {
if (LHS == RHS)
return LHS;
Vals.resize(NumVals);
UsedICmps = UsedICmpsBeforeRHS;
}
// The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
// set it and return success.
if (Extra == nullptr || Extra == I->getOperand(1)) {
Extra = I->getOperand(1);
return LHS;
}
Vals.resize(NumValsBeforeLHS);
UsedICmps = UsedICmpsBeforeLHS;
return nullptr;
}
// If the LHS can't be folded in, but Extra is available and RHS can, try to
// use LHS as Extra.
if (Extra == nullptr || Extra == I->getOperand(0)) {
Value *OldExtra = Extra;
Extra = I->getOperand(0);
if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
isEQ, UsedICmps))
return RHS;
assert(Vals.size() == NumValsBeforeLHS);
Extra = OldExtra;
}
return nullptr;
}
static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
Instruction *Cond = nullptr;
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Cond = dyn_cast<Instruction>(SI->getCondition());
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional())
Cond = dyn_cast<Instruction>(BI->getCondition());
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
Cond = dyn_cast<Instruction>(IBI->getAddress());
}
TI->eraseFromParent();
if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
}
/// isValueEqualityComparison - Return true if the specified terminator checks
/// to see if a value is equal to constant integer value.
Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
Value *CV = nullptr;
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
// Do not permit merging of large switch instructions into their
// predecessors unless there is only one predecessor.
if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
pred_end(SI->getParent())) <= 128)
CV = SI->getCondition();
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional() && BI->getCondition()->hasOneUse())
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
CV = ICI->getOperand(0);
// Unwrap any lossless ptrtoint cast.
if (DL && CV) {
if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
Value *Ptr = PTII->getPointerOperand();
if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
CV = Ptr;
}
}
return CV;
}
/// GetValueEqualityComparisonCases - Given a value comparison instruction,
/// decode all of the 'cases' that it represents and return the 'default' block.
BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst *TI,
std::vector<ValueEqualityComparisonCase>
&Cases) {
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Cases.reserve(SI->getNumCases());
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
i.getCaseSuccessor()));
return SI->getDefaultDest();
}
BranchInst *BI = cast<BranchInst>(TI);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
DL),
Succ));
return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}
/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
/// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
std::vector<ValueEqualityComparisonCase> &Cases) {
Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
}
/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
/// well.
static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
std::vector<ValueEqualityComparisonCase > &C2) {
std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
// Make V1 be smaller than V2.
if (V1->size() > V2->size())
std::swap(V1, V2);
if (V1->size() == 0) return false;
if (V1->size() == 1) {
// Just scan V2.
ConstantInt *TheVal = (*V1)[0].Value;
for (unsigned i = 0, e = V2->size(); i != e; ++i)
if (TheVal == (*V2)[i].Value)
return true;
}
// Otherwise, just sort both lists and compare element by element.
array_pod_sort(V1->begin(), V1->end());
array_pod_sort(V2->begin(), V2->end());
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
while (i1 != e1 && i2 != e2) {
if ((*V1)[i1].Value == (*V2)[i2].Value)
return true;
if ((*V1)[i1].Value < (*V2)[i2].Value)
++i1;
else
++i2;
}
return false;
}
/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
/// terminator instruction and its block is known to only have a single
/// predecessor block, check to see if that predecessor is also a value
/// comparison with the same value, and if that comparison determines the
/// outcome of this comparison. If so, simplify TI. This does a very limited
/// form of jump threading.
bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
BasicBlock *Pred,
IRBuilder<> &Builder) {
Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
if (!PredVal) return false; // Not a value comparison in predecessor.
Value *ThisVal = isValueEqualityComparison(TI);
assert(ThisVal && "This isn't a value comparison!!");
if (ThisVal != PredVal) return false; // Different predicates.
// TODO: Preserve branch weight metadata, similarly to how
// FoldValueComparisonIntoPredecessors preserves it.
// Find out information about when control will move from Pred to TI's block.
std::vector<ValueEqualityComparisonCase> PredCases;
BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
PredCases);
EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
// Find information about how control leaves this block.
std::vector<ValueEqualityComparisonCase> ThisCases;
BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
// If TI's block is the default block from Pred's comparison, potentially
// simplify TI based on this knowledge.
if (PredDef == TI->getParent()) {
// If we are here, we know that the value is none of those cases listed in
// PredCases. If there are any cases in ThisCases that are in PredCases, we
// can simplify TI.
if (!ValuesOverlap(PredCases, ThisCases))
return false;
if (isa<BranchInst>(TI)) {
// Okay, one of the successors of this condbr is dead. Convert it to a
// uncond br.
assert(ThisCases.size() == 1 && "Branch can only have one case!");
// Insert the new branch.
Instruction *NI = Builder.CreateBr(ThisDef);
(void) NI;
// Remove PHI node entries for the dead edge.
ThisCases[0].Dest->removePredecessor(TI->getParent());
DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
return true;
}
SwitchInst *SI = cast<SwitchInst>(TI);
// Okay, TI has cases that are statically dead, prune them away.
SmallPtrSet<Constant*, 16> DeadCases;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].Value);
DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI);
// Collect branch weights into a vector.
SmallVector<uint32_t, 8> Weights;
MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
if (HasWeight)
for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
++MD_i) {
ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
assert(CI);
Weights.push_back(CI->getValue().getZExtValue());
}
for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
--i;
if (DeadCases.count(i.getCaseValue())) {
if (HasWeight) {
std::swap(Weights[i.getCaseIndex()+1], Weights.back());
Weights.pop_back();
}
i.getCaseSuccessor()->removePredecessor(TI->getParent());
SI->removeCase(i);
}
}
if (HasWeight && Weights.size() >= 2)
SI->setMetadata(LLVMContext::MD_prof,
MDBuilder(SI->getParent()->getContext()).
createBranchWeights(Weights));
DEBUG(dbgs() << "Leaving: " << *TI << "\n");
return true;
}
// Otherwise, TI's block must correspond to some matched value. Find out
// which value (or set of values) this is.
ConstantInt *TIV = nullptr;
BasicBlock *TIBB = TI->getParent();
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest == TIBB) {
if (TIV)
return false; // Cannot handle multiple values coming to this block.
TIV = PredCases[i].Value;
}
assert(TIV && "No edge from pred to succ?");
// Okay, we found the one constant that our value can be if we get into TI's
// BB. Find out which successor will unconditionally be branched to.
BasicBlock *TheRealDest = nullptr;
for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
if (ThisCases[i].Value == TIV) {
TheRealDest = ThisCases[i].Dest;
break;
}
// If not handled by any explicit cases, it is handled by the default case.
if (!TheRealDest) TheRealDest = ThisDef;
// Remove PHI node entries for dead edges.
BasicBlock *CheckEdge = TheRealDest;
for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
if (*SI != CheckEdge)
(*SI)->removePredecessor(TIBB);
else
CheckEdge = nullptr;
// Insert the new branch.
Instruction *NI = Builder.CreateBr(TheRealDest);
(void) NI;
DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
return true;
}
namespace {
/// ConstantIntOrdering - This class implements a stable ordering of constant
/// integers that does not depend on their address. This is important for
/// applications that sort ConstantInt's to ensure uniqueness.
struct ConstantIntOrdering {
bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
return LHS->getValue().ult(RHS->getValue());
}
};
}
static int ConstantIntSortPredicate(ConstantInt *const *P1,
ConstantInt *const *P2) {
const ConstantInt *LHS = *P1;
const ConstantInt *RHS = *P2;
if (LHS->getValue().ult(RHS->getValue()))
return 1;
if (LHS->getValue() == RHS->getValue())
return 0;
return -1;
}
static inline bool HasBranchWeights(const Instruction* I) {
MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
if (ProfMD && ProfMD->getOperand(0))
if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
return MDS->getString().equals("branch_weights");
return false;
}
/// Get Weights of a given TerminatorInst, the default weight is at the front
/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
/// metadata.
static void GetBranchWeights(TerminatorInst *TI,
SmallVectorImpl<uint64_t> &Weights) {
MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
assert(MD);
for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
Weights.push_back(CI->getValue().getZExtValue());
}
// If TI is a conditional eq, the default case is the false case,
// and the corresponding branch-weight data is at index 2. We swap the
// default weight to be the first entry.
if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
assert(Weights.size() == 2);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
std::swap(Weights.front(), Weights.back());
}
}
/// Keep halving the weights until all can fit in uint32_t.
static void FitWeights(MutableArrayRef<uint64_t> Weights) {
uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
if (Max > UINT_MAX) {
unsigned Offset = 32 - countLeadingZeros(Max);
for (uint64_t &I : Weights)
I >>= Offset;
}
}
/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
/// equality comparison instruction (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
/// on the same value. If so, and if safe to do so, fold them together.
bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
IRBuilder<> &Builder) {
BasicBlock *BB = TI->getParent();
Value *CV = isValueEqualityComparison(TI); // CondVal
assert(CV && "Not a comparison?");
bool Changed = false;
SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
while (!Preds.empty()) {
BasicBlock *Pred = Preds.pop_back_val();
// See if the predecessor is a comparison with the same value.
TerminatorInst *PTI = Pred->getTerminator();
Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
// Figure out which 'cases' to copy from SI to PSI.
std::vector<ValueEqualityComparisonCase> BBCases;
BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
std::vector<ValueEqualityComparisonCase> PredCases;
BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
// Based on whether the default edge from PTI goes to BB or not, fill in
// PredCases and PredDefault with the new switch cases we would like to
// build.
SmallVector<BasicBlock*, 8> NewSuccessors;
// Update the branch weight metadata along the way
SmallVector<uint64_t, 8> Weights;
bool PredHasWeights = HasBranchWeights(PTI);
bool SuccHasWeights = HasBranchWeights(TI);
if (PredHasWeights) {
GetBranchWeights(PTI, Weights);
// branch-weight metadata is inconsistent here.
if (Weights.size() != 1 + PredCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (SuccHasWeights)
// If there are no predecessor weights but there are successor weights,
// populate Weights with 1, which will later be scaled to the sum of
// successor's weights
Weights.assign(1 + PredCases.size(), 1);
SmallVector<uint64_t, 8> SuccWeights;
if (SuccHasWeights) {
GetBranchWeights(TI, SuccWeights);
// branch-weight metadata is inconsistent here.
if (SuccWeights.size() != 1 + BBCases.size())
PredHasWeights = SuccHasWeights = false;
} else if (PredHasWeights)
SuccWeights.assign(1 + BBCases.size(), 1);
if (PredDefault == BB) {
// If this is the default destination from PTI, only the edges in TI
// that don't occur in PTI, or that branch to BB will be activated.
std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest != BB)
PTIHandled.insert(PredCases[i].Value);
else {
// The default destination is BB, we don't need explicit targets.
std::swap(PredCases[i], PredCases.back());
if (PredHasWeights || SuccHasWeights) {
// Increase weight for the default case.
Weights[0] += Weights[i+1];
std::swap(Weights[i+1], Weights.back());
Weights.pop_back();
}
PredCases.pop_back();
--i; --e;
}
// Reconstruct the new switch statement we will be building.
if (PredDefault != BBDefault) {
PredDefault->removePredecessor(Pred);
PredDefault = BBDefault;
NewSuccessors.push_back(BBDefault);
}
unsigned CasesFromPred = Weights.size();
uint64_t ValidTotalSuccWeight = 0;
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (!PTIHandled.count(BBCases[i].Value) &&
BBCases[i].Dest != BBDefault) {
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].Dest);
if (SuccHasWeights || PredHasWeights) {
// The default weight is at index 0, so weight for the ith case
// should be at index i+1. Scale the cases from successor by
// PredDefaultWeight (Weights[0]).
Weights.push_back(Weights[0] * SuccWeights[i+1]);
ValidTotalSuccWeight += SuccWeights[i+1];
}
}
if (SuccHasWeights || PredHasWeights) {
ValidTotalSuccWeight += SuccWeights[0];
// Scale the cases from predecessor by ValidTotalSuccWeight.
for (unsigned i = 1; i < CasesFromPred; ++i)
Weights[i] *= ValidTotalSuccWeight;
// Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
Weights[0] *= SuccWeights[0];
}
} else {
// If this is not the default destination from PSI, only the edges
// in SI that occur in PSI with a destination of BB will be
// activated.
std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
std::map<ConstantInt*, uint64_t> WeightsForHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].Dest == BB) {
PTIHandled.insert(PredCases[i].Value);
if (PredHasWeights || SuccHasWeights) {
WeightsForHandled[PredCases[i].Value] = Weights[i+1];
std::swap(Weights[i+1], Weights.back());
Weights.pop_back();
}
std::swap(PredCases[i], PredCases.back());
PredCases.pop_back();
--i; --e;
}
// Okay, now we know which constants were sent to BB from the
// predecessor. Figure out where they will all go now.
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (PTIHandled.count(BBCases[i].Value)) {
// If this is one we are capable of getting...
if (PredHasWeights || SuccHasWeights)
Weights.push_back(WeightsForHandled[BBCases[i].Value]);
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].Dest);
PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
}
// If there are any constants vectored to BB that TI doesn't handle,
// they must go to the default destination of TI.
for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
PTIHandled.begin(),
E = PTIHandled.end(); I != E; ++I) {
if (PredHasWeights || SuccHasWeights)
Weights.push_back(WeightsForHandled[*I]);
PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
NewSuccessors.push_back(BBDefault);
}
}
// Okay, at this point, we know which new successor Pred will get. Make
// sure we update the number of entries in the PHI nodes for these
// successors.
for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
Builder.SetInsertPoint(PTI);
// Convert pointer to int before we switch.
if (CV->getType()->isPointerTy()) {
assert(DL && "Cannot switch on pointer without DataLayout");
CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
"magicptr");
}
// Now that the successors are updated, create the new Switch instruction.
SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
PredCases.size());
NewSI->setDebugLoc(PTI->getDebugLoc());
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
if (PredHasWeights || SuccHasWeights) {
// Halve the weights if any of them cannot fit in an uint32_t
FitWeights(Weights);
SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
NewSI->setMetadata(LLVMContext::MD_prof,
MDBuilder(BB->getContext()).
createBranchWeights(MDWeights));
}
EraseTerminatorInstAndDCECond(PTI);
// Okay, last check. If BB is still a successor of PSI, then we must
// have an infinite loop case. If so, add an infinitely looping block
// to handle the case to preserve the behavior of the code.
BasicBlock *InfLoopBlock = nullptr;
for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
if (NewSI->getSuccessor(i) == BB) {
if (!InfLoopBlock) {
// Insert it at the end of the function, because it's either code,
// or it won't matter if it's hot. :)
InfLoopBlock = BasicBlock::Create(BB->getContext(),
"infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
}
NewSI->setSuccessor(i, InfLoopBlock);
}
Changed = true;
}
}
return Changed;
}
// isSafeToHoistInvoke - If we would need to insert a select that uses the
// value of this invoke (comments in HoistThenElseCodeToIf explain why we
// would need to do this), we can't hoist the invoke, as there is nowhere
// to put the select in this case.
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
Instruction *I1, Instruction *I2) {
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
return false;
}
}
}
return true;
}
/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block. The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. In particular, we don't want to get into
// O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
// such, we currently just scan for obviously identical instructions in an
// identical order.
BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
BasicBlock::iterator BB1_Itr = BB1->begin();
BasicBlock::iterator BB2_Itr = BB2->begin();
Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
// Skip debug info if it is not identical.
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
I1 = BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
I2 = BB2_Itr++;
}
if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
(isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
return false;
BasicBlock *BIParent = BI->getParent();
bool Changed = false;
do {
// If we are hoisting the terminator instruction, don't move one (making a
// broken BB), instead clone it, and remove BI.
if (isa<TerminatorInst>(I1))
goto HoistTerminator;
// For a normal instruction, we just move one to right before the branch,
// then replace all uses of the other with the first. Finally, we remove
// the now redundant second instruction.
BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
I2->eraseFromParent();
Changed = true;
I1 = BB1_Itr++;
I2 = BB2_Itr++;
// Skip debug info if it is not identical.
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
I1 = BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
I2 = BB2_Itr++;
}
} while (I1->isIdenticalToWhenDefined(I2));
return true;
HoistTerminator:
// It may not be possible to hoist an invoke.
if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
return Changed;
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
if (BB1V == BB2V)
continue;
if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
return Changed;
if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
return Changed;
}
}
// Okay, it is safe to hoist the terminator.
Instruction *NT = I1->clone();
BIParent->getInstList().insert(BI, NT);
if (!NT->getType()->isVoidTy()) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
NT->takeName(I1);
}
IRBuilder<true, NoFolder> Builder(NT);
// Hoisting one of the terminators from our successor is a great thing.
// Unfortunately, the successors of the if/else blocks may have PHI nodes in
// them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
// nodes, so we insert select instruction to compute the final result.
std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
if (BB1V == BB2V) continue;
// These values do not agree. Insert a select instruction before NT
// that determines the right value.
SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
if (!SI)
SI = cast<SelectInst>
(Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
BB1V->getName()+"."+BB2V->getName()));
// Make the PHI node use the select for all incoming values for BB1/BB2
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
PN->setIncomingValue(i, SI);
}
}
// Update any PHI nodes in our new successors.
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
AddPredecessorToBlock(*SI, BIParent, BB1);
EraseTerminatorInstAndDCECond(BI);
return true;
}
/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
/// check whether BBEnd has only two predecessors and the other predecessor
/// ends with an unconditional branch. If it is true, sink any common code
/// in the two predecessors to BBEnd.
static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
assert(BI1->isUnconditional());
BasicBlock *BB1 = BI1->getParent();
BasicBlock *BBEnd = BI1->getSuccessor(0);
// Check that BBEnd has two predecessors and the other predecessor ends with
// an unconditional branch.
pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
BasicBlock *Pred0 = *PI++;
if (PI == PE) // Only one predecessor.
return false;
BasicBlock *Pred1 = *PI++;
if (PI != PE) // More than two predecessors.
return false;
BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
if (!BI2 || !BI2->isUnconditional())
return false;
// Gather the PHI nodes in BBEnd.
std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
Instruction *FirstNonPhiInBBEnd = nullptr;
for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
I != E; ++I) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
} else {
FirstNonPhiInBBEnd = &*I;
break;
}
}
if (!FirstNonPhiInBBEnd)
return false;
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. We scan backward for obviously identical
// instructions in an identical order.
BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
RE2 = BB2->getInstList().rend();
// Skip debug info.
while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
if (RI1 == RE1)
return false;
while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
if (RI2 == RE2)
return false;
// Skip the unconditional branches.
++RI1;
++RI2;
bool Changed = false;
while (RI1 != RE1 && RI2 != RE2) {
// Skip debug info.
while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
if (RI1 == RE1)
return Changed;
while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
if (RI2 == RE2)
return Changed;
Instruction *I1 = &*RI1, *I2 = &*RI2;
// I1 and I2 should have a single use in the same PHI node, and they
// perform the same operation.
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
!I1->hasOneUse() || !I2->hasOneUse() ||
MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
MapValueFromBB1ToBB2[I1].first != I2)
return Changed;
// Check whether we should swap the operands of ICmpInst.
ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
bool SwapOpnds = false;
if (ICmp1 && ICmp2 &&
ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
(ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
ICmp2->swapOperands();
SwapOpnds = true;
}
if (!I1->isSameOperationAs(I2)) {
if (SwapOpnds)
ICmp2->swapOperands();
return Changed;
}
// The operands should be either the same or they need to be generated
// with a PHI node after sinking. We only handle the case where there is
// a single pair of different operands.
Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
unsigned Op1Idx = 0;
for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
if (I1->getOperand(I) == I2->getOperand(I))
continue;
// Early exit if we have more-than one pair of different operands or
// the different operand is already in MapValueFromBB1ToBB2.
// Early exit if we need a PHI node to replace a constant.
if (DifferentOp1 ||
MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
MapValueFromBB1ToBB2.end() ||
isa<Constant>(I1->getOperand(I)) ||
isa<Constant>(I2->getOperand(I))) {
// If we can't sink the instructions, undo the swapping.
if (SwapOpnds)
ICmp2->swapOperands();
return Changed;
}
DifferentOp1 = I1->getOperand(I);
Op1Idx = I;
DifferentOp2 = I2->getOperand(I);
}
// We insert the pair of different operands to MapValueFromBB1ToBB2 and
// remove (I1, I2) from MapValueFromBB1ToBB2.
if (DifferentOp1) {
PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
DifferentOp1->getName() + ".sink",
BBEnd->begin());
MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
// I1 should use NewPN instead of DifferentOp1.
I1->setOperand(Op1Idx, NewPN);
NewPN->addIncoming(DifferentOp1, BB1);
NewPN->addIncoming(DifferentOp2, BB2);
DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
}
PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
MapValueFromBB1ToBB2.erase(I1);
DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
DEBUG(dbgs() << " " << *I2 << "\n";);
// We need to update RE1 and RE2 if we are going to sink the first
// instruction in the basic block down.
bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
// Sink the instruction.
BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
if (!OldPN->use_empty())
OldPN->replaceAllUsesWith(I1);
OldPN->eraseFromParent();
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
I2->eraseFromParent();
if (UpdateRE1)
RE1 = BB1->getInstList().rend();
if (UpdateRE2)
RE2 = BB2->getInstList().rend();
FirstNonPhiInBBEnd = I1;
NumSinkCommons++;
Changed = true;
}
return Changed;
}
/// \brief Determine if we can hoist sink a sole store instruction out of a
/// conditional block.
///
/// We are looking for code like the following:
/// BrBB:
/// store i32 %add, i32* %arrayidx2
/// ... // No other stores or function calls (we could be calling a memory
/// ... // function).
/// %cmp = icmp ult %x, %y
/// br i1 %cmp, label %EndBB, label %ThenBB
/// ThenBB:
/// store i32 %add5, i32* %arrayidx2
/// br label EndBB
/// EndBB:
/// ...
/// We are going to transform this into:
/// BrBB:
/// store i32 %add, i32* %arrayidx2
/// ... //
/// %cmp = icmp ult %x, %y
/// %add.add5 = select i1 %cmp, i32 %add, %add5
/// store i32 %add.add5, i32* %arrayidx2
/// ...
///
/// \return The pointer to the value of the previous store if the store can be
/// hoisted into the predecessor block. 0 otherwise.
static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
BasicBlock *StoreBB, BasicBlock *EndBB) {
StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
if (!StoreToHoist)
return nullptr;
// Volatile or atomic.
if (!StoreToHoist->isSimple())
return nullptr;
Value *StorePtr = StoreToHoist->getPointerOperand();
// Look for a store to the same pointer in BrBB.
unsigned MaxNumInstToLookAt = 10;
for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
Instruction *CurI = &*RI;
// Could be calling an instruction that effects memory like free().
if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
return nullptr;
StoreInst *SI = dyn_cast<StoreInst>(CurI);
// Found the previous store make sure it stores to the same location.
if (SI && SI->getPointerOperand() == StorePtr)
// Found the previous store, return its value operand.
return SI->getValueOperand();
else if (SI)
return nullptr; // Unknown store.
}
return nullptr;
}
/// \brief Speculate a conditional basic block flattening the CFG.
///
/// Note that this is a very risky transform currently. Speculating
/// instructions like this is most often not desirable. Instead, there is an MI
/// pass which can do it with full awareness of the resource constraints.
/// However, some cases are "obvious" and we should do directly. An example of
/// this is speculating a single, reasonably cheap instruction.
///
/// There is only one distinct advantage to flattening the CFG at the IR level:
/// it makes very common but simplistic optimizations such as are common in
/// instcombine and the DAG combiner more powerful by removing CFG edges and
/// modeling their effects with easier to reason about SSA value graphs.
///
///
/// An illustration of this transform is turning this IR:
/// \code
/// BB:
/// %cmp = icmp ult %x, %y
/// br i1 %cmp, label %EndBB, label %ThenBB
/// ThenBB:
/// %sub = sub %x, %y
/// br label BB2
/// EndBB:
/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
/// ...
/// \endcode
///
/// Into this IR:
/// \code
/// BB:
/// %cmp = icmp ult %x, %y
/// %sub = sub %x, %y
/// %cond = select i1 %cmp, 0, %sub
/// ...
/// \endcode
///
/// \returns true if the conditional block is removed.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
const DataLayout *DL) {
// Be conservative for now. FP select instruction can often be expensive.
Value *BrCond = BI->getCondition();
if (isa<FCmpInst>(BrCond))
return false;
BasicBlock *BB = BI->getParent();
BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
// If ThenBB is actually on the false edge of the conditional branch, remember
// to swap the select operands later.
bool Invert = false;
if (ThenBB != BI->getSuccessor(0)) {
assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
Invert = true;
}
assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
// Keep a count of how many times instructions are used within CondBB when
// they are candidates for sinking into CondBB. Specifically:
// - They are defined in BB, and
// - They have no side effects, and
// - All of their uses are in CondBB.
SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
unsigned SpeculationCost = 0;
Value *SpeculatedStoreValue = nullptr;
StoreInst *SpeculatedStore = nullptr;
for (BasicBlock::iterator BBI = ThenBB->begin(),
BBE = std::prev(ThenBB->end());
BBI != BBE; ++BBI) {
Instruction *I = BBI;
// Skip debug info.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Only speculatively execution a single instruction (not counting the
// terminator) for now.
++SpeculationCost;
if (SpeculationCost > 1)
return false;
// Don't hoist the instruction if it's unsafe or expensive.
if (!isSafeToSpeculativelyExecute(I, DL) &&
!(HoistCondStores &&
(SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
EndBB))))
return false;
if (!SpeculatedStoreValue &&
ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
return false;
// Store the store speculation candidate.
if (SpeculatedStoreValue)
SpeculatedStore = cast<StoreInst>(I);
// Do not hoist the instruction if any of its operands are defined but not
// used in BB. The transformation will prevent the operand from
// being sunk into the use block.
for (User::op_iterator i = I->op_begin(), e = I->op_end();
i != e; ++i) {
Instruction *OpI = dyn_cast<Instruction>(*i);
if (!OpI || OpI->getParent() != BB ||
OpI->mayHaveSideEffects())
continue; // Not a candidate for sinking.
++SinkCandidateUseCounts[OpI];
}
}
// Consider any sink candidates which are only used in CondBB as costs for
// speculation. Note, while we iterate over a DenseMap here, we are summing
// and so iteration order isn't significant.
for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
I != E; ++I)
if (I->first->getNumUses() == I->second) {
++SpeculationCost;
if (SpeculationCost > 1)
return false;
}
// Check that the PHI nodes can be converted to selects.
bool HaveRewritablePHIs = false;
for (BasicBlock::iterator I = EndBB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
Value *OrigV = PN->getIncomingValueForBlock(BB);
Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
// FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
// Skip PHIs which are trivial.
if (ThenV == OrigV)
continue;
HaveRewritablePHIs = true;
ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
if (!OrigCE && !ThenCE)
continue; // Known safe and cheap.
if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
(OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
return false;
unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
return false;
// Account for the cost of an unfolded ConstantExpr which could end up
// getting expanded into Instructions.
// FIXME: This doesn't account for how many operations are combined in the
// constant expression.
++SpeculationCost;
if (SpeculationCost > 1)
return false;
}
// If there are no PHIs to process, bail early. This helps ensure idempotence
// as well.
if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
return false;
// If we get here, we can hoist the instruction and if-convert.
DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
// Insert a select of the value of the speculated store.
if (SpeculatedStoreValue) {
IRBuilder<true, NoFolder> Builder(BI);
Value *TrueV = SpeculatedStore->getValueOperand();
Value *FalseV = SpeculatedStoreValue;
if (Invert)
std::swap(TrueV, FalseV);
Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
"." + FalseV->getName());
SpeculatedStore->setOperand(0, S);
}
// Hoist the instructions.
BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
std::prev(ThenBB->end()));
// Insert selects and rewrite the PHI operands.
IRBuilder<true, NoFolder> Builder(BI);
for (BasicBlock::iterator I = EndBB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
unsigned OrigI = PN->getBasicBlockIndex(BB);
unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
Value *OrigV = PN->getIncomingValue(OrigI);
Value *ThenV = PN->getIncomingValue(ThenI);
// Skip PHIs which are trivial.
if (OrigV == ThenV)
continue;
// Create a select whose true value is the speculatively executed value and
// false value is the preexisting value. Swap them if the branch
// destinations were inverted.
Value *TrueV = ThenV, *FalseV = OrigV;
if (Invert)
std::swap(TrueV, FalseV);
Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
TrueV->getName() + "." + FalseV->getName());
PN->setIncomingValue(OrigI, V);
PN->setIncomingValue(ThenI, V);
}
++NumSpeculations;
return true;
}
/// \returns True if this block contains a CallInst with the NoDuplicate
/// attribute.
static bool HasNoDuplicateCall(const BasicBlock *BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
const CallInst *CI = dyn_cast<CallInst>(I);
if (!CI)
continue;
if (CI->cannotDuplicate())
return true;
}
return false;
}
/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
/// across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
unsigned Size = 0;
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
if (isa<DbgInfoIntrinsic>(BBI))
continue;
if (Size > 10) return false; // Don't clone large BB's.
++Size;
// We can only support instructions that do not define values that are
// live outside of the current basic block.
for (User *U : BBI->users()) {
Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
}
// Looks ok, continue checking.
}
return true;
}
/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
// outside of the block.
if (!PN || PN->getParent() != BB || !PN->hasOneUse())
return false;
// Degenerate case of a single entry PHI.
if (PN->getNumIncomingValues() == 1) {
FoldSingleEntryPHINodes(PN->getParent());
return true;
}
// Now we know that this block has multiple preds and two succs.
if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
if (HasNoDuplicateCall(BB)) return false;
// Okay, this is a simple enough basic block. See if any phi values are
// constants.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
if (!CB || !CB->getType()->isIntegerTy(1)) continue;
// Okay, we now know that all edges from PredBB should be revectored to
// branch to RealDest.
BasicBlock *PredBB = PN->getIncomingBlock(i);
BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
if (RealDest == BB) continue; // Skip self loops.
// Skip if the predecessor's terminator is an indirect branch.
if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
// The dest block might have PHI nodes, other predecessors and other
// difficult cases. Instead of being smart about this, just insert a new
// block that jumps to the destination block, effectively splitting
// the edge we are about to create.
BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
RealDest->getName()+".critedge",
RealDest->getParent(), RealDest);
BranchInst::Create(RealDest, EdgeBB);
// Update PHI nodes.
AddPredecessorToBlock(RealDest, EdgeBB, BB);
// BB may have instructions that are being threaded over. Clone these
// instructions into EdgeBB. We know that there will be no uses of the
// cloned instructions outside of EdgeBB.
BasicBlock::iterator InsertPt = EdgeBB->begin();
DenseMap<Value*, Value*> TranslateMap; // Track translated values.
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
continue;
}
// Clone the instruction.
Instruction *N = BBI->clone();
if (BBI->hasName()) N->setName(BBI->getName()+".c");
// Update operands due to translation.
for (User::op_iterator i = N->op_begin(), e = N->op_end();
i != e; ++i) {
DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
if (PI != TranslateMap.end())
*i = PI->second;
}
// Check for trivial simplification.
if (Value *V = SimplifyInstruction(N, DL)) {
TranslateMap[BBI] = V;
delete N; // Instruction folded away, don't need actual inst
} else {
// Insert the new instruction into its new home.
EdgeBB->getInstList().insert(InsertPt, N);
if (!BBI->use_empty())
TranslateMap[BBI] = N;
}
}
// Loop over all of the edges from PredBB to BB, changing them to branch
// to EdgeBB instead.
TerminatorInst *PredBBTI = PredBB->getTerminator();
for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
if (PredBBTI->getSuccessor(i) == BB) {
BB->removePredecessor(PredBB);
PredBBTI->setSuccessor(i, EdgeBB);
}
// Recurse, simplifying any other constants.
return FoldCondBranchOnPHI(BI, DL) | true;
}
return false;
}
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
// subsequently causes this merge to happen. We really want control
// dependence information for this check, but simplifycfg can't keep it up
// to date, and this catches most of the cases we care about anyway.
BasicBlock *BB = PN->getParent();
BasicBlock *IfTrue, *IfFalse;
Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
if (!IfCond ||
// Don't bother if the branch will be constant folded trivially.
isa<ConstantInt>(IfCond))
return false;
// Okay, we found that we can merge this two-entry phi node into a select.
// Doing so would require us to fold *all* two entry phi nodes in this block.
// At some point this becomes non-profitable (particularly if the target
// doesn't support cmov's). Only do this transformation if there are two or
// fewer PHI nodes in this block.
unsigned NumPhis = 0;
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
if (NumPhis > 2)
return false;
// Loop over the PHI's seeing if we can promote them all to select
// instructions. While we are at it, keep track of the instructions
// that need to be moved to the dominating block.
SmallPtrSet<Instruction*, 4> AggressiveInsts;
unsigned MaxCostVal0 = PHINodeFoldingThreshold,
MaxCostVal1 = PHINodeFoldingThreshold;
for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
PHINode *PN = cast<PHINode>(II++);
if (Value *V = SimplifyInstruction(PN, DL)) {
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
continue;
}
if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
MaxCostVal0, DL) ||
!DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
MaxCostVal1, DL))
return false;
}
// If we folded the first phi, PN dangles at this point. Refresh it. If
// we ran out of PHIs then we simplified them all.
PN = dyn_cast<PHINode>(BB->begin());
if (!PN) return true;
// Don't fold i1 branches on PHIs which contain binary operators. These can
// often be turned into switches and other things.
if (PN->getType()->isIntegerTy(1) &&
(isa<BinaryOperator>(PN->getIncomingValue(0)) ||
isa<BinaryOperator>(PN->getIncomingValue(1)) ||
isa<BinaryOperator>(IfCond)))
return false;
// If we all PHI nodes are promotable, check to make sure that all
// instructions in the predecessor blocks can be promoted as well. If
// not, we won't be able to get rid of the control flow, so it's not
// worth promoting to select instructions.
BasicBlock *DomBlock = nullptr;
BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
IfBlock1 = nullptr;
} else {
DomBlock = *pred_begin(IfBlock1);
for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
return false;
}
}
if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
IfBlock2 = nullptr;
} else {
DomBlock = *pred_begin(IfBlock2);
for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
return false;
}
}
DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
<< IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
// If we can still promote the PHI nodes after this gauntlet of tests,
// do all of the PHI's now.
Instruction *InsertPt = DomBlock->getTerminator();
IRBuilder<true, NoFolder> Builder(InsertPt);
// Move all 'aggressive' instructions, which are defined in the
// conditional parts of the if's up to the dominating block.
if (IfBlock1)
DomBlock->getInstList().splice(InsertPt,
IfBlock1->getInstList(), IfBlock1->begin(),
IfBlock1->getTerminator());
if (IfBlock2)
DomBlock->getInstList().splice(InsertPt,
IfBlock2->getInstList(), IfBlock2->begin(),
IfBlock2->getTerminator());
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
// Change the PHI node into a select instruction.
Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
SelectInst *NV =
cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
PN->replaceAllUsesWith(NV);
NV->takeName(PN);
PN->eraseFromParent();
}
// At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
// has been flattened. Change DomBlock to jump directly to our new block to
// avoid other simplifycfg's kicking in on the diamond.
TerminatorInst *OldTI = DomBlock->getTerminator();
Builder.SetInsertPoint(OldTI);
Builder.CreateBr(BB);
OldTI->eraseFromParent();
return true;
}
/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
/// to two returning blocks, try to merge them together into one return,
/// introducing a select if the return values disagree.
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
IRBuilder<> &Builder) {
assert(BI->isConditional() && "Must be a conditional branch");
BasicBlock *TrueSucc = BI->getSuccessor(0);
BasicBlock *FalseSucc = BI->getSuccessor(1);
ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
// Check to ensure both blocks are empty (just a return) or optionally empty
// with PHI nodes. If there are other instructions, merging would cause extra
// computation on one path or the other.
if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
return false;
if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
return false;
Builder.SetInsertPoint(BI);
// Okay, we found a branch that is going to two return nodes. If
// there is no return value for this function, just change the
// branch into a return.
if (FalseRet->getNumOperands() == 0) {
TrueSucc->removePredecessor(BI->getParent());
FalseSucc->removePredecessor(BI->getParent());
Builder.CreateRetVoid();
EraseTerminatorInstAndDCECond(BI);
return true;
}
// Otherwise, figure out what the true and false return values are
// so we can insert a new select instruction.
Value *TrueValue = TrueRet->getReturnValue();
Value *FalseValue = FalseRet->getReturnValue();
// Unwrap any PHI nodes in the return blocks.
if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
if (TVPN->getParent() == TrueSucc)
TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
if (FVPN->getParent() == FalseSucc)
FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
// In order for this transformation to be safe, we must be able to
// unconditionally execute both operands to the return. This is
// normally the case, but we could have a potentially-trapping
// constant expression that prevents this transformation from being
// safe.
if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
if (TCV->canTrap())
return false;
if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
if (FCV->canTrap())
return false;
// Okay, we collected all the mapped values and checked them for sanity, and
// defined to really do this transformation. First, update the CFG.
TrueSucc->removePredecessor(BI->getParent());
FalseSucc->removePredecessor(BI->getParent());
// Insert select instructions where needed.
Value *BrCond = BI->getCondition();
if (TrueValue) {
// Insert a select if the results differ.
if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
} else if (isa<UndefValue>(TrueValue)) {
TrueValue = FalseValue;
} else {
TrueValue = Builder.CreateSelect(BrCond, TrueValue,
FalseValue, "retval");
}
}
Value *RI = !TrueValue ?
Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
(void) RI;
DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
<< "\n " << *BI << "NewRet = " << *RI
<< "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
EraseTerminatorInstAndDCECond(BI);
return true;
}
/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
/// probabilities of the branch taking each edge. Fills in the two APInt
/// parameters and return true, or returns false if no or invalid metadata was
/// found.
static bool ExtractBranchMetadata(BranchInst *BI,
uint64_t &ProbTrue, uint64_t &ProbFalse) {
assert(BI->isConditional() &&
"Looking for probabilities on unconditional branch?");
MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
if (!CITrue || !CIFalse) return false;
ProbTrue = CITrue->getValue().getZExtValue();
ProbFalse = CIFalse->getValue().getZExtValue();
return true;
}
/// checkCSEInPredecessor - Return true if the given instruction is available
/// in its predecessor block. If yes, the instruction will be removed.
///
static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
return false;
for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
Instruction *PBI = &*I;
// Check whether Inst and PBI generate the same value.
if (Inst->isIdenticalTo(PBI)) {
Inst->replaceAllUsesWith(PBI);
Inst->eraseFromParent();
return true;
}
}
return false;
}
/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
/// predecessor branches to us and one of our successors, fold the block into
/// the predecessor and use logical operations to pick the right destination.
bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
BasicBlock *BB = BI->getParent();
Instruction *Cond = nullptr;
if (BI->isConditional())
Cond = dyn_cast<Instruction>(BI->getCondition());
else {
// For unconditional branch, check for a simple CFG pattern, where
// BB has a single predecessor and BB's successor is also its predecessor's
// successor. If such pattern exisits, check for CSE between BB and its
// predecessor.
if (BasicBlock *PB = BB->getSinglePredecessor())
if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
if (PBI->isConditional() &&
(BI->getSuccessor(0) == PBI->getSuccessor(0) ||
BI->getSuccessor(0) == PBI->getSuccessor(1))) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ) {
Instruction *Curr = I++;
if (isa<CmpInst>(Curr)) {
Cond = Curr;
break;
}
// Quit if we can't remove this instruction.
if (!checkCSEInPredecessor(Curr, PB))
return false;
}
}
if (!Cond)
return false;
}
if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
Cond->getParent() != BB || !Cond->hasOneUse())
return false;
// Only allow this if the condition is a simple instruction that can be
// executed unconditionally. It must be in the same block as the branch, and
// must be at the front of the block.
BasicBlock::iterator FrontIt = BB->front();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
// Allow a single instruction to be hoisted in addition to the compare
// that feeds the branch. We later ensure that any values that _it_ uses
// were also live in the predecessor, so that we don't unnecessarily create
// register pressure or inhibit out-of-order execution.
Instruction *BonusInst = nullptr;
if (&*FrontIt != Cond &&
FrontIt->hasOneUse() && FrontIt->user_back() == Cond &&
isSafeToSpeculativelyExecute(FrontIt, DL)) {
BonusInst = &*FrontIt;
++FrontIt;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
}
// Only a single bonus inst is allowed.
if (&*FrontIt != Cond)
return false;
// Make sure the instruction after the condition is the cond branch.
BasicBlock::iterator CondIt = Cond; ++CondIt;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
if (&*CondIt != BI)
return false;
// Cond is known to be a compare or binary operator. Check to make sure that
// neither operand is a potentially-trapping constant expression.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
if (CE->canTrap())
return false;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
if (CE->canTrap())
return false;
// Finally, don't infinitely unroll conditional loops.
BasicBlock *TrueDest = BI->getSuccessor(0);
BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
if (TrueDest == BB || FalseDest == BB)
return false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBlock = *PI;
BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
// Check that we have two conditional branches. If there is a PHI node in
// the common successor, verify that the same value flows in from both
// blocks.
SmallVector<PHINode*, 4> PHIs;
if (!PBI || PBI->isUnconditional() ||
(BI->isConditional() &&
!SafeToMergeTerminators(BI, PBI)) ||
(!BI->isConditional() &&
!isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
continue;
// Determine if the two branches share a common destination.
Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
bool InvertPredCond = false;
if (BI->isConditional()) {
if (PBI->getSuccessor(0) == TrueDest)
Opc = Instruction::Or;
else if (PBI->getSuccessor(1) == FalseDest)
Opc = Instruction::And;
else if (PBI->getSuccessor(0) == FalseDest)
Opc = Instruction::And, InvertPredCond = true;
else if (PBI->getSuccessor(1) == TrueDest)
Opc = Instruction::Or, InvertPredCond = true;
else
continue;
} else {
if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
continue;
}
// Ensure that any values used in the bonus instruction are also used
// by the terminator of the predecessor. This means that those values
// must already have been resolved, so we won't be inhibiting the
// out-of-order core by speculating them earlier. We also allow
// instructions that are used by the terminator's condition because it
// exposes more merging opportunities.
bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
BonusInst->user_back() == Cond);
if (BonusInst && !UsedByBranch) {
// Collect the values used by the bonus inst
SmallPtrSet<Value*, 4> UsedValues;
for (Instruction::op_iterator OI = BonusInst->op_begin(),
OE = BonusInst->op_end(); OI != OE; ++OI) {
Value *V = *OI;
if (!isa<Constant>(V) && !isa<Argument>(V))
UsedValues.insert(V);
}
SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
// Walk up to four levels back up the use-def chain of the predecessor's
// terminator to see if all those values were used. The choice of four
// levels is arbitrary, to provide a compile-time-cost bound.
while (!Worklist.empty()) {
std::pair<Value*, unsigned> Pair = Worklist.back();
Worklist.pop_back();
if (Pair.second >= 4) continue;
UsedValues.erase(Pair.first);
if (UsedValues.empty()) break;
if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
OI != OE; ++OI)
Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
}
}
if (!UsedValues.empty()) return false;
}
DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
IRBuilder<> Builder(PBI);
// If we need to invert the condition in the pred block to match, do so now.
if (InvertPredCond) {
Value *NewCond = PBI->getCondition();
if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
CmpInst *CI = cast<CmpInst>(NewCond);
CI->setPredicate(CI->getInversePredicate());
} else {
NewCond = Builder.CreateNot(NewCond,
PBI->getCondition()->getName()+".not");
}
PBI->setCondition(NewCond);
PBI->swapSuccessors();
}
// If we have a bonus inst, clone it into the predecessor block.
Instruction *NewBonus = nullptr;
if (BonusInst) {
NewBonus = BonusInst->clone();
// If we moved a load, we cannot any longer claim any knowledge about
// its potential value. The previous information might have been valid
// only given the branch precondition.
// For an analogous reason, we must also drop all the metadata whose
// semantics we don't understand.
NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg);
PredBlock->getInstList().insert(PBI, NewBonus);
NewBonus->takeName(BonusInst);
BonusInst->setName(BonusInst->getName()+".old");
}
// Clone Cond into the predecessor basic block, and or/and the
// two conditions together.
Instruction *New = Cond->clone();
if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
PredBlock->getInstList().insert(PBI, New);
New->takeName(Cond);
Cond->setName(New->getName()+".old");
if (BI->isConditional()) {
Instruction *NewCond =
cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
New, "or.cond"));
PBI->setCondition(NewCond);
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
PredFalseWeight);
bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
SuccFalseWeight);
SmallVector<uint64_t, 8> NewWeights;
if (PBI->getSuccessor(0) == BB) {
if (PredHasWeights && SuccHasWeights) {
// PBI: br i1 %x, BB, FalseDest
// BI: br i1 %y, TrueDest, FalseDest
//TrueWeight is TrueWeight for PBI * TrueWeight for BI.
NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
//FalseWeight is FalseWeight for PBI * TotalWeight for BI +
// TrueWeight for PBI * FalseWeight for BI.
// We assume that total weights of a BranchInst can fit into 32 bits.
// Therefore, we will not have overflow using 64-bit arithmetic.
NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
}
AddPredecessorToBlock(TrueDest, PredBlock, BB);
PBI->setSuccessor(0, TrueDest);
}
if (PBI->getSuccessor(1) == BB) {
if (PredHasWeights && SuccHasWeights) {
// PBI: br i1 %x, TrueDest, BB
// BI: br i1 %y, TrueDest, FalseDest
//TrueWeight is TrueWeight for PBI * TotalWeight for BI +
// FalseWeight for PBI * TrueWeight for BI.
NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
//FalseWeight is FalseWeight for PBI * FalseWeight for BI.
NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
}
AddPredecessorToBlock(FalseDest, PredBlock, BB);
PBI->setSuccessor(1, FalseDest);
}
if (NewWeights.size() == 2) {
// Halve the weights if any of them cannot fit in an uint32_t
FitWeights(NewWeights);
SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
PBI->setMetadata(LLVMContext::MD_prof,
MDBuilder(BI->getContext()).
createBranchWeights(MDWeights));
} else
PBI->setMetadata(LLVMContext::MD_prof, nullptr);
} else {
// Update PHI nodes in the common successors.
for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
ConstantInt *PBI_C = cast<ConstantInt>(
PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
assert(PBI_C->getType()->isIntegerTy(1));
Instruction *MergedCond = nullptr;
if (PBI->getSuccessor(0) == TrueDest) {
// Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
// PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
// is false: !PBI_Cond and BI_Value
Instruction *NotCond =
cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
"not.cond"));
MergedCond =
cast<Instruction>(Builder.CreateBinOp(Instruction::And,
NotCond, New,
"and.cond"));
if (PBI_C->isOne())
MergedCond =
cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
PBI->getCondition(), MergedCond,
"or.cond"));
} else {
// Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
// PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
// is false: PBI_Cond and BI_Value
MergedCond =
cast<Instruction>(Builder.CreateBinOp(Instruction::And,
PBI->getCondition(), New,
"and.cond"));
if (PBI_C->isOne()) {
Instruction *NotCond =
cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
"not.cond"));
MergedCond =
cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
NotCond, MergedCond,
"or.cond"));
}
}
// Update PHI Node.
PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
MergedCond);
}
// Change PBI from Conditional to Unconditional.
BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
EraseTerminatorInstAndDCECond(PBI);
PBI = New_PBI;
}
// TODO: If BB is reachable from all paths through PredBlock, then we
// could replace PBI's branch probabilities with BI's.
// Copy any debug value intrinsics into the end of PredBlock.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (isa<DbgInfoIntrinsic>(*I))
I->clone()->insertBefore(PBI);
return true;
}
return false;
}
/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
/// predecessor of another block, this function tries to simplify it. We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
assert(PBI->isConditional() && BI->isConditional());
BasicBlock *BB = BI->getParent();
// If this block ends with a branch instruction, and if there is a
// predecessor that ends on a branch of the same condition, make
// this conditional branch redundant.
if (PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
// Okay, the outcome of this conditional branch is statically
// knowable. If this block had a single pred, handle specially.
if (BB->getSinglePredecessor()) {
// Turn this into a branch on constant.
bool CondIsTrue = PBI->getSuccessor(0) == BB;
BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
CondIsTrue));
return true; // Nuke the branch on constant.
}
// Otherwise, if there are multiple predecessors, insert a PHI that merges
// in the constant and simplify the block result. Subsequent passes of
// simplifycfg will thread the block.
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
std::distance(PB, PE),
BI->getCondition()->getName() + ".pr",
BB->begin());
// Okay, we're going to insert the PHI node. Since PBI is not the only
// predecessor, compute the PHI'd conditional value for all of the preds.
// Any predecessor where the condition is not computable we keep symbolic.
for (pred_iterator PI = PB; PI != PE; ++PI) {
BasicBlock *P = *PI;
if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
PBI != BI && PBI->isConditional() &&
PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
bool CondIsTrue = PBI->getSuccessor(0) == BB;
NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
CondIsTrue), P);
} else {
NewPN->addIncoming(BI->getCondition(), P);
}
}
BI->setCondition(NewPN);
return true;
}
}
// If this is a conditional branch in an empty block, and if any
// predecessors are a conditional branch to one of our destinations,
// fold the conditions into logical ops and one cond br.
BasicBlock::iterator BBI = BB->begin();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(BBI))
++BBI;
if (&*BBI != BI)
return false;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
if (CE->canTrap())
return false;
int PBIOp, BIOp;
if (PBI->getSuccessor(0) == BI->getSuccessor(0))
PBIOp = BIOp = 0;
else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
PBIOp = 0, BIOp = 1;
else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
PBIOp = 1, BIOp = 0;
else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
PBIOp = BIOp = 1;
else
return false;
// Check to make sure that the other destination of this branch
// isn't BB itself. If so, this is an infinite loop that will
// keep getting unwound.
if (PBI->getSuccessor(PBIOp) == BB)
return false;
// Do not perform this transformation if it would require
// insertion of a large number of select instructions. For targets
// without predication/cmovs, this is a big pessimization.
// Also do not perform this transformation if any phi node in the common
// destination block can trap when reached by BB or PBB (PR17073). In that
// case, it would be unsafe to hoist the operation into a select instruction.
BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
unsigned NumPhis = 0;
for (BasicBlock::iterator II = CommonDest->begin();
isa<PHINode>(II); ++II, ++NumPhis) {
if (NumPhis > 2) // Disable this xform.
return false;
PHINode *PN = cast<PHINode>(II);
Value *BIV = PN->getIncomingValueForBlock(BB);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
if (CE->canTrap())
return false;
unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
Value *PBIV = PN->getIncomingValue(PBBIdx);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
if (CE->canTrap())
return false;
}
// Finally, if everything is ok, fold the branches to logical ops.
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
<< "AND: " << *BI->getParent());
// If OtherDest *is* BB, then BB is a basic block with a single conditional
// branch in it, where one edge (OtherDest) goes back to itself but the other
// exits. We don't *know* that the program avoids the infinite loop
// (even though that seems likely). If we do this xform naively, we'll end up
// recursively unpeeling the loop. Since we know that (after the xform is
// done) that the block *is* infinite if reached, we just make it an obviously
// infinite loop with no cond branch.
if (OtherDest == BB) {
// Insert it at the end of the function, because it's either code,
// or it won't matter if it's hot. :)
BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
"infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
OtherDest = InfLoopBlock;
}
DEBUG(dbgs() << *PBI->getParent()->getParent());
// BI may have other predecessors. Because of this, we leave
// it alone, but modify PBI.
// Make sure we get to CommonDest on True&True directions.
Value *PBICond = PBI->getCondition();
IRBuilder<true, NoFolder> Builder(PBI);
if (PBIOp)
PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
Value *BICond = BI->getCondition();
if (BIOp)
BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
// Merge the conditions.
Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
// Modify PBI to branch on the new condition to the new dests.
PBI->setCondition(Cond);
PBI->setSuccessor(0, CommonDest);
PBI->setSuccessor(1, OtherDest);
// Update branch weight for PBI.
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
PredFalseWeight);
bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
SuccFalseWeight);
if (PredHasWeights && SuccHasWeights) {
uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
// The weight to CommonDest should be PredCommon * SuccTotal +
// PredOther * SuccCommon.
// The weight to OtherDest should be PredOther * SuccOther.
SmallVector<uint64_t, 2> NewWeights;
NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
PredOther * SuccCommon);
NewWeights.push_back(PredOther * SuccOther);
// Halve the weights if any of them cannot fit in an uint32_t
FitWeights(NewWeights);
SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
PBI->setMetadata(LLVMContext::MD_prof,
MDBuilder(BI->getContext()).
createBranchWeights(MDWeights));
}
// OtherDest may have phi nodes. If so, add an entry from PBI's
// block that are identical to the entries for BI's block.
AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
// We know that the CommonDest already had an edge from PBI to
// it. If it has PHIs though, the PHIs may have different
// entries for BB and PBI's BB. If so, insert a select to make
// them agree.
PHINode *PN;
for (BasicBlock::iterator II = CommonDest->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
Value *BIV = PN->getIncomingValueForBlock(BB);
unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
Value *PBIV = PN->getIncomingValue(PBBIdx);
if (BIV != PBIV) {
// Insert a select in PBI to pick the right value.
Value *NV = cast<SelectInst>
(Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
PN->setIncomingValue(PBBIdx, NV);
}
}
DEBUG(dbgs() << "INTO: " << *PBI->getParent());
DEBUG(dbgs() << *PBI->getParent()->getParent());
// This basic block is probably dead. We know it has at least
// one fewer predecessor.
return true;
}
// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
// Takes care of updating the successors and removing the old terminator.
// Also makes sure not to introduce new successors by assuming that edges to
// non-successor TrueBBs and FalseBBs aren't reachable.
static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
BasicBlock *TrueBB, BasicBlock *FalseBB,
uint32_t TrueWeight,
uint32_t FalseWeight){
// Remove any superfluous successor edges from the CFG.
// First, figure out which successors to preserve.
// If TrueBB and FalseBB are equal, only try to preserve one copy of that
// successor.
BasicBlock *KeepEdge1 = TrueBB;
BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
// Then remove the rest.
for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
BasicBlock *Succ = OldTerm->getSuccessor(I);
// Make sure only to keep exactly one copy of each edge.
if (Succ == KeepEdge1)
KeepEdge1 = nullptr;
else if (Succ == KeepEdge2)
KeepEdge2 = nullptr;
else
Succ->removePredecessor(OldTerm->getParent());
}
IRBuilder<> Builder(OldTerm);
Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
// Insert an appropriate new terminator.
if (!KeepEdge1 && !KeepEdge2) {
if (TrueBB == FalseBB)
// We were only looking for one successor, and it was present.
// Create an unconditional branch to it.
Builder.CreateBr(TrueBB);
else {
// We found both of the successors we were looking for.
// Create a conditional branch sharing the condition of the select.
BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
if (TrueWeight != FalseWeight)
NewBI->setMetadata(LLVMContext::MD_prof,
MDBuilder(OldTerm->getContext()).
createBranchWeights(TrueWeight, FalseWeight));
}
} else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
// Neither of the selected blocks were successors, so this
// terminator must be unreachable.
new UnreachableInst(OldTerm->getContext(), OldTerm);
} else {
// One of the selected values was a successor, but the other wasn't.
// Insert an unconditional branch to the one that was found;
// the edge to the one that wasn't must be unreachable.
if (!KeepEdge1)
// Only TrueBB was found.
Builder.CreateBr(TrueBB);
else
// Only FalseBB was found.
Builder.CreateBr(FalseBB);
}
EraseTerminatorInstAndDCECond(OldTerm);
return true;
}
// SimplifySwitchOnSelect - Replaces
// (switch (select cond, X, Y)) on constant X, Y
// with a branch - conditional if X and Y lead to distinct BBs,
// unconditional otherwise.
static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
// Check for constant integer values in the select.
ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
if (!TrueVal || !FalseVal)
return false;
// Find the relevant condition and destinations.
Value *Condition = Select->getCondition();
BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
// Get weight for TrueBB and FalseBB.
uint32_t TrueWeight = 0, FalseWeight = 0;
SmallVector<uint64_t, 8> Weights;
bool HasWeights = HasBranchWeights(SI);
if (HasWeights) {
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
getSuccessorIndex()];
FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
getSuccessorIndex()];
}
}
// Perform the actual simplification.
return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
TrueWeight, FalseWeight);
}
// SimplifyIndirectBrOnSelect - Replaces
// (indirectbr (select cond, blockaddress(@fn, BlockA),
// blockaddress(@fn, BlockB)))
// with
// (br cond, BlockA, BlockB).
static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
// Check that both operands of the select are block addresses.
BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
if (!TBA || !FBA)
return false;
// Extract the actual blocks.
BasicBlock *TrueBB = TBA->getBasicBlock();
BasicBlock *FalseBB = FBA->getBasicBlock();
// Perform the actual simplification.
return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
0, 0);
}
/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
/// instruction (a seteq/setne with a constant) as the only instruction in a
/// block that ends with an uncond branch. We are looking for a very specific
/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
/// this case, we merge the first two "or's of icmp" into a switch, but then the
/// default value goes to an uncond block with a seteq in it, we get something
/// like:
///
/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
/// DEFAULT:
/// %tmp = icmp eq i8 %A, 92
/// br label %end
/// end:
/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
static bool TryToSimplifyUncondBranchWithICmpInIt(
ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
const DataLayout *DL) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
// complex.
if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
Value *V = ICI->getOperand(0);
ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
// The pattern we're looking for is where our only predecessor is a switch on
// 'V' and this block is the default case for the switch. In this case we can
// fold the compared value into the switch to simplify things.
BasicBlock *Pred = BB->getSinglePredecessor();
if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
if (SI->getCondition() != V)
return false;
// If BB is reachable on a non-default case, then we simply know the value of
// V in this block. Substitute it and constant fold the icmp instruction
// away.
if (SI->getDefaultDest() != BB) {
ConstantInt *VVal = SI->findCaseDest(BB);
assert(VVal && "Should have a unique destination value");
ICI->setOperand(0, VVal);
if (Value *V = SimplifyInstruction(ICI, DL)) {
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
return SimplifyCFG(BB, TTI, DL) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
// comparing exists in one of the other edges, then we can constant fold ICI
// and zap it.
if (SI->findCaseValue(Cst) != SI->case_default()) {
Value *V;
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
V = ConstantInt::getFalse(BB->getContext());
else
V = ConstantInt::getTrue(BB->getContext());
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
return SimplifyCFG(BB, TTI, DL) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
// the block.
BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
isa<PHINode>(++BasicBlock::iterator(PHIUse)))
return false;
// If the icmp is a SETEQ, then the default dest gets false, the new edge gets
// true in the PHI.
Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
Constant *NewCst = ConstantInt::getFalse(BB->getContext());
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
std::swap(DefaultCst, NewCst);
// Replace ICI (which is used by the PHI for the default value) with true or
// false depending on if it is EQ or NE.
ICI->replaceAllUsesWith(DefaultCst);
ICI->eraseFromParent();
// Okay, the switch goes to this block on a default value. Add an edge from
// the switch to the merge point on the compared value.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
BB->getParent(), BB);
SmallVector<uint64_t, 8> Weights;
bool HasWeights = HasBranchWeights(SI);
if (HasWeights) {
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
// Split weight for default case to case for "Cst".
Weights[0] = (Weights[0]+1) >> 1;
Weights.push_back(Weights[0]);
SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
SI->setMetadata(LLVMContext::MD_prof,
MDBuilder(SI->getContext()).
createBranchWeights(MDWeights));
}
}
SI->addCase(Cst, NewBB);
// NewBB branches to the phi block, add the uncond branch and the phi entry.
Builder.SetInsertPoint(NewBB);
Builder.SetCurrentDebugLocation(SI->getDebugLoc());
Builder.CreateBr(SuccBlock);
PHIUse->addIncoming(NewCst, NewBB);
return true;
}
/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
IRBuilder<> &Builder) {
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond) return false;
// Change br (X == 0 | X == 1), T, F into a switch instruction.
// If this is a bunch of seteq's or'd together, or if it's a bunch of
// 'setne's and'ed together, collect them.
Value *CompVal = nullptr;
std::vector<ConstantInt*> Values;
bool TrueWhenEqual = true;
Value *ExtraCase = nullptr;
unsigned UsedICmps = 0;
if (Cond->getOpcode() == Instruction::Or) {
CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
UsedICmps);
} else if (Cond->getOpcode() == Instruction::And) {
CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
UsedICmps);
TrueWhenEqual = false;
}
// If we didn't have a multiply compared value, fail.
if (!CompVal) return false;
// Avoid turning single icmps into a switch.
if (UsedICmps <= 1)
return false;
// There might be duplicate constants in the list, which the switch
// instruction can't handle, remove them now.
array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
// If Extra was used, we require at least two switch values to do the
// transformation. A switch with one value is just an cond branch.
if (ExtraCase && Values.size() < 2) return false;
// TODO: Preserve branch weight metadata, similarly to how
// FoldValueComparisonIntoPredecessors preserves it.
// Figure out which block is which destination.
BasicBlock *DefaultBB = BI->getSuccessor(1);
BasicBlock *EdgeBB = BI->getSuccessor(0);
if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
BasicBlock *BB = BI->getParent();
DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
<< " cases into SWITCH. BB is:\n" << *BB);
// If there are any extra values that couldn't be folded into the switch
// then we evaluate them with an explicit branch first. Split the block
// right before the condbr to handle it.
if (ExtraCase) {
BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
// Remove the uncond branch added to the old block.
TerminatorInst *OldTI = BB->getTerminator();
Builder.SetInsertPoint(OldTI);
if (TrueWhenEqual)
Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
else
Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
OldTI->eraseFromParent();
// If there are PHI nodes in EdgeBB, then we need to add a new entry to them
// for the edge we just added.
AddPredecessorToBlock(EdgeBB, BB, NewBB);
DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
<< "\nEXTRABB = " << *BB);
BB = NewBB;
}
Builder.SetInsertPoint(BI);
// Convert pointer to int before we switch.
if (CompVal->getType()->isPointerTy()) {
assert(DL && "Cannot switch on pointer without DataLayout");
CompVal = Builder.CreatePtrToInt(CompVal,
DL->getIntPtrType(CompVal->getType()),
"magicptr");
}
// Create the new switch instruction now.
SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
// Add all of the 'cases' to the switch instruction.
for (unsigned i = 0, e = Values.size(); i != e; ++i)
New->addCase(Values[i], EdgeBB);
// We added edges from PI to the EdgeBB. As such, if there were any
// PHI nodes in EdgeBB, they need entries to be added corresponding to
// the number of edges added.
for (BasicBlock::iterator BBI = EdgeBB->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
Value *InVal = PN->getIncomingValueForBlock(BB);
for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
PN->addIncoming(InVal, BB);
}
// Erase the old branch instruction.
EraseTerminatorInstAndDCECond(BI);
DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
return true;
}
bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
// If this is a trivial landing pad that just continues unwinding the caught
// exception then zap the landing pad, turning its invokes into calls.
BasicBlock *BB = RI->getParent();
LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
if (RI->getValue() != LPInst)
// Not a landing pad, or the resume is not unwinding the exception that
// caused control to branch here.
return false;
// Check that there are no other instructions except for debug intrinsics.
BasicBlock::iterator I = LPInst, E = RI;
while (++I != E)
if (!isa<DbgInfoIntrinsic>(I))
return false;
// Turn all invokes that unwind here into calls and delete the basic block.
bool InvokeRequiresTableEntry = false;
bool Changed = false;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
if (II->hasFnAttr(Attribute::UWTable)) {
// Don't remove an `invoke' instruction if the ABI requires an entry into
// the table.
InvokeRequiresTableEntry = true;
continue;
}
SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
// Insert a call instruction before the invoke.
CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
Call->takeName(II);
Call->setCallingConv(II->getCallingConv());
Call->setAttributes(II->getAttributes());
Call->setDebugLoc(II->getDebugLoc());
// Anything that used the value produced by the invoke instruction now uses
// the value produced by the call instruction. Note that we do this even
// for void functions and calls with no uses so that the callgraph edge is
// updated.
II->replaceAllUsesWith(Call);
BB->removePredecessor(II->getParent());
// Insert a branch to the normal destination right before the invoke.
BranchInst::Create(II->getNormalDest(), II);
// Finally, delete the invoke instruction!
II->eraseFromParent();
Changed = true;
}
if (!InvokeRequiresTableEntry)
// The landingpad is now unreachable. Zap it.
BB->eraseFromParent();
return Changed;
}
bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
BasicBlock *BB = RI->getParent();
if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
// Find predecessors that end with branches.
SmallVector<BasicBlock*, 8> UncondBranchPreds;
SmallVector<BranchInst*, 8> CondBranchPreds;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
TerminatorInst *PTI = P->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
if (BI->isUnconditional())
UncondBranchPreds.push_back(P);
else
CondBranchPreds.push_back(BI);
}
}
// If we found some, do the transformation!
if (!UncondBranchPreds.empty() && DupRet) {
while (!UncondBranchPreds.empty()) {
BasicBlock *Pred = UncondBranchPreds.pop_back_val();
DEBUG(dbgs() << "FOLDING: " << *BB
<< "INTO UNCOND BRANCH PRED: " << *Pred);
(void)FoldReturnIntoUncondBranch(RI, BB, Pred);
}
// If we eliminated all predecessors of the block, delete the block now.
if (pred_begin(BB) == pred_end(BB))
// We know there are no successors, so just nuke the block.
BB->eraseFromParent();
return true;
}
// Check out all of the conditional branches going to this return
// instruction. If any of them just select between returns, change the
// branch itself into a select/return pair.
while (!CondBranchPreds.empty()) {
BranchInst *BI = CondBranchPreds.pop_back_val();
// Check to see if the non-BB successor is also a return block.
if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
SimplifyCondBranchToTwoReturns(BI, Builder))
return true;
}
return false;
}
bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
BasicBlock *BB = UI->getParent();
bool Changed = false;
// If there are any instructions immediately before the unreachable that can
// be removed, do so.
while (UI != BB->begin()) {
BasicBlock::iterator BBI = UI;
--BBI;
// Do not delete instructions that can have side effects which might cause
// the unreachable to not be reachable; specifically, calls and volatile
// operations may have this effect.
if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
if (BBI->mayHaveSideEffects()) {
if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
if (SI->isVolatile())
break;
} else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI->isVolatile())
break;
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
if (RMWI->isVolatile())
break;
} else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
if (CXI->isVolatile())
break;
} else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
!isa<LandingPadInst>(BBI)) {
break;
}
// Note that deleting LandingPad's here is in fact okay, although it
// involves a bit of subtle reasoning. If this inst is a LandingPad,
// all the predecessors of this block will be the unwind edges of Invokes,
// and we can therefore guarantee this block will be erased.
}
// Delete this instruction (any uses are guaranteed to be dead)
if (!BBI->use_empty())
BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
BBI->eraseFromParent();
Changed = true;
}
// If the unreachable instruction is the first in the block, take a gander
// at all of the predecessors of this instruction, and simplify them.
if (&BB->front() != UI) return Changed;
SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
TerminatorInst *TI = Preds[i]->getTerminator();
IRBuilder<> Builder(TI);
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isUnconditional()) {
if (BI->getSuccessor(0) == BB) {
new UnreachableInst(TI->getContext(), TI);
TI->eraseFromParent();
Changed = true;
}
} else {
if (BI->getSuccessor(0) == BB) {
Builder.CreateBr(BI->getSuccessor(1));
EraseTerminatorInstAndDCECond(BI);
} else if (BI->getSuccessor(1) == BB) {
Builder.CreateBr(BI->getSuccessor(0));
EraseTerminatorInstAndDCECond(BI);
Changed = true;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i)
if (i.getCaseSuccessor() == BB) {
BB->removePredecessor(SI->getParent());
SI->removeCase(i);
--i; --e;
Changed = true;
}
// If the default value is unreachable, figure out the most popular
// destination and make it the default.
if (SI->getDefaultDest() == BB) {
std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i) {
std::pair<unsigned, unsigned> &entry =
Popularity[i.getCaseSuccessor()];
if (entry.first == 0) {
entry.first = 1;
entry.second = i.getCaseIndex();
} else {
entry.first++;
}
}
// Find the most popular block.
unsigned MaxPop = 0;
unsigned MaxIndex = 0;
BasicBlock *MaxBlock = nullptr;
for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
if (I->second.first > MaxPop ||
(I->second.first == MaxPop && MaxIndex > I->second.second)) {
MaxPop = I->second.first;
MaxIndex = I->second.second;
MaxBlock = I->first;
}
}
if (MaxBlock) {
// Make this the new default, allowing us to delete any explicit
// edges to it.
SI->setDefaultDest(MaxBlock);
Changed = true;
// If MaxBlock has phinodes in it, remove MaxPop-1 entries from
// it.
if (isa<PHINode>(MaxBlock->begin()))
for (unsigned i = 0; i != MaxPop-1; ++i)
MaxBlock->removePredecessor(SI->getParent());
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i)
if (i.getCaseSuccessor() == MaxBlock) {
SI->removeCase(i);
--i; --e;
}
}
}
} else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
if (II->getUnwindDest() == BB) {
// Convert the invoke to a call instruction. This would be a good
// place to note that the call does not throw though.
BranchInst *BI = Builder.CreateBr(II->getNormalDest());
II->removeFromParent(); // Take out of symbol table
// Insert the call now...
SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
Builder.SetInsertPoint(BI);
CallInst *CI = Builder.CreateCall(II->getCalledValue(),
Args, II->getName());
CI->setCallingConv(II->getCallingConv());
CI->setAttributes(II->getAttributes());
// If the invoke produced a value, the call does now instead.
II->replaceAllUsesWith(CI);
delete II;
Changed = true;
}
}
}
// If this block is now dead, remove it.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
// We know there are no successors, so just nuke the block.
BB->eraseFromParent();
return true;
}
return Changed;
}
/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
/// integer range comparison into a sub, an icmp and a branch.
static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Make sure all cases point to the same destination and gather the values.
SmallVector<ConstantInt *, 16> Cases;
SwitchInst::CaseIt I = SI->case_begin();
Cases.push_back(I.getCaseValue());
SwitchInst::CaseIt PrevI = I++;
for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
return false;
Cases.push_back(I.getCaseValue());
}
assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
// Sort the case values, then check if they form a range we can transform.
array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
return false;
}
Constant *Offset = ConstantExpr::getNeg(Cases.back());
Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
Value *Sub = SI->getCondition();
if (!Offset->isNullValue())
Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
Value *Cmp;
// If NumCases overflowed, then all possible values jump to the successor.
if (NumCases->isNullValue() && SI->getNumCases() != 0)
Cmp = ConstantInt::getTrue(SI->getContext());
else
Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
BranchInst *NewBI = Builder.CreateCondBr(
Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
// Update weight for the newly-created conditional branch.
SmallVector<uint64_t, 8> Weights;
bool HasWeights = HasBranchWeights(SI);
if (HasWeights) {
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
// Combine all weights for the cases to be the true weight of NewBI.
// We assume that the sum of all weights for a Terminator can fit into 32
// bits.
uint32_t NewTrueWeight = 0;
for (unsigned I = 1, E = Weights.size(); I != E; ++I)
NewTrueWeight += (uint32_t)Weights[I];
NewBI->setMetadata(LLVMContext::MD_prof,
MDBuilder(SI->getContext()).
createBranchWeights(NewTrueWeight,
(uint32_t)Weights[0]));
}
}
// Prune obsolete incoming values off the successor's PHI nodes.
for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
isa<PHINode>(BBI); ++BBI) {
for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
}
SI->eraseFromParent();
return true;
}
/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
static bool EliminateDeadSwitchCases(SwitchInst *SI) {
Value *Cond = SI->getCondition();
unsigned Bits = Cond->getType()->getIntegerBitWidth();
APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
computeKnownBits(Cond, KnownZero, KnownOne);
// Gather dead cases.
SmallVector<ConstantInt*, 8> DeadCases;
for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
(I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
DeadCases.push_back(I.getCaseValue());
DEBUG(dbgs() << "SimplifyCFG: switch case '"
<< I.getCaseValue() << "' is dead.\n");
}
}
SmallVector<uint64_t, 8> Weights;
bool HasWeight = HasBranchWeights(SI);
if (HasWeight) {
GetBranchWeights(SI, Weights);
HasWeight = (Weights.size() == 1 + SI->getNumCases());
}
// Remove dead cases from the switch.
for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
assert(Case != SI->case_default() &&
"Case was not found. Probably mistake in DeadCases forming.");
if (HasWeight) {
std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
Weights.pop_back();
}
// Prune unused values from PHI nodes.
Case.getCaseSuccessor()->removePredecessor(SI->getParent());
SI->removeCase(Case);
}
if (HasWeight && Weights.size() >= 2) {
SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
SI->setMetadata(LLVMContext::MD_prof,
MDBuilder(SI->getParent()->getContext()).
createBranchWeights(MDWeights));
}
return !DeadCases.empty();
}
/// FindPHIForConditionForwarding - If BB would be eligible for simplification
/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
/// by an unconditional branch), look at the phi node for BB in the successor
/// block and see if the incoming value is equal to CaseValue. If so, return
/// the phi node, and set PhiIndex to BB's index in the phi node.
static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
BasicBlock *BB,
int *PhiIndex) {
if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
return nullptr; // BB must be empty to be a candidate for simplification.
if (!BB->getSinglePredecessor())
return nullptr; // BB must be dominated by the switch.
BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
if (!Branch || !Branch->isUnconditional())
return nullptr; // Terminator must be unconditional branch.
BasicBlock *Succ = Branch->getSuccessor(0);
BasicBlock::iterator I = Succ->begin();
while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
int Idx = PHI->getBasicBlockIndex(BB);
assert(Idx >= 0 && "PHI has no entry for predecessor?");
Value *InValue = PHI->getIncomingValue(Idx);
if (InValue != CaseValue) continue;
*PhiIndex = Idx;
return PHI;
}
return nullptr;
}
/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
/// instruction to a phi node dominated by the switch, if that would mean that
/// some of the destination blocks of the switch can be folded away.
/// Returns true if a change is made.
static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
ForwardingNodesMap ForwardingNodes;
for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
ConstantInt *CaseValue = I.getCaseValue();
BasicBlock *CaseDest = I.getCaseSuccessor();
int PhiIndex;
PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
&PhiIndex);
if (!PHI) continue;
ForwardingNodes[PHI].push_back(PhiIndex);
}
bool Changed = false;
for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
E = ForwardingNodes.end(); I != E; ++I) {
PHINode *Phi = I->first;
SmallVectorImpl<int> &Indexes = I->second;
if (Indexes.size() < 2) continue;
for (size_t I = 0, E = Indexes.size(); I != E; ++I)
Phi->setIncomingValue(Indexes[I], SI->getCondition());
Changed = true;
}
return Changed;
}
/// ValidLookupTableConstant - Return true if the backend will be able to handle
/// initializing an array of constants like C.
static bool ValidLookupTableConstant(Constant *C) {
if (C->isThreadDependent())
return false;
if (C->isDLLImportDependent())
return false;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
return CE->isGEPWithNoNotionalOverIndexing();
return isa<ConstantFP>(C) ||
isa<ConstantInt>(C) ||
isa<ConstantPointerNull>(C) ||
isa<GlobalValue>(C) ||
isa<UndefValue>(C);
}
/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
/// its constant value in ConstantPool, returning 0 if it's not there.
static Constant *LookupConstant(Value *V,
const SmallDenseMap<Value*, Constant*>& ConstantPool) {
if (Constant *C = dyn_cast<Constant>(V))
return C;
return ConstantPool.lookup(V);
}
/// ConstantFold - Try to fold instruction I into a constant. This works for
/// simple instructions such as binary operations where both operands are
/// constant or can be replaced by constants from the ConstantPool. Returns the
/// resulting constant on success, 0 otherwise.
static Constant *
ConstantFold(Instruction *I,
const SmallDenseMap<Value *, Constant *> &ConstantPool,
const DataLayout *DL) {
if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
if (!A)
return nullptr;
if (A->isAllOnesValue())
return LookupConstant(Select->getTrueValue(), ConstantPool);
if (A->isNullValue())
return LookupConstant(Select->getFalseValue(), ConstantPool);
return nullptr;
}
SmallVector<Constant *, 4> COps;
for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
COps.push_back(A);
else
return nullptr;
}
if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
COps[1], DL);
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
}
/// GetCaseResults - Try to determine the resulting constant values in phi nodes
/// at the common destination basic block, *CommonDest, for one of the case
/// destionations CaseDest corresponding to value CaseVal (0 for the default
/// case), of a switch instruction SI.
static bool
GetCaseResults(SwitchInst *SI,
ConstantInt *CaseVal,
BasicBlock *CaseDest,
BasicBlock **CommonDest,
SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
const DataLayout *DL) {
// The block from which we enter the common destination.
BasicBlock *Pred = SI->getParent();
// If CaseDest is empty except for some side-effect free instructions through
// which we can constant-propagate the CaseVal, continue to its successor.
SmallDenseMap<Value*, Constant*> ConstantPool;
ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
++I) {
if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
// If the terminator is a simple branch, continue to the next block.
if (T->getNumSuccessors() != 1)
return false;
Pred = CaseDest;
CaseDest = T->getSuccessor(0);
} else if (isa<DbgInfoIntrinsic>(I)) {
// Skip debug intrinsic.
continue;
} else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
// Instruction is side-effect free and constant.
ConstantPool.insert(std::make_pair(I, C));
} else {
break;
}
}
// If we did not have a CommonDest before, use the current one.
if (!*CommonDest)
*CommonDest = CaseDest;
// If the destination isn't the common one, abort.
if (CaseDest != *CommonDest)
return false;
// Get the values for this case from phi nodes in the destination block.
BasicBlock::iterator I = (*CommonDest)->begin();
while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
int Idx = PHI->getBasicBlockIndex(Pred);
if (Idx == -1)
continue;
Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
ConstantPool);
if (!ConstVal)
return false;
// Note: If the constant comes from constant-propagating the case value
// through the CaseDest basic block, it will be safe to remove the
// instructions in that block. They cannot be used (except in the phi nodes
// we visit) outside CaseDest, because that block does not dominate its
// successor. If it did, we would not be in this phi node.
// Be conservative about which kinds of constants we support.
if (!ValidLookupTableConstant(ConstVal))
return false;
Res.push_back(std::make_pair(PHI, ConstVal));
}
return Res.size() > 0;
}
namespace {
/// SwitchLookupTable - This class represents a lookup table that can be used
/// to replace a switch.
class SwitchLookupTable {
public:
/// SwitchLookupTable - Create a lookup table to use as a switch replacement
/// with the contents of Values, using DefaultValue to fill any holes in the
/// table.
SwitchLookupTable(Module &M,
uint64_t TableSize,
ConstantInt *Offset,
const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
Constant *DefaultValue,
const DataLayout *DL);
/// BuildLookup - Build instructions with Builder to retrieve the value at
/// the position given by Index in the lookup table.
Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
/// WouldFitInRegister - Return true if a table with TableSize elements of
/// type ElementType would fit in a target-legal register.
static bool WouldFitInRegister(const DataLayout *DL,
uint64_t TableSize,
const Type *ElementType);
private:
// Depending on the contents of the table, it can be represented in
// different ways.
enum {
// For tables where each element contains the same value, we just have to
// store that single value and return it for each lookup.
SingleValueKind,
// For small tables with integer elements, we can pack them into a bitmap
// that fits into a target-legal register. Values are retrieved by
// shift and mask operations.
BitMapKind,
// The table is stored as an array of values. Values are retrieved by load
// instructions from the table.
ArrayKind
} Kind;
// For SingleValueKind, this is the single value.
Constant *SingleValue;
// For BitMapKind, this is the bitmap.
ConstantInt *BitMap;
IntegerType *BitMapElementTy;
// For ArrayKind, this is the array.
GlobalVariable *Array;
};
}
SwitchLookupTable::SwitchLookupTable(Module &M,
uint64_t TableSize,
ConstantInt *Offset,
const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
Constant *DefaultValue,
const DataLayout *DL)
: SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
Array(nullptr) {
assert(Values.size() && "Can't build lookup table without values!");
assert(TableSize >= Values.size() && "Can't fit values in table!");
// If all values in the table are equal, this is that value.
SingleValue = Values.begin()->second;
Type *ValueType = Values.begin()->second->getType();
// Build up the table contents.
SmallVector<Constant*, 64> TableContents(TableSize);
for (size_t I = 0, E = Values.size(); I != E; ++I) {
ConstantInt *CaseVal = Values[I].first;
Constant *CaseRes = Values[I].second;
assert(CaseRes->getType() == ValueType);
uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
.getLimitedValue();
TableContents[Idx] = CaseRes;
if (CaseRes != SingleValue)
SingleValue = nullptr;
}
// Fill in any holes in the table with the default result.
if (Values.size() < TableSize) {
assert(DefaultValue &&
"Need a default value to fill the lookup table holes.");
assert(DefaultValue->getType() == ValueType);
for (uint64_t I = 0; I < TableSize; ++I) {
if (!TableContents[I])
TableContents[I] = DefaultValue;
}
if (DefaultValue != SingleValue)
SingleValue = nullptr;
}
// If each element in the table contains the same value, we only need to store
// that single value.
if (SingleValue) {
Kind = SingleValueKind;
return;
}
// If the type is integer and the table fits in a register, build a bitmap.
if (WouldFitInRegister(DL, TableSize, ValueType)) {
IntegerType *IT = cast<IntegerType>(ValueType);
APInt TableInt(TableSize * IT->getBitWidth(), 0);
for (uint64_t I = TableSize; I > 0; --I) {
TableInt <<= IT->getBitWidth();
// Insert values into the bitmap. Undef values are set to zero.
if (!isa<UndefValue>(TableContents[I - 1])) {
ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
TableInt |= Val->getValue().zext(TableInt.getBitWidth());
}
}
BitMap = ConstantInt::get(M.getContext(), TableInt);
BitMapElementTy = IT;
Kind = BitMapKind;
++NumBitMaps;
return;
}
// Store the table in an array.
ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
GlobalVariable::PrivateLinkage,
Initializer,
"switch.table");
Array->setUnnamedAddr(true);
Kind = ArrayKind;
}
Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
switch (Kind) {
case SingleValueKind:
return SingleValue;
case BitMapKind: {
// Type of the bitmap (e.g. i59).
IntegerType *MapTy = BitMap->getType();
// Cast Index to the same type as the bitmap.
// Note: The Index is <= the number of elements in the table, so
// truncating it to the width of the bitmask is safe.
Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
// Multiply the shift amount by the element width.
ShiftAmt = Builder.CreateMul(ShiftAmt,
ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
"switch.shiftamt");
// Shift down.
Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
"switch.downshift");
// Mask off.
return Builder.CreateTrunc(DownShifted, BitMapElementTy,
"switch.masked");
}
case ArrayKind: {
// Make sure the table index will not overflow when treated as signed.
IntegerType *IT = cast<IntegerType>(Index->getType());
uint64_t TableSize = Array->getInitializer()->getType()
->getArrayNumElements();
if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
Index = Builder.CreateZExt(Index,
IntegerType::get(IT->getContext(),
IT->getBitWidth() + 1),
"switch.tableidx.zext");
Value *GEPIndices[] = { Builder.getInt32(0), Index };
Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
"switch.gep");
return Builder.CreateLoad(GEP, "switch.load");
}
}
llvm_unreachable("Unknown lookup table kind!");
}
bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
uint64_t TableSize,
const Type *ElementType) {
if (!DL)
return false;
const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
if (!IT)
return false;
// FIXME: If the type is wider than it needs to be, e.g. i8 but all values
// are <= 15, we could try to narrow the type.
// Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
if (TableSize >= UINT_MAX/IT->getBitWidth())
return false;
return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
}
/// ShouldBuildLookupTable - Determine whether a lookup table should be built
/// for this switch, based on the number of cases, size of the table and the
/// types of the results.
static bool ShouldBuildLookupTable(SwitchInst *SI,
uint64_t TableSize,
const TargetTransformInfo &TTI,
const DataLayout *DL,
const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
return false; // TableSize overflowed, or mul below might overflow.
bool AllTablesFitInRegister = true;
bool HasIllegalType = false;
for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
E = ResultTypes.end(); I != E; ++I) {
Type *Ty = I->second;
// Saturate this flag to true.
HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
// Saturate this flag to false.
AllTablesFitInRegister = AllTablesFitInRegister &&
SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
// If both flags saturate, we're done. NOTE: This *only* works with
// saturating flags, and all flags have to saturate first due to the
// non-deterministic behavior of iterating over a dense map.
if (HasIllegalType && !AllTablesFitInRegister)
break;
}
// If each table would fit in a register, we should build it anyway.
if (AllTablesFitInRegister)
return true;
// Don't build a table that doesn't fit in-register if it has illegal types.
if (HasIllegalType)
return false;
// The table density should be at least 40%. This is the same criterion as for
// jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
// FIXME: Find the best cut-off.
return SI->getNumCases() * 10 >= TableSize * 4;
}
/// SwitchToLookupTable - If the switch is only used to initialize one or more
/// phi nodes in a common successor block with different constant values,
/// replace the switch with lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI,
IRBuilder<> &Builder,
const TargetTransformInfo &TTI,
const DataLayout* DL) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Only build lookup table when we have a target that supports it.
if (!TTI.shouldBuildLookupTables())
return false;
// FIXME: If the switch is too sparse for a lookup table, perhaps we could
// split off a dense part and build a lookup table for that.
// FIXME: This creates arrays of GEPs to constant strings, which means each
// GEP needs a runtime relocation in PIC code. We should just build one big
// string and lookup indices into that.
// Ignore switches with less than three cases. Lookup tables will not make them
// faster, so we don't analyze them.
if (SI->getNumCases() < 3)
return false;
// Figure out the corresponding result for each case value and phi node in the
// common destination, as well as the the min and max case values.
assert(SI->case_begin() != SI->case_end());
SwitchInst::CaseIt CI = SI->case_begin();
ConstantInt *MinCaseVal = CI.getCaseValue();
ConstantInt *MaxCaseVal = CI.getCaseValue();
BasicBlock *CommonDest = nullptr;
typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
SmallDenseMap<PHINode*, ResultListTy> ResultLists;
SmallDenseMap<PHINode*, Constant*> DefaultResults;
SmallDenseMap<PHINode*, Type*> ResultTypes;
SmallVector<PHINode*, 4> PHIs;
for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
ConstantInt *CaseVal = CI.getCaseValue();
if (CaseVal->getValue().slt(MinCaseVal->getValue()))
MinCaseVal = CaseVal;
if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
MaxCaseVal = CaseVal;
// Resulting value at phi nodes for this case value.
typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
ResultsTy Results;
if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
Results, DL))
return false;
// Append the result from this case to the list for each phi.
for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
if (!ResultLists.count(I->first))
PHIs.push_back(I->first);
ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
}
}
// Keep track of the result types.
for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
PHINode *PHI = PHIs[I];
ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
}
uint64_t NumResults = ResultLists[PHIs[0]].size();
APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
bool TableHasHoles = (NumResults < TableSize);
// If the table has holes, we need a constant result for the default case
// or a bitmask that fits in a register.
SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
bool HasDefaultResults = false;
if (TableHasHoles) {
HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
&CommonDest, DefaultResultsList, DL);
}
bool NeedMask = (TableHasHoles && !HasDefaultResults);
if (NeedMask) {
// As an extra penalty for the validity test we require more cases.
if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
return false;
if (!(DL && DL->fitsInLegalInteger(TableSize)))
return false;
}
for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
PHINode *PHI = DefaultResultsList[I].first;
Constant *Result = DefaultResultsList[I].second;
DefaultResults[PHI] = Result;
}
if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
return false;
// Create the BB that does the lookups.
Module &Mod = *CommonDest->getParent()->getParent();
BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
"switch.lookup",
CommonDest->getParent(),
CommonDest);
// Compute the table index value.
Builder.SetInsertPoint(SI);
Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
"switch.tableidx");
// Compute the maximum table size representable by the integer type we are
// switching upon.
unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
assert(MaxTableSize >= TableSize &&
"It is impossible for a switch to have more entries than the max "
"representable value of its input integer type's size.");
// If we have a fully covered lookup table, unconditionally branch to the
// lookup table BB. Otherwise, check if the condition value is within the case
// range. If it is so, branch to the new BB. Otherwise branch to SI's default
// destination.
const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
if (GeneratingCoveredLookupTable) {
Builder.CreateBr(LookupBB);
SI->getDefaultDest()->removePredecessor(SI->getParent());
} else {
Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
MinCaseVal->getType(), TableSize));
Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
}
// Populate the BB that does the lookups.
Builder.SetInsertPoint(LookupBB);
if (NeedMask) {
// Before doing the lookup we do the hole check.
// The LookupBB is therefore re-purposed to do the hole check
// and we create a new LookupBB.
BasicBlock *MaskBB = LookupBB;
MaskBB->setName("switch.hole_check");
LookupBB = BasicBlock::Create(Mod.getContext(),
"switch.lookup",
CommonDest->getParent(),
CommonDest);
// Build bitmask; fill in a 1 bit for every case.
APInt MaskInt(TableSize, 0);
APInt One(TableSize, 1);
const ResultListTy &ResultList = ResultLists[PHIs[0]];
for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
uint64_t Idx = (ResultList[I].first->getValue() -
MinCaseVal->getValue()).getLimitedValue();
MaskInt |= One << Idx;
}
ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
// Get the TableIndex'th bit of the bitmask.
// If this bit is 0 (meaning hole) jump to the default destination,
// else continue with table lookup.
IntegerType *MapTy = TableMask->getType();
Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
"switch.maskindex");
Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
"switch.shifted");
Value *LoBit = Builder.CreateTrunc(Shifted,
Type::getInt1Ty(Mod.getContext()),
"switch.lobit");
Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
Builder.SetInsertPoint(LookupBB);
AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
}
bool ReturnedEarly = false;
for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
PHINode *PHI = PHIs[I];
// If using a bitmask, use any value to fill the lookup table holes.
Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
DV, DL);
Value *Result = Table.BuildLookup(TableIndex, Builder);
// If the result is used to return immediately from the function, we want to
// do that right here.
if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
Builder.CreateRet(Result);
ReturnedEarly = true;
break;
}
PHI->addIncoming(Result, LookupBB);
}
if (!ReturnedEarly)
Builder.CreateBr(CommonDest);
// Remove the switch.
for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == SI->getDefaultDest())
continue;
Succ->removePredecessor(SI->getParent());
}
SI->eraseFromParent();
++NumLookupTables;
if (NeedMask)
++NumLookupTablesHoles;
return true;
}
bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
BasicBlock *BB = SI->getParent();
if (isValueEqualityComparison(SI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
return SimplifyCFG(BB, TTI, DL) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
BasicBlock::iterator BBI = BB->begin();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(BBI))
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
// Remove unreachable cases.
if (EliminateDeadSwitchCases(SI))
return SimplifyCFG(BB, TTI, DL) | true;
if (ForwardSwitchConditionToPHI(SI))
return SimplifyCFG(BB, TTI, DL) | true;
if (SwitchToLookupTable(SI, Builder, TTI, DL))
return SimplifyCFG(BB, TTI, DL) | true;
return false;
}
bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
BasicBlock *BB = IBI->getParent();
bool Changed = false;
// Eliminate redundant destinations.
SmallPtrSet<Value *, 8> Succs;
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
BasicBlock *Dest = IBI->getDestination(i);
if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
Dest->removePredecessor(BB);
IBI->removeDestination(i);
--i; --e;
Changed = true;
}
}
if (IBI->getNumDestinations() == 0) {
// If the indirectbr has no successors, change it to unreachable.
new UnreachableInst(IBI->getContext(), IBI);
EraseTerminatorInstAndDCECond(IBI);
return true;
}
if (IBI->getNumDestinations() == 1) {
// If the indirectbr has one successor, change it to a direct branch.
BranchInst::Create(IBI->getDestination(0), IBI);
EraseTerminatorInstAndDCECond(IBI);
return true;
}
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
return SimplifyCFG(BB, TTI, DL) | true;
}
return Changed;
}
bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
BasicBlock *BB = BI->getParent();
if (SinkCommon && SinkThenElseCodeToEnd(BI))
return true;
// If the Terminator is the only non-phi instruction, simplify the block.
BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
TryToSimplifyUncondBranchFromEmptyBlock(BB))
return true;
// If the only instruction in the block is a seteq/setne comparison
// against a constant, try to simplify the block.
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
return true;
}
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and our successor, fold the comparison into the
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
if (FoldBranchToCommonDest(BI, DL))
return SimplifyCFG(BB, TTI, DL) | true;
return false;
}
bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
BasicBlock *BB = BI->getParent();
// Conditional branch
if (isValueEqualityComparison(BI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
BasicBlock::iterator I = BB->begin();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
return SimplifyCFG(BB, TTI, DL) | true;
}
}
// Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
if (SimplifyBranchOnICmpChain(BI, DL, Builder))
return true;
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
if (FoldBranchToCommonDest(BI, DL))
return SimplifyCFG(BB, TTI, DL) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
// there is any identical code in the "then" and "else" blocks. If so, we
// can hoist it up to the branching block.
if (BI->getSuccessor(0)->getSinglePredecessor()) {
if (BI->getSuccessor(1)->getSinglePredecessor()) {
if (HoistThenElseCodeToIf(BI, DL))
return SimplifyCFG(BB, TTI, DL) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to Successor #1.
TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
return SimplifyCFG(BB, TTI, DL) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
// If Successor #0 has multiple preds, we may be able to conditionally
// execute Successor #1 if it branches to Successor #0.
TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
return SimplifyCFG(BB, TTI, DL) | true;
}
// If this is a branch on a phi node in the current block, thread control
// through this block if any PHI node entries are constants.
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, DL))
return SimplifyCFG(BB, TTI, DL) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
return SimplifyCFG(BB, TTI, DL) | true;
return false;
}
/// Check if passing a value to an instruction will cause undefined behavior.
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
Constant *C = dyn_cast<Constant>(V);
if (!C)
return false;
if (I->use_empty())
return false;
if (C->isNullValue()) {
// Only look at the first use, avoid hurting compile time with long uselists
User *Use = *I->user_begin();
// Now make sure that there are no instructions in between that can alter
// control flow (eg. calls)
for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
if (i == I->getParent()->end() || i->mayHaveSideEffects())
return false;
// Look through GEPs. A load from a GEP derived from NULL is still undefined
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
if (GEP->getPointerOperand() == I)
return passingValueIsAlwaysUndefined(V, GEP);
// Look through bitcasts.
if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
return passingValueIsAlwaysUndefined(V, BC);
// Load from null is undefined.
if (LoadInst *LI = dyn_cast<LoadInst>(Use))
if (!LI->isVolatile())
return LI->getPointerAddressSpace() == 0;
// Store to null is undefined.
if (StoreInst *SI = dyn_cast<StoreInst>(Use))
if (!SI->isVolatile())
return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
}
return false;
}
/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
for (BasicBlock::iterator i = BB->begin();
PHINode *PHI = dyn_cast<PHINode>(i); ++i)
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
IRBuilder<> Builder(T);
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
BB->removePredecessor(PHI->getIncomingBlock(i));
// Turn uncoditional branches into unreachables and remove the dead
// destination from conditional branches.
if (BI->isUnconditional())
Builder.CreateUnreachable();
else
Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
BI->getSuccessor(0));
BI->eraseFromParent();
return true;
}
// TODO: SwitchInst.
}
return false;
}
bool SimplifyCFGOpt::run(BasicBlock *BB) {
bool Changed = false;
assert(BB && BB->getParent() && "Block not embedded in function!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
// Remove basic blocks that have no predecessors (except the entry block)...
// or that just have themself as a predecessor. These are unreachable.
if ((pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) ||
BB->getSinglePredecessor() == BB) {
DEBUG(dbgs() << "Removing BB: \n" << *BB);
DeleteDeadBlock(BB);
return true;
}
// Check to see if we can constant propagate this terminator instruction
// away...
Changed |= ConstantFoldTerminator(BB, true);
// Check for and eliminate duplicate PHI nodes in this block.
Changed |= EliminateDuplicatePHINodes(BB);
// Check for and remove branches that will always cause undefined behavior.
Changed |= removeUndefIntroducingPredecessor(BB);
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
// if there are no PHI nodes.
//
if (MergeBlockIntoPredecessor(BB))
return true;
IRBuilder<> Builder(BB);
// If there is a trivial two-entry PHI node in this basic block, and we can
// eliminate it, do so now.
if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
if (PN->getNumIncomingValues() == 2)
Changed |= FoldTwoEntryPHINode(PN, DL);
Builder.SetInsertPoint(BB->getTerminator());
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
if (BI->isUnconditional()) {
if (SimplifyUncondBranch(BI, Builder)) return true;
} else {
if (SimplifyCondBranch(BI, Builder)) return true;
}
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
if (SimplifyReturn(RI, Builder)) return true;
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
if (SimplifyResume(RI, Builder)) return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
if (SimplifySwitch(SI, Builder)) return true;
} else if (UnreachableInst *UI =
dyn_cast<UnreachableInst>(BB->getTerminator())) {
if (SimplifyUnreachable(UI)) return true;
} else if (IndirectBrInst *IBI =
dyn_cast<IndirectBrInst>(BB->getTerminator())) {
if (SimplifyIndirectBr(IBI)) return true;
}
return Changed;
}
/// SimplifyCFG - This function is used to do simplification of a CFG. For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made.
///
bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
const DataLayout *DL) {
return SimplifyCFGOpt(TTI, DL).run(BB);
}