blob: 8e1bae8c1f0f993a9035c7bc24f0f52d2a95c400 [file] [log] [blame]
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "IntrinsicEmitter.h"
#include "StringMatcher.h"
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//
void IntrinsicEmitter::run(raw_ostream &OS) {
EmitSourceFileHeader("Intrinsic Function Source Fragment", OS);
std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly);
if (TargetOnly && !Ints.empty())
TargetPrefix = Ints[0].TargetPrefix;
EmitPrefix(OS);
// Emit the enum information.
EmitEnumInfo(Ints, OS);
// Emit the intrinsic ID -> name table.
EmitIntrinsicToNameTable(Ints, OS);
// Emit the intrinsic ID -> overload table.
EmitIntrinsicToOverloadTable(Ints, OS);
// Emit the function name recognizer.
EmitFnNameRecognizer(Ints, OS);
// Emit the intrinsic verifier.
EmitVerifier(Ints, OS);
// Emit the intrinsic declaration generator.
EmitGenerator(Ints, OS);
// Emit the intrinsic parameter attributes.
EmitAttributes(Ints, OS);
// Emit intrinsic alias analysis mod/ref behavior.
EmitModRefBehavior(Ints, OS);
// Emit code to translate GCC builtins into LLVM intrinsics.
EmitIntrinsicToGCCBuiltinMap(Ints, OS);
EmitSuffix(OS);
}
void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
OS << "// VisualStudio defines setjmp as _setjmp\n"
"#if defined(_MSC_VER) && defined(setjmp) && \\\n"
" !defined(setjmp_undefined_for_msvc)\n"
"# pragma push_macro(\"setjmp\")\n"
"# undef setjmp\n"
"# define setjmp_undefined_for_msvc\n"
"#endif\n\n";
}
void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
"// let's return it to _setjmp state\n"
"# pragma pop_macro(\"setjmp\")\n"
"# undef setjmp_undefined_for_msvc\n"
"#endif\n\n";
}
void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
OS << "// Enum values for Intrinsics.h\n";
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
OS << " " << Ints[i].EnumName;
OS << ((i != e-1) ? ", " : " ");
OS << std::string(40-Ints[i].EnumName.size(), ' ')
<< "// " << Ints[i].Name << "\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
// Build a 'first character of function name' -> intrinsic # mapping.
std::map<char, std::vector<unsigned> > IntMapping;
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
IntMapping[Ints[i].Name[5]].push_back(i);
OS << "// Function name -> enum value recognizer code.\n";
OS << "#ifdef GET_FUNCTION_RECOGNIZER\n";
OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n";
OS << " switch (Name[5]) { // Dispatch on first letter.\n";
OS << " default: break;\n";
// Emit the intrinsic matching stuff by first letter.
for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(),
E = IntMapping.end(); I != E; ++I) {
OS << " case '" << I->first << "':\n";
std::vector<unsigned> &IntList = I->second;
// Emit all the overloaded intrinsics first, build a table of the
// non-overloaded ones.
std::vector<StringMatcher::StringPair> MatchTable;
for (unsigned i = 0, e = IntList.size(); i != e; ++i) {
unsigned IntNo = IntList[i];
std::string Result = "return " + TargetPrefix + "Intrinsic::" +
Ints[IntNo].EnumName + ";";
if (!Ints[IntNo].isOverloaded) {
MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result));
continue;
}
// For overloaded intrinsics, only the prefix needs to match
std::string TheStr = Ints[IntNo].Name.substr(6);
TheStr += '.'; // Require "bswap." instead of bswap.
OS << " if (NameR.startswith(\"" << TheStr << "\")) "
<< Result << '\n';
}
// Emit the matcher logic for the fixed length strings.
StringMatcher("NameR", MatchTable, OS).Emit(1);
OS << " break; // end of '" << I->first << "' case.\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
OS << "// Intrinsic ID to name table\n";
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
OS << " // Note that entry #0 is the invalid intrinsic!\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
OS << " \"" << Ints[i].Name << "\",\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::
EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
OS << "// Intrinsic ID to overload bitset\n";
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
OS << "static const uint8_t OTable[] = {\n";
OS << " 0";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
if ((i+1)%8 == 0)
OS << ",\n 0";
if (Ints[i].isOverloaded)
OS << " | (1<<" << (i+1)%8 << ')';
}
OS << "\n};\n\n";
// OTable contains a true bit at the position if the intrinsic is overloaded.
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
OS << "#endif\n\n";
}
static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
if (EVT(VT).isInteger()) {
unsigned BitWidth = EVT(VT).getSizeInBits();
OS << "IntegerType::get(Context, " << BitWidth << ")";
} else if (VT == MVT::Other) {
// MVT::OtherVT is used to mean the empty struct type here.
OS << "StructType::get(Context)";
} else if (VT == MVT::f16) {
OS << "Type::getHalfTy(Context)";
} else if (VT == MVT::f32) {
OS << "Type::getFloatTy(Context)";
} else if (VT == MVT::f64) {
OS << "Type::getDoubleTy(Context)";
} else if (VT == MVT::f80) {
OS << "Type::getX86_FP80Ty(Context)";
} else if (VT == MVT::f128) {
OS << "Type::getFP128Ty(Context)";
} else if (VT == MVT::ppcf128) {
OS << "Type::getPPC_FP128Ty(Context)";
} else if (VT == MVT::isVoid) {
OS << "Type::getVoidTy(Context)";
} else if (VT == MVT::Metadata) {
OS << "Type::getMetadataTy(Context)";
} else if (VT == MVT::x86mmx) {
OS << "Type::getX86_MMXTy(Context)";
} else {
assert(false && "Unsupported ValueType!");
}
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo);
static void EmitTypeGenerate(raw_ostream &OS,
const std::vector<Record*> &ArgTypes,
unsigned &ArgNo) {
if (ArgTypes.empty())
return EmitTypeForValueType(OS, MVT::isVoid);
if (ArgTypes.size() == 1)
return EmitTypeGenerate(OS, ArgTypes.front(), ArgNo);
OS << "StructType::get(";
for (std::vector<Record*>::const_iterator
I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) {
EmitTypeGenerate(OS, *I, ArgNo);
OS << ", ";
}
OS << " NULL)";
}
static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType,
unsigned &ArgNo) {
MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < ArgNo && "Invalid matching number!");
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "VectorType::getExtendedElementVectorType"
<< "(dyn_cast<VectorType>(Tys[" << Number << "]))";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "VectorType::getTruncatedElementVectorType"
<< "(dyn_cast<VectorType>(Tys[" << Number << "]))";
else
OS << "Tys[" << Number << "]";
} else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) {
// NOTE: The ArgNo variable here is not the absolute argument number, it is
// the index of the "arbitrary" type in the Tys array passed to the
// Intrinsic::getDeclaration function. Consequently, we only want to
// increment it when we actually hit an overloaded type. Getting this wrong
// leads to very subtle bugs!
OS << "Tys[" << ArgNo++ << "]";
} else if (EVT(VT).isVector()) {
EVT VVT = VT;
OS << "VectorType::get(";
EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy);
OS << ", " << VVT.getVectorNumElements() << ")";
} else if (VT == MVT::iPTR) {
OS << "PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
} else if (VT == MVT::iPTRAny) {
// Make sure the user has passed us an argument type to overload. If not,
// treat it as an ordinary (not overloaded) intrinsic.
OS << "(" << ArgNo << " < Tys.size()) ? Tys[" << ArgNo
<< "] : PointerType::getUnqual(";
EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo);
OS << ")";
++ArgNo;
} else if (VT == MVT::isVoid) {
if (ArgNo == 0)
OS << "Type::getVoidTy(Context)";
else
// MVT::isVoid is used to mean varargs here.
OS << "...";
} else {
EmitTypeForValueType(OS, VT);
}
}
/// RecordListComparator - Provide a deterministic comparator for lists of
/// records.
namespace {
typedef std::pair<std::vector<Record*>, std::vector<Record*> > RecPair;
struct RecordListComparator {
bool operator()(const RecPair &LHS,
const RecPair &RHS) const {
unsigned i = 0;
const std::vector<Record*> *LHSVec = &LHS.first;
const std::vector<Record*> *RHSVec = &RHS.first;
unsigned RHSSize = RHSVec->size();
unsigned LHSSize = LHSVec->size();
for (; i != LHSSize; ++i) {
if (i == RHSSize) return false; // RHS is shorter than LHS.
if ((*LHSVec)[i] != (*RHSVec)[i])
return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName();
}
if (i != RHSSize) return true;
i = 0;
LHSVec = &LHS.second;
RHSVec = &RHS.second;
RHSSize = RHSVec->size();
LHSSize = LHSVec->size();
for (i = 0; i != LHSSize; ++i) {
if (i == RHSSize) return false; // RHS is shorter than LHS.
if ((*LHSVec)[i] != (*RHSVec)[i])
return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName();
}
return i != RHSSize;
}
};
}
void IntrinsicEmitter::EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
OS << "// Verifier::visitIntrinsicFunctionCall code.\n";
OS << "#ifdef GET_INTRINSIC_VERIFIER\n";
OS << " switch (ID) {\n";
OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n";
// This checking can emit a lot of very common code. To reduce the amount of
// code that we emit, batch up cases that have identical types. This avoids
// problems where GCC can run out of memory compiling Verifier.cpp.
typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy;
MapTy UniqueArgInfos;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs,
Ints[i].IS.ParamTypeDefs)].push_back(i);
// Loop through the array, emitting one comparison for each batch.
for (MapTy::iterator I = UniqueArgInfos.begin(),
E = UniqueArgInfos.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// "
<< Ints[I->second[i]].Name << "\n";
const RecPair &ArgTypes = I->first;
const std::vector<Record*> &RetTys = ArgTypes.first;
const std::vector<Record*> &ParamTys = ArgTypes.second;
std::vector<unsigned> OverloadedTypeIndices;
OS << " VerifyIntrinsicPrototype(ID, IF, " << RetTys.size() << ", "
<< ParamTys.size();
// Emit return types.
for (unsigned j = 0, je = RetTys.size(); j != je; ++j) {
Record *ArgType = RetTys[j];
OS << ", ";
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < OverloadedTypeIndices.size() &&
"Invalid matching number!");
Number = OverloadedTypeIndices[Number];
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "~(ExtendedElementVectorType | " << Number << ")";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "~(TruncatedElementVectorType | " << Number << ")";
else
OS << "~" << Number;
} else {
MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
OS << getEnumName(VT);
if (EVT(VT).isOverloaded())
OverloadedTypeIndices.push_back(j);
if (VT == MVT::isVoid && j != 0 && j != je - 1)
throw "Var arg type not last argument";
}
}
// Emit the parameter types.
for (unsigned j = 0, je = ParamTys.size(); j != je; ++j) {
Record *ArgType = ParamTys[j];
OS << ", ";
if (ArgType->isSubClassOf("LLVMMatchType")) {
unsigned Number = ArgType->getValueAsInt("Number");
assert(Number < OverloadedTypeIndices.size() &&
"Invalid matching number!");
Number = OverloadedTypeIndices[Number];
if (ArgType->isSubClassOf("LLVMExtendedElementVectorType"))
OS << "~(ExtendedElementVectorType | " << Number << ")";
else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType"))
OS << "~(TruncatedElementVectorType | " << Number << ")";
else
OS << "~" << Number;
} else {
MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT"));
OS << getEnumName(VT);
if (EVT(VT).isOverloaded())
OverloadedTypeIndices.push_back(j + RetTys.size());
if (VT == MVT::isVoid && j != 0 && j != je - 1)
throw "Var arg type not last argument";
}
}
OS << ");\n";
OS << " break;\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
OS << "// Code for generating Intrinsic function declarations.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR\n";
OS << " switch (id) {\n";
OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n";
// Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical
// types.
typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy;
MapTy UniqueArgInfos;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs,
Ints[i].IS.ParamTypeDefs)].push_back(i);
// Loop through the array, emitting one generator for each batch.
std::string IntrinsicStr = TargetPrefix + "Intrinsic::";
for (MapTy::iterator I = UniqueArgInfos.begin(),
E = UniqueArgInfos.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
OS << " case " << IntrinsicStr << Ints[I->second[i]].EnumName
<< ":\t\t// " << Ints[I->second[i]].Name << "\n";
const RecPair &ArgTypes = I->first;
const std::vector<Record*> &RetTys = ArgTypes.first;
const std::vector<Record*> &ParamTys = ArgTypes.second;
unsigned N = ParamTys.size();
if (N > 1 &&
getValueType(ParamTys[N - 1]->getValueAsDef("VT")) == MVT::isVoid) {
OS << " IsVarArg = true;\n";
--N;
}
unsigned ArgNo = 0;
OS << " ResultTy = ";
EmitTypeGenerate(OS, RetTys, ArgNo);
OS << ";\n";
for (unsigned j = 0; j != N; ++j) {
OS << " ArgTys.push_back(";
EmitTypeGenerate(OS, ParamTys[j], ArgNo);
OS << ");\n";
}
OS << " break;\n";
}
OS << " }\n";
OS << "#endif\n\n";
}
namespace {
enum ModRefKind {
MRK_none,
MRK_readonly,
MRK_readnone
};
ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) {
switch (intrinsic.ModRef) {
case CodeGenIntrinsic::NoMem:
return MRK_readnone;
case CodeGenIntrinsic::ReadArgMem:
case CodeGenIntrinsic::ReadMem:
return MRK_readonly;
case CodeGenIntrinsic::ReadWriteArgMem:
case CodeGenIntrinsic::ReadWriteMem:
return MRK_none;
}
llvm_unreachable("bad mod-ref kind");
}
struct AttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
// Sort throwing intrinsics after non-throwing intrinsics.
if (L->canThrow != R->canThrow)
return R->canThrow;
// Try to order by readonly/readnone attribute.
ModRefKind LK = getModRefKind(*L);
ModRefKind RK = getModRefKind(*R);
if (LK != RK) return (LK > RK);
// Order by argument attributes.
// This is reliable because each side is already sorted internally.
return (L->ArgumentAttributes < R->ArgumentAttributes);
}
};
}
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::
EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) {
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
if (TargetOnly)
OS << "static AttrListPtr getAttributes(" << TargetPrefix
<< "Intrinsic::ID id) {\n";
else
OS << "AttrListPtr Intrinsic::getAttributes(ID id) {\n";
// Compute the maximum number of attribute arguments and the map
typedef std::map<const CodeGenIntrinsic*, unsigned,
AttributeComparator> UniqAttrMapTy;
UniqAttrMapTy UniqAttributes;
unsigned maxArgAttrs = 0;
unsigned AttrNum = 0;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
maxArgAttrs =
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
unsigned &N = UniqAttributes[&intrinsic];
if (N) continue;
assert(AttrNum < 256 && "Too many unique attributes for table!");
N = ++AttrNum;
}
// Emit an array of AttributeWithIndex. Most intrinsics will have
// at least one entry, for the function itself (index ~1), which is
// usually nounwind.
OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
OS << " " << UniqAttributes[&intrinsic] << ", // "
<< intrinsic.Name << "\n";
}
OS << " };\n\n";
OS << " AttributeWithIndex AWI[" << maxArgAttrs+1 << "];\n";
OS << " unsigned NumAttrs = 0;\n";
OS << " if (id != 0) {\n";
OS << " switch(IntrinsicsToAttributesMap[id - ";
if (TargetOnly)
OS << "Intrinsic::num_intrinsics";
else
OS << "1";
OS << "]) {\n";
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
E = UniqAttributes.end(); I != E; ++I) {
OS << " case " << I->second << ":\n";
const CodeGenIntrinsic &intrinsic = *(I->first);
// Keep track of the number of attributes we're writing out.
unsigned numAttrs = 0;
// The argument attributes are alreadys sorted by argument index.
for (unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); ai != ae;) {
unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get("
<< argNo+1 << ", ";
bool moreThanOne = false;
do {
if (moreThanOne) OS << '|';
switch (intrinsic.ArgumentAttributes[ai].second) {
case CodeGenIntrinsic::NoCapture:
OS << "Attribute::NoCapture";
break;
}
++ai;
moreThanOne = true;
} while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
OS << ");\n";
}
ModRefKind modRef = getModRefKind(intrinsic);
if (!intrinsic.canThrow || modRef) {
OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get(~0, ";
if (!intrinsic.canThrow) {
OS << "Attribute::NoUnwind";
if (modRef) OS << '|';
}
switch (modRef) {
case MRK_none: break;
case MRK_readonly: OS << "Attribute::ReadOnly"; break;
case MRK_readnone: OS << "Attribute::ReadNone"; break;
}
OS << ");\n";
}
if (numAttrs) {
OS << " NumAttrs = " << numAttrs << ";\n";
OS << " break;\n";
} else {
OS << " return AttrListPtr();\n";
}
}
OS << " }\n";
OS << " }\n";
OS << " return AttrListPtr::get(AWI, NumAttrs);\n";
OS << "}\n";
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
}
/// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior.
void IntrinsicEmitter::
EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){
OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"
<< "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"
<< "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && "
<< "\"Unknown intrinsic.\");\n\n";
OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n"
<< " /* invalid */ UnknownModRefBehavior,\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ ";
switch (Ints[i].ModRef) {
case CodeGenIntrinsic::NoMem:
OS << "DoesNotAccessMemory,\n";
break;
case CodeGenIntrinsic::ReadArgMem:
OS << "OnlyReadsArgumentPointees,\n";
break;
case CodeGenIntrinsic::ReadMem:
OS << "OnlyReadsMemory,\n";
break;
case CodeGenIntrinsic::ReadWriteArgMem:
OS << "OnlyAccessesArgumentPointees,\n";
break;
case CodeGenIntrinsic::ReadWriteMem:
OS << "UnknownModRefBehavior,\n";
break;
}
}
OS << "};\n\n"
<< "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
<< "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n";
}
/// EmitTargetBuiltins - All of the builtins in the specified map are for the
/// same target, and we already checked it.
static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM,
const std::string &TargetPrefix,
raw_ostream &OS) {
std::vector<StringMatcher::StringPair> Results;
for (std::map<std::string, std::string>::const_iterator I = BIM.begin(),
E = BIM.end(); I != E; ++I) {
std::string ResultCode =
"return " + TargetPrefix + "Intrinsic::" + I->second + ";";
Results.push_back(StringMatcher::StringPair(I->first, ResultCode));
}
StringMatcher("BuiltinName", Results, OS).Emit();
}
void IntrinsicEmitter::
EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
raw_ostream &OS) {
typedef std::map<std::string, std::map<std::string, std::string> > BIMTy;
BIMTy BuiltinMap;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
if (!Ints[i].GCCBuiltinName.empty()) {
// Get the map for this target prefix.
std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix];
if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName,
Ints[i].EnumName)).second)
throw "Intrinsic '" + Ints[i].TheDef->getName() +
"': duplicate GCC builtin name!";
}
}
OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n";
OS << "// This is used by the C front-end. The GCC builtin name is passed\n";
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n";
if (TargetOnly) {
OS << "static " << TargetPrefix << "Intrinsic::ID "
<< "getIntrinsicForGCCBuiltin(const char "
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
} else {
OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char "
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
}
OS << " StringRef BuiltinName(BuiltinNameStr);\n";
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
// Note: this could emit significantly better code if we cared.
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
OS << " ";
if (!I->first.empty())
OS << "if (TargetPrefix == \"" << I->first << "\") ";
else
OS << "/* Target Independent Builtins */ ";
OS << "{\n";
// Emit the comparisons for this target prefix.
EmitTargetBuiltins(I->second, TargetPrefix, OS);
OS << " }\n";
}
OS << " return ";
if (!TargetPrefix.empty())
OS << "(" << TargetPrefix << "Intrinsic::ID)";
OS << "Intrinsic::not_intrinsic;\n";
OS << "}\n";
OS << "#endif\n\n";
}