blob: d4b02fbd2f335ca2124e28f5ff85b5f0be600796 [file] [log] [blame]
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cstdio>
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// EEVT::TypeSet Implementation
//===----------------------------------------------------------------------===//
static inline bool isInteger(MVT::SimpleValueType VT) {
return EVT(VT).isInteger();
}
static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
return EVT(VT).isFloatingPoint();
}
static inline bool isVector(MVT::SimpleValueType VT) {
return EVT(VT).isVector();
}
static inline bool isScalar(MVT::SimpleValueType VT) {
return !EVT(VT).isVector();
}
EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
if (VT == MVT::iAny)
EnforceInteger(TP);
else if (VT == MVT::fAny)
EnforceFloatingPoint(TP);
else if (VT == MVT::vAny)
EnforceVector(TP);
else {
assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
VT == MVT::iPTRAny) && "Not a concrete type!");
TypeVec.push_back(VT);
}
}
EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
assert(!VTList.empty() && "empty list?");
TypeVec.append(VTList.begin(), VTList.end());
if (!VTList.empty())
assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
VTList[0] != MVT::fAny);
// Verify no duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
}
/// FillWithPossibleTypes - Set to all legal types and return true, only valid
/// on completely unknown type sets.
bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
bool (*Pred)(MVT::SimpleValueType),
const char *PredicateName) {
assert(isCompletelyUnknown());
const std::vector<MVT::SimpleValueType> &LegalTypes =
TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
if (Pred == 0 || Pred(LegalTypes[i]))
TypeVec.push_back(LegalTypes[i]);
// If we have nothing that matches the predicate, bail out.
if (TypeVec.empty())
TP.error("Type inference contradiction found, no " +
std::string(PredicateName) + " types found");
// No need to sort with one element.
if (TypeVec.size() == 1) return true;
// Remove duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
return true;
}
/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
/// integer value type.
bool EEVT::TypeSet::hasIntegerTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isInteger(TypeVec[i]))
return true;
return false;
}
/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
/// a floating point value type.
bool EEVT::TypeSet::hasFloatingPointTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isFloatingPoint(TypeVec[i]))
return true;
return false;
}
/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
/// value type.
bool EEVT::TypeSet::hasVectorTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isVector(TypeVec[i]))
return true;
return false;
}
std::string EEVT::TypeSet::getName() const {
if (TypeVec.empty()) return "<empty>";
std::string Result;
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
std::string VTName = llvm::getEnumName(TypeVec[i]);
// Strip off MVT:: prefix if present.
if (VTName.substr(0,5) == "MVT::")
VTName = VTName.substr(5);
if (i) Result += ':';
Result += VTName;
}
if (TypeVec.size() == 1)
return Result;
return "{" + Result + "}";
}
/// MergeInTypeInfo - This merges in type information from the specified
/// argument. If 'this' changes, it returns true. If the two types are
/// contradictory (e.g. merge f32 into i32) then this throws an exception.
bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
if (InVT.isCompletelyUnknown() || *this == InVT)
return false;
if (isCompletelyUnknown()) {
*this = InVT;
return true;
}
assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
// Handle the abstract cases, seeing if we can resolve them better.
switch (TypeVec[0]) {
default: break;
case MVT::iPTR:
case MVT::iPTRAny:
if (InVT.hasIntegerTypes()) {
EEVT::TypeSet InCopy(InVT);
InCopy.EnforceInteger(TP);
InCopy.EnforceScalar(TP);
if (InCopy.isConcrete()) {
// If the RHS has one integer type, upgrade iPTR to i32.
TypeVec[0] = InVT.TypeVec[0];
return true;
}
// If the input has multiple scalar integers, this doesn't add any info.
if (!InCopy.isCompletelyUnknown())
return false;
}
break;
}
// If the input constraint is iAny/iPTR and this is an integer type list,
// remove non-integer types from the list.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
hasIntegerTypes()) {
bool MadeChange = EnforceInteger(TP);
// If we're merging in iPTR/iPTRAny and the node currently has a list of
// multiple different integer types, replace them with a single iPTR.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
TypeVec.size() != 1) {
TypeVec.resize(1);
TypeVec[0] = InVT.TypeVec[0];
MadeChange = true;
}
return MadeChange;
}
// If this is a type list and the RHS is a typelist as well, eliminate entries
// from this list that aren't in the other one.
bool MadeChange = false;
TypeSet InputSet(*this);
for (unsigned i = 0; i != TypeVec.size(); ++i) {
bool InInVT = false;
for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
if (TypeVec[i] == InVT.TypeVec[j]) {
InInVT = true;
break;
}
if (InInVT) continue;
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
// If we removed all of our types, we have a type contradiction.
if (!TypeVec.empty())
return MadeChange;
// FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, merging '" +
InVT.getName() + "' into '" + InputSet.getName() + "'");
return true; // unreachable
}
/// EnforceInteger - Remove all non-integer types from this set.
bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isInteger, "integer");
if (!hasFloatingPointTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the fp types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isInteger(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be integer");
return true;
}
/// EnforceFloatingPoint - Remove all integer types from this set.
bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
if (!hasIntegerTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the fp types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isFloatingPoint(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be floating point");
return true;
}
/// EnforceScalar - Remove all vector types from this.
bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isScalar, "scalar");
if (!hasVectorTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the vector types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isScalar(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be scalar");
return true;
}
/// EnforceVector - Remove all vector types from this.
bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isVector, "vector");
TypeSet InputSet(*this);
bool MadeChange = false;
// Filter out all the scalar types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isVector(TypeVec[i])) {
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be a vector");
return MadeChange;
}
/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
/// this an other based on this information.
bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
// Both operands must be integer or FP, but we don't care which.
bool MadeChange = false;
if (isCompletelyUnknown())
MadeChange = FillWithPossibleTypes(TP);
if (Other.isCompletelyUnknown())
MadeChange = Other.FillWithPossibleTypes(TP);
// If one side is known to be integer or known to be FP but the other side has
// no information, get at least the type integrality info in there.
if (!hasFloatingPointTypes())
MadeChange |= Other.EnforceInteger(TP);
else if (!hasIntegerTypes())
MadeChange |= Other.EnforceFloatingPoint(TP);
if (!Other.hasFloatingPointTypes())
MadeChange |= EnforceInteger(TP);
else if (!Other.hasIntegerTypes())
MadeChange |= EnforceFloatingPoint(TP);
assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
"Should have a type list now");
// If one contains vectors but the other doesn't pull vectors out.
if (!hasVectorTypes())
MadeChange |= Other.EnforceScalar(TP);
if (!hasVectorTypes())
MadeChange |= EnforceScalar(TP);
if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
// If we are down to concrete types, this code does not currently
// handle nodes which have multiple types, where some types are
// integer, and some are fp. Assert that this is not the case.
assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
!(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
// Otherwise, if these are both vector types, either this vector
// must have a larger bitsize than the other, or this element type
// must be larger than the other.
EVT Type(TypeVec[0]);
EVT OtherType(Other.TypeVec[0]);
if (hasVectorTypes() && Other.hasVectorTypes()) {
if (Type.getSizeInBits() >= OtherType.getSizeInBits())
if (Type.getVectorElementType().getSizeInBits()
>= OtherType.getVectorElementType().getSizeInBits())
TP.error("Type inference contradiction found, '" +
getName() + "' element type not smaller than '" +
Other.getName() +"'!");
}
else
// For scalar types, the bitsize of this type must be larger
// than that of the other.
if (Type.getSizeInBits() >= OtherType.getSizeInBits())
TP.error("Type inference contradiction found, '" +
getName() + "' is not smaller than '" +
Other.getName() +"'!");
}
// Handle int and fp as disjoint sets. This won't work for patterns
// that have mixed fp/int types but those are likely rare and would
// not have been accepted by this code previously.
// Okay, find the smallest type from the current set and remove it from the
// largest set.
MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isInteger(TypeVec[i])) {
SmallestInt = TypeVec[i];
break;
}
for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
SmallestInt = TypeVec[i];
MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isFloatingPoint(TypeVec[i])) {
SmallestFP = TypeVec[i];
break;
}
for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
SmallestFP = TypeVec[i];
int OtherIntSize = 0;
int OtherFPSize = 0;
for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
Other.TypeVec.begin();
TVI != Other.TypeVec.end();
/* NULL */) {
if (isInteger(*TVI)) {
++OtherIntSize;
if (*TVI == SmallestInt) {
TVI = Other.TypeVec.erase(TVI);
--OtherIntSize;
MadeChange = true;
continue;
}
}
else if (isFloatingPoint(*TVI)) {
++OtherFPSize;
if (*TVI == SmallestFP) {
TVI = Other.TypeVec.erase(TVI);
--OtherFPSize;
MadeChange = true;
continue;
}
}
++TVI;
}
// If this is the only type in the large set, the constraint can never be
// satisfied.
if ((Other.hasIntegerTypes() && OtherIntSize == 0)
|| (Other.hasFloatingPointTypes() && OtherFPSize == 0))
TP.error("Type inference contradiction found, '" +
Other.getName() + "' has nothing larger than '" + getName() +"'!");
// Okay, find the largest type in the Other set and remove it from the
// current set.
MVT::SimpleValueType LargestInt = MVT::Other;
for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
if (isInteger(Other.TypeVec[i])) {
LargestInt = Other.TypeVec[i];
break;
}
for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
LargestInt = Other.TypeVec[i];
MVT::SimpleValueType LargestFP = MVT::Other;
for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
if (isFloatingPoint(Other.TypeVec[i])) {
LargestFP = Other.TypeVec[i];
break;
}
for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
LargestFP = Other.TypeVec[i];
int IntSize = 0;
int FPSize = 0;
for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
TypeVec.begin();
TVI != TypeVec.end();
/* NULL */) {
if (isInteger(*TVI)) {
++IntSize;
if (*TVI == LargestInt) {
TVI = TypeVec.erase(TVI);
--IntSize;
MadeChange = true;
continue;
}
}
else if (isFloatingPoint(*TVI)) {
++FPSize;
if (*TVI == LargestFP) {
TVI = TypeVec.erase(TVI);
--FPSize;
MadeChange = true;
continue;
}
}
++TVI;
}
// If this is the only type in the small set, the constraint can never be
// satisfied.
if ((hasIntegerTypes() && IntSize == 0)
|| (hasFloatingPointTypes() && FPSize == 0))
TP.error("Type inference contradiction found, '" +
getName() + "' has nothing smaller than '" + Other.getName()+"'!");
return MadeChange;
}
/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
/// whose element is specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
// "This" must be a vector and "VTOperand" must be a scalar.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceScalar(TP);
// If we know the vector type, it forces the scalar to agree.
if (isConcrete()) {
EVT IVT = getConcrete();
IVT = IVT.getVectorElementType();
return MadeChange |
VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
}
// If the scalar type is known, filter out vector types whose element types
// disagree.
if (!VTOperand.isConcrete())
return MadeChange;
MVT::SimpleValueType VT = VTOperand.getConcrete();
TypeSet InputSet(*this);
// Filter out all the types which don't have the right element type.
for (unsigned i = 0; i != TypeVec.size(); ++i) {
assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
}
if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have a vector element");
return MadeChange;
}
/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
/// vector type specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
// "This" must be a vector and "VTOperand" must be a vector.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceVector(TP);
// "This" must be larger than "VTOperand."
MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
// If we know the vector type, it forces the scalar types to agree.
if (isConcrete()) {
EVT IVT = getConcrete();
IVT = IVT.getVectorElementType();
EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
} else if (VTOperand.isConcrete()) {
EVT IVT = VTOperand.getConcrete();
IVT = IVT.getVectorElementType();
EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
}
return MadeChange;
}
//===----------------------------------------------------------------------===//
// Helpers for working with extended types.
bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
}
/// Dependent variable map for CodeGenDAGPattern variant generation
typedef std::map<std::string, int> DepVarMap;
/// Const iterator shorthand for DepVarMap
typedef DepVarMap::const_iterator DepVarMap_citer;
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
if (N->isLeaf()) {
if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
DepMap[N->getName()]++;
} else {
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
FindDepVarsOf(N->getChild(i), DepMap);
}
}
/// Find dependent variables within child patterns
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
DepVarMap depcounts;
FindDepVarsOf(N, depcounts);
for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
if (i->second > 1) // std::pair<std::string, int>
DepVars.insert(i->first);
}
}
#ifndef NDEBUG
/// Dump the dependent variable set:
static void DumpDepVars(MultipleUseVarSet &DepVars) {
if (DepVars.empty()) {
DEBUG(errs() << "<empty set>");
} else {
DEBUG(errs() << "[ ");
for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
e = DepVars.end(); i != e; ++i) {
DEBUG(errs() << (*i) << " ");
}
DEBUG(errs() << "]");
}
}
#endif
//===----------------------------------------------------------------------===//
// TreePredicateFn Implementation
//===----------------------------------------------------------------------===//
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
assert((getPredCode().empty() || getImmCode().empty()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate");
}
std::string TreePredicateFn::getPredCode() const {
return PatFragRec->getRecord()->getValueAsString("PredicateCode");
}
std::string TreePredicateFn::getImmCode() const {
return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
}
/// isAlwaysTrue - Return true if this is a noop predicate.
bool TreePredicateFn::isAlwaysTrue() const {
return getPredCode().empty() && getImmCode().empty();
}
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string TreePredicateFn::getFnName() const {
return "Predicate_" + PatFragRec->getRecord()->getName();
}
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
// Handle immediate predicates first.
std::string ImmCode = getImmCode();
if (!ImmCode.empty()) {
std::string Result =
" int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
return Result + ImmCode;
}
// Handle arbitrary node predicates.
assert(!getPredCode().empty() && "Don't have any predicate code!");
std::string ClassName;
if (PatFragRec->getOnlyTree()->isLeaf())
ClassName = "SDNode";
else {
Record *Op = PatFragRec->getOnlyTree()->getOperator();
ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
}
std::string Result;
if (ClassName == "SDNode")
Result = " SDNode *N = Node;\n";
else
Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
return Result + getPredCode();
}
//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
const CodeGenDAGPatterns &CGP) {
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
Size += 2;
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
if (AM)
Size += AM->getNumOperands() * 3;
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFns().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getNumTypes() &&
Child->getType(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (Child->getComplexPatternInfo(CGP))
Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFns().empty())
++Size;
}
}
return Size;
}
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}
/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
std::string PredicateCheck;
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
Def->dump();
#endif
llvm_unreachable("Unknown predicate type!");
}
if (!PredicateCheck.empty())
PredicateCheck += " && ";
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
}
}
return PredicateCheck;
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
if (x.SDTCisVT_Info.VT == MVT::isVoid)
throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisVec")) {
ConstraintType = SDTCisVec;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
ConstraintType = SDTCisEltOfVec;
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
ConstraintType = SDTCisSubVecOfVec;
x.SDTCisSubVecOfVec_Info.OtherOperandNum =
R->getValueAsInt("OtherOpNum");
} else {
errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
exit(1);
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
const SDNodeInfo &NodeInfo,
unsigned &ResNo) {
unsigned NumResults = NodeInfo.getNumResults();
if (OpNo < NumResults) {
ResNo = OpNo;
return N;
}
OpNo -= NumResults;
if (OpNo >= N->getNumChildren()) {
errs() << "Invalid operand number in type constraint "
<< (OpNo+NumResults) << " ";
N->dump();
errs() << '\n';
exit(1);
}
return N->getChild(OpNo);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
unsigned ResNo = 0; // The result number being referenced.
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
switch (ConstraintType) {
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy:
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
case SDTCisInt:
// Require it to be one of the legal integer VTs.
return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
case SDTCisFP:
// Require it to be one of the legal fp VTs.
return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
case SDTCisVec:
// Require it to be one of the legal vector VTs.
return NodeToApply->getExtType(ResNo).EnforceVector(TP);
case SDTCisSameAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType"))
TP.error(N->getOperator()->getName() + " expects a VT operand!");
MVT::SimpleValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
EEVT::TypeSet TypeListTmp(VT, TP);
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
OResNo);
return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
}
case SDTCisOpSmallerThanOp: {
unsigned BResNo = 0;
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
BResNo);
return NodeToApply->getExtType(ResNo).
EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
}
case SDTCisEltOfVec: {
unsigned VResNo = 0;
TreePatternNode *VecOperand =
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of VecOperand that don't have the right element
// type.
return VecOperand->getExtType(VResNo).
EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
}
case SDTCisSubVecOfVec: {
unsigned VResNo = 0;
TreePatternNode *BigVecOperand =
getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of BigVecOperand that don't have the
// right subvector type.
return BigVecOperand->getExtType(VResNo).
EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
}
}
llvm_unreachable("Invalid ConstraintType!");
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
if (PropList[i]->getName() == "SDNPCommutative") {
Properties |= 1 << SDNPCommutative;
} else if (PropList[i]->getName() == "SDNPAssociative") {
Properties |= 1 << SDNPAssociative;
} else if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOutGlue") {
Properties |= 1 << SDNPOutGlue;
} else if (PropList[i]->getName() == "SDNPInGlue") {
Properties |= 1 << SDNPInGlue;
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
Properties |= 1 << SDNPOptInGlue;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else {
errs() << "Unknown SD Node property '" << PropList[i]->getName()
<< "' on node '" << R->getName() << "'!\n";
exit(1);
}
}
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
unsigned NumResults = getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
assert(ResNo == 0 && "Only handles single result nodes so far");
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
// Make sure that this applies to the correct node result.
if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
continue;
switch (TypeConstraints[i].ConstraintType) {
default: break;
case SDTypeConstraint::SDTCisVT:
return TypeConstraints[i].x.SDTCisVT_Info.VT;
case SDTypeConstraint::SDTCisPtrTy:
return MVT::iPTR;
}
}
return MVT::Other;
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
delete getChild(i);
#endif
}
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
if (Operator->getName() == "set" ||
Operator->getName() == "implicit")
return 0; // All return nothing.
if (Operator->isSubClassOf("Intrinsic"))
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
if (Operator->isSubClassOf("SDNode"))
return CDP.getSDNodeInfo(Operator).getNumResults();
if (Operator->isSubClassOf("PatFrag")) {
// If we've already parsed this pattern fragment, get it. Otherwise, handle
// the forward reference case where one pattern fragment references another
// before it is processed.
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
return PFRec->getOnlyTree()->getNumTypes();
// Get the result tree.
DagInit *Tree = Operator->getValueAsDag("Fragment");
Record *Op = 0;
if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
assert(Op && "Invalid Fragment");
return GetNumNodeResults(Op, CDP);
}
if (Operator->isSubClassOf("Instruction")) {
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
// FIXME: Should allow access to all the results here.
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
// Add on one implicit def if it has a resolvable type.
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
++NumDefsToAdd;
return NumDefsToAdd;
}
if (Operator->isSubClassOf("SDNodeXForm"))
return 1; // FIXME: Generalize SDNodeXForm
Operator->dump();
errs() << "Unhandled node in GetNumNodeResults\n";
exit(1);
}
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf())
OS << *getLeafValue();
else
OS << '(' << getOperator()->getName();
for (unsigned i = 0, e = Types.size(); i != e; ++i)
OS << ':' << getExtType(i).getName();
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
}
void TreePatternNode::dump() const {
print(errs());
}
/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node. For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFns() != N->getPredicateFns() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
return ((DI->getDef() == NDI->getDef())
&& (DepVars.find(getName()) == DepVars.end()
|| getName() == N->getName()));
}
}
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
}
New->setName(getName());
New->Types = Types;
New->setPredicateFns(getPredicateFns());
New->setTransformFn(getTransformFn());
return New;
}
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
for (unsigned i = 0, e = Types.size(); i != e; ++i)
Types[i] = EEVT::TypeSet(); // Reset to unknown type.
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
if (dynamic_cast<DefInit*>(Val) &&
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
// We found a use of a formal argument, replace it with its value.
TreePatternNode *NewChild = ArgMap[Child->getName()];
assert(NewChild && "Couldn't find formal argument!");
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
if (isLeaf()) return this; // nothing to do.
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrag")) {
// Just recursively inline children nodes.
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
return this;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size())
TP.error("'" + Op->getName() + "' fragment requires " +
utostr(Frag->getNumArgs()) + " operands!");
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
TreePredicateFn PredFn(Frag);
if (!PredFn.isAlwaysTrue())
FragTree->addPredicateFn(PredFn);
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs()) {
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNode*> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
FragTree->SubstituteFormalArguments(ArgMap);
}
FragTree->setName(getName());
for (unsigned i = 0, e = Types.size(); i != e; ++i)
FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
FragTree->addPredicateFn(getPredicateFns()[i]);
// Get a new copy of this fragment to stitch into here.
//delete this; // FIXME: implement refcounting!
// The fragment we inlined could have recursive inlining that is needed. See
// if there are any pattern fragments in it and inline them as needed.
return FragTree->InlinePatternFragments(TP);
}
/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
bool NotRegisters, TreePattern &TP) {
// Check to see if this is a register operand.
if (R->isSubClassOf("RegisterOperand")) {
assert(ResNo == 0 && "Regoperand ref only has one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
Record *RegClass = R->getValueAsDef("RegClass");
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
}
// Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
assert(ResNo == 0 && "Regclass ref only has one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
}
if (R->isSubClassOf("PatFrag")) {
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
// Pattern fragment types will be resolved when they are inlined.
return EEVT::TypeSet(); // Unknown.
}
if (R->isSubClassOf("Register")) {
assert(ResNo == 0 && "Registers only produce one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterVTs(R));
}
if (R->isSubClassOf("SubRegIndex")) {
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
return EEVT::TypeSet();
}
if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
assert(ResNo == 0 && "This node only has one result!");
// Using a VTSDNode or CondCodeSDNode.
return EEVT::TypeSet(MVT::Other, TP);
}
if (R->isSubClassOf("ComplexPattern")) {
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
TP);
}
if (R->isSubClassOf("PointerLikeRegClass")) {
assert(ResNo == 0 && "Regclass can only have one result!");
return EEVT::TypeSet(MVT::iPTR, TP);
}
if (R->getName() == "node" || R->getName() == "srcvalue" ||
R->getName() == "zero_reg") {
// Placeholder.
return EEVT::TypeSet(); // Unknown.
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
return EEVT::TypeSet(MVT::Other, TP);
}
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
return 0;
unsigned IID =
dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
return &CDP.getIntrinsicInfo(IID);
}
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
if (!isLeaf()) return 0;
DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
return &CGP.getComplexPattern(DI->getDef());
return 0;
}
/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (isLeaf()) {
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->hasProperty(Property);
return false;
}
Record *Operator = getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (NodeHasProperty(Property, CGP))
return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->TreeHasProperty(Property, CGP))
return true;
return false;
}
/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
return Int->isCommutative;
return false;
}
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
bool MadeChange = false;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
NotRegisters, TP), TP);
return MadeChange;
}
if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
assert(Types.size() == 1 && "Invalid IntInit");
// Int inits are always integers. :)
bool MadeChange = Types[0].EnforceInteger(TP);
if (!Types[0].isConcrete())
return MadeChange;
MVT::SimpleValueType VT = getType(0);
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
return MadeChange;
unsigned Size = EVT(VT).getSizeInBits();
// Make sure that the value is representable for this type.
if (Size >= 32) return MadeChange;
int Val = (II->getValue() << (32-Size)) >> (32-Size);
if (Val == II->getValue()) return MadeChange;
// If sign-extended doesn't fit, does it fit as unsigned?
unsigned ValueMask;
unsigned UnsignedVal;
ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
UnsignedVal = unsigned(II->getValue());
if ((ValueMask & UnsignedVal) == UnsignedVal)
return MadeChange;
TP.error("Integer value '" + itostr(II->getValue())+
"' is out of range for type '" + getEnumName(getType(0)) + "'!");
return MadeChange;
}
return false;
}
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert(getNumTypes() == 0 && "Set doesn't produce a value");
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
unsigned NC = getNumChildren();
TreePatternNode *SetVal = getChild(NC-1);
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
for (unsigned i = 0; i < NC-1; ++i) {
TreePatternNode *Child = getChild(i);
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
}
return MadeChange;
}
if (getOperator()->getName() == "implicit") {
assert(getNumTypes() == 0 && "Node doesn't produce a value");
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->getName() == "COPY_TO_REGCLASS") {
bool MadeChange = false;
MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
assert(getChild(0)->getNumTypes() == 1 &&
getChild(1)->getNumTypes() == 1 && "Unhandled case");
// child #1 of COPY_TO_REGCLASS should be a register class. We don't care
// what type it gets, so if it didn't get a concrete type just give it the
// first viable type from the reg class.
if (!getChild(1)->hasTypeSet(0) &&
!getChild(1)->getExtType(0).isCompletelyUnknown()) {
MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
}
return MadeChange;
}
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
bool MadeChange = false;
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
if (getNumChildren() != NumParamVTs + 1)
TP.error("Intrinsic '" + Int->Name + "' expects " +
utostr(NumParamVTs) + " operands, not " +
utostr(getNumChildren() - 1) + " operands!");
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
// Check that the number of operands is sane. Negative operands -> varargs.
if (NI.getNumOperands() >= 0 &&
getNumChildren() != (unsigned)NI.getNumOperands())
TP.error(getOperator()->getName() + " node requires exactly " +
itostr(NI.getNumOperands()) + " operands!");
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
CodeGenInstruction &InstInfo =
CDP.getTargetInfo().getInstruction(getOperator());
bool MadeChange = false;
// Apply the result types to the node, these come from the things in the
// (outs) list of the instruction.
// FIXME: Cap at one result so far.
unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
Record *ResultNode = Inst.getResult(ResNo);
if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
} else if (ResultNode->isSubClassOf("RegisterOperand")) {
Record *RegClass = ResultNode->getValueAsDef("RegClass");
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(RegClass);
MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
} else if (ResultNode->getName() == "unknown") {
// Nothing to do.
} else {
assert(ResultNode->isSubClassOf("RegisterClass") &&
"Operands should be register classes!");
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(ResultNode);
MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
}
}
// If the instruction has implicit defs, we apply the first one as a result.
// FIXME: This sucks, it should apply all implicit defs.
if (!InstInfo.ImplicitDefs.empty()) {
unsigned ResNo = NumResultsToAdd;
// FIXME: Generalize to multiple possible types and multiple possible
// ImplicitDefs.
MVT::SimpleValueType VT =
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
if (VT != MVT::Other)
MadeChange |= UpdateNodeType(ResNo, VT, TP);
}
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
// be the same.
if (getOperator()->getName() == "INSERT_SUBREG") {
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
}
unsigned ChildNo = 0;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
Record *OperandNode = Inst.getOperand(i);
// If the instruction expects a predicate or optional def operand, we
// codegen this by setting the operand to it's default value if it has a
// non-empty DefaultOps field.
if ((OperandNode->isSubClassOf("PredicateOperand") ||
OperandNode->isSubClassOf("OptionalDefOperand")) &&
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
continue;
// Verify that we didn't run out of provided operands.
if (ChildNo >= getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' expects more operands than were provided.");
MVT::SimpleValueType VT;
TreePatternNode *Child = getChild(ChildNo++);
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(OperandNode);
MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
} else if (OperandNode->isSubClassOf("RegisterOperand")) {
Record *RegClass = OperandNode->getValueAsDef("RegClass");
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(RegClass);
MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
} else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
} else if (OperandNode->getName() == "unknown") {
// Nothing to do.
} else
llvm_unreachable("Unknown operand type!");
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
}
if (ChildNo != getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' was provided too many operands!");
return MadeChange;
}
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand.
if (getNumChildren() != 1)
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
// If either the output or input of the xform does not have exact
// type info. We assume they must be the same. Otherwise, it is perfectly
// legal to transform from one type to a completely different type.
#if 0
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
return MadeChange;
}
#endif
return MadeChange;
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
return true;
if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
const CodeGenDAGPatterns &CDP) {
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, CDP))
return false;
// If this is an intrinsic, handle cases that would make it not match. For
// example, if an operand is required to be an immediate.
if (getOperator()->isSubClassOf("Intrinsic")) {
// TODO:
return true;
}
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node, unless the RHS also is.
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
if (OnlyOnRHSOfCommutative(getChild(i))) {
Reason="Immediate value must be on the RHS of commutative operators!";
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
Trees.push_back(ParseTreePattern(Pat, ""));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
Trees.push_back(Pat);
}
void TreePattern::error(const std::string &Msg) const {
dump();
throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
}
void TreePattern::ComputeNamedNodes() {
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
ComputeNamedNodes(Trees[i]);
}
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
if (!N->getName().empty())
NamedNodes[N->getName()].push_back(N);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
ComputeNamedNodes(N->getChild(i));
}
TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
Record *R = DI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode of its own. For example:
/// (foo GPR, imm) -> (foo GPR, (imm))
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
return ParseTreePattern(
DagInit::get(DI, "",
std::vector<std::pair<Init*, std::string> >()),
OpName);
// Input argument?
TreePatternNode *Res = new TreePatternNode(DI, 1);
if (R->getName() == "node" && !OpName.empty()) {
if (OpName.empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(OpName);
}
Res->setName(OpName);
return Res;
}
if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
if (!OpName.empty())
error("Constant int argument should not have a name!");
return new TreePatternNode(II, 1);
}
if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(IntRecTy::get());
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
return ParseTreePattern(II, OpName);
}
DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
if (!Dag) {
TheInit->dump();
error("Pattern has unexpected init kind!");
}
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
// Apply the type cast.
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
New->UpdateNodeType(0, getValueType(Operator), *this);
if (!OpName.empty())
error("ValueType cast should not have a name!");
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrag") &&
!Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
Operator->getName() != "set" &&
Operator->getName() != "implicit")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern) {
if (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm"))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
} else {
if (Operator->isSubClassOf("Intrinsic"))
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
if (Operator->isSubClassOf("SDNode") &&
Operator->getName() != "imm" &&
Operator->getName() != "fpimm" &&
Operator->getName() != "tglobaltlsaddr" &&
Operator->getName() != "tconstpool" &&
Operator->getName() != "tjumptable" &&
Operator->getName() != "tframeindex" &&
Operator->getName() != "texternalsym" &&
Operator->getName() != "tblockaddress" &&
Operator->getName() != "tglobaladdr" &&
Operator->getName() != "bb" &&
Operator->getName() != "vt")
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
}
std::vector<TreePatternNode*> Children;
// Parse all the operands.
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
// If the operator is an intrinsic, then this is just syntactic sugar for for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
// convert the intrinsic name to a number.
if (Operator->isSubClassOf("Intrinsic")) {
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
if (Int.IS.RetVTs.empty())
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
else if (Int.ModRef != CodeGenIntrinsic::NoMem)
// Has side-effects, requires chain.
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
else // Otherwise, no chain.
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
Children.insert(Children.begin(), IIDNode);
}
unsigned NumResults = GetNumNodeResults(Operator, CDP);
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
Result->setName(OpName);
if (!Dag->getName().empty()) {
assert(Result->getName().empty());
Result->setName(Dag->getName());
}
return Result;
}
/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will. This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNode *&N) {
if (N->isLeaf())
return false;
// If we have a bitconvert with a resolved type and if the source and
// destination types are the same, then the bitconvert is useless, remove it.
if (N->getOperator()->getName() == "bitconvert" &&
N->getExtType(0).isConcrete() &&
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
N->getName().empty()) {
N = N->getChild(0);
SimplifyTree(N);
return true;
}
// Walk all children.
bool MadeChange = false;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
MadeChange |= SimplifyTree(Child);
N->setChild(i, Child);
}
return MadeChange;
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Throw an exception if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
if (NamedNodes.empty())
ComputeNamedNodes();
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
MadeChange |= SimplifyTree(Trees[i]);
}
// If there are constraints on our named nodes, apply them.
for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
// If we have input named node types, propagate their types to the named
// values here.
if (InNamedTypes) {
// FIXME: Should be error?
assert(InNamedTypes->count(I->getKey()) &&
"Named node in output pattern but not input pattern?");
const SmallVectorImpl<TreePatternNode*> &InNodes =
InNamedTypes->find(I->getKey())->second;
// The input types should be fully resolved by now.
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
// If this node is a register class, and it is the root of the pattern
// then we're mapping something onto an input register. We allow
// changing the type of the input register in this case. This allows
// us to match things like:
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
continue;
}
assert(Nodes[i]->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
*this);
}
}
// If there are multiple nodes with the same name, they must all have the
// same type.
if (I->second.size() > 1) {
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
}
}
}
}
bool HasUnresolvedTypes = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
return !HasUnresolvedTypes;
}
void TreePattern::print(raw_ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
OS << "\t";
Trees[i]->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
Records(R), Target(R) {
Intrinsics = LoadIntrinsics(Records, false);
TgtIntrinsics = LoadIntrinsics(Records, true);
ParseNodeInfo();
ParseNodeTransforms();
ParseComplexPatterns();
ParsePatternFragments();
ParseDefaultOperands();
ParseInstructions();
ParsePatterns();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
// Infer instruction flags. For example, we can detect loads,
// stores, and side effects in many cases by examining an
// instruction's pattern.
InferInstructionFlags();
}
CodeGenDAGPatterns::~CodeGenDAGPatterns() {
for (pf_iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I)
delete I->second;
}
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
if (!N || !N->isSubClassOf("SDNode")) {
errs() << "Error getting SDNode '" << Name << "'!\n";
exit(1);
}
return N;
}
// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
while (!Nodes.empty()) {
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
Nodes.pop_back();
}
// Get the builtin intrinsic nodes.
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
std::string Code = XFormNode->getValueAsString("XFormFunction");
SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Xforms.pop_back();
}
}
void CodeGenDAGPatterns::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments() {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
// First step, parse all of the fragments.
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
PatternFragments[Fragments[i]] = P;
// Validate the argument list, converting it to set, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
std::set<std::string> OperandsSet(Args.begin(), Args.end());
if (OperandsSet.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
// Special cases: ops == outs == ins. Different names are used to
// improve readability.
if (!OpsOp ||
(OpsOp->getDef()->getName() != "ops" &&
OpsOp->getDef()->getName() != "outs" &&
OpsOp->getDef()->getName() != "ins"))
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
static_cast<DefInit*>(OpsList->getArg(j))->
getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (OpsList->getArgName(j).empty())
P->error("Operands list should have names for each operand!");
if (!OperandsSet.count(OpsList->getArgName(j)))
P->error("'" + OpsList->getArgName(j) +
"' does not occur in pattern or was multiply specified!");
OperandsSet.erase(OpsList->getArgName(j));
Args.push_back(OpsList->getArgName(j));
}
if (!OperandsSet.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsSet.begin() + "'!");
// If there is a code init for this fragment, keep track of the fact that
// this fragment uses it.
TreePredicateFn PredFn(P);
if (!PredFn.isAlwaysTrue())
P->getOnlyTree()->addPredicateFn(PredFn);
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
P->getOnlyTree()->setTransformFn(Transform);
}
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
TreePattern *ThePat = PatternFragments[Fragments[i]];
ThePat->InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern.
try {
ThePat->InferAllTypes();
} catch (...) {
// If this pattern fragment is not supported by this target (no types can
// satisfy its constraints), just ignore it. If the bogus pattern is
// actually used by instructions, the type consistency error will be
// reported there.
}
// If debugging, print out the pattern fragment result.
DEBUG(ThePat->dump());
}
}
void CodeGenDAGPatterns::ParseDefaultOperands() {
std::vector<Record*> DefaultOps[2];
DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
// Find some SDNode.
assert(!SDNodes.empty() && "No SDNodes parsed?");
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
for (unsigned iter = 0; iter != 2; ++iter) {
for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
// SomeSDnode so that we can parse this.
std::vector<std::pair<Init*, std::string> > Ops;
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
DefaultInfo->getArgName(op)));
DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
// Create a TreePattern to parse this.
TreePattern P(DefaultOps[iter][i], DI, false, *this);
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
// Copy the operands over into a DAGDefaultOperand.
DAGDefaultOperand DefaultOpInfo;
TreePatternNode *T = P.getTree(0);
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
TreePatternNode *TPN = T->getChild(op);
while (TPN->ApplyTypeConstraints(P, false))
/* Resolve all types */;
if (TPN->ContainsUnresolvedType()) {
if (iter == 0)
throw "Value #" + utostr(i) + " of PredicateOperand '" +
DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
else
throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
}
DefaultOpInfo.DefaultOps.push_back(TPN);
}
// Insert it into the DefaultOperands map so we can find it later.
DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
}
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
I->error("Input " + DI->getDef()->getName() + " must be named!");
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNode *&Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
return true;
}
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, TreePatternNode*>&InstResults,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
if (Pat->getOperator()->getName() == "implicit") {
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("implicitly defined value should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val || !Val->getDef()->isSubClassOf("Register"))
I->error("implicitly defined value should be a register!");
InstImpResults.push_back(Val->getDef());
}
return;
}
if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getNumTypes() == 0)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I->error("set requires operands!");
if (Pat->getTransformFn())
I->error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumDests = Pat->getNumChildren()-1;
for (unsigned i = 0; i != NumDests; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("set destination should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val)
I->error("set destination should be a register!");
if (Val->getDef()->isSubClassOf("RegisterClass") ||
Val->getDef()->isSubClassOf("RegisterOperand") ||
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
if (Dest->getName().empty())
I->error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I->error("cannot set '" + Dest->getName() +"' multiple times");
InstResults[Dest->getName()] = Dest;
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I->error("set destination should be a register!");
}
}
// Verify and collect info from the computation.