blob: dc92a6c218e9ab5d2c7a7907e0c637b013a91e84 [file] [log] [blame]
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures. It also emits a matcher for
// custom operand parsing.
//
// Converting assembly operands into MCInst structures
// ---------------------------------------------------
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
// 'addl' (immediate ...) (register ...)
// 'add' (immediate ...) (memory ...)
// 'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
// - It may be ambiguous; many architectures can legally encode particular
// variants of an instruction in different ways (for example, using a smaller
// encoding for small immediates). Such ambiguities should never be
// arbitrarily resolved by the assembler, the assembler is always responsible
// for choosing the "best" available instruction.
//
// - It may depend on the subtarget or the assembler context. Instructions
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
// an SSE instruction in a file being assembled for i486) should be accepted
// and rejected by the assembler front end. However, if the proper encoding
// for an instruction is dependent on the assembler context then the matcher
// is responsible for selecting the correct machine instruction for the
// current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
// 1. Classification: Each operand is mapped to the unique set which (a)
// contains it, and (b) is the largest such subset for which a single
// instruction could match all members.
//
// For register classes, we can generate these subgroups automatically. For
// arbitrary operands, we expect the user to define the classes and their
// relations to one another (for example, 8-bit signed immediates as a
// subset of 32-bit immediates).
//
// By partitioning the operands in this way, we guarantee that for any
// tuple of classes, any single instruction must match either all or none
// of the sets of operands which could classify to that tuple.
//
// In addition, the subset relation amongst classes induces a partial order
// on such tuples, which we use to resolve ambiguities.
//
// 2. The input can now be treated as a tuple of classes (static tokens are
// simple singleton sets). Each such tuple should generally map to a single
// instruction (we currently ignore cases where this isn't true, whee!!!),
// which we can emit a simple matcher for.
//
// Custom Operand Parsing
// ----------------------
//
// Some targets need a custom way to parse operands, some specific instructions
// can contain arguments that can represent processor flags and other kinds of
// identifiers that need to be mapped to specific valeus in the final encoded
// instructions. The target specific custom operand parsing works in the
// following way:
//
// 1. A operand match table is built, each entry contains a mnemonic, an
// operand class, a mask for all operand positions for that same
// class/mnemonic and target features to be checked while trying to match.
//
// 2. The operand matcher will try every possible entry with the same
// mnemonic and will check if the target feature for this mnemonic also
// matches. After that, if the operand to be matched has its index
// present in the mask, a successful match occurs. Otherwise, fallback
// to the regular operand parsing.
//
// 3. For a match success, each operand class that has a 'ParserMethod'
// becomes part of a switch from where the custom method is called.
//
//===----------------------------------------------------------------------===//
#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "StringMatcher.h"
#include "StringToOffsetTable.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <map>
#include <set>
using namespace llvm;
static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
cl::desc("Only match instructions with the given prefix"));
namespace {
class AsmMatcherInfo;
struct SubtargetFeatureInfo;
/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
enum ClassInfoKind {
/// Invalid kind, for use as a sentinel value.
Invalid = 0,
/// The class for a particular token.
Token,
/// The (first) register class, subsequent register classes are
/// RegisterClass0+1, and so on.
RegisterClass0,
/// The (first) user defined class, subsequent user defined classes are
/// UserClass0+1, and so on.
UserClass0 = 1<<16
};
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
/// N) for the Nth user defined class.
unsigned Kind;
/// SuperClasses - The super classes of this class. Note that for simplicities
/// sake user operands only record their immediate super class, while register
/// operands include all superclasses.
std::vector<ClassInfo*> SuperClasses;
/// Name - The full class name, suitable for use in an enum.
std::string Name;
/// ClassName - The unadorned generic name for this class (e.g., Token).
std::string ClassName;
/// ValueName - The name of the value this class represents; for a token this
/// is the literal token string, for an operand it is the TableGen class (or
/// empty if this is a derived class).
std::string ValueName;
/// PredicateMethod - The name of the operand method to test whether the
/// operand matches this class; this is not valid for Token or register kinds.
std::string PredicateMethod;
/// RenderMethod - The name of the operand method to add this operand to an
/// MCInst; this is not valid for Token or register kinds.
std::string RenderMethod;
/// ParserMethod - The name of the operand method to do a target specific
/// parsing on the operand.
std::string ParserMethod;
/// For register classes, the records for all the registers in this class.
std::set<Record*> Registers;
public:
/// isRegisterClass() - Check if this is a register class.
bool isRegisterClass() const {
return Kind >= RegisterClass0 && Kind < UserClass0;
}
/// isUserClass() - Check if this is a user defined class.
bool isUserClass() const {
return Kind >= UserClass0;
}
/// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
/// are related if they are in the same class hierarchy.
bool isRelatedTo(const ClassInfo &RHS) const {
// Tokens are only related to tokens.
if (Kind == Token || RHS.Kind == Token)
return Kind == Token && RHS.Kind == Token;
// Registers classes are only related to registers classes, and only if
// their intersection is non-empty.
if (isRegisterClass() || RHS.isRegisterClass()) {
if (!isRegisterClass() || !RHS.isRegisterClass())
return false;
std::set<Record*> Tmp;
std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
std::set_intersection(Registers.begin(), Registers.end(),
RHS.Registers.begin(), RHS.Registers.end(),
II);
return !Tmp.empty();
}
// Otherwise we have two users operands; they are related if they are in the
// same class hierarchy.
//
// FIXME: This is an oversimplification, they should only be related if they
// intersect, however we don't have that information.
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty())
Root = Root->SuperClasses.front();
const ClassInfo *RHSRoot = &RHS;
while (!RHSRoot->SuperClasses.empty())
RHSRoot = RHSRoot->SuperClasses.front();
return Root == RHSRoot;
}
/// isSubsetOf - Test whether this class is a subset of \arg RHS;
bool isSubsetOf(const ClassInfo &RHS) const {
// This is a subset of RHS if it is the same class...
if (this == &RHS)
return true;
// ... or if any of its super classes are a subset of RHS.
for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
ie = SuperClasses.end(); it != ie; ++it)
if ((*it)->isSubsetOf(RHS))
return true;
return false;
}
/// operator< - Compare two classes.
bool operator<(const ClassInfo &RHS) const {
if (this == &RHS)
return false;
// Unrelated classes can be ordered by kind.
if (!isRelatedTo(RHS))
return Kind < RHS.Kind;
switch (Kind) {
case Invalid:
llvm_unreachable("Invalid kind!");
default:
// This class precedes the RHS if it is a proper subset of the RHS.
if (isSubsetOf(RHS))
return true;
if (RHS.isSubsetOf(*this))
return false;
// Otherwise, order by name to ensure we have a total ordering.
return ValueName < RHS.ValueName;
}
}
};
/// MatchableInfo - Helper class for storing the necessary information for an
/// instruction or alias which is capable of being matched.
struct MatchableInfo {
struct AsmOperand {
/// Token - This is the token that the operand came from.
StringRef Token;
/// The unique class instance this operand should match.
ClassInfo *Class;
/// The operand name this is, if anything.
StringRef SrcOpName;
/// The suboperand index within SrcOpName, or -1 for the entire operand.
int SubOpIdx;
/// Register record if this token is singleton register.
Record *SingletonReg;
explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
SingletonReg(0) {}
};
/// ResOperand - This represents a single operand in the result instruction
/// generated by the match. In cases (like addressing modes) where a single
/// assembler operand expands to multiple MCOperands, this represents the
/// single assembler operand, not the MCOperand.
struct ResOperand {
enum {
/// RenderAsmOperand - This represents an operand result that is
/// generated by calling the render method on the assembly operand. The
/// corresponding AsmOperand is specified by AsmOperandNum.
RenderAsmOperand,
/// TiedOperand - This represents a result operand that is a duplicate of
/// a previous result operand.
TiedOperand,
/// ImmOperand - This represents an immediate value that is dumped into
/// the operand.
ImmOperand,
/// RegOperand - This represents a fixed register that is dumped in.
RegOperand
} Kind;
union {
/// This is the operand # in the AsmOperands list that this should be
/// copied from.
unsigned AsmOperandNum;
/// TiedOperandNum - This is the (earlier) result operand that should be
/// copied from.
unsigned TiedOperandNum;
/// ImmVal - This is the immediate value added to the instruction.
int64_t ImmVal;
/// Register - This is the register record.
Record *Register;
};
/// MINumOperands - The number of MCInst operands populated by this
/// operand.
unsigned MINumOperands;
static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
ResOperand X;
X.Kind = RenderAsmOperand;
X.AsmOperandNum = AsmOpNum;
X.MINumOperands = NumOperands;
return X;
}
static ResOperand getTiedOp(unsigned TiedOperandNum) {
ResOperand X;
X.Kind = TiedOperand;
X.TiedOperandNum = TiedOperandNum;
X.MINumOperands = 1;
return X;
}
static ResOperand getImmOp(int64_t Val) {
ResOperand X;
X.Kind = ImmOperand;
X.ImmVal = Val;
X.MINumOperands = 1;
return X;
}
static ResOperand getRegOp(Record *Reg) {
ResOperand X;
X.Kind = RegOperand;
X.Register = Reg;
X.MINumOperands = 1;
return X;
}
};
/// AsmVariantID - Target's assembly syntax variant no.
int AsmVariantID;
/// TheDef - This is the definition of the instruction or InstAlias that this
/// matchable came from.
Record *const TheDef;
/// DefRec - This is the definition that it came from.
PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
const CodeGenInstruction *getResultInst() const {
if (DefRec.is<const CodeGenInstruction*>())
return DefRec.get<const CodeGenInstruction*>();
return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
}
/// ResOperands - This is the operand list that should be built for the result
/// MCInst.
std::vector<ResOperand> ResOperands;
/// AsmString - The assembly string for this instruction (with variants
/// removed), e.g. "movsx $src, $dst".
std::string AsmString;
/// Mnemonic - This is the first token of the matched instruction, its
/// mnemonic.
StringRef Mnemonic;
/// AsmOperands - The textual operands that this instruction matches,
/// annotated with a class and where in the OperandList they were defined.
/// This directly corresponds to the tokenized AsmString after the mnemonic is
/// removed.
SmallVector<AsmOperand, 4> AsmOperands;
/// Predicates - The required subtarget features to match this instruction.
SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
/// ConversionFnKind - The enum value which is passed to the generated
/// ConvertToMCInst to convert parsed operands into an MCInst for this
/// function.
std::string ConversionFnKind;
MatchableInfo(const CodeGenInstruction &CGI)
: AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
AsmString(CGI.AsmString) {
}
MatchableInfo(const CodeGenInstAlias *Alias)
: AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
AsmString(Alias->AsmString) {
}
void Initialize(const AsmMatcherInfo &Info,
SmallPtrSet<Record*, 16> &SingletonRegisters,
int AsmVariantNo, std::string &RegisterPrefix);
/// Validate - Return true if this matchable is a valid thing to match against
/// and perform a bunch of validity checking.
bool Validate(StringRef CommentDelimiter, bool Hack) const;
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
/// if present, from specified token.
void
extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
std::string &RegisterPrefix);
/// FindAsmOperand - Find the AsmOperand with the specified name and
/// suboperand index.
int FindAsmOperand(StringRef N, int SubOpIdx) const {
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
if (N == AsmOperands[i].SrcOpName &&
SubOpIdx == AsmOperands[i].SubOpIdx)
return i;
return -1;
}
/// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
/// This does not check the suboperand index.
int FindAsmOperandNamed(StringRef N) const {
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
if (N == AsmOperands[i].SrcOpName)
return i;
return -1;
}
void BuildInstructionResultOperands();
void BuildAliasResultOperands();
/// operator< - Compare two matchables.
bool operator<(const MatchableInfo &RHS) const {
// The primary comparator is the instruction mnemonic.
if (Mnemonic != RHS.Mnemonic)
return Mnemonic < RHS.Mnemonic;
if (AsmOperands.size() != RHS.AsmOperands.size())
return AsmOperands.size() < RHS.AsmOperands.size();
// Compare lexicographically by operand. The matcher validates that other
// orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
return true;
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
return false;
}
return false;
}
/// CouldMatchAmbiguouslyWith - Check whether this matchable could
/// ambiguously match the same set of operands as \arg RHS (without being a
/// strictly superior match).
bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
// The primary comparator is the instruction mnemonic.
if (Mnemonic != RHS.Mnemonic)
return false;
// The number of operands is unambiguous.
if (AsmOperands.size() != RHS.AsmOperands.size())
return false;
// Otherwise, make sure the ordering of the two instructions is unambiguous
// by checking that either (a) a token or operand kind discriminates them,
// or (b) the ordering among equivalent kinds is consistent.
// Tokens and operand kinds are unambiguous (assuming a correct target
// specific parser).
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
AsmOperands[i].Class->Kind == ClassInfo::Token)
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
return false;
// Otherwise, this operand could commute if all operands are equivalent, or
// there is a pair of operands that compare less than and a pair that
// compare greater than.
bool HasLT = false, HasGT = false;
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
HasLT = true;
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
HasGT = true;
}
return !(HasLT ^ HasGT);
}
void dump();
private:
void TokenizeAsmString(const AsmMatcherInfo &Info);
};
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
/// \brief The predicate record for this feature.
Record *TheDef;
/// \brief An unique index assigned to represent this feature.
unsigned Index;
SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
/// \brief The name of the enumerated constant identifying this feature.
std::string getEnumName() const {
return "Feature_" + TheDef->getName();
}
};
struct OperandMatchEntry {
unsigned OperandMask;
MatchableInfo* MI;
ClassInfo *CI;
static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
unsigned opMask) {
OperandMatchEntry X;
X.OperandMask = opMask;
X.CI = ci;
X.MI = mi;
return X;
}
};
class AsmMatcherInfo {
public:
/// Tracked Records
RecordKeeper &Records;
/// The tablegen AsmParser record.
Record *AsmParser;
/// Target - The target information.
CodeGenTarget &Target;
/// The classes which are needed for matching.
std::vector<ClassInfo*> Classes;
/// The information on the matchables to match.
std::vector<MatchableInfo*> Matchables;
/// Info for custom matching operands by user defined methods.
std::vector<OperandMatchEntry> OperandMatchInfo;
/// Map of Register records to their class information.
std::map<Record*, ClassInfo*> RegisterClasses;
/// Map of Predicate records to their subtarget information.
std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
private:
/// Map of token to class information which has already been constructed.
std::map<std::string, ClassInfo*> TokenClasses;
/// Map of RegisterClass records to their class information.
std::map<Record*, ClassInfo*> RegisterClassClasses;
/// Map of AsmOperandClass records to their class information.
std::map<Record*, ClassInfo*> AsmOperandClasses;
private:
/// getTokenClass - Lookup or create the class for the given token.
ClassInfo *getTokenClass(StringRef Token);
/// getOperandClass - Lookup or create the class for the given operand.
ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
int SubOpIdx);
ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
/// BuildRegisterClasses - Build the ClassInfo* instances for register
/// classes.
void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
/// BuildOperandClasses - Build the ClassInfo* instances for user defined
/// operand classes.
void BuildOperandClasses();
void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
unsigned AsmOpIdx);
void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
MatchableInfo::AsmOperand &Op);
public:
AsmMatcherInfo(Record *AsmParser,
CodeGenTarget &Target,
RecordKeeper &Records);
/// BuildInfo - Construct the various tables used during matching.
void BuildInfo();
/// BuildOperandMatchInfo - Build the necessary information to handle user
/// defined operand parsing methods.
void BuildOperandMatchInfo();
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
/// given operand.
SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
SubtargetFeatures.find(Def);
return I == SubtargetFeatures.end() ? 0 : I->second;
}
RecordKeeper &getRecords() const {
return Records;
}
};
}
void MatchableInfo::dump() {
errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
AsmOperand &Op = AsmOperands[i];
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
errs() << '\"' << Op.Token << "\"\n";
}
}
void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
SmallPtrSet<Record*, 16> &SingletonRegisters,
int AsmVariantNo, std::string &RegisterPrefix) {
AsmVariantID = AsmVariantNo;
AsmString =
CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
TokenizeAsmString(Info);
// Compute the require features.
std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
if (SubtargetFeatureInfo *Feature =
Info.getSubtargetFeature(Predicates[i]))
RequiredFeatures.push_back(Feature);
// Collect singleton registers, if used.
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
if (Record *Reg = AsmOperands[i].SingletonReg)
SingletonRegisters.insert(Reg);
}
}
/// TokenizeAsmString - Tokenize a simplified assembly string.
void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
StringRef String = AsmString;
unsigned Prev = 0;
bool InTok = true;
for (unsigned i = 0, e = String.size(); i != e; ++i) {
switch (String[i]) {
case '[':
case ']':
case '*':
case '!':
case ' ':
case '\t':
case ',':
if (InTok) {
AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
InTok = false;
}
if (!isspace(String[i]) && String[i] != ',')
AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
Prev = i + 1;
break;
case '\\':
if (InTok) {
AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
InTok = false;
}
++i;
assert(i != String.size() && "Invalid quoted character");
AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
Prev = i + 1;
break;
case '$': {
if (InTok) {
AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
InTok = false;
}
// If this isn't "${", treat like a normal token.
if (i + 1 == String.size() || String[i + 1] != '{') {
Prev = i;
break;
}
StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
assert(End != String.end() && "Missing brace in operand reference!");
size_t EndPos = End - String.begin();
AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
Prev = EndPos + 1;
i = EndPos;
break;
}
case '.':
if (InTok)
AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
Prev = i;
InTok = true;
break;
default:
InTok = true;
}
}
if (InTok && Prev != String.size())
AsmOperands.push_back(AsmOperand(String.substr(Prev)));
// The first token of the instruction is the mnemonic, which must be a
// simple string, not a $foo variable or a singleton register.
if (AsmOperands.empty())
throw TGError(TheDef->getLoc(),
"Instruction '" + TheDef->getName() + "' has no tokens");
Mnemonic = AsmOperands[0].Token;
// FIXME : Check and raise an error if it is a register.
if (Mnemonic[0] == '$')
throw TGError(TheDef->getLoc(),
"Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
// Remove the first operand, it is tracked in the mnemonic field.
AsmOperands.erase(AsmOperands.begin());
}
bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
// Reject matchables with no .s string.
if (AsmString.empty())
throw TGError(TheDef->getLoc(), "instruction with empty asm string");
// Reject any matchables with a newline in them, they should be marked
// isCodeGenOnly if they are pseudo instructions.
if (AsmString.find('\n') != std::string::npos)
throw TGError(TheDef->getLoc(),
"multiline instruction is not valid for the asmparser, "
"mark it isCodeGenOnly");
// Remove comments from the asm string. We know that the asmstring only
// has one line.
if (!CommentDelimiter.empty() &&
StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
throw TGError(TheDef->getLoc(),
"asmstring for instruction has comment character in it, "
"mark it isCodeGenOnly");
// Reject matchables with operand modifiers, these aren't something we can
// handle, the target should be refactored to use operands instead of
// modifiers.
//
// Also, check for instructions which reference the operand multiple times;
// this implies a constraint we would not honor.
std::set<std::string> OperandNames;
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
StringRef Tok = AsmOperands[i].Token;
if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
throw TGError(TheDef->getLoc(),
"matchable with operand modifier '" + Tok.str() +
"' not supported by asm matcher. Mark isCodeGenOnly!");
// Verify that any operand is only mentioned once.
// We reject aliases and ignore instructions for now.
if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
if (!Hack)
throw TGError(TheDef->getLoc(),
"ERROR: matchable with tied operand '" + Tok.str() +
"' can never be matched!");
// FIXME: Should reject these. The ARM backend hits this with $lane in a
// bunch of instructions. It is unclear what the right answer is.
DEBUG({
errs() << "warning: '" << TheDef->getName() << "': "
<< "ignoring instruction with tied operand '"
<< Tok.str() << "'\n";
});
return false;
}
}
return true;
}
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
/// if present, from specified token.
void MatchableInfo::
extractSingletonRegisterForAsmOperand(unsigned OperandNo,
const AsmMatcherInfo &Info,
std::string &RegisterPrefix) {
StringRef Tok = AsmOperands[OperandNo].Token;
if (RegisterPrefix.empty()) {
std::string LoweredTok = Tok.lower();
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
return;
}
if (!Tok.startswith(RegisterPrefix))
return;
StringRef RegName = Tok.substr(RegisterPrefix.size());
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
// If there is no register prefix (i.e. "%" in "%eax"), then this may
// be some random non-register token, just ignore it.
return;
}
static std::string getEnumNameForToken(StringRef Str) {
std::string Res;
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
switch (*it) {
case '*': Res += "_STAR_"; break;
case '%': Res += "_PCT_"; break;
case ':': Res += "_COLON_"; break;
case '!': Res += "_EXCLAIM_"; break;
case '.': Res += "_DOT_"; break;
default:
if (isalnum(*it))
Res += *it;
else
Res += "_" + utostr((unsigned) *it) + "_";
}
}
return Res;
}
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
ClassInfo *&Entry = TokenClasses[Token];
if (!Entry) {
Entry = new ClassInfo();
Entry->Kind = ClassInfo::Token;
Entry->ClassName = "Token";
Entry->Name = "MCK_" + getEnumNameForToken(Token);
Entry->ValueName = Token;
Entry->PredicateMethod = "<invalid>";
Entry->RenderMethod = "<invalid>";
Entry->ParserMethod = "";
Classes.push_back(Entry);
}
return Entry;
}
ClassInfo *
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
int SubOpIdx) {
Record *Rec = OI.Rec;
if (SubOpIdx != -1)
Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
return getOperandClass(Rec, SubOpIdx);
}
ClassInfo *
AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
if (Rec->isSubClassOf("RegisterOperand")) {
// RegisterOperand may have an associated ParserMatchClass. If it does,
// use it, else just fall back to the underlying register class.
const RecordVal *R = Rec->getValue("ParserMatchClass");
if (R == 0 || R->getValue() == 0)
throw "Record `" + Rec->getName() +
"' does not have a ParserMatchClass!\n";
if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
Record *MatchClass = DI->getDef();
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
return CI;
}
// No custom match class. Just use the register class.
Record *ClassRec = Rec->getValueAsDef("RegClass");
if (!ClassRec)
throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
"' has no associated register class!\n");
if (ClassInfo *CI = RegisterClassClasses[ClassRec])
return CI;
throw TGError(Rec->getLoc(), "register class has no class info!");
}
if (Rec->isSubClassOf("RegisterClass")) {
if (ClassInfo *CI = RegisterClassClasses[Rec])
return CI;
throw TGError(Rec->getLoc(), "register class has no class info!");
}
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
return CI;
throw TGError(Rec->getLoc(), "operand has no match class!");
}
void AsmMatcherInfo::
BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
const std::vector<CodeGenRegister*> &Registers =
Target.getRegBank().getRegisters();
ArrayRef<CodeGenRegisterClass*> RegClassList =
Target.getRegBank().getRegClasses();
// The register sets used for matching.
std::set< std::set<Record*> > RegisterSets;
// Gather the defined sets.
for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
RegisterSets.insert(std::set<Record*>(
(*it)->getOrder().begin(), (*it)->getOrder().end()));
// Add any required singleton sets.
for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
ie = SingletonRegisters.end(); it != ie; ++it) {
Record *Rec = *it;
RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
}
// Introduce derived sets where necessary (when a register does not determine
// a unique register set class), and build the mapping of registers to the set
// they should classify to.
std::map<Record*, std::set<Record*> > RegisterMap;
for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
ie = Registers.end(); it != ie; ++it) {
const CodeGenRegister &CGR = **it;
// Compute the intersection of all sets containing this register.
std::set<Record*> ContainingSet;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
if (!it->count(CGR.TheDef))
continue;
if (ContainingSet.empty()) {
ContainingSet = *it;
continue;
}
std::set<Record*> Tmp;
std::swap(Tmp, ContainingSet);
std::insert_iterator< std::set<Record*> > II(ContainingSet,
ContainingSet.begin());
std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
}
if (!ContainingSet.empty()) {
RegisterSets.insert(ContainingSet);
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
}
}
// Construct the register classes.
std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
unsigned Index = 0;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = new ClassInfo();
CI->Kind = ClassInfo::RegisterClass0 + Index;
CI->ClassName = "Reg" + utostr(Index);
CI->Name = "MCK_Reg" + utostr(Index);
CI->ValueName = "";
CI->PredicateMethod = ""; // unused
CI->RenderMethod = "addRegOperands";
CI->Registers = *it;
Classes.push_back(CI);
RegisterSetClasses.insert(std::make_pair(*it, CI));
}
// Find the superclasses; we could compute only the subgroup lattice edges,
// but there isn't really a point.
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
ClassInfo *CI = RegisterSetClasses[*it];
for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
ie2 = RegisterSets.end(); it2 != ie2; ++it2)
if (*it != *it2 &&
std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
}
// Name the register classes which correspond to a user defined RegisterClass.
for (ArrayRef<CodeGenRegisterClass*>::const_iterator
it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
const CodeGenRegisterClass &RC = **it;
// Def will be NULL for non-user defined register classes.
Record *Def = RC.getDef();
if (!Def)
continue;
ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
RC.getOrder().end())];
if (CI->ValueName.empty()) {
CI->ClassName = RC.getName();
CI->Name = "MCK_" + RC.getName();
CI->ValueName = RC.getName();
} else
CI->ValueName = CI->ValueName + "," + RC.getName();
RegisterClassClasses.insert(std::make_pair(Def, CI));
}
// Populate the map for individual registers.
for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
ie = RegisterMap.end(); it != ie; ++it)
RegisterClasses[it->first] = RegisterSetClasses[it->second];
// Name the register classes which correspond to singleton registers.
for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
ie = SingletonRegisters.end(); it != ie; ++it) {
Record *Rec = *it;
ClassInfo *CI = RegisterClasses[Rec];
assert(CI && "Missing singleton register class info!");
if (CI->ValueName.empty()) {
CI->ClassName = Rec->getName();
CI->Name = "MCK_" + Rec->getName();
CI->ValueName = Rec->getName();
} else
CI->ValueName = CI->ValueName + "," + Rec->getName();
}
}
void AsmMatcherInfo::BuildOperandClasses() {
std::vector<Record*> AsmOperands =
Records.getAllDerivedDefinitions("AsmOperandClass");
// Pre-populate AsmOperandClasses map.
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
ie = AsmOperands.end(); it != ie; ++it)
AsmOperandClasses[*it] = new ClassInfo();
unsigned Index = 0;
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
ie = AsmOperands.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = AsmOperandClasses[*it];
CI->Kind = ClassInfo::UserClass0 + Index;
ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
if (!DI) {
PrintError((*it)->getLoc(), "Invalid super class reference!");
continue;
}
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
if (!SC)
PrintError((*it)->getLoc(), "Invalid super class reference!");
else
CI->SuperClasses.push_back(SC);
}
CI->ClassName = (*it)->getValueAsString("Name");
CI->Name = "MCK_" + CI->ClassName;
CI->ValueName = (*it)->getName();
// Get or construct the predicate method name.
Init *PMName = (*it)->getValueInit("PredicateMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
CI->PredicateMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(PMName) &&
"Unexpected PredicateMethod field!");
CI->PredicateMethod = "is" + CI->ClassName;
}
// Get or construct the render method name.
Init *RMName = (*it)->getValueInit("RenderMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
CI->RenderMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(RMName) &&
"Unexpected RenderMethod field!");
CI->RenderMethod = "add" + CI->ClassName + "Operands";
}
// Get the parse method name or leave it as empty.
Init *PRMName = (*it)->getValueInit("ParserMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
CI->ParserMethod = SI->getValue();
AsmOperandClasses[*it] = CI;
Classes.push_back(CI);
}
}
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
CodeGenTarget &target,
RecordKeeper &records)
: Records(records), AsmParser(asmParser), Target(target) {
}
/// BuildOperandMatchInfo - Build the necessary information to handle user
/// defined operand parsing methods.
void AsmMatcherInfo::BuildOperandMatchInfo() {
/// Map containing a mask with all operands indicies that can be found for
/// that class inside a instruction.
std::map<ClassInfo*, unsigned> OpClassMask;
for (std::vector<MatchableInfo*>::const_iterator it =
Matchables.begin(), ie = Matchables.end();
it != ie; ++it) {
MatchableInfo &II = **it;
OpClassMask.clear();
// Keep track of all operands of this instructions which belong to the
// same class.
for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
if (Op.Class->ParserMethod.empty())
continue;
unsigned &OperandMask = OpClassMask[Op.Class];
OperandMask |= (1 << i);
}
// Generate operand match info for each mnemonic/operand class pair.
for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
iie = OpClassMask.end(); iit != iie; ++iit) {
unsigned OpMask = iit->second;
ClassInfo *CI = iit->first;
OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
}
}
}
void AsmMatcherInfo::BuildInfo() {
// Build information about all of the AssemblerPredicates.
std::vector<Record*> AllPredicates =
Records.getAllDerivedDefinitions("Predicate");
for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
Record *Pred = AllPredicates[i];
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
if (Pred->getName().empty())
throw TGError(Pred->getLoc(), "Predicate has no name!");
unsigned FeatureNo = SubtargetFeatures.size();
SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
assert(FeatureNo < 32 && "Too many subtarget features!");
}
// Parse the instructions; we need to do this first so that we can gather the
// singleton register classes.
SmallPtrSet<Record*, 16> SingletonRegisters;
unsigned VariantCount = Target.getAsmParserVariantCount();
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
std::string CommentDelimiter =
AsmVariant->getValueAsString("CommentDelimiter");
std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I) {
const CodeGenInstruction &CGI = **I;
// If the tblgen -match-prefix option is specified (for tblgen hackers),
// filter the set of instructions we consider.
if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
continue;
// Ignore "codegen only" instructions.
if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
continue;
// Validate the operand list to ensure we can handle this instruction.
for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
// Validate tied operands.
if (OI.getTiedRegister() != -1) {
// If we have a tied operand that consists of multiple MCOperands,
// reject it. We reject aliases and ignore instructions for now.
if (OI.MINumOperands != 1) {
// FIXME: Should reject these. The ARM backend hits this with $lane
// in a bunch of instructions. The right answer is unclear.
DEBUG({
errs() << "warning: '" << CGI.TheDef->getName() << "': "
<< "ignoring instruction with multi-operand tied operand '"
<< OI.Name << "'\n";
});
continue;
}
}
}
OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
// Ignore instructions which shouldn't be matched and diagnose invalid
// instruction definitions with an error.
if (!II->Validate(CommentDelimiter, true))
continue;
// Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
//
// FIXME: This is a total hack.
if (StringRef(II->TheDef->getName()).startswith("Int_") ||
StringRef(II->TheDef->getName()).endswith("_Int"))
continue;
Matchables.push_back(II.take());
}
// Parse all of the InstAlias definitions and stick them in the list of
// matchables.
std::vector<Record*> AllInstAliases =
Records.getAllDerivedDefinitions("InstAlias");
for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
// If the tblgen -match-prefix option is specified (for tblgen hackers),
// filter the set of instruction aliases we consider, based on the target
// instruction.
if (!StringRef(Alias->ResultInst->TheDef->getName())
.startswith( MatchPrefix))
continue;
OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
// Validate the alias definitions.
II->Validate(CommentDelimiter, false);
Matchables.push_back(II.take());
}
}
// Build info for the register classes.
BuildRegisterClasses(SingletonRegisters);
// Build info for the user defined assembly operand classes.
BuildOperandClasses();
// Build the information about matchables, now that we have fully formed
// classes.
for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
ie = Matchables.end(); it != ie; ++it) {
MatchableInfo *II = *it;
// Parse the tokens after the mnemonic.
// Note: BuildInstructionOperandReference may insert new AsmOperands, so
// don't precompute the loop bound.
for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
StringRef Token = Op.Token;
// Check for singleton registers.
if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
Op.Class = RegisterClasses[RegRecord];
assert(Op.Class && Op.Class->Registers.size() == 1 &&
"Unexpected class for singleton register");
continue;
}
// Check for simple tokens.
if (Token[0] != '$') {
Op.Class = getTokenClass(Token);
continue;
}
if (Token.size() > 1 && isdigit(Token[1])) {
Op.Class = getTokenClass(Token);
continue;
}
// Otherwise this is an operand reference.
StringRef OperandName;
if (Token[1] == '{')
OperandName = Token.substr(2, Token.size() - 3);
else
OperandName = Token.substr(1);
if (II->DefRec.is<const CodeGenInstruction*>())
BuildInstructionOperandReference(II, OperandName, i);
else
BuildAliasOperandReference(II, OperandName, Op);
}
if (II->DefRec.is<const CodeGenInstruction*>())
II->BuildInstructionResultOperands();
else
II->BuildAliasResultOperands();
}
// Process token alias definitions and set up the associated superclass
// information.
std::vector<Record*> AllTokenAliases =
Records.getAllDerivedDefinitions("TokenAlias");
for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
Record *Rec = AllTokenAliases[i];
ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
if (FromClass == ToClass)
throw TGError(Rec->getLoc(),
"error: Destination value identical to source value.");
FromClass->SuperClasses.push_back(ToClass);
}
// Reorder classes so that classes precede super classes.
std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
}
/// BuildInstructionOperandReference - The specified operand is a reference to a
/// named operand such as $src. Resolve the Class and OperandInfo pointers.
void AsmMatcherInfo::
BuildInstructionOperandReference(MatchableInfo *II,
StringRef OperandName,
unsigned AsmOpIdx) {
const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
const CGIOperandList &Operands = CGI.Operands;
MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
// Map this token to an operand.
unsigned Idx;
if (!Operands.hasOperandNamed(OperandName, Idx))
throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
OperandName.str() + "'");
// If the instruction operand has multiple suboperands, but the parser
// match class for the asm operand is still the default "ImmAsmOperand",
// then handle each suboperand separately.
if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
Record *Rec = Operands[Idx].Rec;
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
// Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
StringRef Token = Op->Token; // save this in case Op gets moved
for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
MatchableInfo::AsmOperand NewAsmOp(Token);
NewAsmOp.SubOpIdx = SI;
II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
}
// Replace Op with first suboperand.
Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
Op->SubOpIdx = 0;
}
}
// Set up the operand class.
Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
// If the named operand is tied, canonicalize it to the untied operand.
// For example, something like:
// (outs GPR:$dst), (ins GPR:$src)
// with an asmstring of
// "inc $src"
// we want to canonicalize to:
// "inc $dst"
// so that we know how to provide the $dst operand when filling in the result.
int OITied = Operands[Idx].getTiedRegister();
if (OITied != -1) {
// The tied operand index is an MIOperand index, find the operand that
// contains it.
std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
OperandName = Operands[Idx.first].Name;
Op->SubOpIdx = Idx.second;
}
Op->SrcOpName = OperandName;
}
/// BuildAliasOperandReference - When parsing an operand reference out of the
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
/// operand reference is by looking it up in the result pattern definition.
void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
StringRef OperandName,
MatchableInfo::AsmOperand &Op) {
const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
// Set up the operand class.
for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
if (CGA.ResultOperands[i].isRecord() &&
CGA.ResultOperands[i].getName() == OperandName) {
// It's safe to go with the first one we find, because CodeGenInstAlias
// validates that all operands with the same name have the same record.
Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
// Use the match class from the Alias definition, not the
// destination instruction, as we may have an immediate that's
// being munged by the match class.
Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
Op.SubOpIdx);
Op.SrcOpName = OperandName;
return;
}
throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
OperandName.str() + "'");
}
void MatchableInfo::BuildInstructionResultOperands() {
const CodeGenInstruction *ResultInst = getResultInst();
// Loop over all operands of the result instruction, determining how to
// populate them.
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
// If this is a tied operand, just copy from the previously handled operand.
int TiedOp = OpInfo.getTiedRegister();
if (TiedOp != -1) {
ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
continue;
}
// Find out what operand from the asmparser this MCInst operand comes from.
int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
if (OpInfo.Name.empty() || SrcOperand == -1)
throw TGError(TheDef->getLoc(), "Instruction '" +
TheDef->getName() + "' has operand '" + OpInfo.Name +
"' that doesn't appear in asm string!");
// Check if the one AsmOperand populates the entire operand.
unsigned NumOperands = OpInfo.MINumOperands;
if (AsmOperands[SrcOperand].SubOpIdx == -1) {
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
continue;
}
// Add a separate ResOperand for each suboperand.
for (unsigned AI = 0; AI < NumOperands; ++AI) {
assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
"unexpected AsmOperands for suboperands");
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
}
}
}
void MatchableInfo::BuildAliasResultOperands() {
const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
const CodeGenInstruction *ResultInst = getResultInst();
// Loop over all operands of the result instruction, determining how to
// populate them.
unsigned AliasOpNo = 0;
unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
// If this is a tied operand, just copy from the previously handled operand.
int TiedOp = OpInfo->getTiedRegister();
if (TiedOp != -1) {
ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
continue;
}
// Handle all the suboperands for this operand.
const std::string &OpName = OpInfo->Name;
for ( ; AliasOpNo < LastOpNo &&
CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
// Find out what operand from the asmparser that this MCInst operand
// comes from.
switch (CGA.ResultOperands[AliasOpNo].Kind) {
case CodeGenInstAlias::ResultOperand::K_Record: {
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
int SrcOperand = FindAsmOperand(Name, SubIdx);
if (SrcOperand == -1)
throw TGError(TheDef->getLoc(), "Instruction '" +
TheDef->getName() + "' has operand '" + OpName +
"' that doesn't appear in asm string!");
unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
NumOperands));
break;
}
case CodeGenInstAlias::ResultOperand::K_Imm: {
int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
ResOperands.push_back(ResOperand::getImmOp(ImmVal));
break;
}
case CodeGenInstAlias::ResultOperand::K_Reg: {
Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
ResOperands.push_back(ResOperand::getRegOp(Reg));
break;
}
}
}
}
}
static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
std::vector<MatchableInfo*> &Infos,
raw_ostream &OS) {
// Write the convert function to a separate stream, so we can drop it after
// the enum.
std::string ConvertFnBody;
raw_string_ostream CvtOS(ConvertFnBody);
// Function we have already generated.
std::set<std::string> GeneratedFns;
// Start the unified conversion function.
CvtOS << "bool " << Target.getName() << ClassName << "::\n";
CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const SmallVectorImpl<MCParsedAsmOperand*"
<< "> &Operands) {\n";
CvtOS << " Inst.setOpcode(Opcode);\n";
CvtOS << " switch (Kind) {\n";
CvtOS << " default:\n";
// Start the enum, which we will generate inline.
OS << "// Unified function for converting operands to MCInst instances.\n\n";
OS << "enum ConversionKind {\n";
// TargetOperandClass - This is the target's operand class, like X86Operand.
std::string TargetOperandClass = Target.getName() + "Operand";
for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
MatchableInfo &II = **it;
// Check if we have a custom match function.
std::string AsmMatchConverter =
II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
if (!AsmMatchConverter.empty()) {
std::string Signature = "ConvertCustom_" + AsmMatchConverter;
II.ConversionFnKind = Signature;
// Check if we have already generated this signature.
if (!GeneratedFns.insert(Signature).second)
continue;
// If not, emit it now. Add to the enum list.
OS << " " << Signature << ",\n";
CvtOS << " case " << Signature << ":\n";
CvtOS << " return " << AsmMatchConverter
<< "(Inst, Opcode, Operands);\n";
continue;
}
// Build the conversion function signature.
std::string Signature = "Convert";
std::string CaseBody;
raw_string_ostream CaseOS(CaseBody);
// Compute the convert enum and the case body.
for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
// Generate code to populate each result operand.
switch (OpInfo.Kind) {
case MatchableInfo::ResOperand::RenderAsmOperand: {
// This comes from something we parsed.
MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
// Registers are always converted the same, don't duplicate the
// conversion function based on them.
Signature += "__";
if (Op.Class->isRegisterClass())
Signature += "Reg";
else
Signature += Op.Class->ClassName;
Signature += utostr(OpInfo.MINumOperands);
Signature += "_" + itostr(OpInfo.AsmOperandNum);
CaseOS << " ((" << TargetOperandClass << "*)Operands["
<< (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
<< "(Inst, " << OpInfo.MINumOperands << ");\n";
break;
}
case MatchableInfo::ResOperand::TiedOperand: {
// If this operand is tied to a previous one, just copy the MCInst
// operand from the earlier one.We can only tie single MCOperand values.
//assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
unsigned TiedOp = OpInfo.TiedOperandNum;
assert(i > TiedOp && "Tied operand precedes its target!");
CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
Signature += "__Tie" + utostr(TiedOp);
break;
}
case MatchableInfo::ResOperand::ImmOperand: {
int64_t Val = OpInfo.ImmVal;
CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
Signature += "__imm" + itostr(Val);
break;
}
case MatchableInfo::ResOperand::RegOperand: {
if (OpInfo.Register == 0) {
CaseOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
Signature += "__reg0";
} else {
std::string N = getQualifiedName(OpInfo.Register);
CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
Signature += "__reg" + OpInfo.Register->getName();
}
}
}
}
II.ConversionFnKind = Signature;
// Check if we have already generated this signature.
if (!GeneratedFns.insert(Signature).second)
continue;
// If not, emit it now. Add to the enum list.
OS << " " << Signature << ",\n";
CvtOS << " case " << Signature << ":\n";
CvtOS << CaseOS.str();
CvtOS << " return true;\n";
}
// Finish the convert function.
CvtOS << " }\n";
CvtOS << " return false;\n";
CvtOS << "}\n\n";
// Finish the enum, and drop the convert function after it.
OS << " NumConversionVariants\n";
OS << "};\n\n";
OS << CvtOS.str();
}
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "namespace {\n\n";
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
<< "/// instruction matching.\n";
OS << "enum MatchClassKind {\n";
OS << " InvalidMatchClass = 0,\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
OS << " " << CI.Name << ", // ";
if (CI.Kind == ClassInfo::Token) {
OS << "'" << CI.ValueName << "'\n";
} else if (CI.isRegisterClass()) {
if (!CI.ValueName.empty())
OS << "register class '" << CI.ValueName << "'\n";
else
OS << "derived register class\n";
} else {
OS << "user defined class '" << CI.ValueName << "'\n";
}
}
OS << " NumMatchClassKinds\n";
OS << "};\n\n";
OS << "}\n\n";
}
/// EmitValidateOperandClass - Emit the function to validate an operand class.
static void EmitValidateOperandClass(AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "static bool validateOperandClass(MCParsedAsmOperand *GOp, "
<< "MatchClassKind Kind) {\n";
OS << " " << Info.Target.getName() << "Operand &Operand = *("
<< Info.Target.getName() << "Operand*)GOp;\n";
// The InvalidMatchClass is not to match any operand.
OS << " if (Kind == InvalidMatchClass)\n";
OS << " return false;\n\n";
// Check for Token operands first.
OS << " if (Operand.isToken())\n";
OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind);"
<< "\n\n";
// Check for register operands, including sub-classes.
OS << " if (Operand.isReg()) {\n";
OS << " MatchClassKind OpKind;\n";
OS << " switch (Operand.getReg()) {\n";
OS << " default: OpKind = InvalidMatchClass; break;\n";
for (std::map<Record*, ClassInfo*>::iterator
it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
it != ie; ++it)
OS << " case " << Info.Target.getName() << "::"
<< it->first->getName() << ": OpKind = " << it->second->Name
<< "; break;\n";
OS << " }\n";
OS << " return isSubclass(OpKind, Kind);\n";
OS << " }\n\n";
// Check the user classes. We don't care what order since we're only
// actually matching against one of them.
for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
ie = Info.Classes.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (!CI.isUserClass())
continue;
OS << " // '" << CI.ClassName << "' class\n";
OS << " if (Kind == " << CI.Name
<< " && Operand." << CI.PredicateMethod << "()) {\n";
OS << " return true;\n";
OS << " }\n\n";
}
OS << " return false;\n";
OS << "}\n\n";
}
/// EmitIsSubclass - Emit the subclass predicate function.
static void EmitIsSubclass(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
OS << " if (A == B)\n";
OS << " return true;\n\n";
OS << " switch (A) {\n";
OS << " default:\n";
OS << " return false;\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &A = **it;
std::vector<StringRef> SuperClasses;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &B = **it;
if (&A != &B && A.isSubsetOf(B))
SuperClasses.push_back(B.Name);
}
if (SuperClasses.empty())
continue;
OS << "\n case " << A.Name << ":\n";
if (SuperClasses.size() == 1) {
OS << " return B == " << SuperClasses.back() << ";\n";
continue;
}
OS << " switch (B) {\n";
OS << " default: return false;\n";
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
OS << " case " << SuperClasses[i] << ": return true;\n";
OS << " }\n";
}
OS << " }\n";
OS << "}\n\n";
}
/// EmitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void EmitMatchTokenString(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (CI.Kind == ClassInfo::Token)
Matches.push_back(StringMatcher::StringPair(CI.ValueName,
"return " + CI.Name + ";"));
}
OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
const std::vector<CodeGenRegister*> &Regs =
Target.getRegBank().getRegisters();
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
const CodeGenRegister *Reg = Regs[i];
if (Reg->TheDef->getValueAsString("AsmName").empty())
continue;
Matches.push_back(StringMatcher::StringPair(
Reg->TheDef->getValueAsString("AsmName"),
"return " + utostr(Reg->EnumValue) + ";"));
}
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return 0;\n";
OS << "}\n\n";
}
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "// Flags for subtarget features that participate in "
<< "instruction matching.\n";
OS << "enum SubtargetFeatureFlag {\n";
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
it = Info.SubtargetFeatures.begin(),
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
SubtargetFeatureInfo &SFI = *it->second;
OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
}
OS << " Feature_None = 0\n";
OS << "};\n\n";
}
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
raw_ostream &OS) {
std::string ClassName =
Info.AsmParser->getValueAsString("AsmParserClassName");
OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
<< "ComputeAvailableFeatures(uint64_t FB) const {\n";
OS << " unsigned Features = 0;\n";
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
it = Info.SubtargetFeatures.begin(),
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
SubtargetFeatureInfo &SFI = *it->second;
OS << " if (";
std::string CondStorage =
SFI.TheDef->getValueAsString("AssemblerCondString");
StringRef Conds = CondStorage;
std::pair<StringRef,StringRef> Comma = Conds.split(',');
bool First = true;
do {
if (!First)
OS << " && ";
bool Neg = false;
StringRef Cond = Comma.first;
if (Cond[0] == '!') {
Neg = true;
Cond = Cond.substr(1);
}
OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
if (Neg)
OS << " == 0";
else
OS << " != 0";
OS << ")";
if (Comma.second.empty())
break;
First = false;
Comma = Comma.second.split(',');
} while (true);
OS << ")\n";
OS << " Features |= " << SFI.getEnumName() << ";\n";
}
OS << " return Features;\n";
OS << "}\n\n";
}
static std::string GetAliasRequiredFeatures(Record *R,
const AsmMatcherInfo &Info) {
std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
std::string Result;
unsigned NumFeatures = 0;
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
if (F == 0)
throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
"' is not marked as an AssemblerPredicate!");
if (NumFeatures)
Result += '|';
Result += F->getEnumName();
++NumFeatures;
}
if (NumFeatures > 1)
Result = '(' + Result + ')';
return Result;
}
/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
/// emit a function for them and return true, otherwise return false.
static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
// Ignore aliases when match-prefix is set.
if (!MatchPrefix.empty())
return false;
std::vector<Record*> Aliases =
Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
if (Aliases.empty()) return false;
OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
"unsigned Features) {\n";
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
// iteration order of the map is stable.
std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
Record *R = Aliases[i];
AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
}
// Process each alias a "from" mnemonic at a time, building the code executed
// by the string remapper.
std::vector<StringMatcher::StringPair> Cases;
for (std::map<std::string, std::vector<Record*> >::iterator
I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
I != E; ++I) {
const std::vector<Record*> &ToVec = I->second;
// Loop through each alias and emit code that handles each case. If there
// are two instructions without predicates, emit an error. If there is one,
// emit it last.
std::string MatchCode;
int AliasWithNoPredicate = -1;
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
Record *R = ToVec[i];
std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
// If this unconditionally matches, remember it for later and diagnose
// duplicates.
if (FeatureMask.empty()) {
if (AliasWithNoPredicate != -1) {
// We can't have two aliases from the same mnemonic with no predicate.
PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
"two MnemonicAliases with the same 'from' mnemonic!");
throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
}
AliasWithNoPredicate = i;
continue;
}
if (R->getValueAsString("ToMnemonic") == I->first)
throw TGError(R->getLoc(), "MnemonicAlias to the same string");
if (!MatchCode.empty())
MatchCode += "else ";
MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
}
if (AliasWithNoPredicate != -1) {
Record *R = ToVec[AliasWithNoPredicate];
if (!MatchCode.empty())
MatchCode += "else\n ";
MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
}
MatchCode += "return;";
Cases.push_back(std::make_pair(I->first, MatchCode));
}
StringMatcher("Mnemonic", Cases, OS).Emit();
OS << "}\n\n";
return true;
}
static const char *getMinimalTypeForRange(uint64_t Range) {
assert(Range < 0xFFFFFFFFULL && "Enum too large");
if (Range > 0xFFFF)
return "uint32_t";
if (Range > 0xFF)
return "uint16_t";
return "uint8_t";
}
static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
const AsmMatcherInfo &Info, StringRef ClassName) {
// Emit the static custom operand parsing table;
OS << "namespace {\n";
OS << " struct OperandMatchEntry {\n";
OS << " static const char *const MnemonicTable;\n";
OS << " uint32_t OperandMask;\n";
OS << " uint32_t Mnemonic;\n";
OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
<< " RequiredFeatures;\n";
OS << " " << getMinimalTypeForRange(Info.Classes.size())
<< " Class;\n\n";
OS << " StringRef getMnemonic() const {\n";
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
OS << " MnemonicTable[Mnemonic]);\n";
OS << " }\n";
OS << " };\n\n";
OS << " // Predicate for searching for an opcode.\n";
OS << " struct LessOpcodeOperand {\n";
OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
OS << " return LHS.getMnemonic() < RHS;\n";
OS << " }\n";
OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
OS << " return LHS < RHS.getMnemonic();\n";
OS << " }\n";
OS << " bool operator()(const OperandMatchEntry &LHS,";
OS << " const OperandMatchEntry &RHS) {\n";
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
OS << " }\n";
OS << " };\n";
OS << "} // end anonymous namespace.\n\n";
StringToOffsetTable StringTable;
OS << "static const OperandMatchEntry OperandMatchTable["
<< Info.OperandMatchInfo.size() << "] = {\n";
OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
for (std::vector<OperandMatchEntry>::const_iterator it =
Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
it != ie; ++it) {
const OperandMatchEntry &OMI = *it;
const MatchableInfo &II = *OMI.MI;
OS << " { " << OMI.OperandMask;
OS << " /* ";
bool printComma = false;
for (int i = 0, e = 31; i !=e; ++i)
if (OMI.OperandMask & (1 << i)) {
if (printComma)
OS << ", ";
OS << i;
printComma = true;
}
OS << " */";
// Store a pascal-style length byte in the mnemonic.
std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
<< " /* " << II.Mnemonic << " */, ";
// Write the required features mask.
if (!II.RequiredFeatures.empty()) {
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
if (i) OS << "|";
OS << II.RequiredFeatures[i]->getEnumName();
}
} else
OS << "0";
OS << ", " << OMI.CI->Name;
OS << " },\n";
}
OS << "};\n\n";
OS << "const char *const OperandMatchEntry::MnemonicTable =\n";
StringTable.EmitString(OS);
OS << ";\n\n";
// Emit the operand class switch to call the correct custom parser for
// the found operand class.
OS << Target.getName() << ClassName << "::OperandMatchResultTy "
<< Target.getName() << ClassName << "::\n"
<< "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
<< " &Operands,\n unsigned MCK) {\n\n"
<< " switch(MCK) {\n";
for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
ie = Info.Classes.end(); it != ie; ++it) {
ClassInfo *CI = *it;
if (CI->ParserMethod.empty())
continue;
OS << " case " << CI->Name << ":\n"
<< " return " << CI->ParserMethod << "(Operands);\n";
}
OS << " default:\n";
OS << " return MatchOperand_NoMatch;\n";
OS << " }\n";
OS << " return MatchOperand_NoMatch;\n";
OS << "}\n\n";
// Emit the static custom operand parser. This code is very similar with
// the other matcher. Also use MatchResultTy here just in case we go for
// a better error handling.
OS << Target.getName() << ClassName << "::OperandMatchResultTy "
<< Target.getName() << ClassName << "::\n"
<< "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
<< " &Operands,\n StringRef Mnemonic) {\n";
// Emit code to get the available features.
OS << " // Get the current feature set.\n";
OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
OS << " // Get the next operand index.\n";
OS << " unsigned NextOpNum = Operands.size()-1;\n";
// Emit code to search the table.
OS << " // Search the table.\n";
OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
OS << " MnemonicRange =\n";
OS << " std::equal_range(OperandMatchTable, OperandMatchTable+"
<< Info.OperandMatchInfo.size() << ", Mnemonic,\n"
<< " LessOpcodeOperand());\n\n";
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
OS << " return MatchOperand_NoMatch;\n\n";
OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
<< " *ie = MnemonicRange.second; it != ie; ++it) {\n";
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
OS << " assert(Mnemonic == it->getMnemonic());\n\n";
// Emit check that the required features are available.
OS << " // check if the available features match\n";
OS << " if ((AvailableFeatures & it->RequiredFeatures) "
<< "!= it->RequiredFeatures) {\n";
OS << " continue;\n";
OS << " }\n\n";
// Emit check to ensure the operand number matches.
OS << " // check if the operand in question has a custom parser.\n";
OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
OS << " continue;\n\n";
// Emit call to the custom parser method
OS << " // call custom parse method to handle the operand\n";
OS << " OperandMatchResultTy Result = ";
OS << "tryCustomParseOperand(Operands, it->Class);\n";
OS << " if (Result != MatchOperand_NoMatch)\n";
OS << " return Result;\n";
OS << " }\n\n";
OS << " // Okay, we had no match.\n";
OS << " return MatchOperand_NoMatch;\n";
OS << "}\n\n";
}
void AsmMatcherEmitter::run(raw_ostream &OS) {
CodeGenTarget Target(Records);
Record *AsmParser = Target.getAsmParser();
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
// Compute the information on the instructions to match.
AsmMatcherInfo Info(AsmParser, Target, Records);
Info.BuildInfo();
// Sort the instruction table using the partial order on classes. We use
// stable_sort to ensure that ambiguous instructions are still
// deterministically ordered.
std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
less_ptr<MatchableInfo>());
DEBUG_WITH_TYPE("instruction_info", {
for (std::vector<MatchableInfo*>::iterator
it = Info.Matchables.begin(), ie = Info.Matchables.end();
it != ie; ++it)
(*it)->dump();
});
// Check for ambiguous matchables.
DEBUG_WITH_TYPE("ambiguous_instrs", {
unsigned NumAmbiguous = 0;
for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
for (unsigned j = i + 1; j != e; ++j) {
MatchableInfo &A = *Info.Matchables[i];
MatchableInfo &B = *Info.Matchables[j];
if (A.CouldMatchAmbiguouslyWith(B)) {
errs() << "warning: ambiguous matchables:\n";
A.dump();
errs() << "\nis incomparable with:\n";
B.dump();
errs() << "\n\n";
++NumAmbiguous;
}
}
}
if (NumAmbiguous)
errs() << "warning: " << NumAmbiguous
<< " ambiguous matchables!\n";
});
// Compute the information on the custom operand parsing.
Info.BuildOperandMatchInfo();
// Write the output.
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
// Information for the class declaration.
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
OS << "#undef GET_ASSEMBLER_HEADER\n";
OS << " // This should be included into the middle of the declaration of\n";
OS << " // your subclasses implementation of MCTargetAsmParser.\n";
OS << " unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
OS << " bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const SmallVectorImpl<MCParsedAsmOperand*> "
<< "&Operands);\n";
OS << " bool MnemonicIsValid(StringRef Mnemonic);\n";
OS << " unsigned MatchInstructionImpl(\n";
OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
OS << " MCInst &Inst, unsigned &ErrorInfo, unsigned VariantID = 0);\n";
if (Info.OperandMatchInfo.size()) {
OS << "\n enum OperandMatchResultTy {\n";
OS << " MatchOperand_Success, // operand matched successfully\n";
OS << " MatchOperand_NoMatch, // operand did not match\n";
OS << " MatchOperand_ParseFail // operand matched but had errors\n";
OS << " };\n";
OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
OS << " StringRef Mnemonic);\n";
OS << " OperandMatchResultTy tryCustomParseOperand(\n";
OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
OS << " unsigned MCK);\n\n";
}
OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
OS << "#undef GET_REGISTER_MATCHER\n\n";
// Emit the subtarget feature enumeration.
EmitSubtargetFeatureFlagEnumeration(Info, OS);
// Emit the function to match a register name to number.
EmitMatchRegisterName(Target, AsmParser, OS);
OS << "#endif // GET_REGISTER_MATCHER\n\n";
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
// Generate the function that remaps for mnemonic aliases.
bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
// Generate the unified function to convert operands into an MCInst.
EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
// Emit the enumeration for classes which participate in matching.
EmitMatchClassEnumeration(Target, Info.Classes, OS);
// Emit the routine to match token strings to their match class.
EmitMatchTokenString(Target, Info.Classes, OS);
// Emit the subclass predicate routine.
EmitIsSubclass(Target, Info.Classes, OS);
// Emit the routine to validate an operand against a match class.
EmitValidateOperandClass(Info, OS);
// Emit the available features compute function.
EmitComputeAvailableFeatures(Info, OS);
size_t MaxNumOperands = 0;
for (std::vector<MatchableInfo*>::const_iterator it =
Info.Matchables.begin(), ie = Info.Matchables.end();
it != ie; ++it)
MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
// Emit the static match table; unused classes get initalized to 0 which is
// guaranteed to be InvalidMatchClass.
//
// FIXME: We can reduce the size of this table very easily. First, we change
// it so that store the kinds in separate bit-fields for each index, which
// only needs to be the max width used for classes at that index (we also need
// to reject based on this during classification). If we then make sure to
// order the match kinds appropriately (putting mnemonics last), then we
// should only end up using a few bits for each class, especially the ones
// following the mnemonic.
OS << "namespace {\n";
OS << " struct MatchEntry {\n";
OS << " static const char *const MnemonicTable;\n";
OS << " uint32_t Mnemonic;\n";
OS << " uint16_t Opcode;\n";
OS << " " << getMinimalTypeForRange(Info.Matchables.size())
<< " ConvertFn;\n";
OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
<< " RequiredFeatures;\n";
OS << " " << getMinimalTypeForRange(Info.Classes.size())
<< " Classes[" << MaxNumOperands << "];\n";
OS << " uint8_t AsmVariantID;\n\n";
OS << " StringRef getMnemonic() const {\n";
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
OS << " MnemonicTable[Mnemonic]);\n";
OS << " }\n";
OS << " };\n\n";
OS << " // Predicate for searching for an opcode.\n";
OS << " struct LessOpcode {\n";
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
OS << " return LHS.getMnemonic() < RHS;\n";
OS << " }\n";
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
OS << " return LHS < RHS.getMnemonic();\n";
OS << " }\n";
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
OS << " }\n";
OS << " };\n";
OS << "} // end anonymous namespace.\n\n";
StringToOffsetTable StringTable;
OS << "static const MatchEntry MatchTable["
<< Info.Matchables.size() << "] = {\n";
for (std::vector<MatchableInfo*>::const_iterator it =
Info.Matchables.begin(), ie = Info.Matchables.end();
it != ie; ++it) {
MatchableInfo &II = **it;
// Store a pascal-style length byte in the mnemonic.
std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
<< " /* " << II.Mnemonic << " */, "
<< Target.getName() << "::"
<< II.getResultInst()->TheDef->getName() << ", "
<< II.ConversionFnKind << ", ";
// Write the required features mask.
if (!II.RequiredFeatures.empty()) {
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
if (i) OS << "|";
OS << II.RequiredFeatures[i]->getEnumName();
}
} else
OS << "0";
OS << ", { ";
for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
if (i) OS << ", ";
OS << Op.Class->Name;
}
OS << " }, " << II.AsmVariantID;
OS << "},\n";
}
OS << "};\n\n";
OS << "const char *const MatchEntry::MnemonicTable =\n";
StringTable.EmitString(OS);
OS << ";\n\n";
// A method to determine if a mnemonic is in the list.
OS << "bool " << Target.getName() << ClassName << "::\n"
<< "MnemonicIsValid(StringRef Mnemonic) {\n";
OS << " // Search the table.\n";
OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
OS << " std::equal_range(MatchTable, MatchTable+"
<< Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
OS << " return MnemonicRange.first != MnemonicRange.second;\n";
OS << "}\n\n";
// Finally, build the match function.
OS << "unsigned "
<< Target.getName() << ClassName << "::\n"
<< "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
<< " &Operands,\n";
OS << " MCInst &Inst, unsigned &ErrorInfo,\n";
OS << " unsigned VariantID) {\n";
// Emit code to get the available features.
OS << " // Get the current feature set.\n";
OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
OS << " // Get the instruction mnemonic, which is the first token.\n";
OS << " StringRef Mnemonic = ((" << Target.getName()
<< "Operand*)Operands[0])->getToken();\n\n";
if (HasMnemonicAliases) {
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
OS << " // FIXME : Add an entry in AsmParserVariant to check this.\n";
OS << " if (!VariantID)\n";
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
}
// Emit code to compute the class list for this operand vector.
OS << " // Eliminate obvious mismatches.\n";
OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
OS << " return Match_InvalidOperand;\n";
OS << " }\n\n";
OS << " // Some state to try to produce better error messages.\n";
OS << " bool HadMatchOtherThanFeatures = false;\n";
OS << " bool HadMatchOtherThanPredicate = false;\n";
OS << " unsigned RetCode = Match_InvalidOperand;\n";
OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
OS << " // wrong for all instances of the instruction.\n";
OS << " ErrorInfo = ~0U;\n";
// Emit code to search the table.
OS << " // Search the table.\n";
OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
OS << " std::equal_range(MatchTable, MatchTable+"
<< Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
OS << " // Return a more specific error code if no mnemonics match.\n";
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
OS << " return Match_MnemonicFail;\n\n";
OS << " for (const MatchEntry *it = MnemonicRange.first, "
<< "*ie = MnemonicRange.second;\n";
OS << " it != ie; ++it) {\n";
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
OS << " assert(Mnemonic == it->getMnemonic());\n";
// Emit check that the subclasses match.
OS << " if (VariantID != it->AsmVariantID) continue;\n";
OS << " bool OperandsValid = true;\n";
OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
OS << " if (i + 1 >= Operands.size()) {\n";
OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
OS << " break;\n";
OS << " }\n";
OS << " if (validateOperandClass(Operands[i+1], "