blob: 9bca9e070709187009c9ddff6411b831cfba5767 [file] [log] [blame]
//===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon_cfg"
#include "HexagonTargetMachine.h"
#include "HexagonSubtarget.h"
#include "HexagonMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
namespace {
class HexagonCFGOptimizer : public MachineFunctionPass {
private:
HexagonTargetMachine& QTM;
const HexagonSubtarget &QST;
void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
public:
static char ID;
HexagonCFGOptimizer(HexagonTargetMachine& TM) : MachineFunctionPass(ID),
QTM(TM),
QST(*TM.getSubtargetImpl()) {}
const char *getPassName() const {
return "Hexagon CFG Optimizer";
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char HexagonCFGOptimizer::ID = 0;
static bool IsConditionalBranch(int Opc) {
return (Opc == Hexagon::JMP_c) || (Opc == Hexagon::JMP_cNot)
|| (Opc == Hexagon::JMP_cdnPt) || (Opc == Hexagon::JMP_cdnNotPt);
}
static bool IsUnconditionalJump(int Opc) {
return (Opc == Hexagon::JMP);
}
void
HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
MachineBasicBlock* NewTarget) {
const HexagonInstrInfo *QII = QTM.getInstrInfo();
int NewOpcode = 0;
switch(MI->getOpcode()) {
case Hexagon::JMP_c:
NewOpcode = Hexagon::JMP_cNot;
break;
case Hexagon::JMP_cNot:
NewOpcode = Hexagon::JMP_c;
break;
case Hexagon::JMP_cdnPt:
NewOpcode = Hexagon::JMP_cdnNotPt;
break;
case Hexagon::JMP_cdnNotPt:
NewOpcode = Hexagon::JMP_cdnPt;
break;
default:
llvm_unreachable("Cannot handle this case");
}
MI->setDesc(QII->get(NewOpcode));
MI->getOperand(1).setMBB(NewTarget);
}
bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
MBBb != MBBe; ++MBBb) {
MachineBasicBlock* MBB = MBBb;
// Traverse the basic block.
MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
if (MII != MBB->end()) {
MachineInstr *MI = MII;
int Opc = MI->getOpcode();
if (IsConditionalBranch(Opc)) {
//
// (Case 1) Transform the code if the following condition occurs:
// BB1: if (p0) jump BB3
// ...falls-through to BB2 ...
// BB2: jump BB4
// ...next block in layout is BB3...
// BB3: ...
//
// Transform this to:
// BB1: if (!p0) jump BB4
// Remove BB2
// BB3: ...
//
// (Case 2) A variation occurs when BB3 contains a JMP to BB4:
// BB1: if (p0) jump BB3
// ...falls-through to BB2 ...
// BB2: jump BB4
// ...other basic blocks ...
// BB4:
// ...not a fall-thru
// BB3: ...
// jump BB4
//
// Transform this to:
// BB1: if (!p0) jump BB4
// Remove BB2
// BB3: ...
// BB4: ...
//
unsigned NumSuccs = MBB->succ_size();
MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
MachineBasicBlock* FirstSucc = *SI;
MachineBasicBlock* SecondSucc = *(++SI);
MachineBasicBlock* LayoutSucc = NULL;
MachineBasicBlock* JumpAroundTarget = NULL;
if (MBB->isLayoutSuccessor(FirstSucc)) {
LayoutSucc = FirstSucc;
JumpAroundTarget = SecondSucc;
} else if (MBB->isLayoutSuccessor(SecondSucc)) {
LayoutSucc = SecondSucc;
JumpAroundTarget = FirstSucc;
} else {
// Odd case...cannot handle.
}
// The target of the unconditional branch must be JumpAroundTarget.
// TODO: If not, we should not invert the unconditional branch.
MachineBasicBlock* CondBranchTarget = NULL;
if ((MI->getOpcode() == Hexagon::JMP_c) ||
(MI->getOpcode() == Hexagon::JMP_cNot)) {
CondBranchTarget = MI->getOperand(1).getMBB();
}
if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
continue;
}
if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
// Ensure that BB2 has one instruction -- an unconditional jump.
if ((LayoutSucc->size() == 1) &&
IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
MachineBasicBlock* UncondTarget =
LayoutSucc->front().getOperand(0).getMBB();
// Check if the layout successor of BB2 is BB3.
bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
JumpAroundTarget->size() >= 1 &&
IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
JumpAroundTarget->pred_size() == 1 &&
JumpAroundTarget->succ_size() == 1;
if (case1 || case2) {
InvertAndChangeJumpTarget(MI, UncondTarget);
MBB->removeSuccessor(JumpAroundTarget);
MBB->addSuccessor(UncondTarget);
// Remove the unconditional branch in LayoutSucc.
LayoutSucc->erase(LayoutSucc->begin());
LayoutSucc->removeSuccessor(UncondTarget);
LayoutSucc->addSuccessor(JumpAroundTarget);
// This code performs the conversion for case 2, which moves
// the block to the fall-thru case (BB3 in the code above).
if (case2 && !case1) {
JumpAroundTarget->moveAfter(LayoutSucc);
// only move a block if it doesn't have a fall-thru. otherwise
// the CFG will be incorrect.
if (!UncondTarget->canFallThrough()) {
UncondTarget->moveAfter(JumpAroundTarget);
}
}
//
// Correct live-in information. Is used by post-RA scheduler
// The live-in to LayoutSucc is now all values live-in to
// JumpAroundTarget.
//
std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
LayoutSucc->livein_end());
std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
JumpAroundTarget->livein_end());
for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
LayoutSucc->removeLiveIn(OrigLiveIn[i]);
}
for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
LayoutSucc->addLiveIn(NewLiveIn[i]);
}
}
}
}
}
}
}
return true;
}
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonCFGOptimizer(HexagonTargetMachine &TM) {
return new HexagonCFGOptimizer(TM);
}