blob: aec26ce4865de4b8f08c8d01bb0532a93944fcd4 [file] [log] [blame]
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h"
#include "llvm/System/Threading.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
// #define DEBUG_MERGE_TYPES 1
AbstractTypeUser::~AbstractTypeUser() {}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space after
/// the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself.
/// @brief Type destruction function
void Type::destroy() const {
// Structures and Functions allocate their contained types past the end of
// the type object itself. These need to be destroyed differently than the
// other types.
if (isa<FunctionType>(this) || isa<StructType>(this)) {
// First, make sure we destruct any PATypeHandles allocated by these
// subclasses. They must be manually destructed.
for (unsigned i = 0; i < NumContainedTys; ++i)
ContainedTys[i].PATypeHandle::~PATypeHandle();
// Now call the destructor for the subclass directly because we're going
// to delete this as an array of char.
if (isa<FunctionType>(this))
static_cast<const FunctionType*>(this)->FunctionType::~FunctionType();
else
static_cast<const StructType*>(this)->StructType::~StructType();
// Finally, remove the memory as an array deallocation of the chars it was
// constructed from.
operator delete(const_cast<Type *>(this));
return;
}
// For all the other type subclasses, there is either no contained types or
// just one (all Sequentials). For Sequentials, the PATypeHandle is not
// allocated past the type object, its included directly in the SequentialType
// class. This means we can safely just do "normal" delete of this object and
// all the destructors that need to run will be run.
delete this;
}
const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return getVoidTy(C);
case FloatTyID : return getFloatTy(C);
case DoubleTyID : return getDoubleTy(C);
case X86_FP80TyID : return getX86_FP80Ty(C);
case FP128TyID : return getFP128Ty(C);
case PPC_FP128TyID : return getPPC_FP128Ty(C);
case LabelTyID : return getLabelTy(C);
case MetadataTyID : return getMetadataTy(C);
default:
return 0;
}
}
const Type *Type::getVAArgsPromotedType(LLVMContext &C) const {
if (ID == IntegerTyID && getSubclassData() < 32)
return Type::getInt32Ty(C);
else if (ID == FloatTyID)
return Type::getDoubleTy(C);
else
return this;
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
const Type *Type::getScalarType() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType();
return this;
}
/// isIntOrIntVector - Return true if this is an integer type or a vector of
/// integer types.
///
bool Type::isIntOrIntVector() const {
if (isInteger())
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isInteger();
}
/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
///
bool Type::isFPOrFPVector() const {
if (ID == Type::FloatTyID || ID == Type::DoubleTyID ||
ID == Type::FP128TyID || ID == Type::X86_FP80TyID ||
ID == Type::PPC_FP128TyID)
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isFloatingPoint();
}
// canLosslesslyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
//
bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not.
if (const VectorType *thisPTy = dyn_cast<VectorType>(this))
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless.
if (isa<PointerType>(this))
return isa<PointerType>(Ty);
return false; // Other types have no identity values
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::X86_FP80TyID: return 80;
case Type::FP128TyID: return 128;
case Type::PPC_FP128TyID: return 128;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned Type::getScalarSizeInBits() const {
return getScalarType()->getPrimitiveSizeInBits();
}
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
/// is only valid on floating point types. If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int Type::getFPMantissaWidth() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->getFPMantissaWidth();
assert(isFloatingPoint() && "Not a floating point type!");
if (ID == FloatTyID) return 24;
if (ID == DoubleTyID) return 53;
if (ID == X86_FP80TyID) return 64;
if (ID == FP128TyID) return 113;
assert(ID == PPC_FP128TyID && "unknown fp type");
return -1;
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
if (isa<IntegerType>(this))
return true;
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized();
if (const VectorType *PTy = dyn_cast<VectorType>(this))
return PTy->getElementType()->isSized();
if (!isa<StructType>(this))
return false;
// Okay, our struct is sized if all of the elements are...
for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
if (!(*I)->isSized())
return false;
return true;
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
llvm_unreachable("Attempting to refine a derived type!");
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
llvm_unreachable("DerivedType is already a concrete type!");
}
std::string Type::getDescription() const {
LLVMContextImpl *pImpl = getContext().pImpl;
TypePrinting &Map =
isAbstract() ?
pImpl->AbstractTypeDescriptions :
pImpl->ConcreteTypeDescriptions;
std::string DescStr;
raw_string_ostream DescOS(DescStr);
Map.print(this, DescOS);
return DescOS.str();
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
if (V->getType() == Type::getInt32Ty(V->getContext()))
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return indexValid(CU->getZExtValue());
return false;
}
bool StructType::indexValid(unsigned V) const {
return V < NumContainedTys;
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
return getTypeAtIndex(Idx);
}
const Type *StructType::getTypeAtIndex(unsigned Idx) const {
assert(indexValid(Idx) && "Invalid structure index!");
return ContainedTys[Idx];
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
const Type *Type::getVoidTy(LLVMContext &C) {
return C.pImpl->VoidTy;
}
const Type *Type::getLabelTy(LLVMContext &C) {
return C.pImpl->LabelTy;
}
const Type *Type::getFloatTy(LLVMContext &C) {
return C.pImpl->FloatTy;
}
const Type *Type::getDoubleTy(LLVMContext &C) {
return C.pImpl->DoubleTy;
}
const Type *Type::getMetadataTy(LLVMContext &C) {
return C.pImpl->MetadataTy;
}
const Type *Type::getX86_FP80Ty(LLVMContext &C) {
return C.pImpl->X86_FP80Ty;
}
const Type *Type::getFP128Ty(LLVMContext &C) {
return C.pImpl->FP128Ty;
}
const Type *Type::getPPC_FP128Ty(LLVMContext &C) {
return C.pImpl->PPC_FP128Ty;
}
const IntegerType *Type::getInt1Ty(LLVMContext &C) {
return C.pImpl->Int1Ty;
}
const IntegerType *Type::getInt8Ty(LLVMContext &C) {
return C.pImpl->Int8Ty;
}
const IntegerType *Type::getInt16Ty(LLVMContext &C) {
return C.pImpl->Int16Ty;
}
const IntegerType *Type::getInt32Ty(LLVMContext &C) {
return C.pImpl->Int32Ty;
}
const IntegerType *Type::getInt64Ty(LLVMContext &C) {
return C.pImpl->Int64Ty;
}
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(const Type *RetTy) {
if (RetTy->isFirstClassType()) {
if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
return PTy->getElementType() != Type::getMetadataTy(RetTy->getContext());
return true;
}
if (RetTy == Type::getVoidTy(RetTy->getContext()) ||
RetTy == Type::getMetadataTy(RetTy->getContext()) ||
isa<OpaqueType>(RetTy))
return true;
// If this is a multiple return case, verify that each return is a first class
// value and that there is at least one value.
const StructType *SRetTy = dyn_cast<StructType>(RetTy);
if (SRetTy == 0 || SRetTy->getNumElements() == 0)
return false;
for (unsigned i = 0, e = SRetTy->getNumElements(); i != e; ++i)
if (!SRetTy->getElementType(i)->isFirstClassType())
return false;
return true;
}
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(const Type *ArgTy) {
if ((!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) ||
(isa<PointerType>(ArgTy) &&
cast<PointerType>(ArgTy)->getElementType() ==
Type::getMetadataTy(ArgTy->getContext())))
return false;
return true;
}
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs)
: DerivedType(Result->getContext(), FunctionTyID), isVarArgs(IsVarArgs) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert(isValidReturnType(Result) && "invalid return type for function");
bool isAbstract = Result->isAbstract();
new (&ContainedTys[0]) PATypeHandle(Result, this);
for (unsigned i = 0; i != Params.size(); ++i) {
assert(isValidArgumentType(Params[i]) &&
"Not a valid type for function argument!");
new (&ContainedTys[i+1]) PATypeHandle(Params[i], this);
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(LLVMContext &C,
const std::vector<const Type*> &Types, bool isPacked)
: CompositeType(C, StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked);
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] && "<null> type for structure field!");
assert(isValidElementType(Types[i]) &&
"Invalid type for structure element!");
new (&ContainedTys[i]) PATypeHandle(Types[i], this);
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
VectorType::VectorType(const Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType) {
NumElements = NumEl;
setAbstract(ElType->isAbstract());
assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
assert(isValidElementType(ElType) &&
"Elements of a VectorType must be a primitive type");
}
PointerType::PointerType(const Type *E, unsigned AddrSpace)
: SequentialType(PointerTyID, E) {
AddressSpace = AddrSpace;
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *this << "\n";
#endif
}
void PATypeHolder::destroy() {
Ty = 0;
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (NumContainedTys != 0) {
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = 0;
static PATypeHolder* Holder = 0;
Type *tmp = AlwaysOpaqueTy;
if (llvm_is_multithreaded()) {
sys::MemoryFence();
if (!tmp) {
llvm_acquire_global_lock();
tmp = AlwaysOpaqueTy;
if (!tmp) {
tmp = OpaqueType::get(getContext());
PATypeHolder* tmp2 = new PATypeHolder(tmp);
sys::MemoryFence();
AlwaysOpaqueTy = tmp;
Holder = tmp2;
}
llvm_release_global_lock();
}
} else {
AlwaysOpaqueTy = OpaqueType::get(getContext());
Holder = new PATypeHolder(AlwaysOpaqueTy);
}
ContainedTys[0] = AlwaysOpaqueTy;
// Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something
// concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
ContainedTys[i] = Type::getInt32Ty(getContext());
}
}
namespace {
/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs. This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
Type *Ty;
TypePromotionGraph(Type *T) : Ty(T) {}
};
}
namespace llvm {
template <> struct GraphTraits<TypePromotionGraph> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
static inline ChildIteratorType child_begin(NodeType *N) {
if (N->isAbstract())
return N->subtype_begin();
else // No need to process children of concrete types.
return N->subtype_end();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
}
// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
if (!isAbstract()) return;
scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this));
for (; SI != SE; ++SI) {
std::vector<Type*> &SCC = *SI;
// Concrete types are leaves in the tree. Since an SCC will either be all
// abstract or all concrete, we only need to check one type.
if (SCC[0]->isAbstract()) {
if (isa<OpaqueType>(SCC[0]))
return; // Not going to be concrete, sorry.
// If all of the children of all of the types in this SCC are concrete,
// then this SCC is now concrete as well. If not, neither this SCC, nor
// any parent SCCs will be concrete, so we might as well just exit.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
E = SCC[i]->subtype_end(); CI != E; ++CI)
if ((*CI)->isAbstract())
// If the child type is in our SCC, it doesn't make the entire SCC
// abstract unless there is a non-SCC abstract type.
if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
return; // Not going to be concrete, sorry.
// Okay, we just discovered this whole SCC is now concrete, mark it as
// such!
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");
SCC[i]->setAbstract(false);
}
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
// The type just became concrete, notify all users!
cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
}
}
}
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getTypeID() != Ty2->getTypeID()) return false;
if (isa<OpaqueType>(Ty))
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
if (It != EqTypes.end())
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
const IntegerType *ITy2 = cast<IntegerType>(Ty2);
return ITy->getBitWidth() == ITy2->getBitWidth();
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
const PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy->getAddressSpace() == PTy2->getAddressSpace() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType *STy2 = cast<StructType>(Ty2);
if (STy->getNumElements() != STy2->getNumElements()) return false;
if (STy->isPacked() != STy2->isPacked()) return false;
for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
} else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
const VectorType *PTy2 = cast<VectorType>(Ty2);
return PTy->getNumElements() == PTy2->getNumElements() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getNumParams() != FTy2->getNumParams() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) {
if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
return false;
}
return true;
} else {
llvm_unreachable("Unknown derived type!");
return false;
}
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph. We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
SmallPtrSet<const Type*, 128> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!CurTy->isAbstract()) return false;
if (!VisitedTypes.insert(CurTy))
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
SmallPtrSet<const Type*, 128> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!VisitedTypes.insert(CurTy))
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
/// TypeHasCycleThroughItself - Return true if the specified type has a cycle
/// back to itself.
static bool TypeHasCycleThroughItself(const Type *Ty) {
SmallPtrSet<const Type*, 128> VisitedTypes;
if (Ty->isAbstract()) { // Optimized case for abstract types.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
} else {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
default:
break;
}
LLVMContextImpl *pImpl = C.pImpl;
IntegerValType IVT(NumBits);
IntegerType *ITy = 0;
// First, see if the type is already in the table, for which
// a reader lock suffices.
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
ITy = pImpl->IntegerTypes.get(IVT);
if (!ITy) {
// Value not found. Derive a new type!
ITy = new IntegerType(C, NumBits);
pImpl->IntegerTypes.add(IVT, ITy);
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ITy << "\n";
#endif
return ITy;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getNumParams());
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *FT = 0;
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
FT = pImpl->FunctionTypes.get(VT);
if (!FT) {
FT = (FunctionType*) operator new(sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1));
new (FT) FunctionType(ReturnType, Params, isVarArg);
pImpl->FunctionTypes.add(VT, FT);
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << FT << "\n";
#endif
return FT;
}
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of <null> types!");
assert(isValidElementType(ElementType) && "Invalid type for array element!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = 0;
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
AT = pImpl->ArrayTypes.get(AVT);
if (!AT) {
// Value not found. Derive a new type!
pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
bool ArrayType::isValidElementType(const Type *ElemTy) {
if (ElemTy == Type::getVoidTy(ElemTy->getContext()) ||
ElemTy == Type::getLabelTy(ElemTy->getContext()) ||
ElemTy == Type::getMetadataTy(ElemTy->getContext()))
return false;
if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
if (PTy->getElementType() == Type::getMetadataTy(ElemTy->getContext()))
return false;
return true;
}
VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get vector of <null> types!");
VectorValType PVT(ElementType, NumElements);
VectorType *PT = 0;
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
PT = pImpl->VectorTypes.get(PVT);
if (!PT) {
pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
bool VectorType::isValidElementType(const Type *ElemTy) {
if (ElemTy->isInteger() || ElemTy->isFloatingPoint() ||
isa<OpaqueType>(ElemTy))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
StructType *StructType::get(LLVMContext &Context,
const std::vector<const Type*> &ETypes,
bool isPacked) {
StructValType STV(ETypes, isPacked);
StructType *ST = 0;
LLVMContextImpl *pImpl = Context.pImpl;
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
ST = pImpl->StructTypes.get(STV);
if (!ST) {
// Value not found. Derive a new type!
ST = (StructType*) operator new(sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size());
new (ST) StructType(Context, ETypes, isPacked);
pImpl->StructTypes.add(STV, ST);
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
StructType *StructType::get(LLVMContext &Context, const Type *type, ...) {
va_list ap;
std::vector<const llvm::Type*> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
return llvm::StructType::get(Context, StructFields);
}
bool StructType::isValidElementType(const Type *ElemTy) {
if (ElemTy == Type::getVoidTy(ElemTy->getContext()) ||
ElemTy == Type::getLabelTy(ElemTy->getContext()) ||
ElemTy == Type::getMetadataTy(ElemTy->getContext()))
return false;
if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
if (PTy->getElementType() == Type::getMetadataTy(ElemTy->getContext()))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
assert(ValueType && "Can't get a pointer to <null> type!");
assert(ValueType != Type::getVoidTy(ValueType->getContext()) &&
"Pointer to void is not valid, use i8* instead!");
assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
PointerValType PVT(ValueType, AddressSpace);
PointerType *PT = 0;
LLVMContextImpl *pImpl = ValueType->getContext().pImpl;
sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
PT = pImpl->PointerTypes.get(PVT);
if (!PT) {
// Value not found. Derive a new type!
pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
}
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
PointerType *Type::getPointerTo(unsigned addrs) const {
return PointerType::get(this, addrs);
}
bool PointerType::isValidElementType(const Type *ElemTy) {
if (ElemTy == Type::getVoidTy(ElemTy->getContext()) ||
ElemTy == Type::getLabelTy(ElemTy->getContext()))
return false;
if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
if (PTy->getElementType() == Type::getMetadataTy(ElemTy->getContext()))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
LLVMContextImpl *pImpl = getContext().pImpl;
pImpl->AbstractTypeUsersLock.acquire();
AbstractTypeUsers.push_back(U);
pImpl->AbstractTypeUsersLock.release();
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
LLVMContextImpl *pImpl = getContext().pImpl;
pImpl->AbstractTypeUsersLock.acquire();
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
DOUT << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
DOUT << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
this->destroy();
}
pImpl->AbstractTypeUsersLock.release();
}
// unlockedRefineAbstractTypeTo - This function is used when it is discovered
// that the 'this' abstract type is actually equivalent to the NewType
// specified. This causes all users of 'this' to switch to reference the more
// concrete type NewType and for 'this' to be deleted. Only used for internal
// callers.
//
void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
LLVMContextImpl *pImpl = getContext().pImpl;
// The descriptions may be out of date. Conservatively clear them all!
pImpl->AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
DOUT << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward o
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
pImpl->AbstractTypeUsersLock.acquire();
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
#ifdef DEBUG_MERGE_TYPES
DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
pImpl->AbstractTypeUsersLock.release();
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// refineAbstractTypeTo - This function is used by external callers to notify
// us that this abstract type is equivalent to another type.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
// All recursive calls will go through unlockedRefineAbstractTypeTo,
// to avoid deadlock problems.
sys::SmartScopedLock<true> L(NewType->getContext().pImpl->TypeMapLock);
unlockedRefineAbstractTypeTo(NewType);
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
LLVMContextImpl *pImpl = getContext().pImpl;
pImpl->AbstractTypeUsersLock.acquire();
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
pImpl->AbstractTypeUsersLock.release();
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->FunctionTypes.RefineAbstractType(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->FunctionTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->ArrayTypes.RefineAbstractType(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->ArrayTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void VectorType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->VectorTypes.RefineAbstractType(this, OldType, NewType);
}
void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->VectorTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->StructTypes.RefineAbstractType(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->StructTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->PointerTypes.RefineAbstractType(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->PointerTypes.TypeBecameConcrete(this, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
if (isa<IntegerType>(V->getType()))
return true;
return false;
}
namespace llvm {
std::ostream &operator<<(std::ostream &OS, const Type *T) {
if (T == 0)
OS << "<null> value!\n";
else
T->print(OS);
return OS;
}
std::ostream &operator<<(std::ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
}