blob: 9d8c3c5600dde4ce2afeea384be02256855014ac [file] [log] [blame]
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachOWriterInfo.h"
using namespace llvm;
namespace {
class MachObjectWriter {
// See <mach-o/loader.h>.
enum {
Header_Magic32 = 0xFEEDFACE,
Header_Magic64 = 0xFEEDFACF
};
static const unsigned Header32Size = 28;
static const unsigned Header64Size = 32;
static const unsigned SegmentLoadCommand32Size = 56;
static const unsigned Section32Size = 68;
enum HeaderFileType {
HFT_Object = 0x1
};
enum LoadCommandType {
LCT_Segment = 0x1
};
raw_ostream &OS;
bool IsLSB;
public:
MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true)
: OS(_OS), IsLSB(_IsLSB) {
}
/// @name Helper Methods
/// @{
void Write8(uint8_t Value) {
OS << char(Value);
}
void Write16(uint16_t Value) {
if (IsLSB) {
Write8(uint8_t(Value >> 0));
Write8(uint8_t(Value >> 8));
} else {
Write8(uint8_t(Value >> 8));
Write8(uint8_t(Value >> 0));
}
}
void Write32(uint32_t Value) {
if (IsLSB) {
Write16(uint16_t(Value >> 0));
Write16(uint16_t(Value >> 16));
} else {
Write16(uint16_t(Value >> 16));
Write16(uint16_t(Value >> 0));
}
}
void Write64(uint64_t Value) {
if (IsLSB) {
Write32(uint32_t(Value >> 0));
Write32(uint32_t(Value >> 32));
} else {
Write32(uint32_t(Value >> 32));
Write32(uint32_t(Value >> 0));
}
}
void WriteZeros(unsigned N) {
const char Zeros[16] = { 0 };
for (unsigned i = 0, e = N / 16; i != e; ++i)
OS << StringRef(Zeros, 16);
OS << StringRef(Zeros, N % 16);
}
void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) {
OS << Str;
if (ZeroFillSize)
WriteZeros(ZeroFillSize - Str.size());
}
/// @}
static unsigned getPrologSize32(unsigned NumSections) {
return Header32Size + SegmentLoadCommand32Size +
NumSections * Section32Size;
}
void WriteHeader32(unsigned NumSections) {
// struct mach_header (28 bytes)
uint64_t Start = OS.tell();
(void) Start;
Write32(Header_Magic32);
// FIXME: Support cputype.
Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386);
// FIXME: Support cpusubtype.
Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL);
Write32(HFT_Object);
// Object files have a single load command, the segment.
Write32(1);
Write32(SegmentLoadCommand32Size + NumSections * Section32Size);
Write32(0); // Flags
assert(OS.tell() - Start == Header32Size);
}
void WriteLoadCommandHeader(uint32_t Cmd, uint32_t CmdSize) {
assert((CmdSize & 0x3) == 0 && "Invalid size!");
Write32(Cmd);
Write32(CmdSize);
}
/// WriteSegmentLoadCommand32 - Write a 32-bit segment load command.
///
/// \arg NumSections - The number of sections in this segment.
/// \arg SectionDataSize - The total size of the sections.
void WriteSegmentLoadCommand32(unsigned NumSections,
uint64_t SectionDataSize) {
// struct segment_command (56 bytes)
uint64_t Start = OS.tell();
(void) Start;
Write32(LCT_Segment);
Write32(SegmentLoadCommand32Size + NumSections * Section32Size);
WriteString("", 16);
Write32(0); // vmaddr
Write32(SectionDataSize); // vmsize
Write32(Header32Size + SegmentLoadCommand32Size +
NumSections * Section32Size); // file offset
Write32(SectionDataSize); // file size
Write32(0x7); // maxprot
Write32(0x7); // initprot
Write32(NumSections);
Write32(0); // flags
assert(OS.tell() - Start == SegmentLoadCommand32Size);
}
void WriteSection32(const MCSectionData &SD) {
// struct section (68 bytes)
uint64_t Start = OS.tell();
(void) Start;
// FIXME: cast<> support!
const MCSectionMachO &Section =
static_cast<const MCSectionMachO&>(SD.getSection());
WriteString(Section.getSectionName(), 16);
WriteString(Section.getSegmentName(), 16);
Write32(0); // address
Write32(SD.getFileSize()); // size
Write32(SD.getFileOffset());
assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
Write32(Log2_32(SD.getAlignment()));
Write32(0); // file offset of relocation entries
Write32(0); // number of relocation entrions
Write32(Section.getTypeAndAttributes());
Write32(0); // reserved1
Write32(Section.getStubSize()); // reserved2
assert(OS.tell() - Start == Section32Size);
}
};
}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *SD)
: Kind(_Kind),
FileOffset(~UINT64_C(0)),
FileSize(~UINT64_C(0))
{
if (SD)
SD->getFragmentList().push_back(this);
}
MCFragment::~MCFragment() {
}
/* *** */
MCSectionData::MCSectionData() : Section(*(MCSection*)0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(_Section),
Alignment(1),
FileOffset(~UINT64_C(0)),
FileSize(~UINT64_C(0))
{
if (A)
A->getSectionList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(raw_ostream &_OS) : OS(_OS) {}
MCAssembler::~MCAssembler() {
}
void MCAssembler::LayoutSection(MCSectionData &SD) {
uint64_t FileOffset = SD.getFileOffset();
uint64_t SectionOffset = 0;
for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
MCFragment &F = *it;
F.setFileOffset(FileOffset);
// Evaluate fragment size.
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t AlignedOffset =
RoundUpToAlignment(SectionOffset, AF.getAlignment());
uint64_t PaddingBytes = AlignedOffset - SectionOffset;
if (PaddingBytes > AF.getMaxBytesToEmit())
AF.setFileSize(0);
else
AF.setFileSize(PaddingBytes);
break;
}
case MCFragment::FT_Data:
case MCFragment::FT_Fill:
F.setFileSize(F.getMaxFileSize());
break;
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
if (!OF.getOffset().isAbsolute())
llvm_unreachable("FIXME: Not yet implemented!");
uint64_t OrgOffset = OF.getOffset().getConstant();
// FIXME: We need a way to communicate this error.
if (OrgOffset < SectionOffset)
llvm_report_error("invalid .org offset '" + Twine(OrgOffset) +
"' (section offset '" + Twine(SectionOffset) + "'");
F.setFileSize(OrgOffset - SectionOffset);
break;
}
}
FileOffset += F.getFileSize();
SectionOffset += F.getFileSize();
}
// FIXME: Pad section?
SD.setFileSize(FileOffset - SD.getFileOffset());
}
/// WriteFileData - Write the \arg F data to the output file.
static void WriteFileData(raw_ostream &OS, const MCFragment &F,
MachObjectWriter &MOW) {
uint64_t Start = OS.tell();
(void) Start;
assert(F.getFileOffset() == Start && "Invalid file offset!");
// FIXME: Embed in fragments instead?
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t Count = AF.getFileSize() / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != AF.getFileSize())
llvm_report_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(AF.getFileSize()) + "'");
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: MOW.Write8 (uint8_t (AF.getValue())); break;
case 2: MOW.Write16(uint16_t(AF.getValue())); break;
case 4: MOW.Write32(uint32_t(AF.getValue())); break;
case 8: MOW.Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data:
OS << cast<MCDataFragment>(F).getContents().str();
break;
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
if (!FF.getValue().isAbsolute())
llvm_unreachable("FIXME: Not yet implemented!");
int64_t Value = FF.getValue().getConstant();
for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
switch (FF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: MOW.Write8 (uint8_t (Value)); break;
case 2: MOW.Write16(uint16_t(Value)); break;
case 4: MOW.Write32(uint32_t(Value)); break;
case 8: MOW.Write64(uint64_t(Value)); break;
}
}
break;
}
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i)
MOW.Write8(uint8_t(OF.getValue()));
break;
}
}
assert(OS.tell() - Start == F.getFileSize());
}
/// WriteFileData - Write the \arg SD data to the output file.
static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
MachObjectWriter &MOW) {
uint64_t Start = OS.tell();
(void) Start;
for (MCSectionData::const_iterator it = SD.begin(),
ie = SD.end(); it != ie; ++it)
WriteFileData(OS, *it, MOW);
assert(OS.tell() - Start == SD.getFileSize());
}
void MCAssembler::Finish() {
unsigned NumSections = Sections.size();
// Layout the sections and fragments.
uint64_t Offset = MachObjectWriter::getPrologSize32(NumSections);
uint64_t SectionDataSize = 0;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
it->setFileOffset(Offset);
LayoutSection(*it);
Offset += it->getFileSize();
SectionDataSize += it->getFileSize();
}
MachObjectWriter MOW(OS);
// Write the prolog, starting with the header and load command...
MOW.WriteHeader32(NumSections);
MOW.WriteSegmentLoadCommand32(NumSections, SectionDataSize);
// ... and then the section headers.
for (iterator it = begin(), ie = end(); it != ie; ++it)
MOW.WriteSection32(*it);
// Finally, write the section data.
for (iterator it = begin(), ie = end(); it != ie; ++it)
WriteFileData(OS, *it, MOW);
OS.flush();
}