blob: fb51430b481e1db0beea27f83f77f8557308b88b [file] [log] [blame]
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
namespace llvm {
class Value;
template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;
class VectorValType;
class IntegerValType;
class APInt;
class LLVMContext;
class DerivedType : public Type {
friend class Type;
protected:
explicit DerivedType(LLVMContext &C, TypeID id) : Type(C, id) {}
/// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
/// that the current type has transitioned from being abstract to being
/// concrete.
///
void notifyUsesThatTypeBecameConcrete();
/// dropAllTypeUses - When this (abstract) type is resolved to be equal to
/// another (more concrete) type, we must eliminate all references to other
/// types, to avoid some circular reference problems.
///
void dropAllTypeUses();
/// unlockedRefineAbstractTypeTo - Internal version of refineAbstractTypeTo
/// that performs no locking. Only used for internal recursion.
void unlockedRefineAbstractTypeTo(const Type *NewType);
public:
//===--------------------------------------------------------------------===//
// Abstract Type handling methods - These types have special lifetimes, which
// are managed by (add|remove)AbstractTypeUser. See comments in
// AbstractTypeUser.h for more information.
/// refineAbstractTypeTo - This function is used to when it is discovered that
/// the 'this' abstract type is actually equivalent to the NewType specified.
/// This causes all users of 'this' to switch to reference the more concrete
/// type NewType and for 'this' to be deleted.
///
void refineAbstractTypeTo(const Type *NewType);
void dump() const { Type::dump(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const DerivedType *) { return true; }
static inline bool classof(const Type *T) {
return T->isDerivedType();
}
};
/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// @brief Integer representation type
class IntegerType : public DerivedType {
friend class LLVMContextImpl;
protected:
explicit IntegerType(LLVMContext &C, unsigned NumBits) :
DerivedType(C, IntegerTyID) {
setSubclassData(NumBits);
}
friend class TypeMap<IntegerValType, IntegerType>;
public:
/// This enum is just used to hold constants we need for IntegerType.
enum {
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
///< Note that bit width is stored in the Type classes SubclassData field
///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
};
/// This static method is the primary way of constructing an IntegerType.
/// If an IntegerType with the same NumBits value was previously instantiated,
/// that instance will be returned. Otherwise a new one will be created. Only
/// one instance with a given NumBits value is ever created.
/// @brief Get or create an IntegerType instance.
static const IntegerType* get(LLVMContext &C, unsigned NumBits);
/// @brief Get the number of bits in this IntegerType
unsigned getBitWidth() const { return getSubclassData(); }
/// getBitMask - Return a bitmask with ones set for all of the bits
/// that can be set by an unsigned version of this type. This is 0xFF for
/// i8, 0xFFFF for i16, etc.
uint64_t getBitMask() const {
return ~uint64_t(0UL) >> (64-getBitWidth());
}
/// getSignBit - Return a uint64_t with just the most significant bit set (the
/// sign bit, if the value is treated as a signed number).
uint64_t getSignBit() const {
return 1ULL << (getBitWidth()-1);
}
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
/// @returns a bit mask with ones set for all the bits of this type.
/// @brief Get a bit mask for this type.
APInt getMask() const;
/// This method determines if the width of this IntegerType is a power-of-2
/// in terms of 8 bit bytes.
/// @returns true if this is a power-of-2 byte width.
/// @brief Is this a power-of-2 byte-width IntegerType ?
bool isPowerOf2ByteWidth() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const IntegerType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == IntegerTyID;
}
};
/// FunctionType - Class to represent function types
///
class FunctionType : public DerivedType {
friend class TypeMap<FunctionValType, FunctionType>;
bool isVarArgs;
FunctionType(const FunctionType &); // Do not implement
const FunctionType &operator=(const FunctionType &); // Do not implement
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
bool IsVarArgs);
public:
/// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType.
///
static FunctionType *get(
const Type *Result, ///< The result type
const std::vector<const Type*> &Params, ///< The types of the parameters
bool isVarArg ///< Whether this is a variable argument length function
);
/// FunctionType::get - Create a FunctionType taking no parameters.
///
static FunctionType *get(
const Type *Result, ///< The result type
bool isVarArg ///< Whether this is a variable argument length function
) {
return get(Result, std::vector<const Type *>(), isVarArg);
}
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
static bool isValidReturnType(const Type *RetTy);
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
static bool isValidArgumentType(const Type *ArgTy);
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ContainedTys[0]; }
typedef Type::subtype_iterator param_iterator;
param_iterator param_begin() const { return ContainedTys + 1; }
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
// Parameter type accessors...
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
/// getNumParams - Return the number of fixed parameters this function type
/// requires. This does not consider varargs.
///
unsigned getNumParams() const { return NumContainedTys - 1; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FunctionType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == FunctionTyID;
}
};
/// CompositeType - Common super class of ArrayType, StructType, PointerType
/// and VectorType
class CompositeType : public DerivedType {
protected:
inline explicit CompositeType(LLVMContext &C, TypeID id) :
DerivedType(C, id) { }
public:
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element.
///
virtual const Type *getTypeAtIndex(const Value *V) const = 0;
virtual const Type *getTypeAtIndex(unsigned Idx) const = 0;
virtual bool indexValid(const Value *V) const = 0;
virtual bool indexValid(unsigned Idx) const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CompositeType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == VectorTyID;
}
};
/// StructType - Class to represent struct types
///
class StructType : public CompositeType {
friend class TypeMap<StructValType, StructType>;
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
StructType(LLVMContext &C,
const std::vector<const Type*> &Types, bool isPacked);
public:
/// StructType::get - This static method is the primary way to create a
/// StructType.
///
static StructType *get(LLVMContext &Context,
const std::vector<const Type*> &Params,
bool isPacked=false);
/// StructType::get - Create an empty structure type.
///
static StructType *get(LLVMContext &Context, bool isPacked=false) {
return get(Context, std::vector<const Type*>(), isPacked);
}
/// StructType::get - This static method is a convenience method for
/// creating structure types by specifying the elements as arguments.
/// Note that this method always returns a non-packed struct. To get
/// an empty struct, pass NULL, NULL.
static StructType *get(LLVMContext &Context,
const Type *type, ...) END_WITH_NULL;
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(const Type *ElemTy);
// Iterator access to the elements
typedef Type::subtype_iterator element_iterator;
element_iterator element_begin() const { return ContainedTys; }
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
// Random access to the elements
unsigned getNumElements() const { return NumContainedTys; }
const Type *getElementType(unsigned N) const {
assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N];
}
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element. For a structure type, this must be a constant value...
///
virtual const Type *getTypeAtIndex(const Value *V) const;
virtual const Type *getTypeAtIndex(unsigned Idx) const;
virtual bool indexValid(const Value *V) const;
virtual bool indexValid(unsigned Idx) const;
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StructType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == StructTyID;
}
bool isPacked() const { return (0 != getSubclassData()) ? true : false; }
};
/// SequentialType - This is the superclass of the array, pointer and vector
/// type classes. All of these represent "arrays" in memory. The array type
/// represents a specifically sized array, pointer types are unsized/unknown
/// size arrays, vector types represent specifically sized arrays that
/// allow for use of SIMD instructions. SequentialType holds the common
/// features of all, which stem from the fact that all three lay their
/// components out in memory identically.
///
class SequentialType : public CompositeType {
PATypeHandle ContainedType; ///< Storage for the single contained type
SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement!
// avoiding warning: 'this' : used in base member initializer list
SequentialType* this_() { return this; }
protected:
SequentialType(TypeID TID, const Type *ElType)
: CompositeType(ElType->getContext(), TID), ContainedType(ElType, this_()) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
public:
inline const Type *getElementType() const { return ContainedTys[0]; }
virtual bool indexValid(const Value *V) const;
virtual bool indexValid(unsigned) const {
return true;
}
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element. For sequential types, there is only one subtype...
///
virtual const Type *getTypeAtIndex(const Value *) const {
return ContainedTys[0];
}
virtual const Type *getTypeAtIndex(unsigned) const {
return ContainedTys[0];
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SequentialType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == VectorTyID;
}
};
/// ArrayType - Class to represent array types
///
class ArrayType : public SequentialType {
friend class TypeMap<ArrayValType, ArrayType>;
uint64_t NumElements;
ArrayType(const ArrayType &); // Do not implement
const ArrayType &operator=(const ArrayType &); // Do not implement
ArrayType(const Type *ElType, uint64_t NumEl);
public:
/// ArrayType::get - This static method is the primary way to construct an
/// ArrayType
///
static ArrayType *get(const Type *ElementType, uint64_t NumElements);
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(const Type *ElemTy);
inline uint64_t getNumElements() const { return NumElements; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ArrayType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID;
}
};
/// VectorType - Class to represent vector types
///
class VectorType : public SequentialType {
friend class TypeMap<VectorValType, VectorType>;
unsigned NumElements;
VectorType(const VectorType &); // Do not implement
const VectorType &operator=(const VectorType &); // Do not implement
VectorType(const Type *ElType, unsigned NumEl);
public:
/// VectorType::get - This static method is the primary way to construct an
/// VectorType
///
static VectorType *get(const Type *ElementType, unsigned NumElements);
/// VectorType::getInteger - This static method gets a VectorType with the
/// same number of elements as the input type, and the element type is an
/// integer type of the same width as the input element type.
///
static VectorType *getInteger(const VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// VectorType::getExtendedElementVectorType - This static method is like
/// getInteger except that the element types are twice as wide as the
/// elements in the input type.
///
static VectorType *getExtendedElementVectorType(const VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// VectorType::getTruncatedElementVectorType - This static method is like
/// getInteger except that the element types are half as wide as the
/// elements in the input type.
///
static VectorType *getTruncatedElementVectorType(const VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert((EltBits & 1) == 0 &&
"Cannot truncate vector element with odd bit-width");
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(const Type *ElemTy);
/// @brief Return the number of elements in the Vector type.
inline unsigned getNumElements() const { return NumElements; }
/// @brief Return the number of bits in the Vector type.
inline unsigned getBitWidth() const {
return NumElements * getElementType()->getPrimitiveSizeInBits();
}
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VectorType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == VectorTyID;
}
};
/// PointerType - Class to represent pointers
///
class PointerType : public SequentialType {
friend class TypeMap<PointerValType, PointerType>;
unsigned AddressSpace;
PointerType(const PointerType &); // Do not implement
const PointerType &operator=(const PointerType &); // Do not implement
explicit PointerType(const Type *ElType, unsigned AddrSpace);
public:
/// PointerType::get - This constructs a pointer to an object of the specified
/// type in a numbered address space.
static PointerType *get(const Type *ElementType, unsigned AddressSpace);
/// PointerType::getUnqual - This constructs a pointer to an object of the
/// specified type in the generic address space (address space zero).
static PointerType *getUnqual(const Type *ElementType) {
return PointerType::get(ElementType, 0);
}
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(const Type *ElemTy);
/// @brief Return the address space of the Pointer type.
inline unsigned getAddressSpace() const { return AddressSpace; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Implement support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PointerType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == PointerTyID;
}
};
/// OpaqueType - Class to represent abstract types
///
class OpaqueType : public DerivedType {
OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT
const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT
OpaqueType(LLVMContext &C);
public:
/// OpaqueType::get - Static factory method for the OpaqueType class...
///
static OpaqueType *get(LLVMContext &C) {
return new OpaqueType(C); // All opaque types are distinct
}
// Implement support for type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const OpaqueType *) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == OpaqueTyID;
}
};
} // End llvm namespace
#endif