blob: 99773e3936eef127d01191e10449aee5d76ca70d [file] [log] [blame]
//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the top-down data structure graphs to implement a simple
// context sensitive alias analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
namespace {
class DSAA : public Pass, public AliasAnalysis {
TDDataStructures *TD;
public:
DSAA() : TD(0) {}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool run(Module &M) {
InitializeAliasAnalysis(this);
TD = &getAnalysis<TDDataStructures>();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<TDDataStructures>(); // Uses TD Datastructures
AU.addRequired<AliasAnalysis>(); // Chains to another AA impl...
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
void getMustAliases(Value *P, std::vector<Value*> &RetVals);
private:
DSGraph *getGraphForValue(const Value *V);
};
// Register the pass...
RegisterOpt<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, DSAA> Y;
}
// getGraphForValue - Return the DSGraph to use for queries about the specified
// value...
//
DSGraph *DSAA::getGraphForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return &TD->getDSGraph(*I->getParent()->getParent());
else if (const Argument *A = dyn_cast<Argument>(V))
return &TD->getDSGraph(*A->getParent());
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return &TD->getDSGraph(*BB->getParent());
return 0;
}
// isSinglePhysicalObject - For now, the only case that we know that there is
// only one memory object in the node is when there is a single global in the
// node, and the only composition bit set is Global.
//
static bool isSinglePhysicalObject(DSNode *N) {
assert(N->isComplete() && "Can only tell if this is a complete object!");
return N->isGlobalNode() && N->getGlobals().size() == 1 &&
!N->isHeapNode() && !N->isAllocaNode() && !N->isUnknownNode();
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
if (V1 == V2) return MustAlias;
DSGraph *G1 = getGraphForValue(V1);
DSGraph *G2 = getGraphForValue(V2);
assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
// Get the graph to use...
DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));
const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
if (I != GSM.end()) {
assert(I->second.getNode() && "Scalar map points to null node?");
DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
if (J != GSM.end()) {
assert(J->second.getNode() && "Scalar map points to null node?");
DSNode *N1 = I->second.getNode(), *N2 = J->second.getNode();
unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
// We can only make a judgment of one of the nodes is complete...
if (N1->isComplete() || N2->isComplete()) {
if (N1 != N2)
return NoAlias; // Completely different nodes.
#if 0 // This does not correctly handle arrays!
// Both point to the same node and same offset, and there is only one
// physical memory object represented in the node, return must alias.
//
// FIXME: This isn't correct because we do not handle array indexing
// correctly.
if (O1 == O2 && isSinglePhysicalObject(N1))
return MustAlias; // Exactly the same object & offset
#endif
// See if they point to different offsets... if so, we may be able to
// determine that they do not alias...
if (O1 != O2) {
if (O2 < O1) { // Ensure that O1 <= O2
std::swap(V1, V2);
std::swap(O1, O2);
std::swap(V1Size, V2Size);
}
// FIXME: This is not correct because we do not handle array
// indexing correctly with this check!
//if (O1+V1Size <= O2) return NoAlias;
}
}
}
}
// FIXME: we could improve on this by checking the globals graph for aliased
// global queries...
return getAnalysis<AliasAnalysis>().alias(V1, V1Size, V2, V2Size);
}
/// getMustAliases - If there are any pointers known that must alias this
/// pointer, return them now. This allows alias-set based alias analyses to
/// perform a form a value numbering (which is exposed by load-vn). If an alias
/// analysis supports this, it should ADD any must aliased pointers to the
/// specified vector.
///
void DSAA::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
#if 0 // This does not correctly handle arrays!
// Currently the only must alias information we can provide is to say that
// something is equal to a global value. If we already have a global value,
// don't get worked up about it.
if (!isa<GlobalValue>(P)) {
DSGraph *G = getGraphForValue(P);
if (!G) G = &TD->getGlobalsGraph();
// The only must alias information we can currently determine occurs when
// the node for P is a global node with only one entry.
const DSGraph::ScalarMapTy &GSM = G->getScalarMap();
DSGraph::ScalarMapTy::const_iterator I = GSM.find(P);
if (I != GSM.end()) {
DSNode *N = I->second.getNode();
if (N->isComplete() && isSinglePhysicalObject(N))
RetVals.push_back(N->getGlobals()[0]);
}
}
#endif
return getAnalysis<AliasAnalysis>().getMustAliases(P, RetVals);
}