blob: 268fe7efd9cefcb70b9902a8504ad229d186d107 [file] [log] [blame]
//===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
STATISTIC(MCNumEmitted, "Number of MC instructions emitted.");
STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created.");
namespace {
class ARMMCCodeEmitter : public MCCodeEmitter {
const MCInstrInfo &MCII;
MCContext &CTX;
bool IsLittleEndian;
public:
ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle)
: MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) {
}
ARMMCCodeEmitter(const ARMMCCodeEmitter &) = delete;
ARMMCCodeEmitter &operator=(const ARMMCCodeEmitter &) = delete;
~ARMMCCodeEmitter() override = default;
bool isThumb(const MCSubtargetInfo &STI) const {
return STI.getFeatureBits()[ARM::ModeThumb];
}
bool isThumb2(const MCSubtargetInfo &STI) const {
return isThumb(STI) && STI.getFeatureBits()[ARM::FeatureThumb2];
}
bool isTargetMachO(const MCSubtargetInfo &STI) const {
const Triple &TT = STI.getTargetTriple();
return TT.isOSBinFormatMachO();
}
unsigned getMachineSoImmOpValue(unsigned SoImm) const;
// getBinaryCodeForInstr - TableGen'erated function for getting the
// binary encoding for an instruction.
uint64_t getBinaryCodeForInstr(const MCInst &MI,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of
/// the specified operand. This is used for operands with :lower16: and
/// :upper16: prefixes.
uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx,
unsigned &Reg, unsigned &Imm,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbBLTargetOpValue - Return encoding info for Thumb immediate
/// BL branch target.
uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
/// BLX branch target.
uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getBranchTargetOpValue - Return encoding info for 24-bit immediate
/// branch target.
uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbBranchTargetOpValue - Return encoding info for 24-bit
/// immediate Thumb2 direct branch target.
uint32_t getThumbBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate
/// branch target.
uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAdrLabelOpValue - Return encoding info for 12-bit immediate
/// ADR label target.
uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getITMaskOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5'
/// operand.
uint32_t getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
/// operand.
uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand.
uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2'
/// operand.
uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getT2AddrModeImm7s4OpValue - Return encoding info for 'reg +/- imm7<<2'
/// operand.
uint32_t getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2'
/// operand.
uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getT2ScaledImmOpValue - Return encoding info for '+/- immX<<Y'
/// operand.
template<unsigned Bits, unsigned Shift>
uint32_t getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
/// operand.
uint32_t getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getMveAddrModeQOpValue - Return encoding info for 'reg +/- imm7<<{shift}'
/// operand.
template<int shift>
uint32_t getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm'
/// operand as needed by load/store instructions.
uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getLdStmModeOpValue - Return encoding for load/store multiple mode.
uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm();
switch (Mode) {
default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::da: return 0;
case ARM_AM::ia: return 1;
case ARM_AM::db: return 2;
case ARM_AM::ib: return 3;
}
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const {
switch (ShOpc) {
case ARM_AM::no_shift:
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::asr: return 2;
case ARM_AM::ror:
case ARM_AM::rrx: return 3;
default:
llvm_unreachable("Invalid ShiftOpc!");
}
}
/// getAddrMode2OffsetOpValue - Return encoding for am2offset operands.
uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getPostIdxRegOpValue - Return encoding for postidx_reg operands.
uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrMode3OffsetOpValue - Return encoding for am3offset operands.
uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrMode3OpValue - Return encoding for addrmode3 operands.
uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12'
/// operand.
uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
uint32_t getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getCCOutOpValue - Return encoding of the 's' bit.
unsigned getCCOutOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or
// '1' respectively.
return MI.getOperand(Op).getReg() == ARM::CPSR;
}
unsigned getModImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &ST) const {
const MCOperand &MO = MI.getOperand(Op);
// Support for fixups (MCFixup)
if (MO.isExpr()) {
const MCExpr *Expr = MO.getExpr();
// Fixups resolve to plain values that need to be encoded.
MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_mod_imm);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
return 0;
}
// Immediate is already in its encoded format
return MO.getImm();
}
/// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value.
unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(Op);
// Support for fixups (MCFixup)
if (MO.isExpr()) {
const MCExpr *Expr = MO.getExpr();
// Fixups resolve to plain values that need to be encoded.
MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_so_imm);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
return 0;
}
unsigned SoImm = MO.getImm();
unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm);
assert(Encoded != ~0U && "Not a Thumb2 so_imm value?");
return Encoded;
}
unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template<unsigned Bits, unsigned Shift>
unsigned getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// getSORegOpValue - Return an encoded so_reg shifted register value.
unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return 64 - MI.getOperand(Op).getImm();
}
unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template <uint8_t shift, bool invert>
unsigned getExpandedImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
static_assert(shift <= 32, "Shift count must be less than or equal to 32.");
const MCOperand MO = MI.getOperand(Op);
return (invert ? (MO.getImm() ^ 0xff) : MO.getImm()) >> shift;
}
unsigned NEONThumb2DataIPostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const;
unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const;
unsigned NEONThumb2DupPostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const;
unsigned NEONThumb2V8PostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const;
unsigned VFPThumb2PostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const;
uint32_t getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void EmitByte(unsigned char C, raw_ostream &OS) const {
OS << (char)C;
}
void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
// Output the constant in little endian byte order.
for (unsigned i = 0; i != Size; ++i) {
unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
EmitByte((Val >> Shift) & 0xff, OS);
}
}
void encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
template <bool isNeg, ARM::Fixups fixup>
uint32_t getBFTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint32_t getRestrictedCondCodeOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template <unsigned size>
uint32_t getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
};
} // end anonymous namespace
/// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
if (isThumb2(STI)) {
// NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved
// to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are
// set to 1111.
unsigned Bit24 = EncodedValue & 0x01000000;
unsigned Bit28 = Bit24 << 4;
EncodedValue &= 0xEFFFFFFF;
EncodedValue |= Bit28;
EncodedValue |= 0x0F000000;
}
return EncodedValue;
}
/// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
if (isThumb2(STI)) {
EncodedValue &= 0xF0FFFFFF;
EncodedValue |= 0x09000000;
}
return EncodedValue;
}
/// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
if (isThumb2(STI)) {
EncodedValue &= 0x00FFFFFF;
EncodedValue |= 0xEE000000;
}
return EncodedValue;
}
/// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form
/// if we are in Thumb2.
unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI,
unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
if (isThumb2(STI)) {
EncodedValue |= 0xC000000; // Set bits 27-26
}
return EncodedValue;
}
/// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite
/// them to their Thumb2 form if we are currently in Thumb2 mode.
unsigned ARMMCCodeEmitter::
VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
if (isThumb2(STI)) {
EncodedValue &= 0x0FFFFFFF;
EncodedValue |= 0xE0000000;
}
return EncodedValue;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg()) {
unsigned Reg = MO.getReg();
unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
// In NEON, Q registers are encoded as 2x their register number,
// because they're using the same indices as the D registers they
// overlap. In MVE, there are no 64-bit vector instructions, so
// the encodings all refer to Q-registers by their literal
// register number.
if (STI.getFeatureBits()[ARM::HasMVEIntegerOps])
return RegNo;
switch (Reg) {
default:
return RegNo;
case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3:
case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7:
case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11:
case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15:
return 2 * RegNo;
}
} else if (MO.isImm()) {
return static_cast<unsigned>(MO.getImm());
} else if (MO.isFPImm()) {
return static_cast<unsigned>(APFloat(MO.getFPImm())
.bitcastToAPInt().getHiBits(32).getLimitedValue());
}
llvm_unreachable("Unable to encode MCOperand!");
}
/// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand.
bool ARMMCCodeEmitter::
EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg,
unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
int32_t SImm = MO1.getImm();
bool isAdd = true;
// Special value for #-0
if (SImm == INT32_MIN) {
SImm = 0;
isAdd = false;
}
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (SImm < 0) {
SImm = -SImm;
isAdd = false;
}
Imm = SImm;
return isAdd;
}
/// getBranchTargetOpValue - Helper function to get the branch target operand,
/// which is either an immediate or requires a fixup.
static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
unsigned FixupKind,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) {
const MCOperand &MO = MI.getOperand(OpIdx);
// If the destination is an immediate, we have nothing to do.
if (MO.isImm()) return MO.getImm();
assert(MO.isExpr() && "Unexpected branch target type!");
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind = MCFixupKind(FixupKind);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
// All of the information is in the fixup.
return 0;
}
// Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are
// determined by negating them and XOR'ing them with bit 23.
static int32_t encodeThumbBLOffset(int32_t offset) {
offset >>= 1;
uint32_t S = (offset & 0x800000) >> 23;
uint32_t J1 = (offset & 0x400000) >> 22;
uint32_t J2 = (offset & 0x200000) >> 21;
J1 = (~J1 & 0x1);
J2 = (~J2 & 0x1);
J1 ^= S;
J2 ^= S;
offset &= ~0x600000;
offset |= J1 << 22;
offset |= J2 << 21;
return offset;
}
/// getThumbBLTargetOpValue - Return encoding info for immediate branch target.
uint32_t ARMMCCodeEmitter::
getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl,
Fixups, STI);
return encodeThumbBLOffset(MO.getImm());
}
/// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
/// BLX branch target.
uint32_t ARMMCCodeEmitter::
getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx,
Fixups, STI);
return encodeThumbBLOffset(MO.getImm());
}
/// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br,
Fixups, STI);
return (MO.getImm() >> 1);
}
/// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc,
Fixups, STI);
return (MO.getImm() >> 1);
}
/// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups, STI);
return (MO.getImm() >> 1);
}
/// Return true if this branch has a non-always predication
static bool HasConditionalBranch(const MCInst &MI) {
int NumOp = MI.getNumOperands();
if (NumOp >= 2) {
for (int i = 0; i < NumOp-1; ++i) {
const MCOperand &MCOp1 = MI.getOperand(i);
const MCOperand &MCOp2 = MI.getOperand(i + 1);
if (MCOp1.isImm() && MCOp2.isReg() &&
(MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) {
if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL)
return true;
}
}
}
return false;
}
/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
/// target.
uint32_t ARMMCCodeEmitter::
getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// FIXME: This really, really shouldn't use TargetMachine. We don't want
// coupling between MC and TM anywhere we can help it.
if (isThumb2(STI))
return
::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI);
return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI);
}
/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
/// target.
uint32_t ARMMCCodeEmitter::
getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr()) {
if (HasConditionalBranch(MI))
return ::getBranchTargetOpValue(MI, OpIdx,
ARM::fixup_arm_condbranch, Fixups, STI);
return ::getBranchTargetOpValue(MI, OpIdx,
ARM::fixup_arm_uncondbranch, Fixups, STI);
}
return MO.getImm() >> 2;
}
uint32_t ARMMCCodeEmitter::
getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr()) {
if (HasConditionalBranch(MI))
return ::getBranchTargetOpValue(MI, OpIdx,
ARM::fixup_arm_condbl, Fixups, STI);
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups, STI);
}
return MO.getImm() >> 2;
}
uint32_t ARMMCCodeEmitter::
getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI);
return MO.getImm() >> 1;
}
/// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit
/// immediate branch target.
uint32_t ARMMCCodeEmitter::getThumbBranchTargetOpValue(
const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned Val = 0;
const MCOperand MO = MI.getOperand(OpIdx);
if(MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups, STI);
else
Val = MO.getImm() >> 1;
bool I = (Val & 0x800000);
bool J1 = (Val & 0x400000);
bool J2 = (Val & 0x200000);
if (I ^ J1)
Val &= ~0x400000;
else
Val |= 0x400000;
if (I ^ J2)
Val &= ~0x200000;
else
Val |= 0x200000;
return Val;
}
/// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate
/// ADR label target.
uint32_t ARMMCCodeEmitter::
getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12,
Fixups, STI);
int64_t offset = MO.getImm();
uint32_t Val = 0x2000;
int SoImmVal;
if (offset == INT32_MIN) {
Val = 0x1000;
SoImmVal = 0;
} else if (offset < 0) {
Val = 0x1000;
offset *= -1;
SoImmVal = ARM_AM::getSOImmVal(offset);
if(SoImmVal == -1) {
Val = 0x2000;
offset *= -1;
SoImmVal = ARM_AM::getSOImmVal(offset);
}
} else {
SoImmVal = ARM_AM::getSOImmVal(offset);
if(SoImmVal == -1) {
Val = 0x1000;
offset *= -1;
SoImmVal = ARM_AM::getSOImmVal(offset);
}
}
assert(SoImmVal != -1 && "Not a valid so_imm value!");
Val |= SoImmVal;
return Val;
}
/// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label
/// target.
uint32_t ARMMCCodeEmitter::
getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12,
Fixups, STI);
int32_t Val = MO.getImm();
if (Val == INT32_MIN)
Val = 0x1000;
else if (Val < 0) {
Val *= -1;
Val |= 0x1000;
}
return Val;
}
/// getITMaskOpValue - Return the architectural encoding of an IT
/// predication mask, given the MCOperand format.
uint32_t ARMMCCodeEmitter::
getITMaskOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MaskMO = MI.getOperand(OpIdx);
assert(MaskMO.isImm() && "Unexpected operand type!");
unsigned Mask = MaskMO.getImm();
// IT masks are encoded as a sequence of replacement low-order bits
// for the condition code. So if the low bit of the starting
// condition code is 1, then we have to flip all the bits above the
// terminating bit (which is the lowest 1 bit).
assert(OpIdx > 0 && "IT mask appears first!");
const MCOperand CondMO = MI.getOperand(OpIdx-1);
assert(CondMO.isImm() && "Unexpected operand type!");
if (CondMO.getImm() & 1) {
unsigned LowBit = Mask & -Mask;
unsigned BitsAboveLowBit = 0xF & (-LowBit << 1);
Mask ^= BitsAboveLowBit;
}
return Mask;
}
/// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label
/// target.
uint32_t ARMMCCodeEmitter::
getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10,
Fixups, STI);
return MO.getImm();
}
/// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg'
/// operand.
uint32_t ARMMCCodeEmitter::
getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &,
const MCSubtargetInfo &STI) const {
// [Rn, Rm]
// {5-3} = Rm
// {2-0} = Rn
const MCOperand &MO1 = MI.getOperand(OpIdx);
const MCOperand &MO2 = MI.getOperand(OpIdx + 1);
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
return (Rm << 3) | Rn;
}
/// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5'
/// operand.
uint32_t
ARMMCCodeEmitter::getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {4-0} = szimm5
// The value we are trying to encode is an immediate between either the
// range of [1-7] or [1-15] depending on whether we are dealing with the
// u8/s8 or the u16/s16 variants respectively.
// This value is encoded as follows, if ShiftImm is the value within those
// ranges then the encoding szimm5 = ShiftImm + size, where size is either 8
// or 16.
unsigned Size, ShiftImm;
switch(MI.getOpcode()) {
case ARM::MVE_VSHLL_imms16bh:
case ARM::MVE_VSHLL_imms16th:
case ARM::MVE_VSHLL_immu16bh:
case ARM::MVE_VSHLL_immu16th:
Size = 16;
break;
case ARM::MVE_VSHLL_imms8bh:
case ARM::MVE_VSHLL_imms8th:
case ARM::MVE_VSHLL_immu8bh:
case ARM::MVE_VSHLL_immu8th:
Size = 8;
break;
default:
llvm_unreachable("Use of operand not supported by this instruction");
}
ShiftImm = MI.getOperand(OpIdx).getImm();
return Size + ShiftImm;
}
/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand.
uint32_t ARMMCCodeEmitter::
getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
unsigned Reg, Imm12;
bool isAdd = true;
// If The first operand isn't a register, we have a label reference.
const MCOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
Imm12 = 0;
if (MO.isExpr()) {
const MCExpr *Expr = MO.getExpr();
isAdd = false ; // 'U' bit is set as part of the fixup.
MCFixupKind Kind;
if (isThumb2(STI))
Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12);
else
Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
++MCNumCPRelocations;
} else {
Reg = ARM::PC;
int32_t Offset = MO.getImm();
if (Offset == INT32_MIN) {
Offset = 0;
isAdd = false;
} else if (Offset < 0) {
Offset *= -1;
isAdd = false;
}
Imm12 = Offset;
}
} else
isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI);
uint32_t Binary = Imm12 & 0xfff;
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (isAdd)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
template<unsigned Bits, unsigned Shift>
uint32_t ARMMCCodeEmitter::
getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// FIXME: The immediate operand should have already been encoded like this
// before ever getting here. The encoder method should just need to combine
// the MI operands for the register and the offset into a single
// representation for the complex operand in the .td file. This isn't just
// style, unfortunately. As-is, we can't represent the distinct encoding
// for #-0.
// {Bits} = (U)nsigned (add == '1', sub == '0')
// {(Bits-1)-0} = immediate
int32_t Imm = MI.getOperand(OpIdx).getImm();
bool isAdd = Imm >= 0;
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (Imm < 0)
Imm = -(uint32_t)Imm;
Imm >>= Shift;
uint32_t Binary = Imm & ((1U << Bits) - 1);
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (isAdd)
Binary |= (1U << Bits);
return Binary;
}
/// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
/// operand.
uint32_t ARMMCCodeEmitter::
getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {6-3} Rn
// {2-0} Qm
const MCOperand &M0 = MI.getOperand(OpIdx);
const MCOperand &M1 = MI.getOperand(OpIdx + 1);
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(M0.getReg());
unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M1.getReg());
assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits");
return (Rn << 3) | Qm;
}
/// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
/// operand.
template<int shift>
uint32_t ARMMCCodeEmitter::
getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {10-8} Qm
// {7-0} Imm
const MCOperand &M0 = MI.getOperand(OpIdx);
const MCOperand &M1 = MI.getOperand(OpIdx + 1);
unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M0.getReg());
int32_t Imm = M1.getImm();
bool isAdd = Imm >= 0;
Imm >>= shift;
if (!isAdd)
Imm = -(uint32_t)Imm;
Imm &= 0x7f;
if (isAdd)
Imm |= 0x80;
assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits");
return (Qm << 8) | Imm;
}
/// getT2AddrModeImm8s4OpValue - Return encoding info for
/// 'reg +/- imm8<<2' operand.
uint32_t ARMMCCodeEmitter::
getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {12-9} = reg
// {8} = (U)nsigned (add == '1', sub == '0')
// {7-0} = imm8
unsigned Reg, Imm8;
bool isAdd = true;
// If The first operand isn't a register, we have a label reference.
const MCOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
Imm8 = 0;
isAdd = false ; // 'U' bit is set as part of the fixup.
assert(MO.isExpr() && "Unexpected machine operand type!");
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
++MCNumCPRelocations;
} else
isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
// FIXME: The immediate operand should have already been encoded like this
// before ever getting here. The encoder method should just need to combine
// the MI operands for the register and the offset into a single
// representation for the complex operand in the .td file. This isn't just
// style, unfortunately. As-is, we can't represent the distinct encoding
// for #-0.
uint32_t Binary = (Imm8 >> 2) & 0xff;
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (isAdd)
Binary |= (1 << 8);
Binary |= (Reg << 9);
return Binary;
}
/// getT2AddrModeImm7s4OpValue - Return encoding info for
/// 'reg +/- imm7<<2' operand.
uint32_t
ARMMCCodeEmitter::getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {11-8} = reg
// {7} = (A)dd (add == '1', sub == '0')
// {6-0} = imm7
unsigned Reg, Imm7;
// If The first operand isn't a register, we have a label reference.
bool isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm7, Fixups, STI);
// FIXME: The immediate operand should have already been encoded like this
// before ever getting here. The encoder method should just need to combine
// the MI operands for the register and the offset into a single
// representation for the complex operand in the .td file. This isn't just
// style, unfortunately. As-is, we can't represent the distinct encoding
// for #-0.
uint32_t Binary = (Imm7 >> 2) & 0xff;
// Immediate is always encoded as positive. The 'A' bit controls add vs sub.
if (isAdd)
Binary |= (1 << 7);
Binary |= (Reg << 8);
return Binary;
}
/// getT2AddrModeImm0_1020s4OpValue - Return encoding info for
/// 'reg + imm8<<2' operand.
uint32_t ARMMCCodeEmitter::
getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {11-8} = reg
// {7-0} = imm8
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
unsigned Imm8 = MO1.getImm();
return (Reg << 8) | Imm8;
}
uint32_t
ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {20-16} = imm{15-12}
// {11-0} = imm{11-0}
const MCOperand &MO = MI.getOperand(OpIdx);
if (MO.isImm())
// Hi / lo 16 bits already extracted during earlier passes.
return static_cast<unsigned>(MO.getImm());
// Handle :upper16: and :lower16: assembly prefixes.
const MCExpr *E = MO.getExpr();
MCFixupKind Kind;
if (E->getKind() == MCExpr::Target) {
const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E);
E = ARM16Expr->getSubExpr();
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(E)) {
const int64_t Value = MCE->getValue();
if (Value > UINT32_MAX)
report_fatal_error("constant value truncated (limited to 32-bit)");
switch (ARM16Expr->getKind()) {
case ARMMCExpr::VK_ARM_HI16:
return (int32_t(Value) & 0xffff0000) >> 16;
case ARMMCExpr::VK_ARM_LO16:
return (int32_t(Value) & 0x0000ffff);
default: llvm_unreachable("Unsupported ARMFixup");
}
}
switch (ARM16Expr->getKind()) {
default: llvm_unreachable("Unsupported ARMFixup");
case ARMMCExpr::VK_ARM_HI16:
Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movt_hi16
: ARM::fixup_arm_movt_hi16);
break;
case ARMMCExpr::VK_ARM_LO16:
Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movw_lo16
: ARM::fixup_arm_movw_lo16);
break;
}
Fixups.push_back(MCFixup::create(0, E, Kind, MI.getLoc()));
return 0;
}
// If the expression doesn't have :upper16: or :lower16: on it,
// it's just a plain immediate expression, previously those evaluated to
// the lower 16 bits of the expression regardless of whether
// we have a movt or a movw, but that led to misleadingly results.
// This is disallowed in the AsmParser in validateInstruction()
// so this should never happen.
llvm_unreachable("expression without :upper16: or :lower16:");
}
uint32_t ARMMCCodeEmitter::
getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx+1);
const MCOperand &MO2 = MI.getOperand(OpIdx+2);
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm());
bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add;
ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm());
unsigned SBits = getShiftOp(ShOp);
// While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift
// amount. However, it would be an easy mistake to make so check here.
assert((ShImm & ~0x1f) == 0 && "Out of range shift amount");
// {16-13} = Rn
// {12} = isAdd
// {11-0} = shifter
// {3-0} = Rm
// {4} = 0
// {6-5} = type
// {11-7} = imm
uint32_t Binary = Rm;
Binary |= Rn << 13;
Binary |= SBits << 5;
Binary |= ShImm << 7;
if (isAdd)
Binary |= 1 << 12;
return Binary;
}
uint32_t ARMMCCodeEmitter::
getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {13} 1 == imm12, 0 == Rm
// {12} isAdd
// {11-0} imm12/Rm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx+1);
unsigned Imm = MO1.getImm();
bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add;
bool isReg = MO.getReg() != 0;
uint32_t Binary = ARM_AM::getAM2Offset(Imm);
// if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12
if (isReg) {
ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm);
Binary <<= 7; // Shift amount is bits [11:7]
Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5]
Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0]
}
return Binary | (isAdd << 12) | (isReg << 13);
}
uint32_t ARMMCCodeEmitter::
getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {4} isAdd
// {3-0} Rm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx+1);
bool isAdd = MO1.getImm() != 0;
return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4);
}
uint32_t ARMMCCodeEmitter::
getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {9} 1 == imm8, 0 == Rm
// {8} isAdd
// {7-4} imm7_4/zero
// {3-0} imm3_0/Rm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx+1);
unsigned Imm = MO1.getImm();
bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
bool isImm = MO.getReg() == 0;
uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
// if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
if (!isImm)
Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
return Imm8 | (isAdd << 8) | (isImm << 9);
}
uint32_t ARMMCCodeEmitter::
getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {13} 1 == imm8, 0 == Rm
// {12-9} Rn
// {8} isAdd
// {7-4} imm7_4/zero
// {3-0} imm3_0/Rm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx+1);
const MCOperand &MO2 = MI.getOperand(OpIdx+2);
// If The first operand isn't a register, we have a label reference.
if (!MO.isReg()) {
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
assert(MO.isExpr() && "Unexpected machine operand type!");
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
++MCNumCPRelocations;
return (Rn << 9) | (1 << 13);
}
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
unsigned Imm = MO2.getImm();
bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
bool isImm = MO1.getReg() == 0;
uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
// if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
if (!isImm)
Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13);
}
/// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands.
uint32_t ARMMCCodeEmitter::
getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// [SP, #imm]
// {7-0} = imm8
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
assert(MI.getOperand(OpIdx).getReg() == ARM::SP &&
"Unexpected base register!");
// The immediate is already shifted for the implicit zeroes, so no change
// here.
return MO1.getImm() & 0xff;
}
/// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
uint32_t ARMMCCodeEmitter::
getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// [Rn, #imm]
// {7-3} = imm5
// {2-0} = Rn
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
unsigned Imm5 = MO1.getImm();
return ((Imm5 & 0x1f) << 3) | Rn;
}
/// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
uint32_t ARMMCCodeEmitter::
getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups, STI);
return (MO.getImm() >> 2);
}
/// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
uint32_t ARMMCCodeEmitter::
getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {12-9} = reg
// {8} = (U)nsigned (add == '1', sub == '0')
// {7-0} = imm8
unsigned Reg, Imm8;
bool isAdd;
// If The first operand isn't a register, we have a label reference.
const MCOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
Imm8 = 0;
isAdd = false; // 'U' bit is handled as part of the fixup.
assert(MO.isExpr() && "Unexpected machine operand type!");
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind;
if (isThumb2(STI))
Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
else
Kind = MCFixupKind(ARM::fixup_arm_pcrel_10);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
++MCNumCPRelocations;
} else {
EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
}
uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (isAdd)
Binary |= (1 << 8);
Binary |= (Reg << 9);
return Binary;
}
/// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
uint32_t ARMMCCodeEmitter::
getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// {12-9} = reg
// {8} = (U)nsigned (add == '1', sub == '0')
// {7-0} = imm8
unsigned Reg, Imm8;
bool isAdd;
// If The first operand isn't a register, we have a label reference.
const MCOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
Imm8 = 0;
isAdd = false; // 'U' bit is handled as part of the fixup.
assert(MO.isExpr() && "Unexpected machine operand type!");
const MCExpr *Expr = MO.getExpr();
MCFixupKind Kind;
if (isThumb2(STI))
Kind = MCFixupKind(ARM::fixup_t2_pcrel_9);
else
Kind = MCFixupKind(ARM::fixup_arm_pcrel_9);
Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
++MCNumCPRelocations;
} else {
EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
}
uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (isAdd)
Binary |= (1 << 8);
Binary |= (Reg << 9);
return Binary;
}
unsigned ARMMCCodeEmitter::
getSORegRegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be
// shifted. The second is Rs, the amount to shift by, and the third specifies
// the type of the shift.
//
// {3-0} = Rm.
// {4} = 1
// {6-5} = type
// {11-8} = Rs
// {7} = 0
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
const MCOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode Rm.
unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
}
}
Binary |= SBits << 4;
// Encode the shift operation Rs.
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift);
}
unsigned ARMMCCodeEmitter::
getSORegImmOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Sub-operands are [reg, imm]. The first register is Rm, the reg to be
// shifted. The second is the amount to shift by.
//
// {3-0} = Rm.
// {4} = 0
// {6-5} = type
// {11-7} = imm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());
// Encode Rm.
unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
// Encode the shift opcode.
unsigned SBits = 0;
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
// RRX - 110 and bit[11:8] clear.
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
case ARM_AM::rrx:
Binary |= 0x60;
return Binary;
}
// Encode shift_imm bit[11:7].
Binary |= SBits << 4;
unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm());
assert(Offset < 32 && "Offset must be in range 0-31!");
return Binary | (Offset << 7);
}
unsigned ARMMCCodeEmitter::
getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO1 = MI.getOperand(OpNum);
const MCOperand &MO2 = MI.getOperand(OpNum+1);
const MCOperand &MO3 = MI.getOperand(OpNum+2);
// Encoded as [Rn, Rm, imm].
// FIXME: Needs fixup support.
unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
Value <<= 4;
Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
Value <<= 2;
Value |= MO3.getImm();
return Value;
}
template<unsigned Bits, unsigned Shift>
unsigned ARMMCCodeEmitter::
getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO1 = MI.getOperand(OpNum);
const MCOperand &MO2 = MI.getOperand(OpNum+1);
// FIXME: Needs fixup support.
unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
// If the immediate is B bits long, we need B+1 bits in order
// to represent the (inverse of the) sign bit.
Value <<= (Bits + 1);
int32_t tmp = (int32_t)MO2.getImm();
if (tmp == INT32_MIN) { // represents subtracting zero rather than adding it
tmp = 0;
} else if (tmp < 0) {
tmp = abs(tmp);
} else {
Value |= (1U << Bits); // Set the ADD bit
}
Value |= (tmp >> Shift) & ((1U << Bits) - 1);
return Value;
}
unsigned ARMMCCodeEmitter::
getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO1 = MI.getOperand(OpNum);
// FIXME: Needs fixup support.
unsigned Value = 0;
int32_t tmp = (int32_t)MO1.getImm();
if (tmp < 0)
tmp = abs(tmp);
else
Value |= 256; // Set the ADD bit
Value |= tmp & 255;
return Value;
}
unsigned ARMMCCodeEmitter::
getT2SORegOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Sub-operands are [reg, imm]. The first register is Rm, the reg to be
// shifted. The second is the amount to shift by.
//
// {3-0} = Rm.
// {4} = 0
// {6-5} = type
// {11-7} = imm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());
// Encode Rm.
unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
// Encode the shift opcode.
unsigned SBits = 0;
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::rrx: LLVM_FALLTHROUGH;
case ARM_AM::ror: SBits = 0x6; break;
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7;
}
unsigned ARMMCCodeEmitter::
getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// 10 bits. lower 5 bits are the lsb of the mask, high five bits are the
// msb of the mask.
const MCOperand &MO = MI.getOperand(Op);
uint32_t v = ~MO.getImm();
uint32_t lsb = countTrailingZeros(v);
uint32_t msb = (32 - countLeadingZeros (v)) - 1;
assert(v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!");
return lsb | (msb << 5);
}
unsigned ARMMCCodeEmitter::
getRegisterListOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// VLDM/VSTM/VSCCLRM:
// {12-8} = Vd
// {7-0} = Number of registers
//
// LDM/STM:
// {15-0} = Bitfield of GPRs.
unsigned Reg = MI.getOperand(Op).getReg();
bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg);
bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg);
unsigned Binary = 0;
if (SPRRegs || DPRRegs) {
// VLDM/VSTM/VSCCLRM
unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff;
Binary |= (RegNo & 0x1f) << 8;
// Ignore VPR
if (MI.getOpcode() == ARM::VSCCLRMD || MI.getOpcode() == ARM::VSCCLRMS)
--NumRegs;
if (SPRRegs)
Binary |= NumRegs;
else
Binary |= NumRegs * 2;
} else {
const MCRegisterInfo &MRI = *CTX.getRegisterInfo();
assert(std::is_sorted(MI.begin() + Op, MI.end(),
[&](const MCOperand &LHS, const MCOperand &RHS) {
return MRI.getEncodingValue(LHS.getReg()) <
MRI.getEncodingValue(RHS.getReg());
}));
for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) {
unsigned RegNo = MRI.getEncodingValue(MI.getOperand(I).getReg());
Binary |= 1 << RegNo;
}
}
return Binary;
}
/// getAddrMode6AddressOpValue - Encode an addrmode6 register number along
/// with the alignment operand.
unsigned ARMMCCodeEmitter::
getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &Reg = MI.getOperand(Op);
const MCOperand &Imm = MI.getOperand(Op + 1);
unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
unsigned Align = 0;
switch (Imm.getImm()) {
default: break;
case 2:
case 4:
case 8: Align = 0x01; break;
case 16: Align = 0x02; break;
case 32: Align = 0x03; break;
}
return RegNo | (Align << 4);
}
/// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number
/// along with the alignment operand for use in VST1 and VLD1 with size 32.
unsigned ARMMCCodeEmitter::
getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &Reg = MI.getOperand(Op);
const MCOperand &Imm = MI.getOperand(Op + 1);
unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
unsigned Align = 0;
switch (Imm.getImm()) {
default: break;
case 8:
case 16:
case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes.
case 2: Align = 0x00; break;
case 4: Align = 0x03; break;
}
return RegNo | (Align << 4);
}
/// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and
/// alignment operand for use in VLD-dup instructions. This is the same as
/// getAddrMode6AddressOpValue except for the alignment encoding, which is
/// different for VLD4-dup.
unsigned ARMMCCodeEmitter::
getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &Reg = MI.getOperand(Op);
const MCOperand &Imm = MI.getOperand(Op + 1);
unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
unsigned Align = 0;
switch (Imm.getImm()) {
default: break;
case 2:
case 4:
case 8: Align = 0x01; break;
case 16: Align = 0x03; break;
}
return RegNo | (Align << 4);
}
unsigned ARMMCCodeEmitter::
getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(Op);
if (MO.getReg() == 0) return 0x0D;
return CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
}
unsigned ARMMCCodeEmitter::
getShiftRight8Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return 8 - MI.getOperand(Op).getImm();
}
unsigned ARMMCCodeEmitter::
getShiftRight16Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return 16 - MI.getOperand(Op).getImm();
}
unsigned ARMMCCodeEmitter::
getShiftRight32Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return 32 - MI.getOperand(Op).getImm();
}
unsigned ARMMCCodeEmitter::
getShiftRight64Imm(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return 64 - MI.getOperand(Op).getImm();
}
void ARMMCCodeEmitter::
encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Pseudo instructions don't get encoded.
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo)
return;
int Size;
if (Desc.getSize() == 2 || Desc.getSize() == 4)
Size = Desc.getSize();
else
llvm_unreachable("Unexpected instruction size!");
uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);
// Thumb 32-bit wide instructions need to emit the high order halfword
// first.
if (isThumb(STI) && Size == 4) {
EmitConstant(Binary >> 16, 2, OS);
EmitConstant(Binary & 0xffff, 2, OS);
} else
EmitConstant(Binary, Size, OS);
++MCNumEmitted; // Keep track of the # of mi's emitted.
}
template <bool isNeg, ARM::Fixups fixup>
uint32_t
ARMMCCodeEmitter::getBFTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
if (MO.isExpr())
return ::getBranchTargetOpValue(MI, OpIdx, fixup, Fixups, STI);
return isNeg ? -(MO.getImm() >> 1) : (MO.getImm() >> 1);
}
uint32_t
ARMMCCodeEmitter::getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
const MCOperand BranchMO = MI.getOperand(0);
if (MO.isExpr()) {
assert(BranchMO.isExpr());
const MCExpr *DiffExpr = MCBinaryExpr::createSub(
MO.getExpr(), BranchMO.getExpr(), CTX);
MCFixupKind Kind = MCFixupKind(ARM::fixup_bfcsel_else_target);
Fixups.push_back(llvm::MCFixup::create(0, DiffExpr, Kind, MI.getLoc()));
return 0;
}
assert(MO.isImm() && BranchMO.isImm());
int Diff = MO.getImm() - BranchMO.getImm();
assert(Diff == 4 || Diff == 2);
return Diff == 4;
}
uint32_t ARMMCCodeEmitter::getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI)const {
const MCOperand MO = MI.getOperand(OpIdx);
assert(MO.isImm() && "Unexpected operand type!");
int Value = MO.getImm();
int Imm = 0;
// VPT Masks are actually encoded as a series of invert/don't invert bits,
// rather than true/false bits.
unsigned PrevBit = 0;
for (int i = 3; i >= 0; --i) {
unsigned Bit = (Value >> i) & 1;
// Check if we are at the end of the mask.
if ((Value & ~(~0U << i)) == 0) {
Imm |= (1 << i);
break;
}
// Convert the bit in the mask based on the previous bit.
if (Bit != PrevBit)
Imm |= (1 << i);
PrevBit = Bit;
}
return Imm;
}
uint32_t ARMMCCodeEmitter::getRestrictedCondCodeOpValue(
const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
assert(MO.isImm() && "Unexpected operand type!");
switch (MO.getImm()) {
default:
assert(0 && "Unexpected Condition!");
return 0;
case ARMCC::HS:
case ARMCC::EQ:
return 0;
case ARMCC::HI:
case ARMCC::NE:
return 1;
case ARMCC::GE:
return 4;
case ARMCC::LT:
return 5;
case ARMCC::GT:
return 6;
case ARMCC::LE:
return 7;
}
}
uint32_t ARMMCCodeEmitter::
getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpIdx);
assert(MO.isImm() && "Unexpected operand type!");
return countTrailingZeros((uint64_t)MO.getImm());
}
template <unsigned start>
uint32_t ARMMCCodeEmitter::
getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand MO = MI.getOperand(OpIdx);
assert(MO.isImm() && "Unexpected operand type!");
int Value = MO.getImm();
return Value - start;
}
#include "ARMGenMCCodeEmitter.inc"
MCCodeEmitter *llvm::createARMLEMCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new ARMMCCodeEmitter(MCII, Ctx, true);
}
MCCodeEmitter *llvm::createARMBEMCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new ARMMCCodeEmitter(MCII, Ctx, false);
}