blob: f58bc3060c429b5435cbd4e26fb96c9269744350 [file] [log] [blame]
//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// SI implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "SIRegisterInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUInstPrinter.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
using namespace llvm;
static bool hasPressureSet(const int *PSets, unsigned PSetID) {
for (unsigned i = 0; PSets[i] != -1; ++i) {
if (PSets[i] == (int)PSetID)
return true;
}
return false;
}
void SIRegisterInfo::classifyPressureSet(unsigned PSetID, unsigned Reg,
BitVector &PressureSets) const {
for (MCRegUnitIterator U(Reg, this); U.isValid(); ++U) {
const int *PSets = getRegUnitPressureSets(*U);
if (hasPressureSet(PSets, PSetID)) {
PressureSets.set(PSetID);
break;
}
}
}
static cl::opt<bool> EnableSpillSGPRToVGPR(
"amdgpu-spill-sgpr-to-vgpr",
cl::desc("Enable spilling VGPRs to SGPRs"),
cl::ReallyHidden,
cl::init(true));
SIRegisterInfo::SIRegisterInfo(const GCNSubtarget &ST) :
AMDGPURegisterInfo(),
ST(ST),
SGPRPressureSets(getNumRegPressureSets()),
VGPRPressureSets(getNumRegPressureSets()),
AGPRPressureSets(getNumRegPressureSets()),
SpillSGPRToVGPR(EnableSpillSGPRToVGPR),
isWave32(ST.isWave32()) {
unsigned NumRegPressureSets = getNumRegPressureSets();
SGPRSetID = NumRegPressureSets;
VGPRSetID = NumRegPressureSets;
AGPRSetID = NumRegPressureSets;
for (unsigned i = 0; i < NumRegPressureSets; ++i) {
classifyPressureSet(i, AMDGPU::SGPR0, SGPRPressureSets);
classifyPressureSet(i, AMDGPU::VGPR0, VGPRPressureSets);
classifyPressureSet(i, AMDGPU::AGPR0, AGPRPressureSets);
}
// Determine the number of reg units for each pressure set.
std::vector<unsigned> PressureSetRegUnits(NumRegPressureSets, 0);
for (unsigned i = 0, e = getNumRegUnits(); i != e; ++i) {
const int *PSets = getRegUnitPressureSets(i);
for (unsigned j = 0; PSets[j] != -1; ++j) {
++PressureSetRegUnits[PSets[j]];
}
}
unsigned VGPRMax = 0, SGPRMax = 0, AGPRMax = 0;
for (unsigned i = 0; i < NumRegPressureSets; ++i) {
if (isVGPRPressureSet(i) && PressureSetRegUnits[i] > VGPRMax) {
VGPRSetID = i;
VGPRMax = PressureSetRegUnits[i];
continue;
}
if (isSGPRPressureSet(i) && PressureSetRegUnits[i] > SGPRMax) {
SGPRSetID = i;
SGPRMax = PressureSetRegUnits[i];
}
if (isAGPRPressureSet(i) && PressureSetRegUnits[i] > AGPRMax) {
AGPRSetID = i;
AGPRMax = PressureSetRegUnits[i];
continue;
}
}
assert(SGPRSetID < NumRegPressureSets &&
VGPRSetID < NumRegPressureSets &&
AGPRSetID < NumRegPressureSets);
}
unsigned SIRegisterInfo::reservedPrivateSegmentBufferReg(
const MachineFunction &MF) const {
unsigned BaseIdx = alignDown(ST.getMaxNumSGPRs(MF), 4) - 4;
unsigned BaseReg(AMDGPU::SGPR_32RegClass.getRegister(BaseIdx));
return getMatchingSuperReg(BaseReg, AMDGPU::sub0, &AMDGPU::SGPR_128RegClass);
}
static unsigned findPrivateSegmentWaveByteOffsetRegIndex(unsigned RegCount) {
unsigned Reg;
// Try to place it in a hole after PrivateSegmentBufferReg.
if (RegCount & 3) {
// We cannot put the segment buffer in (Idx - 4) ... (Idx - 1) due to
// alignment constraints, so we have a hole where can put the wave offset.
Reg = RegCount - 1;
} else {
// We can put the segment buffer in (Idx - 4) ... (Idx - 1) and put the
// wave offset before it.
Reg = RegCount - 5;
}
return Reg;
}
unsigned SIRegisterInfo::reservedPrivateSegmentWaveByteOffsetReg(
const MachineFunction &MF) const {
unsigned Reg = findPrivateSegmentWaveByteOffsetRegIndex(ST.getMaxNumSGPRs(MF));
return AMDGPU::SGPR_32RegClass.getRegister(Reg);
}
BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
// EXEC_LO and EXEC_HI could be allocated and used as regular register, but
// this seems likely to result in bugs, so I'm marking them as reserved.
reserveRegisterTuples(Reserved, AMDGPU::EXEC);
reserveRegisterTuples(Reserved, AMDGPU::FLAT_SCR);
// M0 has to be reserved so that llvm accepts it as a live-in into a block.
reserveRegisterTuples(Reserved, AMDGPU::M0);
// Reserve src_vccz, src_execz, src_scc.
reserveRegisterTuples(Reserved, AMDGPU::SRC_VCCZ);
reserveRegisterTuples(Reserved, AMDGPU::SRC_EXECZ);
reserveRegisterTuples(Reserved, AMDGPU::SRC_SCC);
// Reserve the memory aperture registers.
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_LIMIT);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_LIMIT);
// Reserve src_pops_exiting_wave_id - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::SRC_POPS_EXITING_WAVE_ID);
// Reserve xnack_mask registers - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::XNACK_MASK);
// Reserve lds_direct register - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::LDS_DIRECT);
// Reserve Trap Handler registers - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::TBA);
reserveRegisterTuples(Reserved, AMDGPU::TMA);
reserveRegisterTuples(Reserved, AMDGPU::TTMP0_TTMP1);
reserveRegisterTuples(Reserved, AMDGPU::TTMP2_TTMP3);
reserveRegisterTuples(Reserved, AMDGPU::TTMP4_TTMP5);
reserveRegisterTuples(Reserved, AMDGPU::TTMP6_TTMP7);
reserveRegisterTuples(Reserved, AMDGPU::TTMP8_TTMP9);
reserveRegisterTuples(Reserved, AMDGPU::TTMP10_TTMP11);
reserveRegisterTuples(Reserved, AMDGPU::TTMP12_TTMP13);
reserveRegisterTuples(Reserved, AMDGPU::TTMP14_TTMP15);
// Reserve null register - it shall never be allocated
reserveRegisterTuples(Reserved, AMDGPU::SGPR_NULL);
// Disallow vcc_hi allocation in wave32. It may be allocated but most likely
// will result in bugs.
if (isWave32) {
Reserved.set(AMDGPU::VCC);
Reserved.set(AMDGPU::VCC_HI);
}
unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
unsigned TotalNumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumSGPRs; i < TotalNumSGPRs; ++i) {
unsigned Reg = AMDGPU::SGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
unsigned MaxNumVGPRs = ST.getMaxNumVGPRs(MF);
unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) {
unsigned Reg = AMDGPU::VGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
Reg = AMDGPU::AGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
// Reserve all the rest AGPRs if there are no instructions to use it.
if (!ST.hasMAIInsts()) {
for (unsigned i = 0; i < MaxNumVGPRs; ++i) {
unsigned Reg = AMDGPU::AGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
}
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned ScratchWaveOffsetReg = MFI->getScratchWaveOffsetReg();
if (ScratchWaveOffsetReg != AMDGPU::NoRegister) {
// Reserve 1 SGPR for scratch wave offset in case we need to spill.
reserveRegisterTuples(Reserved, ScratchWaveOffsetReg);
}
unsigned ScratchRSrcReg = MFI->getScratchRSrcReg();
if (ScratchRSrcReg != AMDGPU::NoRegister) {
// Reserve 4 SGPRs for the scratch buffer resource descriptor in case we need
// to spill.
// TODO: May need to reserve a VGPR if doing LDS spilling.
reserveRegisterTuples(Reserved, ScratchRSrcReg);
assert(!isSubRegister(ScratchRSrcReg, ScratchWaveOffsetReg));
}
// We have to assume the SP is needed in case there are calls in the function,
// which is detected after the function is lowered. If we aren't really going
// to need SP, don't bother reserving it.
unsigned StackPtrReg = MFI->getStackPtrOffsetReg();
if (StackPtrReg != AMDGPU::NoRegister) {
reserveRegisterTuples(Reserved, StackPtrReg);
assert(!isSubRegister(ScratchRSrcReg, StackPtrReg));
}
unsigned FrameReg = MFI->getFrameOffsetReg();
if (FrameReg != AMDGPU::NoRegister) {
reserveRegisterTuples(Reserved, FrameReg);
assert(!isSubRegister(ScratchRSrcReg, FrameReg));
}
for (unsigned Reg : MFI->WWMReservedRegs) {
reserveRegisterTuples(Reserved, Reg);
}
// FIXME: Stop using reserved registers for this.
for (MCPhysReg Reg : MFI->getAGPRSpillVGPRs())
reserveRegisterTuples(Reserved, Reg);
for (MCPhysReg Reg : MFI->getVGPRSpillAGPRs())
reserveRegisterTuples(Reserved, Reg);
return Reserved;
}
bool SIRegisterInfo::canRealignStack(const MachineFunction &MF) const {
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// On entry, the base address is 0, so it can't possibly need any more
// alignment.
// FIXME: Should be able to specify the entry frame alignment per calling
// convention instead.
if (Info->isEntryFunction())
return false;
return TargetRegisterInfo::canRealignStack(MF);
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
const SIMachineFunctionInfo *Info = Fn.getInfo<SIMachineFunctionInfo>();
if (Info->isEntryFunction()) {
const MachineFrameInfo &MFI = Fn.getFrameInfo();
return MFI.hasStackObjects() || MFI.hasCalls();
}
// May need scavenger for dealing with callee saved registers.
return true;
}
bool SIRegisterInfo::requiresFrameIndexScavenging(
const MachineFunction &MF) const {
// Do not use frame virtual registers. They used to be used for SGPRs, but
// once we reach PrologEpilogInserter, we can no longer spill SGPRs. If the
// scavenger fails, we can increment/decrement the necessary SGPRs to avoid a
// spill.
return false;
}
bool SIRegisterInfo::requiresFrameIndexReplacementScavenging(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MFI.hasStackObjects();
}
bool SIRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &) const {
// There are no special dedicated stack or frame pointers.
return true;
}
bool SIRegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
// This helps catch bugs as verifier errors.
return true;
}
int64_t SIRegisterInfo::getMUBUFInstrOffset(const MachineInstr *MI) const {
assert(SIInstrInfo::isMUBUF(*MI));
int OffIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::offset);
return MI->getOperand(OffIdx).getImm();
}
int64_t SIRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
if (!SIInstrInfo::isMUBUF(*MI))
return 0;
assert(Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr) &&
"Should never see frame index on non-address operand");
return getMUBUFInstrOffset(MI);
}
bool SIRegisterInfo::needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
if (!MI->mayLoadOrStore())
return false;
int64_t FullOffset = Offset + getMUBUFInstrOffset(MI);
return !isUInt<12>(FullOffset);
}
void SIRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
MachineFunction *MF = MBB->getParent();
const SIInstrInfo *TII = ST.getInstrInfo();
if (Offset == 0) {
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), BaseReg)
.addFrameIndex(FrameIdx);
return;
}
MachineRegisterInfo &MRI = MF->getRegInfo();
Register OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
Register FIReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
.addImm(Offset);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), FIReg)
.addFrameIndex(FrameIdx);
TII->getAddNoCarry(*MBB, Ins, DL, BaseReg)
.addReg(OffsetReg, RegState::Kill)
.addReg(FIReg)
.addImm(0); // clamp bit
}
void SIRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
int64_t Offset) const {
const SIInstrInfo *TII = ST.getInstrInfo();
#ifndef NDEBUG
// FIXME: Is it possible to be storing a frame index to itself?
bool SeenFI = false;
for (const MachineOperand &MO: MI.operands()) {
if (MO.isFI()) {
if (SeenFI)
llvm_unreachable("should not see multiple frame indices");
SeenFI = true;
}
}
#endif
MachineOperand *FIOp = TII->getNamedOperand(MI, AMDGPU::OpName::vaddr);
#ifndef NDEBUG
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
#endif
assert(FIOp && FIOp->isFI() && "frame index must be address operand");
assert(TII->isMUBUF(MI));
assert(TII->getNamedOperand(MI, AMDGPU::OpName::soffset)->getReg() ==
MF->getInfo<SIMachineFunctionInfo>()->getStackPtrOffsetReg() &&
"should only be seeing stack pointer offset relative FrameIndex");
MachineOperand *OffsetOp = TII->getNamedOperand(MI, AMDGPU::OpName::offset);
int64_t NewOffset = OffsetOp->getImm() + Offset;
assert(isUInt<12>(NewOffset) && "offset should be legal");
FIOp->ChangeToRegister(BaseReg, false);
OffsetOp->setImm(NewOffset);
}
bool SIRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
unsigned BaseReg,
int64_t Offset) const {
if (!SIInstrInfo::isMUBUF(*MI))
return false;
int64_t NewOffset = Offset + getMUBUFInstrOffset(MI);
return isUInt<12>(NewOffset);
}
const TargetRegisterClass *SIRegisterInfo::getPointerRegClass(
const MachineFunction &MF, unsigned Kind) const {
// This is inaccurate. It depends on the instruction and address space. The
// only place where we should hit this is for dealing with frame indexes /
// private accesses, so this is correct in that case.
return &AMDGPU::VGPR_32RegClass;
}
static unsigned getNumSubRegsForSpillOp(unsigned Op) {
switch (Op) {
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_V1024_SAVE:
case AMDGPU::SI_SPILL_V1024_RESTORE:
case AMDGPU::SI_SPILL_A1024_SAVE:
case AMDGPU::SI_SPILL_A1024_RESTORE:
return 32;
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V512_RESTORE:
case AMDGPU::SI_SPILL_A512_SAVE:
case AMDGPU::SI_SPILL_A512_RESTORE:
return 16;
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V256_RESTORE:
return 8;
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_V160_SAVE:
case AMDGPU::SI_SPILL_V160_RESTORE:
return 5;
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_A128_SAVE:
case AMDGPU::SI_SPILL_A128_RESTORE:
return 4;
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V96_RESTORE:
return 3;
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_A64_SAVE:
case AMDGPU::SI_SPILL_A64_RESTORE:
return 2;
case AMDGPU::SI_SPILL_S32_SAVE:
case AMDGPU::SI_SPILL_S32_RESTORE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_A32_SAVE:
case AMDGPU::SI_SPILL_A32_RESTORE:
return 1;
default: llvm_unreachable("Invalid spill opcode");
}
}
static int getOffsetMUBUFStore(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_STORE_DWORD_OFFEN:
return AMDGPU::BUFFER_STORE_DWORD_OFFSET;
case AMDGPU::BUFFER_STORE_BYTE_OFFEN:
return AMDGPU::BUFFER_STORE_BYTE_OFFSET;
case AMDGPU::BUFFER_STORE_SHORT_OFFEN:
return AMDGPU::BUFFER_STORE_SHORT_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX2_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX2_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX4_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX4_OFFSET;
case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN:
return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET;
case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET;
default:
return -1;
}
}
static int getOffsetMUBUFLoad(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_LOAD_DWORD_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_USHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_USHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_SSHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_SSHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET;
case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET;
default:
return -1;
}
}
static MachineInstrBuilder spillVGPRtoAGPR(const GCNSubtarget &ST,
MachineBasicBlock::iterator MI,
int Index,
unsigned Lane,
unsigned ValueReg,
bool IsKill) {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const SIInstrInfo *TII = ST.getInstrInfo();
MCPhysReg Reg = MFI->getVGPRToAGPRSpill(Index, Lane);
if (Reg == AMDGPU::NoRegister)
return MachineInstrBuilder();
bool IsStore = MI->mayStore();
MachineRegisterInfo &MRI = MF->getRegInfo();
auto *TRI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
unsigned Dst = IsStore ? Reg : ValueReg;
unsigned Src = IsStore ? ValueReg : Reg;
unsigned Opc = (IsStore ^ TRI->isVGPR(MRI, Reg)) ? AMDGPU::V_ACCVGPR_WRITE_B32
: AMDGPU::V_ACCVGPR_READ_B32;
return BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(Opc), Dst)
.addReg(Src, getKillRegState(IsKill));
}
// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
// need to handle the case where an SGPR may need to be spilled while spilling.
static bool buildMUBUFOffsetLoadStore(const GCNSubtarget &ST,
MachineFrameInfo &MFI,
MachineBasicBlock::iterator MI,
int Index,
int64_t Offset) {
const SIInstrInfo *TII = ST.getInstrInfo();
MachineBasicBlock *MBB = MI->getParent();
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = MI->mayStore();
unsigned Opc = MI->getOpcode();
int LoadStoreOp = IsStore ?
getOffsetMUBUFStore(Opc) : getOffsetMUBUFLoad(Opc);
if (LoadStoreOp == -1)
return false;
const MachineOperand *Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata);
if (spillVGPRtoAGPR(ST, MI, Index, 0, Reg->getReg(), false).getInstr())
return true;
MachineInstrBuilder NewMI =
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.add(*Reg)
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addImm(0) // dlc
.addImm(0) // swz
.cloneMemRefs(*MI);
const MachineOperand *VDataIn = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata_in);
if (VDataIn)
NewMI.add(*VDataIn);
return true;
}
void SIRegisterInfo::buildSpillLoadStore(MachineBasicBlock::iterator MI,
unsigned LoadStoreOp,
int Index,
unsigned ValueReg,
bool IsKill,
unsigned ScratchRsrcReg,
unsigned ScratchOffsetReg,
int64_t InstOffset,
MachineMemOperand *MMO,
RegScavenger *RS) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
const SIInstrInfo *TII = ST.getInstrInfo();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const MCInstrDesc &Desc = TII->get(LoadStoreOp);
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = Desc.mayStore();
bool Scavenged = false;
unsigned SOffset = ScratchOffsetReg;
const unsigned EltSize = 4;
const TargetRegisterClass *RC = getRegClassForReg(MF->getRegInfo(), ValueReg);
unsigned NumSubRegs = AMDGPU::getRegBitWidth(RC->getID()) / (EltSize * CHAR_BIT);
unsigned Size = NumSubRegs * EltSize;
int64_t Offset = InstOffset + MFI.getObjectOffset(Index);
int64_t ScratchOffsetRegDelta = 0;
unsigned Align = MFI.getObjectAlignment(Index);
const MachinePointerInfo &BasePtrInfo = MMO->getPointerInfo();
Register TmpReg =
hasAGPRs(RC) ? TII->getNamedOperand(*MI, AMDGPU::OpName::tmp)->getReg()
: Register();
assert((Offset % EltSize) == 0 && "unexpected VGPR spill offset");
if (!isUInt<12>(Offset + Size - EltSize)) {
SOffset = AMDGPU::NoRegister;
// We currently only support spilling VGPRs to EltSize boundaries, meaning
// we can simplify the adjustment of Offset here to just scale with
// WavefrontSize.
Offset *= ST.getWavefrontSize();
// We don't have access to the register scavenger if this function is called
// during PEI::scavengeFrameVirtualRegs().
if (RS)
SOffset = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0, false);
if (SOffset == AMDGPU::NoRegister) {
// There are no free SGPRs, and since we are in the process of spilling
// VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
// on SI/CI and on VI it is true until we implement spilling using scalar
// stores), we have no way to free up an SGPR. Our solution here is to
// add the offset directly to the ScratchOffset register, and then
// subtract the offset after the spill to return ScratchOffset to it's
// original value.
SOffset = ScratchOffsetReg;
ScratchOffsetRegDelta = Offset;
} else {
Scavenged = true;
}
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
.addReg(ScratchOffsetReg)
.addImm(Offset);
Offset = 0;
}
for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += EltSize) {
Register SubReg = NumSubRegs == 1
? Register(ValueReg)
: getSubReg(ValueReg, getSubRegFromChannel(i));
unsigned SOffsetRegState = 0;
unsigned SrcDstRegState = getDefRegState(!IsStore);
if (i + 1 == e) {
SOffsetRegState |= getKillRegState(Scavenged);
// The last implicit use carries the "Kill" flag.
SrcDstRegState |= getKillRegState(IsKill);
}
auto MIB = spillVGPRtoAGPR(ST, MI, Index, i, SubReg, IsKill);
if (!MIB.getInstr()) {
unsigned FinalReg = SubReg;
if (TmpReg != AMDGPU::NoRegister) {
if (IsStore)
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_READ_B32), TmpReg)
.addReg(SubReg, getKillRegState(IsKill));
SubReg = TmpReg;
}
MachinePointerInfo PInfo = BasePtrInfo.getWithOffset(EltSize * i);
MachineMemOperand *NewMMO
= MF->getMachineMemOperand(PInfo, MMO->getFlags(),
EltSize, MinAlign(Align, EltSize * i));
MIB = BuildMI(*MBB, MI, DL, Desc)
.addReg(SubReg, getDefRegState(!IsStore) | getKillRegState(IsKill))
.addReg(ScratchRsrcReg)
.addReg(SOffset, SOffsetRegState)
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addImm(0) // dlc
.addImm(0) // swz
.addMemOperand(NewMMO);
if (!IsStore && TmpReg != AMDGPU::NoRegister)
MIB = BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32),
FinalReg)
.addReg(TmpReg, RegState::Kill);
}
if (NumSubRegs > 1)
MIB.addReg(ValueReg, RegState::Implicit | SrcDstRegState);
}
if (ScratchOffsetRegDelta != 0) {
// Subtract the offset we added to the ScratchOffset register.
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScratchOffsetReg)
.addReg(ScratchOffsetReg)
.addImm(ScratchOffsetRegDelta);
}
}
bool SIRegisterInfo::spillSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MBB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
DenseSet<unsigned> SGPRSpillVGPRDefinedSet;
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
const SIInstrInfo *TII = ST.getInstrInfo();
Register SuperReg = MI->getOperand(0).getReg();
bool IsKill = MI->getOperand(0).isKill();
const DebugLoc &DL = MI->getDebugLoc();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
assert(SpillToVGPR || (SuperReg != MFI->getStackPtrOffsetReg() &&
SuperReg != MFI->getFrameOffsetReg() &&
SuperReg != MFI->getScratchWaveOffsetReg()));
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned M0CopyReg = AMDGPU::NoRegister;
unsigned EltSize = 4;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
// Scavenged temporary VGPR to use. It must be scavenged once for any number
// of spilled subregs.
Register TmpVGPR;
// SubReg carries the "Kill" flag when SubReg == SuperReg.
unsigned SubKillState = getKillRegState((NumSubRegs == 1) && IsKill);
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
Register SubReg =
NumSubRegs == 1 ? SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
// During SGPR spilling to VGPR, determine if the VGPR is defined. The
// only circumstance in which we say it is undefined is when it is the
// first spill to this VGPR in the first basic block.
bool VGPRDefined = true;
if (MBB == &MF->front())
VGPRDefined = !SGPRSpillVGPRDefinedSet.insert(Spill.VGPR).second;
// Mark the "old value of vgpr" input undef only if this is the first sgpr
// spill to this specific vgpr in the first basic block.
BuildMI(*MBB, MI, DL,
TII->getMCOpcodeFromPseudo(AMDGPU::V_WRITELANE_B32),
Spill.VGPR)
.addReg(SubReg, getKillRegState(IsKill))
.addImm(Spill.Lane)
.addReg(Spill.VGPR, VGPRDefined ? 0 : RegState::Undef);
// FIXME: Since this spills to another register instead of an actual
// frame index, we should delete the frame index when all references to
// it are fixed.
} else {
// XXX - Can to VGPR spill fail for some subregisters but not others?
if (OnlyToVGPR)
return false;
// Spill SGPR to a frame index.
if (!TmpVGPR.isValid())
TmpVGPR = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
MachineInstrBuilder Mov
= BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
.addReg(SubReg, SubKillState);
// There could be undef components of a spilled super register.
// TODO: Can we detect this and skip the spill?
if (NumSubRegs > 1) {
// The last implicit use of the SuperReg carries the "Kill" flag.
unsigned SuperKillState = 0;
if (i + 1 == e)
SuperKillState |= getKillRegState(IsKill);
Mov.addReg(SuperReg, RegState::Implicit | SuperKillState);
}
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
EltSize, MinAlign(Align, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_SAVE))
.addReg(TmpVGPR, RegState::Kill) // src
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srrsrc
.addReg(MFI->getStackPtrOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
}
}
if (M0CopyReg != AMDGPU::NoRegister) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0CopyReg, RegState::Kill);
}
MI->eraseFromParent();
MFI->addToSpilledSGPRs(NumSubRegs);
return true;
}
bool SIRegisterInfo::restoreSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
const DebugLoc &DL = MI->getDebugLoc();
Register SuperReg = MI->getOperand(0).getReg();
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned M0CopyReg = AMDGPU::NoRegister;
unsigned EltSize = 4;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
Register TmpVGPR;
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
Register SubReg =
NumSubRegs == 1 ? SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
auto MIB =
BuildMI(*MBB, MI, DL, TII->getMCOpcodeFromPseudo(AMDGPU::V_READLANE_B32),
SubReg)
.addReg(Spill.VGPR)
.addImm(Spill.Lane);
if (NumSubRegs > 1 && i == 0)
MIB.addReg(SuperReg, RegState::ImplicitDefine);
} else {
if (OnlyToVGPR)
return false;
// Restore SGPR from a stack slot.
// FIXME: We should use S_LOAD_DWORD here for VI.
if (!TmpVGPR.isValid())
TmpVGPR = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
unsigned Align = FrameInfo.getObjectAlignment(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO = MF->getMachineMemOperand(PtrInfo,
MachineMemOperand::MOLoad, EltSize,
MinAlign(Align, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_RESTORE), TmpVGPR)
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srsrc
.addReg(MFI->getStackPtrOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
auto MIB =
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), SubReg)
.addReg(TmpVGPR, RegState::Kill);
if (NumSubRegs > 1)
MIB.addReg(MI->getOperand(0).getReg(), RegState::ImplicitDefine);
}
}
if (M0CopyReg != AMDGPU::NoRegister) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0CopyReg, RegState::Kill);
}
MI->eraseFromParent();
return true;
}
/// Special case of eliminateFrameIndex. Returns true if the SGPR was spilled to
/// a VGPR and the stack slot can be safely eliminated when all other users are
/// handled.
bool SIRegisterInfo::eliminateSGPRToVGPRSpillFrameIndex(
MachineBasicBlock::iterator MI,
int FI,
RegScavenger *RS) const {
switch (MI->getOpcode()) {
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE:
return spillSGPR(MI, FI, RS, true);
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE:
return restoreSGPR(MI, FI, RS, true);
default:
llvm_unreachable("not an SGPR spill instruction");
}
}
void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(SPAdj == 0 && "unhandled SP adjustment in call sequence?");
MachineOperand &FIOp = MI->getOperand(FIOperandNum);
int Index = MI->getOperand(FIOperandNum).getIndex();
Register FrameReg = getFrameRegister(*MF);
switch (MI->getOpcode()) {
// SGPR register spill
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE: {
spillSGPR(MI, Index, RS);
break;
}
// SGPR register restore
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE: {
restoreSGPR(MI, Index, RS);
break;
}
// VGPR register spill
case AMDGPU::SI_SPILL_V1024_SAVE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V160_SAVE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_A1024_SAVE:
case AMDGPU::SI_SPILL_A512_SAVE:
case AMDGPU::SI_SPILL_A128_SAVE:
case AMDGPU::SI_SPILL_A64_SAVE:
case AMDGPU::SI_SPILL_A32_SAVE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
MFI->getStackPtrOffsetReg());
buildSpillLoadStore(MI, AMDGPU::BUFFER_STORE_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
FrameReg,
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MFI->addToSpilledVGPRs(getNumSubRegsForSpillOp(MI->getOpcode()));
MI->eraseFromParent();
break;
}
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_V96_RESTORE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_V160_RESTORE:
case AMDGPU::SI_SPILL_V256_RESTORE:
case AMDGPU::SI_SPILL_V512_RESTORE:
case AMDGPU::SI_SPILL_V1024_RESTORE:
case AMDGPU::SI_SPILL_A32_RESTORE:
case AMDGPU::SI_SPILL_A64_RESTORE:
case AMDGPU::SI_SPILL_A128_RESTORE:
case AMDGPU::SI_SPILL_A512_RESTORE:
case AMDGPU::SI_SPILL_A1024_RESTORE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
MFI->getStackPtrOffsetReg());
buildSpillLoadStore(MI, AMDGPU::BUFFER_LOAD_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
FrameReg,
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MI->eraseFromParent();
break;
}
default: {
const DebugLoc &DL = MI->getDebugLoc();
bool IsMUBUF = TII->isMUBUF(*MI);
if (!IsMUBUF && !MFI->isEntryFunction()) {
// Convert to an absolute stack address by finding the offset from the
// scratch wave base and scaling by the wave size.
//
// In an entry function/kernel the offset is already the absolute
// address relative to the frame register.
Register TmpDiffReg =
RS->scavengeRegister(&AMDGPU::SReg_32_XM0RegClass, MI, 0, false);
// If there's no free SGPR, in-place modify the FP
Register DiffReg = TmpDiffReg.isValid() ? TmpDiffReg : FrameReg;
bool IsCopy = MI->getOpcode() == AMDGPU::V_MOV_B32_e32;
Register ResultReg = IsCopy ?
MI->getOperand(0).getReg() :
RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), DiffReg)
.addReg(FrameReg)
.addReg(MFI->getScratchWaveOffsetReg());
int64_t Offset = FrameInfo.getObjectOffset(Index);
if (Offset == 0) {
// XXX - This never happens because of emergency scavenging slot at 0?
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64), ResultReg)
.addImm(ST.getWavefrontSizeLog2())
.addReg(DiffReg);
} else {
if (auto MIB = TII->getAddNoCarry(*MBB, MI, DL, ResultReg, *RS)) {
Register ScaledReg =
RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MIB, 0);
BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64),
ScaledReg)
.addImm(ST.getWavefrontSizeLog2())
.addReg(DiffReg, RegState::Kill);
const bool IsVOP2 = MIB->getOpcode() == AMDGPU::V_ADD_U32_e32;
// TODO: Fold if use instruction is another add of a constant.
if (IsVOP2 || AMDGPU::isInlinableLiteral32(Offset, ST.hasInv2PiInlineImm())) {
// FIXME: This can fail
MIB.addImm(Offset);
MIB.addReg(ScaledReg, RegState::Kill);
if (!IsVOP2)
MIB.addImm(0); // clamp bit
} else {
Register ConstOffsetReg =
RS->scavengeRegister(&AMDGPU::SReg_32_XM0RegClass, MIB, 0, false);
// This should always be able to use the unused carry out.
assert(ConstOffsetReg && "this scavenge should not be able to fail");
BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::S_MOV_B32), ConstOffsetReg)
.addImm(Offset);
MIB.addReg(ConstOffsetReg, RegState::Kill);
MIB.addReg(ScaledReg, RegState::Kill);
MIB.addImm(0); // clamp bit
}
} else {
// We have to produce a carry out, and we there isn't a free SGPR
// pair for it. We can keep the whole computation on the SALU to
// avoid clobbering an additional register at the cost of an extra
// mov.
// We may have 1 free scratch SGPR even though a carry out is
// unavailable. Only one additional mov is needed.
Register TmpScaledReg =
RS->scavengeRegister(&AMDGPU::SReg_32_XM0RegClass, MI, 0, false);
Register ScaledReg = TmpScaledReg.isValid() ? TmpScaledReg : DiffReg;
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHR_B32), ScaledReg)
.addReg(DiffReg, RegState::Kill)
.addImm(ST.getWavefrontSizeLog2());
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), ScaledReg)
.addReg(ScaledReg, RegState::Kill)
.addImm(Offset);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), ResultReg)
.addReg(ScaledReg, RegState::Kill);
// If there were truly no free SGPRs, we need to undo everything.
if (!TmpScaledReg.isValid()) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScaledReg)
.addReg(ScaledReg, RegState::Kill)
.addImm(Offset);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHL_B32), ScaledReg)
.addReg(DiffReg, RegState::Kill)
.addImm(ST.getWavefrontSizeLog2());
}
}
}
if (!TmpDiffReg.isValid()) {
// Restore the FP.
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), FrameReg)
.addReg(FrameReg)
.addReg(MFI->getScratchWaveOffsetReg());
}
// Don't introduce an extra copy if we're just materializing in a mov.
if (IsCopy)
MI->eraseFromParent();
else
FIOp.ChangeToRegister(ResultReg, false, false, true);
return;
}
if (IsMUBUF) {
// Disable offen so we don't need a 0 vgpr base.
assert(static_cast<int>(FIOperandNum) ==
AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr));
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
MFI->getStackPtrOffsetReg());
TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->setReg(FrameReg);
int64_t Offset = FrameInfo.getObjectOffset(Index);
int64_t OldImm
= TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm();
int64_t NewOffset = OldImm + Offset;
if (isUInt<12>(NewOffset) &&
buildMUBUFOffsetLoadStore(ST, FrameInfo, MI, Index, NewOffset)) {
MI->eraseFromParent();
return;
}
}
// If the offset is simply too big, don't convert to a scratch wave offset
// relative index.
int64_t Offset = FrameInfo.getObjectOffset(Index);
FIOp.ChangeToImmediate(Offset);
if (!TII->isImmOperandLegal(*MI, FIOperandNum, FIOp)) {
Register TmpReg = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
.addImm(Offset);
FIOp.ChangeToRegister(TmpReg, false, false, true);
}
}
}
}
StringRef SIRegisterInfo::getRegAsmName(unsigned Reg) const {
return AMDGPUInstPrinter::getRegisterName(Reg);
}
// FIXME: This is very slow. It might be worth creating a map from physreg to
// register class.
const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
assert(!Register::isVirtualRegister(Reg));
static const TargetRegisterClass *const BaseClasses[] = {
&AMDGPU::VGPR_32RegClass,
&AMDGPU::SReg_32RegClass,
&AMDGPU::AGPR_32RegClass,
&AMDGPU::VReg_64RegClass,
&AMDGPU::SReg_64RegClass,
&AMDGPU::AReg_64RegClass,
&AMDGPU::VReg_96RegClass,
&AMDGPU::SReg_96RegClass,
&AMDGPU::VReg_128RegClass,
&AMDGPU::SReg_128RegClass,
&AMDGPU::AReg_128RegClass,
&AMDGPU::VReg_160RegClass,
&AMDGPU::SReg_160RegClass,
&AMDGPU::VReg_256RegClass,
&AMDGPU::SReg_256RegClass,
&AMDGPU::VReg_512RegClass,
&AMDGPU::SReg_512RegClass,
&AMDGPU::AReg_512RegClass,
&AMDGPU::SReg_1024RegClass,
&AMDGPU::VReg_1024RegClass,
&AMDGPU::AReg_1024RegClass,
&AMDGPU::SCC_CLASSRegClass,
&AMDGPU::Pseudo_SReg_32RegClass,
&AMDGPU::Pseudo_SReg_128RegClass,
};
for (const TargetRegisterClass *BaseClass : BaseClasses) {
if (BaseClass->contains(Reg)) {
return BaseClass;
}
}
return nullptr;
}
// TODO: It might be helpful to have some target specific flags in
// TargetRegisterClass to mark which classes are VGPRs to make this trivial.
bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
unsigned Size = getRegSizeInBits(*RC);
switch (Size) {
case 32:
return getCommonSubClass(&AMDGPU::VGPR_32RegClass, RC) != nullptr;
case 64:
return getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) != nullptr;
case 96:
return getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) != nullptr;
case 128:
return getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) != nullptr;
case 160:
return getCommonSubClass(&AMDGPU::VReg_160RegClass, RC) != nullptr;
case 256:
return getCommonSubClass(&AMDGPU::VReg_256RegClass, RC) != nullptr;
case 512:
return getCommonSubClass(&AMDGPU::VReg_512RegClass, RC) != nullptr;
case 1024:
return getCommonSubClass(&AMDGPU::VReg_1024RegClass, RC) != nullptr;
case 1:
return getCommonSubClass(&AMDGPU::VReg_1RegClass, RC) != nullptr;
default:
assert(Size < 32 && "Invalid register class size");
return false;
}
}
bool SIRegisterInfo::hasAGPRs(const TargetRegisterClass *RC) const {
unsigned Size = getRegSizeInBits(*RC);
if (Size < 32)
return false;
switch (Size) {
case 32:
return getCommonSubClass(&AMDGPU::AGPR_32RegClass, RC) != nullptr;
case 64:
return getCommonSubClass(&AMDGPU::AReg_64RegClass, RC) != nullptr;
case 96:
return false;
case 128:
return getCommonSubClass(&AMDGPU::AReg_128RegClass, RC) != nullptr;
case 160:
case 256:
return false;
case 512:
return getCommonSubClass(&AMDGPU::AReg_512RegClass, RC) != nullptr;
case 1024:
return getCommonSubClass(&AMDGPU::AReg_1024RegClass, RC) != nullptr;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
const TargetRegisterClass *SRC) const {
switch (getRegSizeInBits(*SRC)) {
case 32:
return &AMDGPU::VGPR_32RegClass;
case 64:
return &AMDGPU::VReg_64RegClass;
case 96:
return &AMDGPU::VReg_96RegClass;
case 128:
return &AMDGPU::VReg_128RegClass;
case 160:
return &AMDGPU::VReg_160RegClass;
case 256:
return &AMDGPU::VReg_256RegClass;
case 512:
return &AMDGPU::VReg_512RegClass;
case 1024:
return &AMDGPU::VReg_1024RegClass;
case 1:
return &AMDGPU::VReg_1RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentAGPRClass(
const TargetRegisterClass *SRC) const {
switch (getRegSizeInBits(*SRC)) {
case 32:
return &AMDGPU::AGPR_32RegClass;
case 64:
return &AMDGPU::AReg_64RegClass;
case 128:
return &AMDGPU::AReg_128RegClass;
case 512:
return &AMDGPU::AReg_512RegClass;
case 1024:
return &AMDGPU::AReg_1024RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentSGPRClass(
const TargetRegisterClass *VRC) const {
switch (getRegSizeInBits(*VRC)) {
case 32:
return &AMDGPU::SGPR_32RegClass;
case 64:
return &AMDGPU::SReg_64RegClass;
case 96:
return &AMDGPU::SReg_96RegClass;
case 128:
return &AMDGPU::SGPR_128RegClass;
case 160:
return &AMDGPU::SReg_160RegClass;
case 256:
return &AMDGPU::SReg_256RegClass;
case 512:
return &AMDGPU::SReg_512RegClass;
case 1024:
return &AMDGPU::SReg_1024RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
const TargetRegisterClass *RC, unsigned SubIdx) const {
if (SubIdx == AMDGPU::NoSubRegister)
return RC;
// We can assume that each lane corresponds to one 32-bit register.
unsigned Count = getSubRegIndexLaneMask(SubIdx).getNumLanes();
if (isSGPRClass(RC)) {
switch (Count) {
case 1:
return &AMDGPU::SGPR_32RegClass;
case 2:
return &AMDGPU::SReg_64RegClass;
case 3:
return &AMDGPU::SReg_96RegClass;
case 4:
return &AMDGPU::SGPR_128RegClass;
case 5:
return &AMDGPU::SReg_160RegClass;
case 8:
return &AMDGPU::SReg_256RegClass;
case 16:
return &AMDGPU::SReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
} else if (hasAGPRs(RC)) {
switch (Count) {
case 1:
return &AMDGPU::AGPR_32RegClass;
case 2:
return &AMDGPU::AReg_64RegClass;
case 4:
return &AMDGPU::AReg_128RegClass;
case 16:
return &AMDGPU::AReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
} else {
switch (Count) {
case 1:
return &AMDGPU::VGPR_32RegClass;
case 2:
return &AMDGPU::VReg_64RegClass;
case 3:
return &AMDGPU::VReg_96RegClass;
case 4:
return &AMDGPU::VReg_128RegClass;
case 5:
return &AMDGPU::VReg_160RegClass;
case 8:
return &AMDGPU::VReg_256RegClass;
case 16:
return &AMDGPU::VReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
}
}
bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
if (OpType >= AMDGPU::OPERAND_REG_INLINE_AC_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_AC_LAST)
return !ST.hasMFMAInlineLiteralBug();
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool SIRegisterInfo::shouldRewriteCopySrc(
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const {
// We want to prefer the smallest register class possible, so we don't want to
// stop and rewrite on anything that looks like a subregister
// extract. Operations mostly don't care about the super register class, so we
// only want to stop on the most basic of copies between the same register
// class.
//
// e.g. if we have something like
// %0 = ...
// %1 = ...
// %2 = REG_SEQUENCE %0, sub0, %1, sub1, %2, sub2
// %3 = COPY %2, sub0
//
// We want to look through the COPY to find:
// => %3 = COPY %0
// Plain copy.
return getCommonSubClass(DefRC, SrcRC) != nullptr;
}
/// Returns a register that is not used at any point in the function.
/// If all registers are used, then this function will return
// AMDGPU::NoRegister.
unsigned
SIRegisterInfo::findUnusedRegister(const MachineRegisterInfo &MRI,
const TargetRegisterClass *RC,
const MachineFunction &MF) const {
for (unsigned Reg : *RC)
if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
return Reg;
return AMDGPU::NoRegister;
}
ArrayRef<int16_t> SIRegisterInfo::getRegSplitParts(const TargetRegisterClass *RC,
unsigned EltSize) const {
if (EltSize == 4) {
static const int16_t Sub0_31[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
AMDGPU::sub16, AMDGPU::sub17, AMDGPU::sub18, AMDGPU::sub19,
AMDGPU::sub20, AMDGPU::sub21, AMDGPU::sub22, AMDGPU::sub23,
AMDGPU::sub24, AMDGPU::sub25, AMDGPU::sub26, AMDGPU::sub27,
AMDGPU::sub28, AMDGPU::sub29, AMDGPU::sub30, AMDGPU::sub31,
};
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
};
static const int16_t Sub0_4[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4,
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1,
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 32:
return {};
case 64:
return makeArrayRef(Sub0_1);
case 96:
return makeArrayRef(Sub0_2);
case 128:
return makeArrayRef(Sub0_3);
case 160:
return makeArrayRef(Sub0_4);
case 256:
return makeArrayRef(Sub0_7);
case 512:
return makeArrayRef(Sub0_15);
case 1024:
return makeArrayRef(Sub0_31);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 8) {
static const int16_t Sub0_31_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
AMDGPU::sub16_sub17, AMDGPU::sub18_sub19,
AMDGPU::sub20_sub21, AMDGPU::sub22_sub23,
AMDGPU::sub24_sub25, AMDGPU::sub26_sub27,
AMDGPU::sub28_sub29, AMDGPU::sub30_sub31
};
static const int16_t Sub0_15_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15
};
static const int16_t Sub0_7_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7
};
static const int16_t Sub0_3_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 64:
return {};
case 128:
return makeArrayRef(Sub0_3_64);
case 256:
return makeArrayRef(Sub0_7_64);
case 512:
return makeArrayRef(Sub0_15_64);
case 1024:
return makeArrayRef(Sub0_31_64);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 16) {
static const int16_t Sub0_31_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11,
AMDGPU::sub12_sub13_sub14_sub15,
AMDGPU::sub16_sub17_sub18_sub19,
AMDGPU::sub20_sub21_sub22_sub23,
AMDGPU::sub24_sub25_sub26_sub27,
AMDGPU::sub28_sub29_sub30_sub31
};
static const int16_t Sub0_15_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11,
AMDGPU::sub12_sub13_sub14_sub15
};
static const int16_t Sub0_7_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 128:
return {};
case 256:
return makeArrayRef(Sub0_7_128);
case 512:
return makeArrayRef(Sub0_15_128);
case 1024:
return makeArrayRef(Sub0_31_128);
default:
llvm_unreachable("unhandled register size");
}
}
assert(EltSize == 32 && "unhandled elt size");
static const int16_t Sub0_31_256[] = {
AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15,
AMDGPU::sub16_sub17_sub18_sub19_sub20_sub21_sub22_sub23,
AMDGPU::sub24_sub25_sub26_sub27_sub28_sub29_sub30_sub31
};
static const int16_t Sub0_15_256[] = {
AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 256:
return {};
case 512:
return makeArrayRef(Sub0_15_256);
case 1024:
return makeArrayRef(Sub0_31_256);
default:
llvm_unreachable("unhandled register size");
}
}
const TargetRegisterClass*
SIRegisterInfo::getRegClassForReg(const MachineRegisterInfo &MRI,
unsigned Reg) const {
if (Register::isVirtualRegister(Reg))
return MRI.getRegClass(Reg);
return getPhysRegClass(Reg);
}
bool SIRegisterInfo::isVGPR(const MachineRegisterInfo &MRI,
unsigned Reg) const {
const TargetRegisterClass * RC = getRegClassForReg(MRI, Reg);
assert(RC && "Register class for the reg not found");
return hasVGPRs(RC);
}
bool SIRegisterInfo::isAGPR(const MachineRegisterInfo &MRI,
unsigned Reg) const {
const TargetRegisterClass * RC = getRegClassForReg(MRI, Reg);
assert(RC && "Register class for the reg not found");
return hasAGPRs(RC);
}
bool SIRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC,
unsigned SubReg,
const TargetRegisterClass *DstRC,
unsigned DstSubReg,
const TargetRegisterClass *NewRC,
LiveIntervals &LIS) const {
unsigned SrcSize = getRegSizeInBits(*SrcRC);
unsigned DstSize = getRegSizeInBits(*DstRC);
unsigned NewSize = getRegSizeInBits(*NewRC);
// Do not increase size of registers beyond dword, we would need to allocate
// adjacent registers and constraint regalloc more than needed.
// Always allow dword coalescing.
if (SrcSize <= 32 || DstSize <= 32)
return true;
return NewSize <= DstSize || NewSize <= SrcSize;
}
unsigned SIRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned Occupancy = ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
MF.getFunction());
switch (RC->getID()) {
default:
return AMDGPURegisterInfo::getRegPressureLimit(RC, MF);
case AMDGPU::VGPR_32RegClassID:
return std::min(ST.getMaxNumVGPRs(Occupancy), ST.getMaxNumVGPRs(MF));
case AMDGPU::SGPR_32RegClassID:
return std::min(ST.getMaxNumSGPRs(Occupancy, true), ST.getMaxNumSGPRs(MF));
}
}
unsigned SIRegisterInfo::getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const {
if (Idx == getVGPRPressureSet() || Idx == getAGPRPressureSet())
return getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
const_cast<MachineFunction &>(MF));
if (Idx == getSGPRPressureSet())
return getRegPressureLimit(&AMDGPU::SGPR_32RegClass,
const_cast<MachineFunction &>(MF));
return AMDGPURegisterInfo::getRegPressureSetLimit(MF, Idx);
}
const int *SIRegisterInfo::getRegUnitPressureSets(unsigned RegUnit) const {
static const int Empty[] = { -1 };
if (hasRegUnit(AMDGPU::M0, RegUnit))
return Empty;
return AMDGPURegisterInfo::getRegUnitPressureSets(RegUnit);
}
unsigned SIRegisterInfo::getReturnAddressReg(const MachineFunction &MF) const {
// Not a callee saved register.
return AMDGPU::SGPR30_SGPR31;
}
const TargetRegisterClass *
SIRegisterInfo::getRegClassForSizeOnBank(unsigned Size,
const RegisterBank &RB,
const MachineRegisterInfo &MRI) const {
switch (Size) {
case 1: {
switch (RB.getID()) {
case AMDGPU::VGPRRegBankID:
return &AMDGPU::VGPR_32RegClass;
case AMDGPU::VCCRegBankID:
return isWave32 ?
&AMDGPU::SReg_32_XM0_XEXECRegClass : &AMDGPU::SReg_64_XEXECRegClass;
case AMDGPU::SGPRRegBankID:
return &AMDGPU::SReg_32RegClass;
case AMDGPU::SCCRegBankID:
// This needs to return an allocatable class, so don't bother returning
// the dummy SCC class.
//
// FIXME: This is a grotesque hack. We use SGPR_32 as an indication this
// was not an VCC bank value since we use the larger class SReg_32 for
// other values. These should all use SReg_32.
return &AMDGPU::SGPR_32RegClass;
default:
llvm_unreachable("unknown register bank");
}
}
case 32:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VGPR_32RegClass :
&AMDGPU::SReg_32RegClass;
case 64:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_64RegClass :
&AMDGPU::SReg_64_XEXECRegClass;
case 96:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_96RegClass :
&AMDGPU::SReg_96RegClass;
case 128:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_128RegClass :
&AMDGPU::SGPR_128RegClass;
case 160:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_160RegClass :
&AMDGPU::SReg_160RegClass;
case 256:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_256RegClass :
&AMDGPU::SReg_256RegClass;
case 512:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_512RegClass :
&AMDGPU::SReg_512RegClass;
case 1024:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_1024RegClass :
&AMDGPU::SReg_1024RegClass;
default:
if (Size < 32)
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VGPR_32RegClass :
&AMDGPU::SReg_32RegClass;
return nullptr;
}
}
const TargetRegisterClass *
SIRegisterInfo::getConstrainedRegClassForOperand(const MachineOperand &MO,
const MachineRegisterInfo &MRI) const {
const RegClassOrRegBank &RCOrRB = MRI.getRegClassOrRegBank(MO.getReg());
if (const RegisterBank *RB = RCOrRB.dyn_cast<const RegisterBank*>())
return getRegClassForTypeOnBank(MRI.getType(MO.getReg()), *RB, MRI);
const TargetRegisterClass *RC = RCOrRB.get<const TargetRegisterClass*>();
return getAllocatableClass(RC);
}
unsigned SIRegisterInfo::getVCC() const {
return isWave32 ? AMDGPU::VCC_LO : AMDGPU::VCC;
}
const TargetRegisterClass *
SIRegisterInfo::getRegClass(unsigned RCID) const {
switch ((int)RCID) {
case AMDGPU::SReg_1RegClassID:
return getBoolRC();
case AMDGPU::SReg_1_XEXECRegClassID:
return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
: &AMDGPU::SReg_64_XEXECRegClass;
case -1:
return nullptr;
default:
return AMDGPURegisterInfo::getRegClass(RCID);
}
}
// Find reaching register definition
MachineInstr *SIRegisterInfo::findReachingDef(unsigned Reg, unsigned SubReg,
MachineInstr &Use,
MachineRegisterInfo &MRI,
LiveIntervals *LIS) const {
auto &MDT = LIS->getAnalysis<MachineDominatorTree>();
SlotIndex UseIdx = LIS->getInstructionIndex(Use);
SlotIndex DefIdx;
if (Register::isVirtualRegister(Reg)) {
if (!LIS->hasInterval(Reg))
return nullptr;
LiveInterval &LI = LIS->getInterval(Reg);
LaneBitmask SubLanes = SubReg ? getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(Reg);
VNInfo *V = nullptr;
if (LI.hasSubRanges()) {
for (auto &S : LI.subranges()) {
if ((S.LaneMask & SubLanes) == SubLanes) {
V = S.getVNInfoAt(UseIdx);
break;
}
}
} else {
V = LI.getVNInfoAt(UseIdx);
}
if (!V)
return nullptr;
DefIdx = V->def;
} else {
// Find last def.
for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) {
LiveRange &LR = LIS->getRegUnit(*Units);
if (VNInfo *V = LR.getVNInfoAt(UseIdx)) {
if (!DefIdx.isValid() ||
MDT.dominates(LIS->getInstructionFromIndex(DefIdx),
LIS->getInstructionFromIndex(V->def)))
DefIdx = V->def;
} else {
return nullptr;
}
}
}
MachineInstr *Def = LIS->getInstructionFromIndex(DefIdx);
if (!Def || !MDT.dominates(Def, &Use))
return nullptr;
assert(Def->modifiesRegister(Reg, this));
return Def;
}