blob: 1eb39c0c2ad849b2b0c8b28eb629ed73224778a3 [file] [log] [blame]
//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements integer type expansion and promotion for LegalizeTypes.
// Promotion is the act of changing a computation in an illegal type into a
// computation in a larger type. For example, implementing i8 arithmetic in an
// i32 register (often needed on powerpc).
// Expansion is the act of changing a computation in an illegal type into a
// computation in two identical registers of a smaller type. For example,
// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
// targets).
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Integer Result Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerResult - This method is called when a result of a node is
/// found to be in need of promotion to a larger type. At this point, the node
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true)) {
LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n");
return;
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator!");
case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
case ISD::BITREVERSE: Res = PromoteIntRes_BITREVERSE(N); break;
case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
case ISD::EXTRACT_VECTOR_ELT:
Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break;
case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));
break;
case ISD::MGATHER: Res = PromoteIntRes_MGATHER(cast<MaskedGatherSDNode>(N));
break;
case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
case ISD::SMIN:
case ISD::SMAX: Res = PromoteIntRes_SExtIntBinOp(N); break;
case ISD::UMIN:
case ISD::UMAX: Res = PromoteIntRes_ZExtIntBinOp(N); break;
case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
case ISD::SIGN_EXTEND_INREG:
Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
case ISD::EXTRACT_SUBVECTOR:
Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
case ISD::VECTOR_SHUFFLE:
Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
case ISD::BUILD_VECTOR:
Res = PromoteIntRes_BUILD_VECTOR(N); break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
case ISD::CONCAT_VECTORS:
Res = PromoteIntRes_CONCAT_VECTORS(N); break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
Res = PromoteIntRes_EXTEND_VECTOR_INREG(N); break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
case ISD::FP_TO_FP16: Res = PromoteIntRes_FP_TO_FP16(N); break;
case ISD::FLT_ROUNDS_: Res = PromoteIntRes_FLT_ROUNDS(N); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
case ISD::SDIV:
case ISD::SREM: Res = PromoteIntRes_SExtIntBinOp(N); break;
case ISD::UDIV:
case ISD::UREM: Res = PromoteIntRes_ZExtIntBinOp(N); break;
case ISD::SADDO:
case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
case ISD::UADDO:
case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
case ISD::SMULO:
case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
case ISD::ADDE:
case ISD::SUBE:
case ISD::ADDCARRY:
case ISD::SUBCARRY: Res = PromoteIntRes_ADDSUBCARRY(N, ResNo); break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT: Res = PromoteIntRes_ADDSUBSAT(N); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: Res = PromoteIntRes_MULFIX(N); break;
case ISD::ABS: Res = PromoteIntRes_ABS(N); break;
case ISD::ATOMIC_LOAD:
Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_SWAP:
Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Res = PromoteIntRes_VECREDUCE(N);
break;
}
// If the result is null then the sub-method took care of registering it.
if (Res.getNode())
SetPromotedInteger(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetPromotedInteger(Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
// Sign-extend the new bits, and continue the assertion.
SDValue Op = SExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertSext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
// Zero the new bits, and continue the assertion.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertZext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(), ResVT,
N->getChain(), N->getBasePtr(),
N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(),
N->getChain(), N->getBasePtr(),
Op2, N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
unsigned ResNo) {
if (ResNo == 1) {
assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
// Only use the result of getSetCCResultType if it is legal,
// otherwise just use the promoted result type (NVT).
if (!TLI.isTypeLegal(SVT))
SVT = NVT;
SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
N->getMemOperand());
ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
return Res.getValue(1);
}
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Op3 = GetPromotedInteger(N->getOperand(3));
SDVTList VTs =
DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
N->getBasePtr(), Op2, Op3, N->getMemOperand());
// Update the use to N with the newly created Res.
for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
ReplaceValueWith(SDValue(N, i), Res.getValue(i));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
SDLoc dl(N);
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
// The input promotes to the same size. Convert the promoted value.
return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
break;
case TargetLowering::TypeSoftenFloat:
// Promote the integer operand by hand.
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
case TargetLowering::TypePromoteFloat: {
// Convert the promoted float by hand.
if (!NOutVT.isVector())
return DAG.getNode(ISD::FP_TO_FP16, dl, NOutVT, GetPromotedFloat(InOp));
break;
}
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
break;
case TargetLowering::TypeScalarizeVector:
// Convert the element to an integer and promote it by hand.
if (!NOutVT.isVector())
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
BitConvertToInteger(GetScalarizedVector(InOp)));
break;
case TargetLowering::TypeSplitVector: {
if (!NOutVT.isVector()) {
// For example, i32 = BITCAST v2i16 on alpha. Convert the split
// pieces of the input into integers and reassemble in the final type.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
EVT::getIntegerVT(*DAG.getContext(),
NOutVT.getSizeInBits()),
JoinIntegers(Lo, Hi));
return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
}
break;
}
case TargetLowering::TypeWidenVector:
// The input is widened to the same size. Convert to the widened value.
// Make sure that the outgoing value is not a vector, because this would
// make us bitcast between two vectors which are legalized in different ways.
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
// If the output type is also a vector and widening it to the same size
// as the widened input type would be a legal type, we can widen the bitcast
// and handle the promotion after.
if (NOutVT.isVector()) {
unsigned WidenInSize = NInVT.getSizeInBits();
unsigned OutSize = OutVT.getSizeInBits();
if (WidenInSize % OutSize == 0) {
unsigned Scale = WidenInSize / OutSize;
EVT WideOutVT = EVT::getVectorVT(*DAG.getContext(),
OutVT.getVectorElementType(),
OutVT.getVectorNumElements() * Scale);
if (isTypeLegal(WideOutVT)) {
InOp = DAG.getBitcast(WideOutVT, GetWidenedVector(InOp));
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, InOp,
DAG.getConstant(0, dl, IdxTy));
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, InOp);
}
}
}
}
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
CreateStackStoreLoad(InOp, OutVT));
}
// Helper for BSWAP/BITREVERSE promotion to ensure we can fit the shift amount
// in the VT returned by getShiftAmountTy and to return a safe VT if we can't.
static EVT getShiftAmountTyForConstant(unsigned Val, EVT VT,
const TargetLowering &TLI,
SelectionDAG &DAG) {
EVT ShiftVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
// If the value won't fit in the prefered type, just use something safe. It
// will be legalized when the shift is expanded.
if ((Log2_32(Val) + 1) > ShiftVT.getScalarSizeInBits())
ShiftVT = MVT::i32;
return ShiftVT;
}
SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
EVT ShiftVT = getShiftAmountTyForConstant(DiffBits, NVT, TLI, DAG);
return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
DAG.getConstant(DiffBits, dl, ShiftVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
EVT ShiftVT = getShiftAmountTyForConstant(DiffBits, NVT, TLI, DAG);
return DAG.getNode(ISD::SRL, dl, NVT,
DAG.getNode(ISD::BITREVERSE, dl, NVT, Op),
DAG.getConstant(DiffBits, dl, ShiftVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
// The pair element type may be legal, or may not promote to the same type as
// the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)), JoinIntegers(N->getOperand(0),
N->getOperand(1)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
EVT VT = N->getValueType(0);
// FIXME there is no actual debug info here
SDLoc dl(N);
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue Result = DAG.getNode(Opc, dl,
TLI.getTypeToTransformTo(*DAG.getContext(), VT),
SDValue(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
SDLoc dl(N);
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
// Subtract off the extra leading bits in the bigger type.
return DAG.getNode(
ISD::SUB, dl, NVT, Op,
DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), dl,
NVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
if (N->getOpcode() == ISD::CTTZ) {
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
OVT.getScalarSizeInBits());
Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, dl, NVT));
}
return DAG.getNode(N->getOpcode(), dl, NVT, Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// If the input also needs to be promoted, do that first so we can get a
// get a good idea for the output type.
if (TLI.getTypeAction(*DAG.getContext(), Op0.getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue In = GetPromotedInteger(Op0);
// If the new type is larger than NVT, use it. We probably won't need to
// promote it again.
EVT SVT = In.getValueType().getScalarType();
if (SVT.bitsGE(NVT)) {
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, In, Op1);
return DAG.getAnyExtOrTrunc(Ext, dl, NVT);
}
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, Op0, Op1);
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NewOpc = N->getOpcode();
SDLoc dl(N);
// If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
// not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
// and SINT conversions are Custom, there is no way to tell which is
// preferable. We choose SINT because that's the right thing on PPC.)
if (N->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
NewOpc = ISD::FP_TO_SINT;
if (N->getOpcode() == ISD::STRICT_FP_TO_UINT &&
!TLI.isOperationLegal(ISD::STRICT_FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
NewOpc = ISD::STRICT_FP_TO_SINT;
SDValue Res;
if (N->isStrictFPOpcode()) {
Res = DAG.getNode(NewOpc, dl, { NVT, MVT::Other },
{ N->getOperand(0), N->getOperand(1) });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
} else
Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
// Assert that the converted value fits in the original type. If it doesn't
// (eg: because the value being converted is too big), then the result of the
// original operation was undefined anyway, so the assert is still correct.
//
// NOTE: fp-to-uint to fp-to-sint promotion guarantees zero extend. For example:
// before legalization: fp-to-uint16, 65534. -> 0xfffe
// after legalization: fp-to-sint32, 65534. -> 0x0000fffe
return DAG.getNode((N->getOpcode() == ISD::FP_TO_UINT ||
N->getOpcode() == ISD::STRICT_FP_TO_UINT) ?
ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
DAG.getValueType(N->getValueType(0).getScalarType()));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FLT_ROUNDS(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
return DAG.getNode(N->getOpcode(), dl, NVT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
if (getTypeAction(N->getOperand(0).getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue Res = GetPromotedInteger(N->getOperand(0));
assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
// If the result and operand types are the same after promotion, simplify
// to an in-register extension.
if (NVT == Res.getValueType()) {
// The high bits are not guaranteed to be anything. Insert an extend.
if (N->getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(N->getOperand(0).getValueType()));
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getZeroExtendInReg(Res, dl,
N->getOperand(0).getValueType().getScalarType());
assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
return Res;
}
}
// Otherwise, just extend the original operand all the way to the larger type.
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDLoc dl(N);
SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
N->getMemoryVT(), N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
SDLoc dl(N);
SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
N->getMask(), ExtPassThru, N->getMemoryVT(),
N->getMemOperand(), ISD::EXTLOAD);
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
assert(NVT == ExtPassThru.getValueType() &&
"Gather result type and the passThru agrument type should be the same");
SDLoc dl(N);
SDValue Ops[] = {N->getChain(), ExtPassThru, N->getMask(), N->getBasePtr(),
N->getIndex(), N->getScale() };
SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other),
N->getMemoryVT(), dl, Ops,
N->getMemOperand(), N->getIndexType());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
/// Promote the overflow flag of an overflowing arithmetic node.
SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
// Change the return type of the boolean result while obeying
// getSetCCResultType.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
EVT VT = N->getValueType(0);
EVT SVT = getSetCCResultType(VT);
SDValue Ops[3] = { N->getOperand(0), N->getOperand(1) };
unsigned NumOps = N->getNumOperands();
assert(NumOps <= 3 && "Too many operands");
if (NumOps == 3)
Ops[2] = N->getOperand(2);
SDLoc dl(N);
SDValue Res = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(VT, SVT),
makeArrayRef(Ops, NumOps));
// Modified the sum result - switch anything that used the old sum to use
// the new one.
ReplaceValueWith(SDValue(N, 0), Res);
// Convert to the expected type.
return DAG.getBoolExtOrTrunc(Res.getValue(1), dl, NVT, VT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBSAT(SDNode *N) {
// If the promoted type is legal, we can convert this to:
// 1. ANY_EXTEND iN to iM
// 2. SHL by M-N
// 3. [US][ADD|SUB]SAT
// 4. L/ASHR by M-N
// Else it is more efficient to convert this to a min and a max
// operation in the higher precision arithmetic.
SDLoc dl(N);
SDValue Op1 = N->getOperand(0);
SDValue Op2 = N->getOperand(1);
unsigned OldBits = Op1.getScalarValueSizeInBits();
unsigned Opcode = N->getOpcode();
SDValue Op1Promoted, Op2Promoted;
if (Opcode == ISD::UADDSAT || Opcode == ISD::USUBSAT) {
Op1Promoted = ZExtPromotedInteger(Op1);
Op2Promoted = ZExtPromotedInteger(Op2);
} else {
Op1Promoted = SExtPromotedInteger(Op1);
Op2Promoted = SExtPromotedInteger(Op2);
}
EVT PromotedType = Op1Promoted.getValueType();
unsigned NewBits = PromotedType.getScalarSizeInBits();
if (TLI.isOperationLegalOrCustom(Opcode, PromotedType)) {
unsigned ShiftOp;
switch (Opcode) {
case ISD::SADDSAT:
case ISD::SSUBSAT:
ShiftOp = ISD::SRA;
break;
case ISD::UADDSAT:
case ISD::USUBSAT:
ShiftOp = ISD::SRL;
break;
default:
llvm_unreachable("Expected opcode to be signed or unsigned saturation "
"addition or subtraction");
}
unsigned SHLAmount = NewBits - OldBits;
EVT SHVT = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
SDValue ShiftAmount = DAG.getConstant(SHLAmount, dl, SHVT);
Op1Promoted =
DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted, ShiftAmount);
Op2Promoted =
DAG.getNode(ISD::SHL, dl, PromotedType, Op2Promoted, ShiftAmount);
SDValue Result =
DAG.getNode(Opcode, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ShiftOp, dl, PromotedType, Result, ShiftAmount);
} else {
if (Opcode == ISD::USUBSAT) {
SDValue Max =
DAG.getNode(ISD::UMAX, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ISD::SUB, dl, PromotedType, Max, Op2Promoted);
}
if (Opcode == ISD::UADDSAT) {
APInt MaxVal = APInt::getAllOnesValue(OldBits).zext(NewBits);
SDValue SatMax = DAG.getConstant(MaxVal, dl, PromotedType);
SDValue Add =
DAG.getNode(ISD::ADD, dl, PromotedType, Op1Promoted, Op2Promoted);
return DAG.getNode(ISD::UMIN, dl, PromotedType, Add, SatMax);
}
unsigned AddOp = Opcode == ISD::SADDSAT ? ISD::ADD : ISD::SUB;
APInt MinVal = APInt::getSignedMinValue(OldBits).sext(NewBits);
APInt MaxVal = APInt::getSignedMaxValue(OldBits).sext(NewBits);
SDValue SatMin = DAG.getConstant(MinVal, dl, PromotedType);
SDValue SatMax = DAG.getConstant(MaxVal, dl, PromotedType);
SDValue Result =
DAG.getNode(AddOp, dl, PromotedType, Op1Promoted, Op2Promoted);
Result = DAG.getNode(ISD::SMIN, dl, PromotedType, Result, SatMax);
Result = DAG.getNode(ISD::SMAX, dl, PromotedType, Result, SatMin);
return Result;
}
}
SDValue DAGTypeLegalizer::PromoteIntRes_MULFIX(SDNode *N) {
// Can just promote the operands then continue with operation.
SDLoc dl(N);
SDValue Op1Promoted, Op2Promoted;
bool Signed =
N->getOpcode() == ISD::SMULFIX || N->getOpcode() == ISD::SMULFIXSAT;
bool Saturating =
N->getOpcode() == ISD::SMULFIXSAT || N->getOpcode() == ISD::UMULFIXSAT;
if (Signed) {
Op1Promoted = SExtPromotedInteger(N->getOperand(0));
Op2Promoted = SExtPromotedInteger(N->getOperand(1));
} else {
Op1Promoted = ZExtPromotedInteger(N->getOperand(0));
Op2Promoted = ZExtPromotedInteger(N->getOperand(1));
}
EVT OldType = N->getOperand(0).getValueType();
EVT PromotedType = Op1Promoted.getValueType();
unsigned DiffSize =
PromotedType.getScalarSizeInBits() - OldType.getScalarSizeInBits();
if (Saturating) {
// Promoting the operand and result values changes the saturation width,
// which is extends the values that we clamp to on saturation. This could be
// resolved by shifting one of the operands the same amount, which would
// also shift the result we compare against, then shifting back.
EVT ShiftTy = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
Op1Promoted = DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted,
DAG.getConstant(DiffSize, dl, ShiftTy));
SDValue Result = DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted,
Op2Promoted, N->getOperand(2));
unsigned ShiftOp = Signed ? ISD::SRA : ISD::SRL;
return DAG.getNode(ShiftOp, dl, PromotedType, Result,
DAG.getConstant(DiffSize, dl, ShiftTy));
}
return DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted, Op2Promoted,
N->getOperand(2));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// sign extension of its truncation to the original type.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: sign extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(OVT));
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
SDValue Mask = N->getOperand(0);
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getNode(ISD::VSELECT, SDLoc(N),
LHS.getValueType(), Mask, LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(2));
SDValue RHS = GetPromotedInteger(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
EVT InVT = N->getOperand(0).getValueType();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT SVT = getSetCCResultType(InVT);
// If we got back a type that needs to be promoted, this likely means the
// the input type also needs to be promoted. So get the promoted type for
// the input and try the query again.
if (getTypeAction(SVT) == TargetLowering::TypePromoteInteger) {
if (getTypeAction(InVT) == TargetLowering::TypePromoteInteger) {
InVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
SVT = getSetCCResultType(InVT);
} else {
// Input type isn't promoted, just use the default promoted type.
SVT = NVT;
}
}
SDLoc dl(N);
assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
"Vector compare must return a vector result!");
// Get the SETCC result using the canonical SETCC type.
SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
N->getOperand(1), N->getOperand(2));
// Convert to the expected type.
return DAG.getSExtOrTrunc(SetCC, dl, NVT);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SHL, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
SDValue LHS = GetPromotedInteger(N->getOperand(0));
SDValue RHS = GetPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) {
// Sign extend the input.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) {
// Zero extend the input.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
// The input value must be properly sign extended.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SRA, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
// The input value must be properly zero extended.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = N->getOperand(1);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
RHS = ZExtPromotedInteger(RHS);
return DAG.getNode(ISD::SRL, SDLoc(N), LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res;
SDValue InOp = N->getOperand(0);
SDLoc dl(N);
switch (getTypeAction(InOp.getValueType())) {
default: llvm_unreachable("Unknown type action!");
case TargetLowering::TypeLegal:
case TargetLowering::TypeExpandInteger:
Res = InOp;
break;
case TargetLowering::TypePromoteInteger:
Res = GetPromotedInteger(InOp);
break;
case TargetLowering::TypeSplitVector: {
EVT InVT = InOp.getValueType();
assert(InVT.isVector() && "Cannot split scalar types");
unsigned NumElts = InVT.getVectorNumElements();
assert(NumElts == NVT.getVectorNumElements() &&
"Dst and Src must have the same number of elements");
assert(isPowerOf2_32(NumElts) &&
"Promoted vector type must be a power of two");
SDValue EOp1, EOp2;
GetSplitVector(InOp, EOp1, EOp2);
EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
NumElts/2);
EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
}
case TargetLowering::TypeWidenVector: {
SDValue WideInOp = GetWidenedVector(InOp);
// Truncate widened InOp.
unsigned NumElem = WideInOp.getValueType().getVectorNumElements();
EVT TruncVT = EVT::getVectorVT(*DAG.getContext(),
N->getValueType(0).getScalarType(), NumElem);
SDValue WideTrunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, WideInOp);
// Zero extend so that the elements are of same type as those of NVT
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), NVT.getVectorElementType(),
NumElem);
SDValue WideExt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, WideTrunc);
// Extract the low NVT subvector.
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, dl, IdxTy);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, WideExt, ZeroIdx);
}
}
// Truncate to NVT instead of VT
return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// zero extension of its truncation to the original type.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: zero extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT.getScalarType());
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
// Handle promotion for the ADDE/SUBE/ADDCARRY/SUBCARRY nodes. Notice that
// the third operand of ADDE/SUBE nodes is carry flag, which differs from
// the ADDCARRY/SUBCARRY nodes in that the third operand is carry Boolean.
SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// We need to sign-extend the operands so the carry value computed by the
// wide operation will be equivalent to the carry value computed by the
// narrow operation.
// An ADDCARRY can generate carry only if any of the operands has its
// most significant bit set. Sign extension propagates the most significant
// bit into the higher bits which means the extra bit that the narrow
// addition would need (i.e. the carry) will be propagated through the higher
// bits of the wide addition.
// A SUBCARRY can generate borrow only if LHS < RHS and this property will be
// preserved by sign extension.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
EVT ValueVTs[] = {LHS.getValueType(), N->getValueType(1)};
// Do the arithmetic in the wide type.
SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N), DAG.getVTList(ValueVTs),
LHS, RHS, N->getOperand(2));
// Update the users of the original carry/borrow value.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return SDValue(Res.getNode(), 0);
}
SDValue DAGTypeLegalizer::PromoteIntRes_ABS(SDNode *N) {
SDValue Op0 = SExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ABS, SDLoc(N), Op0.getValueType(), Op0);
}
SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
// Promote the overflow bit trivially.
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
SDLoc DL(N);
EVT SmallVT = LHS.getValueType();
// To determine if the result overflowed in a larger type, we extend the
// input to the larger type, do the multiply (checking if it overflows),
// then also check the high bits of the result to see if overflow happened
// there.
if (N->getOpcode() == ISD::SMULO) {
LHS = SExtPromotedInteger(LHS);
RHS = SExtPromotedInteger(RHS);
} else {
LHS = ZExtPromotedInteger(LHS);
RHS = ZExtPromotedInteger(RHS);
}
SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
// Overflow occurred if it occurred in the larger type, or if the high part
// of the result does not zero/sign-extend the low part. Check this second
// possibility first.
SDValue Overflow;
if (N->getOpcode() == ISD::UMULO) {
// Unsigned overflow occurred if the high part is non-zero.
unsigned Shift = SmallVT.getScalarSizeInBits();
EVT ShiftTy = getShiftAmountTyForConstant(Shift, Mul.getValueType(),
TLI, DAG);
SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
DAG.getConstant(Shift, DL, ShiftTy));
Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
DAG.getConstant(0, DL, Hi.getValueType()),
ISD::SETNE);
} else {
// Signed overflow occurred if the high part does not sign extend the low.
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
Mul, DAG.getValueType(SmallVT));
Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
}
// The only other way for overflow to occur is if the multiplication in the
// larger type itself overflowed.
Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
SDValue(Mul.getNode(), 1));
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Overflow);
return Mul;
}
SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
EVT VT = N->getValueType(0);
SDLoc dl(N);
MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
// The argument is passed as NumRegs registers of type RegVT.
SmallVector<SDValue, 8> Parts(NumRegs);
for (unsigned i = 0; i < NumRegs; ++i) {
Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
N->getConstantOperandVal(3));
Chain = Parts[i].getValue(1);
}
// Handle endianness of the load.
if (DAG.getDataLayout().isBigEndian())
std::reverse(Parts.begin(), Parts.end());
// Assemble the parts in the promoted type.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
for (unsigned i = 1; i < NumRegs; ++i) {
SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
// Shift it to the right position and "or" it in.
Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
DAG.getConstant(i * RegVT.getSizeInBits(), dl,
TLI.getPointerTy(DAG.getDataLayout())));
Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
}
// Modified the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
return Res;
}
//===----------------------------------------------------------------------===//
// Integer Operand Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need promotion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) {
LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n");
return false;
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's operand!");
case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
case ISD::ATOMIC_STORE:
Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
break;
case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
case ISD::VSELECT:
case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
OpNo); break;
case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
OpNo); break;
case ISD::MGATHER: Res = PromoteIntOp_MGATHER(cast<MaskedGatherSDNode>(N),
OpNo); break;
case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(cast<MaskedScatterSDNode>(N),
OpNo); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP16_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
case ISD::ADDCARRY:
case ISD::SUBCARRY: Res = PromoteIntOp_ADDSUBCARRY(N, OpNo); break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR: Res = PromoteIntOp_FRAMERETURNADDR(N); break;
case ISD::PREFETCH: Res = PromoteIntOp_PREFETCH(N, OpNo); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: Res = PromoteIntOp_MULFIX(N); break;
case ISD::FPOWI: Res = PromoteIntOp_FPOWI(N); break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN: Res = PromoteIntOp_VECREDUCE(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// PromoteSetCCOperands - Promote the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
ISD::CondCode CCCode) {
// We have to insert explicit sign or zero extends. Note that we could
// insert sign extends for ALL conditions. For those operations where either
// zero or sign extension would be valid, use SExtOrZExtPromotedInteger
// which will choose the cheapest for the target.
switch (CCCode) {
default: llvm_unreachable("Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE: {
SDValue OpL = GetPromotedInteger(NewLHS);
SDValue OpR = GetPromotedInteger(NewRHS);
// We would prefer to promote the comparison operand with sign extension.
// If the width of OpL/OpR excluding the duplicated sign bits is no greater
// than the width of NewLHS/NewRH, we can avoid inserting real truncate
// instruction, which is redundant eventually.
unsigned OpLEffectiveBits =
OpL.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpL) + 1;
unsigned OpREffectiveBits =
OpR.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpR) + 1;
if (OpLEffectiveBits <= NewLHS.getScalarValueSizeInBits() &&
OpREffectiveBits <= NewRHS.getScalarValueSizeInBits()) {
NewLHS = OpL;
NewRHS = OpR;
} else {
NewLHS = SExtOrZExtPromotedInteger(NewLHS);
NewRHS = SExtOrZExtPromotedInteger(NewRHS);
}
break;
}
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
NewLHS = SExtOrZExtPromotedInteger(NewLHS);
NewRHS = SExtOrZExtPromotedInteger(NewRHS);
break;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
NewLHS = SExtPromotedInteger(NewLHS);
NewRHS = SExtPromotedInteger(NewRHS);
break;
}
}
SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
N->getChain(), N->getBasePtr(), Op2, N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
// This should only occur in unusual situations like bitcasting to an
// x86_fp80, so just turn it into a store+load
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(2);
SDValue RHS = N->getOperand(3);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
// The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
// legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4)),
0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
// Promote all the way up to the canonical SetCC type.
SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
// Since the result type is legal, the operands must promote to it.
EVT OVT = N->getOperand(0).getValueType();
SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
SDValue Hi = GetPromotedInteger(N->getOperand(1));
assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
SDLoc dl(N);
Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
DAG.getConstant(OVT.getSizeInBits(), dl,
TLI.getPointerTy(DAG.getDataLayout())));
return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type is not. This implies
// that the vector is a power-of-two in length and that the element
// type does not have a strange size (eg: it is not i1).
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
"Legal vector of one illegal element?");
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
// truncated away.
assert(N->getOperand(0).getValueSizeInBits() >=
N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
SmallVector<SDValue, 16> NewOps;
for (unsigned i = 0; i < NumElts; ++i)
NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
unsigned OpNo) {
if (OpNo == 1) {
// Promote the inserted value. This is valid because the type does not
// have to match the vector element type.
// Check that any extra bits introduced will be truncated away.
assert(N->getOperand(1).getValueSizeInBits() >=
N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
GetPromotedInteger(N->getOperand(1)),
N->getOperand(2)),
0);
}
assert(OpNo == 2 && "Different operand and result vector types?");
// Promote the index.
SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
TLI.getVectorIdxTy(DAG.getDataLayout()));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
N->getOperand(1), Idx), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
// Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
// the operand in place.
return SDValue(DAG.UpdateNodeOperands(N,
GetPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Only know how to promote the condition!");
SDValue Cond = N->getOperand(0);
EVT OpTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::VSELECT)
if (SDValue Res = WidenVSELECTAndMask(N))
return Res;
// Promote all the way up to the canonical SetCC type.
EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy;
Cond = PromoteTargetBoolean(Cond, OpVT);
return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
// The CC (#4) and the possible return values (#2 and #3) have legal types.
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
N->getOperand(3), N->getOperand(4)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
// The CC (#2) is always legal.
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
ZExtPromotedInteger(N->getOperand(1))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
SDLoc dl(N);
Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
Op, DAG.getValueType(N->getOperand(0).getValueType()));
}
SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N,
SExtPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
SDLoc dl(N);
SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
// Truncate the value and store the result.
return DAG.getTruncStore(Ch, dl, Val, Ptr,
N->getMemoryVT(), N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N,
unsigned OpNo) {
SDValue DataOp = N->getValue();
EVT DataVT = DataOp.getValueType();
SDValue Mask = N->getMask();
SDLoc dl(N);
bool TruncateStore = false;
if (OpNo == 3) {
Mask = PromoteTargetBoolean(Mask, DataVT);
// Update in place.
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[3] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
} else { // Data operand
assert(OpNo == 1 && "Unexpected operand for promotion");
DataOp = GetPromotedInteger(DataOp);
TruncateStore = true;
}
return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(), Mask,
N->getMemoryVT(), N->getMemOperand(),
TruncateStore, N->isCompressingStore());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N,
unsigned OpNo) {
assert(OpNo == 2 && "Only know how to promote the mask!");
EVT DataVT = N->getValueType(0);
SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[OpNo] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N,
unsigned OpNo) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
if (OpNo == 2) {
// The Mask
EVT DataVT = N->getValueType(0);
NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
} else if (OpNo == 4) {
// The Index
if (N->isIndexSigned())
// Need to sign extend the index since the bits will likely be used.
NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
else
NewOps[OpNo] = ZExtPromotedInteger(N->getOperand(OpNo));
} else
NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N,
unsigned OpNo) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
if (OpNo == 2) {
// The Mask
EVT DataVT = N->getValue().getValueType();
NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
} else if (OpNo == 4) {
// The Index
if (N->isIndexSigned())
// Need to sign extend the index since the bits will likely be used.
NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
else
NewOps[OpNo] = ZExtPromotedInteger(N->getOperand(OpNo));
} else
NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N,
ZExtPromotedInteger(N->getOperand(0))), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
SDLoc dl(N);
SDValue Op = GetPromotedInteger(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
return DAG.getZeroExtendInReg(Op, dl,
N->getOperand(0).getValueType().getScalarType());
}
SDValue DAGTypeLegalizer::PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = N->getOperand(2);
SDLoc DL(N);
Carry = PromoteTargetBoolean(Carry, LHS.getValueType());
return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, Carry), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MULFIX(SDNode *N) {
SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
return SDValue(
DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), Op2), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_FRAMERETURNADDR(SDNode *N) {
// Promote the RETURNADDR/FRAMEADDR argument to a supported integer width.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return SDValue(DAG.UpdateNodeOperands(N, Op), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo) {
assert(OpNo > 1 && "Don't know how to promote this operand!");
// Promote the rw, locality, and cache type arguments to a supported integer
// width.
SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
SDValue Op3 = ZExtPromotedInteger(N->getOperand(3));
SDValue Op4 = ZExtPromotedInteger(N->getOperand(4));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
Op2, Op3, Op4),
0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_FPOWI(SDNode *N) {
SDValue Op = SExtPromotedInteger(N->getOperand(1));
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Op), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_VECREDUCE(SDNode *N) {
SDLoc dl(N);
SDValue Op;
switch (N->getOpcode()) {
default: llvm_unreachable("Expected integer vector reduction");
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
Op = GetPromotedInteger(N->getOperand(0));
break;
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
Op = SExtPromotedInteger(N->getOperand(0));
break;
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Op = ZExtPromotedInteger(N->getOperand(0));
break;
}
EVT EltVT = Op.getValueType().getVectorElementType();
EVT VT = N->getValueType(0);
if (VT.bitsGE(EltVT))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, Op);
// Result size must be >= element size. If this is not the case after
// promotion, also promote the result type and then truncate.
SDValue Reduce = DAG.getNode(N->getOpcode(), dl, EltVT, Op);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Reduce);
}
//===----------------------------------------------------------------------===//
// Integer Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandIntegerResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
report_fatal_error("Do not know how to expand the result of this "
"operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
case ISD::BITREVERSE: ExpandIntRes_BITREVERSE(N, Lo, Hi); break;
case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
case ISD::ABS: ExpandIntRes_ABS(N, Lo, Hi); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
case ISD::FLT_ROUNDS_: ExpandIntRes_FLT_ROUNDS(N, Lo, Hi); break;
case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
case ISD::LLROUND: ExpandIntRes_LLROUND(N, Lo, Hi); break;
case ISD::LLRINT: ExpandIntRes_LLRINT(N, Lo, Hi); break;
case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
case ISD::READCYCLECOUNTER: ExpandIntRes_READCYCLECOUNTER(N, Lo, Hi); break;
case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_CMP_SWAP: {
std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
SplitInteger(Tmp.first, Lo, Hi);
ReplaceValueWith(SDValue(N, 1), Tmp.second);
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
AtomicSDNode *AN = cast<AtomicSDNode>(N);
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other);
SDValue Tmp = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
AN->getMemOperand());
// Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
// success simply by comparing the loaded value against the ingoing
// comparison.
SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp,
N->getOperand(2), ISD::SETEQ);
SplitInteger(Tmp, Lo, Hi);
ReplaceValueWith(SDValue(N, 1), Success);
ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1));
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
case ISD::UMAX:
case ISD::SMAX:
case ISD::UMIN:
case ISD::SMIN: ExpandIntRes_MINMAX(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
case ISD::ADDC:
case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
case ISD::ADDE:
case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
case ISD::ADDCARRY:
case ISD::SUBCARRY: ExpandIntRes_ADDSUBCARRY(N, Lo, Hi); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
case ISD::SADDO:
case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
case ISD::UADDO:
case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
case ISD::UMULO:
case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT: ExpandIntRes_ADDSUBSAT(N, Lo, Hi); break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: ExpandIntRes_MULFIX(N, Lo, Hi); break;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN: ExpandIntRes_VECREDUCE(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
}
/// Lower an atomic node to the appropriate builtin call.
std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
unsigned Opc = Node->getOpcode();
MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
return ExpandChainLibCall(LC, Node, false);
}
/// N is a shift by a value that needs to be expanded,
/// and the shift amount is a constant 'Amt'. Expand the operation.
void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi) {
SDLoc DL(N);
// Expand the incoming operand to be shifted, so that we have its parts
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// Though Amt shouldn't usually be 0, it's possible. E.g. when legalization
// splitted a vector shift, like this: <op1, op2> SHL <0, 2>.
if (!Amt) {
Lo = InL;
Hi = InH;
return;
}
EVT NVT = InL.getValueType();
unsigned VTBits = N->getValueType(0).getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
EVT ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt.ugt(VTBits)) {
Lo = Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getConstant(0, DL, NVT);
Hi = DAG.getNode(ISD::SHL, DL,
NVT, InL, DAG.getConstant(Amt - NVTBits, DL, ShTy));
} else if (Amt == NVTBits) {
Lo = DAG.getConstant(0, DL, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, DL, ShTy));
Hi = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
}
return;
}
if (N->getOpcode() == ISD::SRL) {
if (Amt.ugt(VTBits)) {
Lo = Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getNode(ISD::SRL, DL,
NVT, InH, DAG.getConstant(Amt - NVTBits, DL, ShTy));
Hi = DAG.getConstant(0, DL, NVT);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, DL, NVT);
} else {
Lo = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
}
return;
}
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
if (Amt.ugt(VTBits)) {
Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else if (Amt.ugt(NVTBits)) {
Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(Amt - NVTBits, DL, ShTy));
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
DAG.getConstant(NVTBits - 1, DL, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, DL, NVT,
DAG.getNode(ISD::SRL, DL, NVT, InL,
DAG.getConstant(Amt, DL, ShTy)),
DAG.getNode(ISD::SHL, DL, NVT, InH,
DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
}
}
/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
/// this shift based on knowledge of the high bit of the shift amount. If we
/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
/// shift amount.
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ShTy = Amt.getValueType();
unsigned ShBits = ShTy.getScalarSizeInBits();
unsigned NVTBits = NVT.getScalarSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
SDLoc dl(N);
APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
KnownBits Known = DAG.computeKnownBits(N->getOperand(1));
// If we don't know anything about the high bits, exit.
if (((Known.Zero|Known.One) & HighBitMask) == 0)
return false;
// Get the incoming operand to be shifted.
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// If we know that any of the high bits of the shift amount are one, then we
// can do this as a couple of simple shifts.
if (Known.One.intersects(HighBitMask)) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
DAG.getConstant(~HighBitMask, dl, ShTy));
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, dl, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, dl, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits - 1, dl, ShTy));
Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that all of the high bits of the shift amount are zero, then we
// can do this as a couple of simple shifts.
if (HighBitMask.isSubsetOf(Known.Zero)) {
// Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
// shift if x is zero. We can use XOR here because x is known to be smaller
// than 32.
SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
DAG.getConstant(NVTBits - 1, dl, ShTy));
unsigned Op1, Op2;
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
}
// When shifting right the arithmetic for Lo and Hi is swapped.
if (N->getOpcode() != ISD::SHL)
std::swap(InL, InH);
// Use a little trick to get the bits that move from Lo to Hi. First
// shift by one bit.
SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, dl, ShTy));
// Then compute the remaining shift with amount-1.
SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
if (N->getOpcode() != ISD::SHL)
std::swap(Hi, Lo);
return true;
}
return false;
}
/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
/// of any size.
bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ShTy = Amt.getValueType();
unsigned NVTBits = NVT.getSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
SDLoc dl(N);
// Get the incoming operand to be shifted.
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
SDValue NVBitsNode = DAG.getConstant(NVTBits, dl, ShTy);
SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
Amt, NVBitsNode, ISD::SETULT);
SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(ShTy),
Amt, DAG.getConstant(0, dl, ShTy),
ISD::SETEQ);
SDValue LoS, HiS, LoL, HiL;
switch (N->getOpcode()) {
default: llvm_unreachable("Unknown shift");
case ISD::SHL:
// Short: ShAmt < NVTBits
LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
HiS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
// Long: ShAmt >= NVTBits
LoL = DAG.getConstant(0, dl, NVT); // Lo part is zero.
HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
Hi = DAG.getSelect(dl, NVT, isZero, InH,
DAG.getSelect(dl, NVT, isShort, HiS, HiL));
return true;
case ISD::SRL:
// Short: ShAmt < NVTBits
HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
LoS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
// FIXME: If Amt is zero, the following shift generates an undefined result
// on some architectures.
DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
// Long: ShAmt >= NVTBits
HiL = DAG.getConstant(0, dl, NVT); // Hi part is zero.
LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
Lo = DAG.getSelect(dl, NVT, isZero, InL,
DAG.getSelect(dl, NVT, isShort, LoS, LoL));
Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
return true;
case ISD::SRA:
// Short: ShAmt < NVTBits
HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
LoS = DAG.getNode(ISD::OR, dl, NVT,
DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
// Long: ShAmt >= NVTBits
HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
DAG.getConstant(NVTBits - 1, dl, ShTy));
LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
Lo = DAG.getSelect(dl, NVT, isZero, InL,
DAG.getSelect(dl, NVT, isShort, LoS, LoL));
Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
return true;
}
}
static std::pair<ISD::CondCode, ISD::NodeType> getExpandedMinMaxOps(int Op) {
switch (Op) {
default: llvm_unreachable("invalid min/max opcode");
case ISD::SMAX:
return std::make_pair(ISD::SETGT, ISD::UMAX);
case ISD::UMAX:
return std::make_pair(ISD::SETUGT, ISD::UMAX);
case ISD::SMIN:
return std::make_pair(ISD::SETLT, ISD::UMIN);
case ISD::UMIN:
return std::make_pair(ISD::SETULT, ISD::UMIN);
}
}
void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc DL(N);
ISD::NodeType LoOpc;
ISD::CondCode CondC;
std::tie(CondC, LoOpc) = getExpandedMinMaxOps(N->getOpcode());
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
// Value types
EVT NVT = LHSL.getValueType();
EVT CCT = getSetCCResultType(NVT);
// Hi part is always the same op
Hi = DAG.getNode(N->getOpcode(), DL, NVT, {LHSH, RHSH});
// We need to know whether to select Lo part that corresponds to 'winning'
// Hi part or if Hi parts are equal.
SDValue IsHiLeft = DAG.getSetCC(DL, CCT, LHSH, RHSH, CondC);
SDValue IsHiEq = DAG.getSetCC(DL, CCT, LHSH, RHSH, ISD::SETEQ);
// Lo part corresponding to the 'winning' Hi part
SDValue LoCmp = DAG.getSelect(DL, NVT, IsHiLeft, LHSL, RHSL);
// Recursed Lo part if Hi parts are equal, this uses unsigned version
SDValue LoMinMax = DAG.getNode(LoOpc, DL, NVT, {LHSL, RHSL});
Lo = DAG.getSelect(DL, NVT, IsHiEq, LoMinMax, LoCmp);
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
EVT NVT = LHSL.getValueType();
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
bool HasOpCarry = TLI.isOperationLegalOrCustom(
N->getOpcode() == ISD::ADD ? ISD::ADDCARRY : ISD::SUBCARRY,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
if (HasOpCarry) {
SDVTList VTList = DAG.getVTList(NVT, getSetCCResultType(NVT));
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, HiOps);
} else {
Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBCARRY, dl, VTList, HiOps);
}
return;
}
// Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
// them. TODO: Teach operation legalization how to expand unsupported
// ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
// a carry of type MVT::Glue, but there doesn't seem to be any way to
// generate a value of this type in the expanded code sequence.
bool hasCarry =
TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
ISD::ADDC : ISD::SUBC,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
if (hasCarry) {
SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
} else {
Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
}
return;
}
bool hasOVF =
TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
ISD::UADDO : ISD::USUBO,
TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(NVT);
if (hasOVF) {
EVT OvfVT = getSetCCResultType(NVT);
SDVTList VTList = DAG.getVTList(NVT, OvfVT);
int RevOpc;
if (N->getOpcode() == ISD::ADD) {
RevOpc = ISD::SUB;
Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
} else {
RevOpc = ISD::ADD;
Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
}
SDValue OVF = Lo.getValue(1);
switch (BoolType) {
case TargetLoweringBase::UndefinedBooleanContent:
OVF = DAG.getNode(ISD::AND, dl, OvfVT, DAG.getConstant(1, dl, OvfVT), OVF);
LLVM_FALLTHROUGH;
case TargetLoweringBase::ZeroOrOneBooleanContent:
OVF = DAG.getZExtOrTrunc(OVF, dl, NVT);
Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF);
break;
case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
OVF = DAG.getSExtOrTrunc(OVF, dl, NVT);
Hi = DAG.getNode(RevOpc, dl, NVT, Hi, OVF);
}
return;
}
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps);
Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
ISD::SETULT);
if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent) {
SDValue Carry = DAG.getZExtOrTrunc(Cmp1, dl, NVT);
Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry);
return;
}
SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
DAG.getConstant(1, dl, NVT),
DAG.getConstant(0, dl, NVT));
SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
ISD::SETULT);
SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
DAG.getConstant(1, dl, NVT), Carry1);
Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
} else {
Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps);
Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
SDValue Cmp =
DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()),
LoOps[0], LoOps[1], ISD::SETULT);
SDValue Borrow;
if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent)
Borrow = DAG.getZExtOrTrunc(Cmp, dl, NVT);
else
Borrow = DAG.getSelect(dl, NVT, Cmp, DAG.getConstant(1, dl, NVT),
DAG.getConstant(0, dl, NVT));
Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
}
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
SDValue &Lo, SDValue &Hi) {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
} else {
Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
}
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
SDValue HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDLoc dl(N);
SDValue Ovf;
bool HasOpCarry = TLI.isOperationLegalOrCustom(
N->getOpcode() == ISD::ADD ? ISD::ADDCARRY : ISD::SUBCARRY,
TLI.getTypeToExpandTo(*DAG.getContext(), LHS.getValueType()));
if (HasOpCarry) {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(LHS, LHSL, LHSH);
GetExpandedInteger(RHS, RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), N->getValueType(1));
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
unsigned Opc = N->getOpcode() == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(Opc, dl, VTList, HiOps);
Ovf = Hi.getValue(1);
} else {
// Expand the result by simply replacing it with the equivalent
// non-overflow-checking operation.
auto Opc = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
SDValue Sum = DAG.getNode(Opc, dl, LHS.getValueType(), LHS, RHS);
SplitInteger(Sum, Lo, Hi);
// Calculate the overflow: addition overflows iff a + b < a, and subtraction
// overflows iff a - b > a.
auto Cond = N->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
Ovf = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS, Cond);
}
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Ovf);
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBCARRY(SDNode *N,
SDValue &Lo, SDValue &Hi) {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), N->getValueType(1));
SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
SDValue HiOps[3] = { LHSH, RHSH, SDValue() };
Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
Hi = DAG.getUNDEF(NVT); // The high part is undefined.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) ==
TargetLowering::TypePromoteInteger &&
"Only know how to promote this result!");
SDValue Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
}
}
void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT NVT = Lo.getValueType();
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
unsigned NVTBits = NVT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
if (NVTBits < EVTBits) {
Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
EVTBits - NVTBits)));
} else {
Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
// The high part replicates the sign bit of Lo, make it explicit.
Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
DAG.getConstant(NVTBits - 1, dl,
TLI.getPointerTy(DAG.getDataLayout())));
}
}
void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT NVT = Lo.getValueType();
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
unsigned NVTBits = NVT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
if (NVTBits < EVTBits) {
Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
EVTBits - NVTBits)));
} else {
Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
// The high part must be zero, make it explicit.
Hi = DAG.getConstant(0, dl, NVT);
}
}
void DAGTypeLegalizer::ExpandIntRes_BITREVERSE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
Lo = DAG.getNode(ISD::BITREVERSE, dl, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::BITREVERSE, dl, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NBitWidth = NVT.getSizeInBits();
auto Constant = cast<ConstantSDNode>(N);
const APInt &Cst = Constant->getAPIntValue();
bool IsTarget = Constant->isTargetOpcode();
bool IsOpaque = Constant->isOpaque();
SDLoc dl(N);
Lo = DAG.getConstant(Cst.trunc(NBitWidth), dl, NVT, IsTarget, IsOpaque);
Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), dl, NVT, IsTarget,
IsOpaque);
}
void DAGTypeLegalizer::ExpandIntRes_ABS(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// abs(HiLo) -> (Hi < 0 ? -HiLo : HiLo)
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue Neg = DAG.getNode(ISD::SUB, dl, VT,
DAG.getConstant(0, dl, VT), N0);
SDValue NegLo, NegHi;
SplitInteger(Neg, NegLo, NegHi);
GetExpandedInteger(N0, Lo, Hi);
EVT NVT = Lo.getValueType();
SDValue HiIsNeg = DAG.getSetCC(dl, getSetCCResultType(NVT),
DAG.getConstant(0, dl, NVT), Hi, ISD::SETGT);
Lo = DAG.getSelect(dl, NVT, HiIsNeg, NegLo, Lo);
Hi = DAG.getSelect(dl, NVT, HiIsNeg, NegHi, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT NVT = Lo.getValueType();
SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi,
DAG.getConstant(0, dl, NVT), ISD::SETNE);
SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ,
DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
DAG.getConstant(NVT.getSizeInBits(), dl,
NVT)));
Hi = DAG.getConstant(0, dl, NVT);
}
void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT NVT = Lo.getValueType();
Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
Hi = DAG.getConstant(0, dl, NVT);
}
void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
// cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT NVT = Lo.getValueType();
SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo,
DAG.getConstant(0, dl, NVT), ISD::SETNE);
SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ,
DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
DAG.getConstant(NVT.getSizeInBits(), dl,
NVT)));
Hi = DAG.getConstant(0, dl, NVT);
}
void DAGTypeLegalizer::ExpandIntRes_FLT_ROUNDS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NBitWidth = NVT.getSizeInBits();
EVT ShiftAmtTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
Lo = DAG.getNode(ISD::FLT_ROUNDS_, dl, NVT);
// The high part is the sign of Lo, as -1 is a valid value for FLT_ROUNDS
Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
DAG.getConstant(NBitWidth - 1, dl, ShiftAmtTy));
}
void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
Op = GetPromotedFloat(Op);
RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, dl).first,
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
Op = GetPromotedFloat(Op);
RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
TargetLowering::MakeLibCallOptions CallOptions;
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, dl).first,
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_LLROUND(SDNode *N, SDValue &Lo,
SDValue &Hi) {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
EVT VT = N->getOperand(0).getValueType().getSimpleVT().SimpleTy;
if (VT == MVT::f32)
LC = RTLIB::LLROUND_F32;
else if (VT == MVT::f64)
LC = RTLIB::LLROUND_F64;
else if (VT == MVT::f80)
LC = RTLIB::LLROUND_F80;
else if (VT == MVT::f128)
LC = RTLIB::LLROUND_F128;
else if (VT == MVT::ppcf128)
LC = RTLIB::LLROUND_PPCF128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llround input type!");
SDValue Op = N->getOperand(0);
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
Op = GetPromotedFloat(Op);
SDLoc dl(N);
EVT RetVT = N->getValueType(0);
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, RetVT, Op, CallOptions, dl).first,
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_LLRINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
EVT VT = N->getOperand(0).getValueType().getSimpleVT().SimpleTy;
if (VT == MVT::f32)
LC = RTLIB::LLRINT_F32;
else if (VT == MVT::f64)
LC = RTLIB::LLRINT_F64;
else if (VT == MVT::f80)
LC = RTLIB::LLRINT_F80;
else if (VT == MVT::f128)
LC = RTLIB::LLRINT_F128;
else if (VT == MVT::ppcf128)
LC = RTLIB::LLRINT_PPCF128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llrint input type!");
SDValue Op = N->getOperand(0);
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
Op = GetPromotedFloat(Op);
SDLoc dl(N);
EVT RetVT = N->getValueType(0);
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, RetVT, Op, CallOptions, dl).first,
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
SDValue &Lo, SDValue &Hi) {
if (ISD::isNormalLoad(N)) {
ExpandRes_NormalLoad(N, Lo, Hi);
return;
}
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
ISD::LoadExtType ExtType = N->getExtensionType();
unsigned Alignment = N->getAlignment();
MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
AAMDNodes AAInfo = N->getAAInfo();
SDLoc dl(N);
assert(NVT.isByteSized() && "Expanded type not byte sized!");
if (N->getMemoryVT().bitsLE(NVT)) {
EVT MemVT = N->getMemoryVT();
Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), MemVT,
Alignment, MMOFlags, AAInfo);
// Remember the chain.
Ch = Lo.getValue(1);
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = Lo.getValueSizeInBits();
Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
DAG.getConstant(LoSize - 1, dl,
TLI.getPointerTy(DAG.getDataLayout())));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, dl, NVT);
} else {
assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
// The high part is undefined.
Hi = DAG.getUNDEF(NVT);
}
} else if (DAG.getDataLayout().isLittleEndian()) {
// Little-endian - low bits are at low addresses.
Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
AAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
} else {
// Big-endian - high bits are at low addresses. Favor aligned loads at
// the cost of some bit-fiddling.
EVT MemVT = N->getMemoryVT();
unsigned EBytes = MemVT.getStoreSize();
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
// Load both the high bits and maybe some of the low bits.
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
EVT::getIntegerVT(*DAG.getContext(),
MemVT.getSizeInBits() - ExcessBits),
Alignment, MMOFlags, AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
// Load the rest of the low bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
if (ExcessBits < NVT.getSizeInBits()) {
// Transfer low bits from the bottom of Hi to the top of Lo.
Lo = DAG.getNode(
ISD::OR, dl, NVT, Lo,
DAG.getNode(ISD::SHL, dl, NVT, Hi,
DAG.getConstant(ExcessBits, dl,
TLI.getPointerTy(DAG.getDataLayout()))));
// Move high bits to the right position in Hi.
Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl, NVT,
Hi,
DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
TLI.getPointerTy(DAG.getDataLayout())));
}
}
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Ch);
}
void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
SDValue LL, LH, RL, RH;
GetExpandedInteger(N->getOperand(0), LL, LH);
GetExpandedInteger(N->getOperand(1), RL, RH);
Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
}
void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDLoc dl(N);
SDValue LL, LH, RL, RH;
GetExpandedInteger(N->getOperand(0), LL, LH);
GetExpandedInteger(N->getOperand(1), RL, RH);
if (TLI.expandMUL(N, Lo, Hi, NVT, DAG,
TargetLowering::MulExpansionKind::OnlyLegalOrCustom,
LL, LH, RL, RH))
return;
// If nothing else, we can make a libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::MUL_I16;
else if (VT == MVT::i32)
LC = RTLIB::MUL_I32;
else if (VT == MVT::i64)
LC = RTLIB::MUL_I64;
else if (VT == MVT::i128)
LC = RTLIB::MUL_I128;
if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(LC)) {
// We'll expand the multiplication by brute force because we have no other
// options. This is a trivially-generalized version of the code from
// Hacker's Delight (itself derived from Knuth's Algorithm M from section
// 4.3.1).
unsigned Bits = NVT.getSizeInBits();
unsigned HalfBits = Bits >> 1;
SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl,
NVT);
SDValue LLL = DAG.getNode(ISD::AND, dl, NVT, LL, Mask);
SDValue RLL = DAG.getNode(ISD::AND, dl, NVT, RL, Mask);
SDValue T = DAG.getNode(ISD::MUL, dl, NVT, LLL, RLL);
SDValue TL = DAG.getNode(ISD::AND, dl, NVT, T, Mask);
EVT ShiftAmtTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
if (APInt::getMaxValue(ShiftAmtTy.getSizeInBits()).ult(HalfBits)) {
// The type from TLI is too small to fit the shift amount we want.
// Override it with i32. The shift will have to be legalized.
ShiftAmtTy = MVT::i32;
}
SDValue Shift = DAG.getConstant(HalfBits, dl, ShiftAmtTy);
SDValue TH = DAG.getNode(ISD::SRL, dl, NVT, T, Shift);
SDValue LLH = DAG.getNode(ISD::SRL, dl, NVT, LL, Shift);
SDValue RLH = DAG.getNode(ISD::SRL, dl, NVT, RL, Shift);
SDValue U = DAG.getNode(ISD::ADD, dl, NVT,
DAG.getNode(ISD::MUL, dl, NVT, LLH, RLL), TH);
SDValue UL = DAG.getNode(ISD::AND, dl, NVT, U, Mask);
SDValue UH = DAG.getNode(ISD::SRL, dl, NVT, U, Shift);
SDValue V = DAG.getNode(ISD::ADD, dl, NVT,
DAG.getNode(ISD::MUL, dl, NVT, LLL, RLH), UL);
SDValue VH = DAG.getNode(ISD::SRL, dl, NVT, V, Shift);
SDValue W = DAG.getNode(ISD::ADD, dl, NVT,
DAG.getNode(ISD::MUL, dl, NVT, LLH, RLH),
DAG.getNode(ISD::ADD, dl, NVT, UH, VH));
Lo = DAG.getNode(ISD::ADD, dl, NVT, TL,
DAG.getNode(ISD::SHL, dl, NVT, V, Shift));
Hi = DAG.getNode(ISD::ADD, dl, NVT, W,
DAG.getNode(ISD::ADD, dl, NVT,
DAG.getNode(ISD::MUL, dl, NVT, RH, LL),
DAG.getNode(ISD::MUL, dl, NVT, RL, LH)));
return;
}
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first,
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_READCYCLECOUNTER(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc DL(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDVTList VTs = DAG.getVTList(NVT, NVT, MVT::Other);
SDValue R = DAG.getNode(N->getOpcode(), DL, VTs, N->getOperand(0));
Lo = R.getValue(0);
Hi = R.getValue(1);
ReplaceValueWith(SDValue(N, 1), R.getValue(2));
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBSAT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Result = TLI.expandAddSubSat(N, DAG);
SplitInteger(Result, Lo, Hi);
}
/// This performs an expansion of the integer result for a fixed point
/// multiplication. The default expansion performs rounding down towards
/// negative infinity, though targets that do care about rounding should specify
/// a target hook for rounding and provide their own expansion or lowering of
/// fixed point multiplication to be consistent with rounding.
void DAGTypeLegalizer::ExpandIntRes_MULFIX(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
unsigned VTSize = VT.getScalarSizeInBits();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
uint64_t Scale = N->getConstantOperandVal(2);
bool Saturating = (N->getOpcode() == ISD::SMULFIXSAT ||
N->getOpcode() == ISD::UMULFIXSAT);
bool Signed = (N->getOpcode() == ISD::SMULFIX ||
N->getOpcode() == ISD::SMULFIXSAT);
// Handle special case when scale is equal to zero.
if (!Scale) {
SDValue Result;
if (!Saturating) {
Result = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
} else {
EVT BoolVT = getSetCCResultType(VT);
unsigned MulOp = Signed ? ISD::SMULO : ISD::UMULO;
Result = DAG.getNode(MulOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
SDValue Product = Result.getValue(0);
SDValue Overflow = Result.getValue(1);
if (Signed) {
APInt MinVal = APInt::getSignedMinValue(VTSize);
APInt MaxVal = APInt::getSignedMaxValue(VTSize);
SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
Result = DAG.getSelect(dl, VT, Overflow, Result, Product);
} else {
// For unsigned multiplication, we only need to check the max since we
// can't really overflow towards zero.
APInt MaxVal = APInt::getMaxValue(VTSize);
SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
Result = DAG.getSelect(dl, VT, Overflow, SatMax, Product);
}
}
SplitInteger(Result, Lo, Hi);
return;
}
// For SMULFIX[SAT] we only expect to find Scale<VTSize, but this assert will
// cover for unhandled cases below, while still being valid for UMULFIX[SAT].
assert(Scale <= VTSize && "Scale can't be larger than the value type size.");
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue LL, LH, RL, RH;
GetExpandedInteger(LHS, LL, LH);
GetExpandedInteger(RHS, RL, RH);
SmallVector<SDValue, 4> Result;
unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
if (!TLI.expandMUL_LOHI(LoHiOp, VT, dl, LHS, RHS, Result, NVT, DAG,
TargetLowering::MulExpansionKind::OnlyLegalOrCustom,
LL, LH, RL, RH)) {
report_fatal_error("Unable to expand MUL_FIX using MUL_LOHI.");
return;
}
unsigned NVTSize = NVT.getScalarSizeInBits();
assert((VTSize == NVTSize * 2) && "Expected the new value type to be half "
"the size of the current value type");
EVT ShiftTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
// After getting the multiplication result in 4 parts, we need to perform a
// shift right by the amount of the scale to get the result in that scale.
//
// Let's say we multiply 2 64 bit numbers. The resulting value can be held in
// 128 bits that are cut into 4 32-bit parts:
//
// HH HL LH LL
// |---32---|---32---|---32---|---32---|
// 128 96 64 32 0
//
// |------VTSize-----|
//
// |NVTSize-|
//
// The resulting Lo and Hi would normally be in LL and LH after the shift. But
// to avoid unneccessary shifting of all 4 parts, we can adjust the shift
// amount and get Lo and Hi using two funnel shifts. Or for the special case
// when Scale is a multiple of NVTSize we can just pick the result without
// shifting.
uint64_t Part0 = Scale / NVTSize; // Part holding lowest bit needed.
if (Scale % NVTSize) {
SDValue ShiftAmount = DAG.getConstant(Scale % NVTSize, dl, ShiftTy);
Lo = DAG.getNode(ISD::FSHR, dl, NVT, Result[Part0 + 1], Result[Part0],
ShiftAmount);
Hi = DAG.getNode(ISD::FSHR, dl, NVT, Result[Part0 + 2], Result[Part0 + 1],
ShiftAmount);
} else {
Lo = Result[Part0];
Hi = Result[Part0 + 1];
}
// Unless saturation is requested we are done. The result is in <Hi,Lo>.
if (!Saturating)
return;
// Can not overflow when there is no integer part.
if (Scale == VTSize)
return;
// To handle saturation we must check for overflow in the multiplication.
//
// Unsigned overflow happened if the upper (VTSize - Scale) bits (of Result)
// aren't all zeroes.
//
// Signed overflow happened if the upper (VTSize - Scale + 1) bits (of Result)
// aren't all ones or all zeroes.
//
// We cannot overflow past HH when multiplying 2 ints of size VTSize, so the
// highest bit of HH determines saturation direction in the event of signed
// saturation.
SDValue ResultHL = Result[2];
SDValue ResultHH = Result[3];
SDValue SatMax, SatMin;
SDValue NVTZero = DAG.getConstant(0, dl, NVT);
SDValue NVTNeg1 = DAG.getConstant(-1, dl, NVT);
EVT BoolNVT = getSetCCResultType(NVT);
if (!Signed) {
if (Scale < NVTSize) {
// Overflow happened if ((HH | (HL >> Scale)) != 0).
SDValue HLAdjusted = DAG.getNode(ISD::SRL, dl, NVT, ResultHL,
DAG.getConstant(Scale, dl, ShiftTy));
SDValue Tmp = DAG.getNode(ISD::OR, dl, NVT, HLAdjusted, ResultHH);
SatMax = DAG.getSetCC(dl, BoolNVT, Tmp, NVTZero, ISD::SETNE);
} else if (Scale == NVTSize) {
// Overflow happened if (HH != 0).
SatMax = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETNE);
} else if (Scale < VTSize) {
// Overflow happened if ((HH >> (Scale - NVTSize)) != 0).
SDValue HLAdjusted = DAG.getNode(ISD::SRL, dl, NVT, ResultHL,
DAG.getConstant(Scale - NVTSize, dl,
ShiftTy));
SatMax = DAG.getSetCC(dl, BoolNVT, HLAdjusted, NVTZero, ISD::SETNE);
} else
llvm_unreachable("Scale must be less or equal to VTSize for UMULFIXSAT"
"(and saturation can't happen with Scale==VTSize).");
Hi = DAG.getSelect(dl, NVT, SatMax, NVTNeg1, Hi);
Lo = DAG.getSelect(dl, NVT, SatMax, NVTNeg1, Lo);
return;
}
if (Scale < NVTSize) {
// The number of overflow bits we can check are VTSize - Scale + 1 (we
// include the sign bit). If these top bits are > 0, then we overflowed past
// the max value. If these top bits are < -1, then we overflowed past the
// min value. Otherwise, we did not overflow.
unsigned OverflowBits = VTSize - Scale + 1;
assert(OverflowBits <= VTSize && OverflowBits > NVTSize &&
"Extent of overflow bits must start within HL");
SDValue HLHiMask = DAG.getConstant(
APInt::getHighBitsSet(NVTSize, OverflowBits - NVTSize), dl, NVT);
SDValue HLLoMask = DAG.getConstant(
APInt::getLowBitsSet(NVTSize, VTSize - OverflowBits), dl, NVT);
// We overflow max if HH > 0 or (HH == 0 && HL > HLLoMask).
SDValue HHGT0 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETGT);
SDValue HHEQ0 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETEQ);
SDValue HLUGT = DAG.getSetCC(dl, BoolNVT, ResultHL, HLLoMask, ISD::SETUGT);
SatMax = DAG.getNode(ISD::OR, dl, BoolNVT, HHGT0,
DAG.getNode(ISD::AND, dl, BoolNVT, HHEQ0, HLUGT));
// We overflow min if HH < -1 or (HH == -1 && HL < HLHiMask).
SDValue HHLT = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETLT);
SDValue HHEQ = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETEQ);
SDValue HLULT = DAG.getSetCC(dl, BoolNVT, ResultHL, HLHiMask, ISD::SETULT);
SatMin = DAG.getNode(ISD::OR, dl, BoolNVT, HHLT,
DAG.getNode(ISD::AND, dl, BoolNVT, HHEQ, HLULT));
} else if (Scale == NVTSize) {
// We overflow max if HH > 0 or (HH == 0 && HL sign bit is 1).
SDValue HHGT0 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETGT);
SDValue HHEQ0 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETEQ);
SDValue HLNeg = DAG.getSetCC(dl, BoolNVT, ResultHL, NVTZero, ISD::SETLT);
SatMax = DAG.getNode(ISD::OR, dl, BoolNVT, HHGT0,
DAG.getNode(ISD::AND, dl, BoolNVT, HHEQ0, HLNeg));
// We overflow min if HH < -1 or (HH == -1 && HL sign bit is 0).
SDValue HHLT = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETLT);
SDValue HHEQ = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETEQ);
SDValue HLPos = DAG.getSetCC(dl, BoolNVT, ResultHL, NVTZero, ISD::SETGE);
SatMin = DAG.getNode(ISD::OR, dl, BoolNVT, HHLT,
DAG.getNode(ISD::AND, dl, BoolNVT, HHEQ, HLPos));
} else if (Scale < VTSize) {
// This is similar to the case when we saturate if Scale < NVTSize, but we
// only need to check HH.
unsigned OverflowBits = VTSize - Scale + 1;
SDValue HHHiMask = DAG.getConstant(
APInt::getHighBitsSet(NVTSize, OverflowBits), dl, NVT);
SDValue HHLoMask = DAG.getConstant(
APInt::getLowBitsSet(NVTSize, NVTSize - OverflowBits), dl, NVT);
SatMax = DAG.getSetCC(dl, BoolNVT, ResultHH, HHLoMask, ISD::SETGT);
SatMin = DAG.getSetCC(dl, BoolNVT, ResultHH, HHHiMask, ISD::SETLT);
} else
llvm_unreachable("Illegal scale for signed fixed point mul.");
// Saturate to signed maximum.
APInt MaxHi = APInt::getSignedMaxValue(NVTSize);
APInt MaxLo = APInt::getAllOnesValue(NVTSize);
Hi = DAG.getSelect(dl, NVT, SatMax, DAG.getConstant(MaxHi, dl, NVT), Hi);
Lo = DAG.getSelect(dl, NVT, SatMax, DAG.getConstant(MaxLo, dl, NVT), Lo);
// Saturate to signed minimum.
APInt MinHi = APInt::getSignedMinValue(NVTSize);
Hi = DAG.getSelect(dl, NVT, SatMin, DAG.getConstant(MinHi, dl, NVT), Hi);
Lo = DAG.getSelect(dl, NVT, SatMin, NVTZero, Lo);
}
void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
SDValue &Lo, SDValue &Hi) {
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDLoc dl(Node);
// Expand the result by simply replacing it with the equivalent
// non-overflow-checking operation.
SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
LHS, RHS);
SplitInteger(Sum, Lo, Hi);
// Compute the overflow.
//
// LHSSign -> LHS >= 0
// RHSSign -> RHS >= 0
// SumSign -> Sum >= 0
//
// Add:
// Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
// Sub:
// Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
//
EVT OType = Node->getValueType(1);
SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
Node->getOpcode() == ISD::SADDO ?
ISD::SETEQ : ISD::SETNE);
SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(Node, 1), Cmp);
}
void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
SplitInteger(Res.getValue(0), Lo, Hi);
return;
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::SDIV_I16;
else if (VT == MVT::i32)
LC = RTLIB::SDIV_I32;
else if (VT == MVT::i64)
LC = RTLIB::SDIV_I64;
else if (VT == MVT::i128)
LC = RTLIB::SDIV_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// If we can emit an efficient shift operation, do so now. Check to see if
// the RHS is a constant.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return ExpandShiftByConstant(N, CN->getAPIntValue(), Lo, Hi);
// If we can determine that the high bit of the shift is zero or one, even if
// the low bits are variable, emit this shift in an optimized form.
if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
return;
// If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
unsigned PartsOpc;
if (N->getOpcode() == ISD::SHL) {
PartsOpc = ISD::SHL_PARTS;
} else if (N->getOpcode() == ISD::SRL) {
PartsOpc = ISD::SRL_PARTS;
} else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
PartsOpc = ISD::SRA_PARTS;
}
// Next check to see if the target supports this SHL_PARTS operation or if it
// will custom expand it. Don't lower this to SHL_PARTS when we optimise for
// size, but create a libcall instead.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
const bool LegalOrCustom =
(Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom;
if (LegalOrCustom && TLI.shouldExpandShift(DAG, N)) {
// Expand the subcomponents.
SDValue LHSL, LHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
EVT VT = LHSL.getValueType();
// If the shift amount operand is coming from a vector legalization it may
// have an illegal type. Fix that first by casting the operand, otherwise
// the new SHL_PARTS operation would need further legalization.
SDValue ShiftOp = N->getOperand(1);
EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
assert(ShiftTy.getScalarSizeInBits() >=
Log2_32_Ceil(VT.getScalarSizeInBits()) &&
"ShiftAmountTy is too small to cover the range of this type!");
if (ShiftOp.getValueType() != ShiftTy)
ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
SDValue Ops[] = { LHSL, LHSH, ShiftOp };
Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops);
Hi = Lo.getValue(1);
return;
}
// Otherwise, emit a libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
bool isSigned;
if (N->getOpcode() == ISD::SHL) {
isSigned = false; /*sign irrelevant*/
if (VT == MVT::i16)
LC = RTLIB::SHL_I16;
else if (VT == MVT::i32)
LC = RTLIB::SHL_I32;
else if (VT == MVT::i64)
LC = RTLIB::SHL_I64;
else if (VT == MVT::i128)
LC = RTLIB::SHL_I128;
} else if (N->getOpcode() == ISD::SRL) {
isSigned = false;
if (VT == MVT::i16)
LC = RTLIB::SRL_I16;
else if (VT == MVT::i32)
LC = RTLIB::SRL_I32;
else if (VT == MVT::i64)
LC = RTLIB::SRL_I64;
else if (VT == MVT::i128)
LC = RTLIB::SRL_I128;
} else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
isSigned = true;
if (VT == MVT::i16)
LC = RTLIB::SRA_I16;
else if (VT == MVT::i32)
LC = RTLIB::SRA_I32;
else if (VT == MVT::i64)
LC = RTLIB::SRA_I64;
else if (VT == MVT::i128)
LC = RTLIB::SRA_I128;
}
if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(isSigned);
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first, Lo, Hi);
return;
}
if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
llvm_unreachable("Unsupported shift!");
}
void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is sign extension of the input (degenerates to a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of low part.
unsigned LoSize = NVT.getSizeInBits();
Hi = DAG.getNode(
ISD::SRA, dl, NVT, Lo,
DAG.getConstant(LoSize - 1, dl, TLI.getPointerTy(DAG.getDataLayout())));
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) ==
TargetLowering::TypePromoteInteger &&
"Only know how to promote this result!");
SDValue Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
ExcessBits)));
}
}
void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
GetExpandedInteger(N->getOperand(0), Lo, Hi);
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (EVT.bitsLE(Lo.getValueType())) {
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
N->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
DAG.getConstant(Hi.getValueSizeInBits() - 1, dl,
TLI.getPointerTy(DAG.getDataLayout())));
} else {
// For example, extension of an i48 to an i64. Leave the low part alone,
// sext_inreg the high part.
unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
SplitInteger(Res.getValue(1), Lo, Hi);
return;
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::SREM_I16;
else if (VT == MVT::i32)
LC = RTLIB::SREM_I32;
else if (VT == MVT::i64)
LC = RTLIB::SREM_I64;
else if (VT == MVT::i128)
LC = RTLIB::SREM_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
Hi = DAG.getNode(ISD::SRL, dl, N->getOperand(0).getValueType(),
N->getOperand(0),
DAG.getConstant(NVT.getSizeInBits(), dl,
TLI.getPointerTy(DAG.getDataLayout())));
Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
if (N->getOpcode() == ISD::UMULO) {
// This section expands the operation into the following sequence of
// instructions. `iNh` here refers to a type which has half the bit width of
// the type the original operation operated on.
//
// %0 = %LHS.HI != 0 && %RHS.HI != 0
// %1 = { iNh, i1 } @umul.with.overflow.iNh(iNh %LHS.HI, iNh %RHS.LO)
// %2 = { iNh, i1 } @umul.with.overflow.iNh(iNh %RHS.HI, iNh %LHS.LO)
// %3 = mul nuw iN (%LHS.LOW as iN), (%RHS.LOW as iN)
// %4 = add iN (%1.0 as iN) << Nh, (%2.0 as iN) << Nh
// %5 = { iN, i1 } @uadd.with.overflow.iN( %4, %3 )
//
// %res = { %5.0, %0 || %1.1 || %2.1 || %5.1 }
SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
SDValue LHSHigh, LHSLow, RHSHigh, RHSLow;
SplitInteger(LHS, LHSLow, LHSHigh);
SplitInteger(RHS, RHSLow, RHSHigh);
EVT HalfVT = LHSLow.getValueType()
, BitVT = N->getValueType(1);
SDVTList VTHalfMulO = DAG.getVTList(HalfVT, BitVT);
SDVTList VTFullAddO = DAG.getVTList(VT, BitVT);
SDValue HalfZero = DAG.getConstant(0, dl, HalfVT);
SDValue Overflow = DAG.getNode(ISD::AND, dl, BitVT,
DAG.getSetCC(dl, BitVT, LHSHigh, HalfZero, ISD::SETNE),
DAG.getSetCC(dl, BitVT, RHSHigh, HalfZero, ISD::SETNE));
SDValue One = DAG.getNode(ISD::UMULO, dl, VTHalfMulO, LHSHigh, RHSLow);
Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, One.getValue(1));
SDValue OneInHigh = DAG.getNode(ISD::BUILD_PAIR, dl, VT, HalfZero,
One.getValue(0));
SDValue Two = DAG.getNode(ISD::UMULO, dl, VTHalfMulO, RHSHigh, LHSLow);
Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, Two.getValue(1));
SDValue TwoInHigh = DAG.getNode(ISD::BUILD_PAIR, dl, VT, HalfZero,
Two.getValue(0));
// Cannot use `UMUL_LOHI` directly, because some 32-bit targets (ARM) do not
// know how to expand `i64,i64 = umul_lohi a, b` and abort (why isn’t this
// operation recursively legalized?).
//
// Many backends understand this pattern and will convert into LOHI
// themselves, if applicable.
SDValue Three = DAG.getNode(ISD::MUL, dl, VT,
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LHSLow),
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RHSLow));
SDValue Four = DAG.getNode(ISD::ADD, dl, VT, OneInHigh, TwoInHigh);
SDValue Five = DAG.getNode(ISD::UADDO, dl, VTFullAddO, Three, Four);
Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, Five.getValue(1));
SplitInteger(Five, Lo, Hi);
ReplaceValueWith(SDValue(N, 1), Overflow);
return;
}
Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
// Replace this with a libcall that will check overflow.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i32)
LC = RTLIB::MULO_I32;
else if (VT == MVT::i64)
LC = RTLIB::MULO_I64;
else if (VT == MVT::i128)
LC = RTLIB::MULO_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
SDValue Temp = DAG.CreateStackTemporary(PtrVT);
// Temporary for the overflow value, default it to zero.
SDValue Chain =
DAG.getStore(DAG.getEntryNode(), dl, DAG.getConstant(0, dl, PtrVT), Temp,
MachinePointerInfo());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (const SDValue &Op : N->op_values()) {
EVT ArgVT = Op.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op;
Entry.Ty = ArgTy;
Entry.IsSExt = true;
Entry.IsZExt = false;
Args.push_back(Entry);
}
// Also pass the address of the overflow check.
Entry.Node = Temp;
Entry.Ty = PtrTy->getPointerTo();
Entry.IsSExt = true;
Entry.IsZExt = false;
Args.push_back(Entry);
SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Func, std::move(Args))
.setSExtResult();
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
SplitInteger(CallInfo.first, Lo, Hi);
SDValue Temp2 =
DAG.getLoad(PtrVT, dl, CallInfo.second, Temp, MachinePointerInfo());
SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
DAG.getConstant(0, dl, PtrVT),
ISD::SETNE);
// Use the overflow from the libcall everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
}
void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
SplitInteger(Res.getValue(0), Lo, Hi);
return;
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::UDIV_I16;
else if (VT == MVT::i32)
LC = RTLIB::UDIV_I32;
else if (VT == MVT::i64)
LC = RTLIB::UDIV_I64;
else if (VT == MVT::i128)
LC = RTLIB::UDIV_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
TargetLowering::MakeLibCallOptions CallOptions;
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
SplitInteger(Res.getValue(1), Lo, Hi);
return;
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i16)
LC = RTLIB::UREM_I16;
else if (VT == MVT::i32)
LC = RTLIB::UREM_I32;
else if (VT == MVT::i64)
LC = RTLIB::UREM_I64;
else if (VT == MVT::i128)
LC = RTLIB::UREM_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
TargetLowering::MakeLibCallOptions CallOptions;
SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, CallOptions, dl).first, Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is zero extension of the input (degenerates to a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
Hi = DAG.getConstant(0, dl, NVT); // The high part is just a zero.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) ==
TargetLowering::TypePromoteInteger &&
"Only know how to promote this result!");
SDValue Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getZeroExtendInReg(Hi, dl,
EVT::getIntegerVT(*DAG.getContext(),
ExcessBits));
}
}
void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue Swap = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl,
cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0),
N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand());
ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
ReplaceValueWith(SDValue(N, 1), Swap.getValue(2));
}
void DAGTypeLegalizer::ExpandIntRes_VECREDUCE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
// TODO For VECREDUCE_(AND|OR|XOR) we could split the vector and calculate
// both halves independently.
SDValue Res = TLI.expandVecReduce(N, DAG);
SplitInteger(Res, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Integer Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need expansion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
report_fatal_error("Do not know how to expand this operator's operand!");
case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break;
case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
case ISD::SETCCCARRY: Res = ExpandIntOp_SETCCCARRY(N); break;
case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break;
case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR: Res = ExpandIntOp_Shift(N); break;
case ISD::RETURNADDR:
case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break;
case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
SDValue &NewRHS,
ISD::CondCode &CCCode,
const SDLoc &dl) {
SDValue LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedInteger(NewLHS, LHSLo, LHSHi);
GetExpandedInteger(NewRHS, RHSLo, RHSHi);
if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
if (RHSLo == RHSHi) {
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
if (RHSCST->isAllOnesValue()) {
// Equality comparison to -1.
NewLHS = DAG.getNode(ISD::AND, dl,
LHSLo.getValueType(), LHSLo, LHSHi);
NewRHS = RHSLo;
return;
}
}
}
NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
NewRHS = DAG.getConstant(0, dl, NewLHS.getValueType());
return;
}
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
(CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
NewLHS = LHSHi;
NewRHS = RHSHi;
return;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// LoCmp = lo(op1) < lo(op2) // Always unsigned comparison
// HiCmp = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? LoCmp : HiCmp;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true,
nullptr);
SDValue LoCmp, HiCmp;
if (TLI.isTypeLegal(LHSLo.getValueType()) &&
TLI.isTypeLegal(RHSLo.getValueType()))
LoCmp = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()), LHSLo,
RHSLo, LowCC, false, DagCombineInfo, dl);
if (!LoCmp.getNode())
LoCmp = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo,
RHSLo, LowCC);
if (TLI.isTypeLegal(LHSHi.getValueType()) &&
TLI.isTypeLegal(RHSHi.getValueType()))
HiCmp = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), LHSHi,
RHSHi, CCCode, false, DagCombineInfo, dl);
if (!HiCmp.getNode())
HiCmp =
DAG.getNode(ISD::SETCC, dl, getSetCCResultType(LHSHi.getValueType()),
LHSHi, RHSHi, DAG.getCondCode(CCCode));
ConstantSDNode *LoCmpC = dyn_cast<ConstantSDNode>(LoCmp.getNode());
ConstantSDNode *HiCmpC = dyn_cast<ConstantSDNode>(HiCmp.getNode());
bool EqAllowed = (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE);
if ((EqAllowed && (HiCmpC && HiCmpC->isNullValue())) ||
(!EqAllowed && ((HiCmpC && (HiCmpC->getAPIntValue() == 1)) ||
(LoCmpC && LoCmpC->isNullValue())))) {
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT: if low part is known false, return the high part.
// if high part is known true, ignore the low part.
NewLHS = HiCmp;
NewRHS = SDValue();
return;
}
if (LHSHi == RHSHi) {
// Comparing the low bits is enough.
NewLHS = LoCmp;
NewRHS = SDValue();
return;
}
// Lower with SETCCCARRY if the target supports it.
EVT HiVT = LHSHi.getValueType();
EVT ExpandVT = TLI.getTypeToExpandTo(*DAG.getContext(), HiVT);
bool HasSETCCCARRY = TLI.isOperationLegalOrCustom(ISD::SETCCCARRY, ExpandVT);
// FIXME: Make all targets support this, then remove the other lowering.
if (HasSETCCCARRY) {
// SETCCCARRY can detect < and >= directly. For > and <=, flip
// operands and condition code.
bool FlipOperands = false;
switch (CCCode) {
case ISD::SETGT: CCCode = ISD::SETLT; FlipOperands = true; break;
case ISD::SETUGT: CCCode = ISD::SETULT; FlipOperands = true; break;
case ISD::SETLE: CCCode = ISD::SETGE; FlipOperands = true; break;
case ISD::SETULE: CCCode = ISD::SETUGE; FlipOperands = true; break;
default: break;
}
if (FlipOperands) {
std::swap(LHSLo, RHSLo);
std::swap(LHSHi, RHSHi);
}
// Perform a wide subtraction, feeding the carry from the low part into
// SETCCCARRY. The SETCCCARRY operation is essentially looking at the high
// part of the result of LHS - RHS. It is negative iff LHS < RHS. It is
// zero or positive iff LHS >= RHS.
EVT LoVT = LHSLo.getValueType();
SDVTList VTList = DAG.getVTList(LoVT, getSetCCResultType(LoVT));
SDValue LowCmp = DAG.getNode(ISD::USUBO, dl, VTList, LHSLo, RHSLo);
SDValue Res = DAG.getNode(ISD::SETCCCARRY, dl, getSetCCResultType(HiVT),
LHSHi, RHSHi, LowCmp.getValue(1),
DAG.getCondCode(CCCode));
NewLHS = Res;
NewRHS = SDValue();
return;
}
NewLHS = TLI.SimplifySetCC(getSetCCResultType(HiVT), LHSHi, RHSHi, ISD::SETEQ,
false, DagCombineInfo, dl);
if (!NewLHS.getNode())
NewLHS =
DAG.getSetCC(dl, getSetCCResultType(HiVT), LHSHi, RHSHi, ISD::SETEQ);
NewLHS = DAG.getSelect(dl, LoCmp.getValueType(), NewLHS, LoCmp, HiCmp);
NewRHS = SDValue();
}
SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4)), 0);
}
SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!NewRHS.getNode()) {
NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
N->getOperand(2), N->getOperand(3),
DAG.getCondCode(CCCode)), 0);
}
SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
// If ExpandSetCCOperands returned a scalar, use it.
if (!NewRHS.getNode()) {
assert(NewLHS.getValueType() == N->getValueType(0) &&
"Unexpected setcc expansion!");
return NewLHS;
}
// Otherwise, update N to have the operands specified.
return SDValue(
DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0);
}
SDValue DAGTypeLegalizer::ExpandIntOp_SETCCCARRY(SDNode *N) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = N->getOperand(2);
SDValue Cond = N->getOperand(3);
SDLoc dl = SDLoc(N);
SDValue LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedInteger(LHS, LHSLo, LHSHi);
GetExpandedInteger(RHS, RHSLo, RHSHi);
// Expand to a SUBE for the low part and a smaller SETCCCARRY for the high.
SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), Carry.getValueType());
SDValue LowCmp = DAG.getNode(ISD::SUBCARRY, dl, VTList, LHSLo, RHSLo, Carry);
return DAG.getNode(ISD::SETCCCARRY, dl, N->getValueType(0), LHSHi, RHSHi,
LowCmp.getValue(1), Cond);
}
SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
// The value being shifted is legal, but the shift amount is too big.
// It follows that either the result of the shift is undefined, or the
// upper half of the shift amount is zero. Just use the lower half.
SDValue Lo, Hi;
GetExpandedInteger(N->getOperand(1), Lo, Hi);
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
}
SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
// The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This
// surely makes pretty nice problems on 8/16 bit targets. Just truncate this
// constant to valid type.
SDValue Lo, Hi;
GetExpandedInteger(N->getOperand(0), Lo, Hi);
return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
}
SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
SDValue Op = N->getOperand(0);
EVT DstVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this SINT_TO_FP!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
return TLI.makeLibCall(DAG, LC, DstVT, Op, CallOptions, SDLoc(N)).first;
}
SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
if (ISD::isNormalStore(N))
return ExpandOp_NormalStore(N, OpNo);
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only expand the stored value so far");
EVT VT = N->getOperand(1).getValueType();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
unsigned Alignment = N->getAlignment();
MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
AAMDNodes AAInfo = N->getAAInfo();
SDLoc dl(N);
SDValue Lo, Hi;
assert(NVT.isByteSized() && "Expanded type not byte sized!");
if (N->getMemoryVT().bitsLE(NVT)) {
GetExpandedInteger(N->getValue(), Lo, Hi);
return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
N->getMemoryVT(), Alignment, MMOFlags, AAInfo);
}
if (DAG.getDataLayout().isLittleEndian()) {
// Little-endian - low bits are at low addresses.
GetExpandedInteger(N->getValue(), Lo, Hi);
Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
AAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Hi = DAG.getTruncStore(
Ch, dl, Hi, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
// Big-endian - high bits are at low addresses. Favor aligned stores at
// the cost of some bit-fiddling.
GetExpandedInteger(N->getValue(), Lo, Hi);
EVT ExtVT = N->getMemoryVT();
unsigned EBytes = ExtVT.getStoreSize();
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
ExtVT.getSizeInBits() - ExcessBits);
if (ExcessBits < NVT.getSizeInBits()) {
// Transfer high bits from the top of Lo to the bottom of Hi.
Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
TLI.getPointerTy(DAG.getDataLayout())));
Hi = DAG.getNode(
ISD::OR, dl, NVT, Hi,
DAG.getNode(ISD::SRL, dl, NVT, Lo,
DAG.getConstant(ExcessBits, dl,
TLI.getPointerTy(DAG.getDataLayout()))));
}
// Store both the high bits and maybe some of the low bits.
Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(), HiVT, Alignment,
MMOFlags, AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
// Store the lowest ExcessBits bits in the second half.
Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// Just truncate the low part of the source.
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL);
}
SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
SDValue Op = N->getOperand(0);
EVT SrcVT = Op.getValueType();
EVT DstVT = N->getValueType(0);
SDLoc dl(N);
// The following optimization is valid only if every value in SrcVT (when
// treated as signed) is representable in DstVT. Check that the mantissa
// size of DstVT is >= than the number of bits in SrcVT -1.
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
// Do a signed conversion then adjust the result.
SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
SignedConv = TLI.LowerOperation(SignedConv, DAG);
// The result of the signed conversion needs adjusting if the 'sign bit' of
// the incoming integer was set. To handle this, we dynamically test to see
// if it is set, and, if so, add a fudge factor.
const uint64_t F32TwoE32 = 0x4F800000ULL;
const uint64_t F32TwoE64 = 0x5F800000ULL;
const uint64_t F32TwoE128 = 0x7F800000ULL;
APInt FF(32, 0);
if (SrcVT == MVT::i32)
FF = APInt(32, F32TwoE32);
else if (SrcVT == MVT::i64)
FF = APInt(32, F32TwoE64);
else if (SrcVT == MVT::i128)
FF = APInt(32, F32TwoE128);
else
llvm_unreachable("Unsupported UINT_TO_FP!");
// Check whether the sign bit is set.
SDValue Lo, Hi;
GetExpandedInteger(Op, Lo, Hi);
SDValue SignSet = DAG.getSetCC(dl,
getSetCCResultType(Hi.getValueType()),
Hi,
DAG.getConstant(0, dl, Hi.getValueType()),
ISD::SETLT);
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
SDValue FudgePtr =
DAG.getConstantPool(ConstantInt::get(*DAG.getContext(), FF.zext(64)),
TLI.getPointerTy(DAG.getDataLayout()));
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
SDValue Zero = DAG.getIntPtrConstant(0, dl);
SDValue Four = DAG.getIntPtrConstant(4, dl);
if (DAG.getDataLayout().isBigEndian())
std::swap(Zero, Four);
SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
Zero, Four);
unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
FudgePtr, Offset);
Alignment = std::min(Alignment, 4u);
// Load the value out, extending it from f32 to the destination float type.
// FIXME: Avoid the extend by constructing the right constant pool?
SDValue Fudge = DAG.getExtLoad(
ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(), FudgePtr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
Alignment);
return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
}
// Otherwise, use a libcall.
RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this UINT_TO_FP!");
TargetLowering::MakeLibCallOptions CallOptions;
CallOptions.setSExt(true);
return TLI.makeLibCall(DAG, LC, DstVT, Op, CallOptions, dl).first;
}
SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
SDLoc dl(N);
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(N)->getMemoryVT(),
N->getOperand(0),
N->getOperand(1), N->getOperand(2),
cast<AtomicSDNode>(N)->getMemOperand());
return Swap.getValue(1);
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
assert(NOutVT.isVector() && "This type must be promoted to a vector type");
unsigned OutNumElems = OutVT.getVectorNumElements();
EVT NOutVTElem = NOutVT.getVectorElementType();
SDLoc dl(N);
SDValue BaseIdx = N->getOperand(1);
SDValue InOp0 = N->getOperand(0);
if (getTypeAction(InOp0.getValueType()) == TargetLowering::TypePromoteInteger)
InOp0 = GetPromotedInteger(N->getOperand(0));
EVT InVT = InOp0.getValueType();
SmallVector<SDValue, 8> Ops;
Ops.reserve(OutNumElems);
for (unsigned i = 0; i != OutNumElems; ++i) {
// Extract the element from the original vector.
SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
BaseIdx, DAG.getConstant(i, dl, BaseIdx.getValueType()));
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
InVT.getVectorElementType(), N->getOperand(0), Index);
SDValue Op = DAG.getAnyExtOrTrunc(Ext, dl, NOutVTElem);
// Insert the converted element to the new vector.
Ops.push_back(Op);
}
return DAG.getBuildVector(NOutVT, dl, Ops);
}
SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
EVT VT = N->getValueType(0);
SDLoc dl(N);
ArrayRef<int> NewMask = SV->getMask().slice(0, VT.getVectorNumElements());
SDValue V0 = GetPromotedInteger(N->getOperand(0));
SDValue V1 = GetPromotedInteger(N->getOperand(1));
EVT OutVT = V0.getValueType();
return DAG.getVectorShuffle(OutVT, dl, V0, V1, NewMask);
}
SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
assert(NOutVT.isVector() && "This type must be promoted to a vector type");
unsigned NumElems = N->getNumOperands();
EVT NOutVTElem = NOutVT.getVectorElementType();
SDLoc dl(N);
SmallVector<SDValue, 8> Ops;
Ops.reserve(NumElems);
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op;
// BUILD_VECTOR integer operand types are allowed to be larger than the
// result's element type. This may still be true after the promotion. For
// example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to
// (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>.
if (N->getOperand(i).getValueType().bitsLT(NOutVTElem))
Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
else
Op = N->getOperand(i);
Ops.push_back(Op);
}
return DAG.getBuildVector(NOutVT, dl, Ops);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
SDLoc dl(N);
assert(!N->getOperand(0).getValueType().isVector() &&
"Input must be a scalar");
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
assert(NOutVT.isVector() && "This type must be promoted to a vector type");
EVT NOutVTElem = NOutVT.getVectorElementType();
SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
SDLoc dl(N);
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
assert(NOutVT.isVector() && "This type must be promoted to a vector type");
EVT OutElemTy = NOutVT.getVectorElementType();
unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
unsigned NumOutElem = NOutVT.getVectorNumElements();
unsigned NumOperands = N->getNumOperands();
assert(NumElem * NumOperands == NumOutElem &&
"Unexpected number of elements");
// Take the elements from the first vector.
SmallVector<SDValue, 8> Ops(NumOutElem);
for (unsigned i = 0; i < NumOperands; ++i) {
SDValue Op = N->getOperand(i);
if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteInteger)
Op = GetPromotedInteger(Op);
EVT SclrTy = Op.getValueType().getVectorElementType();
assert(NumElem == Op.getValueType().getVectorNumElements() &&
"Unexpected number of elements");
for (unsigned j = 0; j < NumElem; ++j) {
SDValue Ext = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Op,
DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
Ops[i * NumElem + j] = DAG.getAnyExtOrTrunc(Ext, dl, OutElemTy);
}
}
return DAG.getBuildVector(NOutVT, dl, Ops);
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N) {
EVT VT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
assert(NVT.isVector() && "This type must be promoted to a vector type");
SDLoc dl(N);
// For operands whose TypeAction is to promote, extend the promoted node
// appropriately (ZERO_EXTEND or SIGN_EXTEND) from the original pre-promotion
// type, and then construct a new *_EXTEND_VECTOR_INREG node to the promote-to
// type..
if (getTypeAction(N->getOperand(0).getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue Promoted;
switch(N->getOpcode()) {
case ISD::SIGN_EXTEND_VECTOR_INREG:
Promoted = SExtPromotedInteger(N->getOperand(0));
break;
case ISD::ZERO_EXTEND_VECTOR_INREG:
Promoted = ZExtPromotedInteger(N->getOperand(0));
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
Promoted = GetPromotedInteger(N->getOperand(0));
break;
default:
llvm_unreachable("Node has unexpected Opcode");
}
return DAG.getNode(N->getOpcode(), dl, NVT, Promoted);
}
// Directly extend to the appropriate transform-to type.
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
assert(NOutVT.isVector() && "This type must be promoted to a vector type");
EVT NOutVTElem = NOutVT.getVectorElementType();
SDLoc dl(N);
SDValue V0 = GetPromotedInteger(N->getOperand(0));
SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
NOutVTElem, N->getOperand(1));
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
V0, ConvElem, N->getOperand(2));
}
SDValue DAGTypeLegalizer::PromoteIntRes_VECREDUCE(SDNode *N) {
// The VECREDUCE result size may be larger than the element size, so
// we can simply change the result type.
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDLoc dl(N);
SDValue V0 = GetPromotedInteger(N->getOperand(0));
SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl,
TLI.getVectorIdxTy(DAG.getDataLayout()));
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
V0->getValueType(0).getScalarType(), V0, V1);
// EXTRACT_VECTOR_ELT can return types which are wider than the incoming
// element types. If this is the case then we need to expand the outgoing
// value and not truncate it.
return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
}
SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N) {
SDLoc dl(N);
SDValue V0 = GetPromotedInteger(N->getOperand(0));
MVT InVT = V0.getValueType().getSimpleVT();
MVT OutVT = MVT::getVectorVT(InVT.getVectorElementType(),
N->getValueType(0).getVectorNumElements());
SDValue Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, V0, N->getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext);
}
SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
SDLoc dl(N);
unsigned NumElems = N->getNumOperands();
EVT RetSclrTy = N->getValueType(0).getVectorElementType();
SmallVector<SDValue, 8> NewOps;
NewOps.reserve(NumElems);
// For each incoming vector
for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
for (unsigned i=0; i<NumElem; ++i) {
// Extract element from incoming vector
SDValue Ex = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Incoming,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
NewOps.push_back(Tr);
}
}
return DAG.getBuildVector(N->getValueType(0), dl, NewOps);
}