blob: 24d685b7113a58b88556a73ff0595e39b09def52 [file] [log] [blame]
//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains classes used to discover if for a particular value
// there from sue to definition that crosses a suspend block.
//
// Using the information discovered we form a Coroutine Frame structure to
// contain those values. All uses of those values are replaced with appropriate
// GEP + load from the coroutine frame. At the point of the definition we spill
// the value into the coroutine frame.
//
// TODO: pack values tightly using liveness info.
//===----------------------------------------------------------------------===//
#include "CoroInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/circular_raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"
enum { SmallVectorThreshold = 32 };
// Provides two way mapping between the blocks and numbers.
namespace {
class BlockToIndexMapping {
SmallVector<BasicBlock *, SmallVectorThreshold> V;
public:
size_t size() const { return V.size(); }
BlockToIndexMapping(Function &F) {
for (BasicBlock &BB : F)
V.push_back(&BB);
llvm::sort(V);
}
size_t blockToIndex(BasicBlock *BB) const {
auto *I = std::lower_bound(V.begin(), V.end(), BB);
assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
return I - V.begin();
}
BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
};
} // end anonymous namespace
// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point.
//
// For every basic block 'i' it maintains a BlockData that consists of:
// Consumes: a bit vector which contains a set of indices of blocks that can
// reach block 'i'
// Kills: a bit vector which contains a set of indices of blocks that can
// reach block 'i', but one of the path will cross a suspend point
// Suspend: a boolean indicating whether block 'i' contains a suspend point.
// End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
//
namespace {
struct SuspendCrossingInfo {
BlockToIndexMapping Mapping;
struct BlockData {
BitVector Consumes;
BitVector Kills;
bool Suspend = false;
bool End = false;
};
SmallVector<BlockData, SmallVectorThreshold> Block;
iterator_range<succ_iterator> successors(BlockData const &BD) const {
BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
return llvm::successors(BB);
}
BlockData &getBlockData(BasicBlock *BB) {
return Block[Mapping.blockToIndex(BB)];
}
void dump() const;
void dump(StringRef Label, BitVector const &BV) const;
SuspendCrossingInfo(Function &F, coro::Shape &Shape);
bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
size_t const DefIndex = Mapping.blockToIndex(DefBB);
size_t const UseIndex = Mapping.blockToIndex(UseBB);
assert(Block[UseIndex].Consumes[DefIndex] && "use must consume def");
bool const Result = Block[UseIndex].Kills[DefIndex];
LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
<< " answer is " << Result << "\n");
return Result;
}
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
auto *I = cast<Instruction>(U);
// We rewrote PHINodes, so that only the ones with exactly one incoming
// value need to be analyzed.
if (auto *PN = dyn_cast<PHINode>(I))
if (PN->getNumIncomingValues() > 1)
return false;
BasicBlock *UseBB = I->getParent();
return hasPathCrossingSuspendPoint(DefBB, UseBB);
}
bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
}
bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
return isDefinitionAcrossSuspend(I.getParent(), U);
}
};
} // end anonymous namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
BitVector const &BV) const {
dbgs() << Label << ":";
for (size_t I = 0, N = BV.size(); I < N; ++I)
if (BV[I])
dbgs() << " " << Mapping.indexToBlock(I)->getName();
dbgs() << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
for (size_t I = 0, N = Block.size(); I < N; ++I) {
BasicBlock *const B = Mapping.indexToBlock(I);
dbgs() << B->getName() << ":\n";
dump(" Consumes", Block[I].Consumes);
dump(" Kills", Block[I].Kills);
}
dbgs() << "\n";
}
#endif
SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
}
// Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
// the code beyond coro.end is reachable during initial invocation of the
// coroutine.
for (auto *CE : Shape.CoroEnds)
getBlockData(CE->getParent()).End = true;
// Mark all suspend blocks and indicate that they kill everything they
// consume. Note, that crossing coro.save also requires a spill, as any code
// between coro.save and coro.suspend may resume the coroutine and all of the
// state needs to be saved by that time.
auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
BasicBlock *SuspendBlock = BarrierInst->getParent();
auto &B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
markSuspendBlock(CSI);
markSuspendBlock(CSI->getCoroSave());
}
// Iterate propagating consumes and kills until they stop changing.
int Iteration = 0;
(void)Iteration;
bool Changed;
do {
LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
LLVM_DEBUG(dbgs() << "==============\n");
Changed = false;
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
for (BasicBlock *SI : successors(B)) {
auto SuccNo = Mapping.blockToIndex(SI);
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto &S = Block[SuccNo];
auto SavedConsumes = S.Consumes;
auto SavedKills = S.Kills;
// Propagate Kills and Consumes from block B into its successor S.
S.Consumes |= B.Consumes;
S.Kills |= B.Kills;
// If block B is a suspend block, it should propagate kills into the
// its successor for every block B consumes.
if (B.Suspend) {
S.Kills |= B.Consumes;
}
if (S.Suspend) {
// If block S is a suspend block, it should kill all of the blocks it
// consumes.
S.Kills |= S.Consumes;
} else if (S.End) {
// If block S is an end block, it should not propagate kills as the
// blocks following coro.end() are reached during initial invocation
// of the coroutine while all the data are still available on the
// stack or in the registers.
S.Kills.reset();
} else {
// This is reached when S block it not Suspend nor coro.end and it
// need to make sure that it is not in the kill set.
S.Kills.reset(SuccNo);
}
// See if anything changed.
Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
if (S.Kills != SavedKills) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
<< "\n");
LLVM_DEBUG(dump("S.Kills", S.Kills));
LLVM_DEBUG(dump("SavedKills", SavedKills));
}
if (S.Consumes != SavedConsumes) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
LLVM_DEBUG(dump("S.Consume", S.Consumes));
LLVM_DEBUG(dump("SavedCons", SavedConsumes));
}
}
}
} while (Changed);
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE // "coro-suspend-crossing"
#define DEBUG_TYPE "coro-frame"
// We build up the list of spills for every case where a use is separated
// from the definition by a suspend point.
namespace {
class Spill {
Value *Def = nullptr;
Instruction *User = nullptr;
unsigned FieldNo = 0;
public:
Spill(Value *Def, llvm::User *U) : Def(Def), User(cast<Instruction>(U)) {}
Value *def() const { return Def; }
Instruction *user() const { return User; }
BasicBlock *userBlock() const { return User->getParent(); }
// Note that field index is stored in the first SpillEntry for a particular
// definition. Subsequent mentions of a defintion do not have fieldNo
// assigned. This works out fine as the users of Spills capture the info about
// the definition the first time they encounter it. Consider refactoring
// SpillInfo into two arrays to normalize the spill representation.
unsigned fieldIndex() const {
assert(FieldNo && "Accessing unassigned field");
return FieldNo;
}
void setFieldIndex(unsigned FieldNumber) {
assert(!FieldNo && "Reassigning field number");
FieldNo = FieldNumber;
}
};
} // namespace
// Note that there may be more than one record with the same value of Def in
// the SpillInfo vector.
using SpillInfo = SmallVector<Spill, 8>;
#ifndef NDEBUG
static void dump(StringRef Title, SpillInfo const &Spills) {
dbgs() << "------------- " << Title << "--------------\n";
Value *CurrentValue = nullptr;
for (auto const &E : Spills) {
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentValue->dump();
}
dbgs() << " user: ";
E.user()->dump();
}
}
#endif
namespace {
// We cannot rely solely on natural alignment of a type when building a
// coroutine frame and if the alignment specified on the Alloca instruction
// differs from the natural alignment of the alloca type we will need to insert
// padding.
struct PaddingCalculator {
const DataLayout &DL;
LLVMContext &Context;
unsigned StructSize = 0;
PaddingCalculator(LLVMContext &Context, DataLayout const &DL)
: DL(DL), Context(Context) {}
// Replicate the logic from IR/DataLayout.cpp to match field offset
// computation for LLVM structs.
void addType(Type *Ty) {
unsigned TyAlign = DL.getABITypeAlignment(Ty);
if ((StructSize & (TyAlign - 1)) != 0)
StructSize = alignTo(StructSize, TyAlign);
StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item.
}
void addTypes(SmallVectorImpl<Type *> const &Types) {
for (auto *Ty : Types)
addType(Ty);
}
unsigned computePadding(Type *Ty, unsigned ForcedAlignment) {
unsigned TyAlign = DL.getABITypeAlignment(Ty);
auto Natural = alignTo(StructSize, TyAlign);
auto Forced = alignTo(StructSize, ForcedAlignment);
// Return how many bytes of padding we need to insert.
if (Natural != Forced)
return std::max(Natural, Forced) - StructSize;
// Rely on natural alignment.
return 0;
}
// If padding required, return the padding field type to insert.
ArrayType *getPaddingType(Type *Ty, unsigned ForcedAlignment) {
if (auto Padding = computePadding(Ty, ForcedAlignment))
return ArrayType::get(Type::getInt8Ty(Context), Padding);
return nullptr;
}
};
} // namespace
// Build a struct that will keep state for an active coroutine.
// struct f.frame {
// ResumeFnTy ResumeFnAddr;
// ResumeFnTy DestroyFnAddr;
// int ResumeIndex;
// ... promise (if present) ...
// ... spills ...
// };
static StructType *buildFrameType(Function &F, coro::Shape &Shape,
SpillInfo &Spills) {
LLVMContext &C = F.getContext();
const DataLayout &DL = F.getParent()->getDataLayout();
PaddingCalculator Padder(C, DL);
SmallString<32> Name(F.getName());
Name.append(".Frame");
StructType *FrameTy = StructType::create(C, Name);
auto *FramePtrTy = FrameTy->getPointerTo();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
/*IsVarArgs=*/false);
auto *FnPtrTy = FnTy->getPointerTo();
// Figure out how wide should be an integer type storing the suspend index.
unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
Type *PromiseType = Shape.PromiseAlloca
? Shape.PromiseAlloca->getType()->getElementType()
: Type::getInt1Ty(C);
SmallVector<Type *, 8> Types{FnPtrTy, FnPtrTy, PromiseType,
Type::getIntNTy(C, IndexBits)};
Value *CurrentDef = nullptr;
Padder.addTypes(Types);
// Create an entry for every spilled value.
for (auto &S : Spills) {
if (CurrentDef == S.def())
continue;
CurrentDef = S.def();
// PromiseAlloca was already added to Types array earlier.
if (CurrentDef == Shape.PromiseAlloca)
continue;
Type *Ty = nullptr;
if (auto *AI = dyn_cast<AllocaInst>(CurrentDef)) {
Ty = AI->getAllocatedType();
if (unsigned AllocaAlignment = AI->getAlignment()) {
// If alignment is specified in alloca, see if we need to insert extra
// padding.
if (auto PaddingTy = Padder.getPaddingType(Ty, AllocaAlignment)) {
Types.push_back(PaddingTy);
Padder.addType(PaddingTy);
}
}
} else {
Ty = CurrentDef->getType();
}
S.setFieldIndex(Types.size());
Types.push_back(Ty);
Padder.addType(Ty);
}
FrameTy->setBody(Types);
return FrameTy;
}
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
// Replace all alloca and SSA values that are accessed across suspend points
// with GetElementPointer from coroutine frame + loads and stores. Create an
// AllocaSpillBB that will become the new entry block for the resume parts of
// the coroutine:
//
// %hdl = coro.begin(...)
// whatever
//
// becomes:
//
// %hdl = coro.begin(...)
// %FramePtr = bitcast i8* hdl to %f.frame*
// br label %AllocaSpillBB
//
// AllocaSpillBB:
// ; geps corresponding to allocas that were moved to coroutine frame
// br label PostSpill
//
// PostSpill:
// whatever
//
//
static Instruction *insertSpills(SpillInfo &Spills, coro::Shape &Shape) {
auto *CB = Shape.CoroBegin;
IRBuilder<> Builder(CB->getNextNode());
StructType *FrameTy = Shape.FrameTy;
PointerType *FramePtrTy = FrameTy->getPointerTo();
auto *FramePtr =
cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
Value *CurrentValue = nullptr;
BasicBlock *CurrentBlock = nullptr;
Value *CurrentReload = nullptr;
unsigned Index = 0; // Proper field number will be read from field definition.
// We need to keep track of any allocas that need "spilling"
// since they will live in the coroutine frame now, all access to them
// need to be changed, not just the access across suspend points
// we remember allocas and their indices to be handled once we processed
// all the spills.
SmallVector<std::pair<AllocaInst *, unsigned>, 4> Allocas;
// Promise alloca (if present) has a fixed field number (Shape::PromiseField)
if (Shape.PromiseAlloca)
Allocas.emplace_back(Shape.PromiseAlloca, coro::Shape::PromiseField);
// Create a load instruction to reload the spilled value from the coroutine
// frame.
auto CreateReload = [&](Instruction *InsertBefore) {
assert(Index && "accessing unassigned field number");
Builder.SetInsertPoint(InsertBefore);
auto *G = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, Index,
CurrentValue->getName() +
Twine(".reload.addr"));
return isa<AllocaInst>(CurrentValue)
? G
: Builder.CreateLoad(FrameTy->getElementType(Index), G,
CurrentValue->getName() + Twine(".reload"));
};
for (auto const &E : Spills) {
// If we have not seen the value, generate a spill.
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentBlock = nullptr;
CurrentReload = nullptr;
Index = E.fieldIndex();
if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
// Spilled AllocaInst will be replaced with GEP from the coroutine frame
// there is no spill required.
Allocas.emplace_back(AI, Index);
if (!AI->isStaticAlloca())
report_fatal_error("Coroutines cannot handle non static allocas yet");
} else {
// Otherwise, create a store instruction storing the value into the
// coroutine frame.
Instruction *InsertPt = nullptr;
if (isa<Argument>(CurrentValue)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. bitcast of
// coro.begin from i8* to %f.frame*.
InsertPt = FramePtr->getNextNode();
} else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
// If we are spilling the result of the invoke instruction, split the
// normal edge and insert the spill in the new block.
auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator();
} else if (dyn_cast<PHINode>(CurrentValue)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = cast<Instruction>(E.def())->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI);
else
InsertPt = &*DefBlock->getFirstInsertionPt();
} else {
// For all other values, the spill is placed immediately after
// the definition.
assert(!cast<Instruction>(E.def())->isTerminator() &&
"unexpected terminator");
InsertPt = cast<Instruction>(E.def())->getNextNode();
}
Builder.SetInsertPoint(InsertPt);
auto *G = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, Index,
CurrentValue->getName() + Twine(".spill.addr"));
Builder.CreateStore(CurrentValue, G);
}
}
// If we have not seen the use block, generate a reload in it.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt());
}
// If we have a single edge PHINode, remove it and replace it with a reload
// from the coroutine frame. (We already took care of multi edge PHINodes
// by rewriting them in the rewritePHIs function).
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentReload);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentValue in the current instruction with reload.
E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
}
BasicBlock *FramePtrBB = FramePtr->getParent();
Shape.AllocaSpillBlock =
FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
Shape.AllocaSpillBlock->splitBasicBlock(&Shape.AllocaSpillBlock->front(),
"PostSpill");
Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
// If we found any allocas, replace all of their remaining uses with Geps.
for (auto &P : Allocas) {
auto *G =
Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, P.second);
// We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) here,
// as we are changing location of the instruction.
G->takeName(P.first);
P.first->replaceAllUsesWith(G);
P.first->eraseFromParent();
}
return FramePtr;
}
// Sets the unwind edge of an instruction to a particular successor.
static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
if (auto *II = dyn_cast<InvokeInst>(TI))
II->setUnwindDest(Succ);
else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
CS->setUnwindDest(Succ);
else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
CR->setUnwindDest(Succ);
else
llvm_unreachable("unexpected terminator instruction");
}
// Replaces all uses of OldPred with the NewPred block in all PHINodes in a
// block.
static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
BasicBlock *NewPred,
PHINode *LandingPadReplacement) {
unsigned BBIdx = 0;
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// We manually update the LandingPadReplacement PHINode and it is the last
// PHI Node. So, if we find it, we are done.
if (LandingPadReplacement == PN)
break;
// Reuse the previous value of BBIdx if it lines up. In cases where we
// have multiple phi nodes with *lots* of predecessors, this is a speed
// win because we don't have to scan the PHI looking for TIBB. This
// happens because the BB list of PHI nodes are usually in the same
// order.
if (PN->getIncomingBlock(BBIdx) != OldPred)
BBIdx = PN->getBasicBlockIndex(OldPred);
assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!");
PN->setIncomingBlock(BBIdx, NewPred);
}
}
// Uses SplitEdge unless the successor block is an EHPad, in which case do EH
// specific handling.
static BasicBlock *ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
LandingPadInst *OriginalPad,
PHINode *LandingPadReplacement) {
auto *PadInst = Succ->getFirstNonPHI();
if (!LandingPadReplacement && !PadInst->isEHPad())
return SplitEdge(BB, Succ);
auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ);
setUnwindEdgeTo(BB->getTerminator(), NewBB);
updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
if (LandingPadReplacement) {
auto *NewLP = OriginalPad->clone();
auto *Terminator = BranchInst::Create(Succ, NewBB);
NewLP->insertBefore(Terminator);
LandingPadReplacement->addIncoming(NewLP, NewBB);
return NewBB;
}
Value *ParentPad = nullptr;
if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
ParentPad = FuncletPad->getParentPad();
else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
ParentPad = CatchSwitch->getParentPad();
else
llvm_unreachable("handling for other EHPads not implemented yet");
auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB);
CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
return NewBB;
}
static void rewritePHIs(BasicBlock &BB) {
// For every incoming edge we will create a block holding all
// incoming values in a single PHI nodes.
//
// loop:
// %n.val = phi i32[%n, %entry], [%inc, %loop]
//
// It will create:
//
// loop.from.entry:
// %n.loop.pre = phi i32 [%n, %entry]
// br %label loop
// loop.from.loop:
// %inc.loop.pre = phi i32 [%inc, %loop]
// br %label loop
//
// After this rewrite, further analysis will ignore any phi nodes with more
// than one incoming edge.
// TODO: Simplify PHINodes in the basic block to remove duplicate
// predecessors.
LandingPadInst *LandingPad = nullptr;
PHINode *ReplPHI = nullptr;
if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
// ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
// We replace the original landing pad with a PHINode that will collect the
// results from all of them.
ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
ReplPHI->takeName(LandingPad);
LandingPad->replaceAllUsesWith(ReplPHI);
// We will erase the original landing pad at the end of this function after
// ehAwareSplitEdge cloned it in the transition blocks.
}
SmallVector<BasicBlock *, 8> Preds(pred_begin(&BB), pred_end(&BB));
for (BasicBlock *Pred : Preds) {
auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
auto *PN = cast<PHINode>(&BB.front());
do {
int Index = PN->getBasicBlockIndex(IncomingBB);
Value *V = PN->getIncomingValue(Index);
PHINode *InputV = PHINode::Create(
V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
&IncomingBB->front());
InputV->addIncoming(V, Pred);
PN->setIncomingValue(Index, InputV);
PN = dyn_cast<PHINode>(PN->getNextNode());
} while (PN != ReplPHI); // ReplPHI is either null or the PHI that replaced
// the landing pad.
}
if (LandingPad) {
// Calls to ehAwareSplitEdge function cloned the original lading pad.
// No longer need it.
LandingPad->eraseFromParent();
}
}
static void rewritePHIs(Function &F) {
SmallVector<BasicBlock *, 8> WorkList;
for (BasicBlock &BB : F)
if (auto *PN = dyn_cast<PHINode>(&BB.front()))
if (PN->getNumIncomingValues() > 1)
WorkList.push_back(&BB);
for (BasicBlock *BB : WorkList)
rewritePHIs(*BB);
}
// Check for instructions that we can recreate on resume as opposed to spill
// the result into a coroutine frame.
static bool materializable(Instruction &V) {
return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
}
// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
isa<CoroSuspendInst>(&I);
}
// For every use of the value that is across suspend point, recreate that value
// after a suspend point.
static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
SpillInfo const &Spills) {
BasicBlock *CurrentBlock = nullptr;
Instruction *CurrentMaterialization = nullptr;
Instruction *CurrentDef = nullptr;
for (auto const &E : Spills) {
// If it is a new definition, update CurrentXXX variables.
if (CurrentDef != E.def()) {
CurrentDef = cast<Instruction>(E.def());
CurrentBlock = nullptr;
CurrentMaterialization = nullptr;
}
// If we have not seen this block, materialize the value.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
CurrentMaterialization->setName(CurrentDef->getName());
CurrentMaterialization->insertBefore(
&*CurrentBlock->getFirstInsertionPt());
}
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentMaterialization);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentDef in the current instruction with the
// CurrentMaterialization for the block.
E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
}
}
// Move early uses of spilled variable after CoroBegin.
// For example, if a parameter had address taken, we may end up with the code
// like:
// define @f(i32 %n) {
// %n.addr = alloca i32
// store %n, %n.addr
// ...
// call @coro.begin
// we need to move the store after coro.begin
static void moveSpillUsesAfterCoroBegin(Function &F, SpillInfo const &Spills,
CoroBeginInst *CoroBegin) {
DominatorTree DT(F);
SmallVector<Instruction *, 8> NeedsMoving;
Value *CurrentValue = nullptr;
for (auto const &E : Spills) {
if (CurrentValue == E.def())
continue;
CurrentValue = E.def();
for (User *U : CurrentValue->users()) {
Instruction *I = cast<Instruction>(U);
if (!DT.dominates(CoroBegin, I)) {
LLVM_DEBUG(dbgs() << "will move: " << *I << "\n");
// TODO: Make this more robust. Currently if we run into a situation
// where simple instruction move won't work we panic and
// report_fatal_error.
for (User *UI : I->users()) {
if (!DT.dominates(CoroBegin, cast<Instruction>(UI)))
report_fatal_error("cannot move instruction since its users are not"
" dominated by CoroBegin");
}
NeedsMoving.push_back(I);
}
}
}
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *I : NeedsMoving)
I->moveBefore(InsertPt);
}
// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
auto *BB = I->getParent();
if (&BB->front() == I) {
if (BB->getSinglePredecessor()) {
BB->setName(Name);
return BB;
}
}
return BB->splitBasicBlock(I, Name);
}
// Split above and below a particular instruction so that it
// will be all alone by itself in a block.
static void splitAround(Instruction *I, const Twine &Name) {
splitBlockIfNotFirst(I, Name);
splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}
void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
// Lower coro.dbg.declare to coro.dbg.value, since we are going to rewrite
// access to local variables.
LowerDbgDeclare(F);
Shape.PromiseAlloca = Shape.CoroBegin->getId()->getPromise();
if (Shape.PromiseAlloca) {
Shape.CoroBegin->getId()->clearPromise();
}
// Make sure that all coro.save, coro.suspend and the fallthrough coro.end
// intrinsics are in their own blocks to simplify the logic of building up
// SuspendCrossing data.
for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
splitAround(CSI->getCoroSave(), "CoroSave");
splitAround(CSI, "CoroSuspend");
}
// Put CoroEnds into their own blocks.
for (CoroEndInst *CE : Shape.CoroEnds)
splitAround(CE, "CoroEnd");
// Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
// never has its definition separated from the PHI by the suspend point.
rewritePHIs(F);
// Build suspend crossing info.
SuspendCrossingInfo Checker(F, Shape);
IRBuilder<> Builder(F.getContext());
SpillInfo Spills;
for (int Repeat = 0; Repeat < 4; ++Repeat) {
// See if there are materializable instructions across suspend points.
for (Instruction &I : instructions(F))
if (materializable(I))
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U))
Spills.emplace_back(&I, U);
if (Spills.empty())
break;
// Rewrite materializable instructions to be materialized at the use point.
LLVM_DEBUG(dump("Materializations", Spills));
rewriteMaterializableInstructions(Builder, Spills);
Spills.clear();
}
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
Spills.emplace_back(&A, U);
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// The Coroutine Promise always included into coroutine frame, no need to
// check for suspend crossing.
if (Shape.PromiseAlloca == &I)
continue;
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U)) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
Spills.emplace_back(&I, U);
}
}
LLVM_DEBUG(dump("Spills", Spills));
moveSpillUsesAfterCoroBegin(F, Spills, Shape.CoroBegin);
Shape.FrameTy = buildFrameType(F, Shape, Spills);
Shape.FramePtr = insertSpills(Spills, Shape);
}