blob: 05865c43f2d0e13c5ce747775a304583690ee02a [file] [log] [blame]
//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Table of contents:
// (0) Definitions
// (1) Immediates
// (2) Type casts
// (3) Extend/truncate
// (4) Logical
// (5) Compare
// (6) Select
// (7) Insert/extract
// (8) Shift/permute
// (9) Arithmetic/bitwise
// (10) Bit
// (11) Load
// (12) Store
// (13) Memop
// (14) PIC
// (15) Call
// (16) Branch
// (17) Misc
// Guidelines (in no particular order):
// 1. Avoid relying on pattern ordering to give preference to one pattern
// over another, prefer using AddedComplexity instead. The reason for
// this is to avoid unintended conseqeuences (caused by altering the
// order) when making changes. The current order of patterns in this
// file obviously does play some role, but none of the ordering was
// deliberately chosen (other than to create a logical structure of
// this file). When making changes, adding AddedComplexity to existing
// patterns may be needed.
// 2. Maintain the logical structure of the file, try to put new patterns
// in designated sections.
// 3. Do not use A2_combinew instruction directly, use Combinew fragment
// instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
// 4. Most selection macros are based on PatFrags. For DAGs that involve
// SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
// whenever possible (see the Definitions section). When adding new
// macro, try to make is general to enable reuse across sections.
// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
// that the nested operation has only one use. Having it separated in case
// of multiple uses avoids duplication of (processor) work.
// 6. The v4 vector instructions (64-bit) are treated as core instructions,
// for example, A2_vaddh is in the "arithmetic" section with A2_add.
// 7. When adding a pattern for an instruction with a constant-extendable
// operand, allow all possible kinds of inputs for the immediate value
// (see AnyImm/anyimm and their variants in the Definitions section).
// --(0) Definitions -----------------------------------------------------
//
// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
// Global address or a constant being a multiple of 2^n.
def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
// Type helper frags.
def V2I1: PatLeaf<(v2i1 PredRegs:$R)>;
def V4I1: PatLeaf<(v4i1 PredRegs:$R)>;
def V8I1: PatLeaf<(v8i1 PredRegs:$R)>;
def V4I8: PatLeaf<(v4i8 IntRegs:$R)>;
def V2I16: PatLeaf<(v2i16 IntRegs:$R)>;
def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>;
def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>;
def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>;
def HVI8: PatLeaf<(VecI8 HvxVR:$R)>;
def HVI16: PatLeaf<(VecI16 HvxVR:$R)>;
def HVI32: PatLeaf<(VecI32 HvxVR:$R)>;
def HVI64: PatLeaf<(VecI64 HvxVR:$R)>;
def HWI8: PatLeaf<(VecPI8 HvxWR:$R)>;
def HWI16: PatLeaf<(VecPI16 HvxWR:$R)>;
def HWI32: PatLeaf<(VecPI32 HvxWR:$R)>;
def HWI64: PatLeaf<(VecPI64 HvxWR:$R)>;
// Pattern fragments to extract the low and high subregisters from a
// 64-bit value.
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
return isOrEquivalentToAdd(N);
}]>;
def IsVecOff : PatLeaf<(i32 imm), [{
int32_t V = N->getSExtValue();
int32_t VecSize = HRI->getSpillSize(Hexagon::HvxVRRegClass);
assert(isPowerOf2_32(VecSize));
if ((uint32_t(V) & (uint32_t(VecSize)-1)) != 0)
return false;
int32_t L = Log2_32(VecSize);
return isInt<4>(V >> L);
}]>;
def IsPow2_32: PatLeaf<(i32 imm), [{
uint32_t V = N->getZExtValue();
return isPowerOf2_32(V);
}]>;
def IsPow2_64: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V);
}]>;
def IsNPow2_32: PatLeaf<(i32 imm), [{
uint32_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def IsPow2_64L: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;
def IsPow2_64H: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;
def IsNPow2_64L: PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;
def IsNPow2_64H: PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;
class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
"uint64_t V = N->getZExtValue();" #
"return isUInt<" # Width # ">(V) && V > " # Arg # ";"
>;
def SDEC1: SDNodeXForm<imm, [{
int32_t V = N->getSExtValue();
return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;
def UDEC1: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V >= 1);
return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;
def UDEC32: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V >= 32);
return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;
def Log2_32: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def Log2_64: SDNodeXForm<imm, [{
uint64_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;
def LogN2_32: SDNodeXForm<imm, [{
uint32_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_64: SDNodeXForm<imm, [{
uint64_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;
def NegImm8: SDNodeXForm<imm, [{
int8_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
def NegImm16: SDNodeXForm<imm, [{
int16_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
def NegImm32: SDNodeXForm<imm, [{
int32_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
// Helpers for type promotions/contractions.
def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_tfrrp (i32 $Rs)))>;
def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
(REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
// Global address or an aligned constant.
def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
// This complex pattern is really only to detect various forms of
// sign-extension i32->i64. The selected value will be of type i64
// whose low word is the value being extended. The high word is
// unspecified.
def Usxtw: ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
(PS_fi (i32 AddrFI:$Rs), imm:$off)>;
def alignedload: PatFrag<(ops node:$a), (load $a), [{
return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;
def unalignedload: PatFrag<(ops node:$a), (load $a), [{
return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;
def alignedstore: PatFrag<(ops node:$v, node:$a), (store $v, $a), [{
return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;
def unalignedstore: PatFrag<(ops node:$v, node:$a), (store $v, $a), [{
return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;
// Converters from unary/binary SDNode to PatFrag.
class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
class Not2<PatFrag P>
: PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
class Su<PatFrag Op>
: PatFrag<Op.Operands, Op.Fragment, [{ return hasOneUse(N); }],
Op.OperandTransform>;
// Main selection macros.
class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
: Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
(MI RegPred:$Rs, imm:$I)>;
class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
PatFrag RsPred, PatFrag RtPred = RsPred>
: Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
(MI RsPred:$Rs, RtPred:$Rt)>;
class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
(MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
PatFrag RsPred, PatFrag RtPred>
: Pat<(AccOp RsPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
(MI RsPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
InstHexagon InstA, InstHexagon InstB> {
def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
(InstA Val:$A, Val:$B)>;
def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
(InstB Val:$A, Val:$B)>;
}
// Frags for commonly used SDNodes.
def Add: pf2<add>; def And: pf2<and>; def Sra: pf2<sra>;
def Sub: pf2<sub>; def Or: pf2<or>; def Srl: pf2<srl>;
def Mul: pf2<mul>; def Xor: pf2<xor>; def Shl: pf2<shl>;
// --(1) Immediate -------------------------------------------------------
//
def SDTHexagonCONST32
: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>;
def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>;
def HexagonCONST32: SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
def HexagonCONST32_GP: SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
def TruncI64ToI32: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;
def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
def: Pat<(HexagonCONST32 tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32 bbl:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32 tglobaladdr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonJT tjumptable:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCP tconstpool:$A), (A2_tfrsi imm:$A)>;
def: Pat<(i1 0), (PS_false)>;
def: Pat<(i1 1), (PS_true)>;
def: Pat<(i64 imm:$v), (CONST64 imm:$v)>;
def ftoi : SDNodeXForm<fpimm, [{
APInt I = N->getValueAPF().bitcastToAPInt();
return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
MVT::getIntegerVT(I.getBitWidth()));
}]>;
def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
def: Pat<(f64ImmPred:$f), (CONST64 (ftoi $f))>;
def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
// --(2) Type cast -------------------------------------------------------
//
let Predicates = [HasV5T] in {
def: OpR_R_pat<F2_conv_sf2df, pf1<fpextend>, f64, F32>;
def: OpR_R_pat<F2_conv_df2sf, pf1<fpround>, f32, F64>;
def: OpR_R_pat<F2_conv_w2sf, pf1<sint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_d2sf, pf1<sint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_w2df, pf1<sint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_d2df, pf1<sint_to_fp>, f64, I64>;
def: OpR_R_pat<F2_conv_uw2sf, pf1<uint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_ud2sf, pf1<uint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_uw2df, pf1<uint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_ud2df, pf1<uint_to_fp>, f64, I64>;
def: OpR_R_pat<F2_conv_sf2w_chop, pf1<fp_to_sint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2w_chop, pf1<fp_to_sint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2d_chop, pf1<fp_to_sint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2d_chop, pf1<fp_to_sint>, i64, F64>;
def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
}
// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
let Predicates = [HasV5T] in {
def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
}
multiclass Cast_pat<ValueType Ta, ValueType Tb, RegisterClass RC> {
def: Pat<(Tb (bitconvert (Ta RC:$Rs))), (Tb RC:$Rs)>;
def: Pat<(Ta (bitconvert (Tb RC:$Rs))), (Ta RC:$Rs)>;
}
// Bit convert vector types to integers.
defm: Cast_pat<v4i8, i32, IntRegs>;
defm: Cast_pat<v2i16, i32, IntRegs>;
defm: Cast_pat<v8i8, i64, DoubleRegs>;
defm: Cast_pat<v4i16, i64, DoubleRegs>;
defm: Cast_pat<v2i32, i64, DoubleRegs>;
// --(3) Extend/truncate -------------------------------------------------
//
def: Pat<(sext_inreg I32:$Rs, i8), (A2_sxtb I32:$Rs)>;
def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
def: Pat<(sext_inreg I64:$Rs, i8), (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
def: Pat<(i64 (sext I1:$Pu)),
(Combinew (C2_muxii PredRegs:$Pu, -1, 0),
(C2_muxii PredRegs:$Pu, -1, 0))>;
def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
def: Pat<(i32 (zext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (zext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
def: Pat<(Zext64 I32:$Rs), (ToZext64 $Rs)>;
def: Pat<(Aext64 I32:$Rs), (ToZext64 $Rs)>;
def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
def: Pat<(i1 (trunc I64:$Rs)), (C2_tfrrp (LoReg $Rs))>;
let AddedComplexity = 20 in {
def: Pat<(and I32:$Rs, 255), (A2_zxtb I32:$Rs)>;
def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
}
def: Pat<(i32 (anyext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (anyext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
def: Pat<(v4i16 (zext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (zext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (anyext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
(Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
(Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
// Truncate: from vector B copy all 'E'ven 'B'yte elements:
// A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6];
def: Pat<(v4i8 (trunc V4I16:$Rs)),
(S2_vtrunehb V4I16:$Rs)>;
// Truncate: from vector B copy all 'O'dd 'B'yte elements:
// A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7];
// S2_vtrunohb
// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
// A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2];
// S2_vtruneh
def: Pat<(v2i16 (trunc V2I32:$Rs)),
(LoReg (S2_packhl (HiReg $Rs), (LoReg $Rs)))>;
// --(4) Logical ---------------------------------------------------------
//
def: Pat<(not I1:$Ps), (C2_not I1:$Ps)>;
def: Pat<(add I1:$Ps, -1), (C2_not I1:$Ps)>;
def: OpR_RR_pat<C2_and, And, i1, I1>;
def: OpR_RR_pat<C2_or, Or, i1, I1>;
def: OpR_RR_pat<C2_xor, Xor, i1, I1>;
def: OpR_RR_pat<C2_andn, Not2<And>, i1, I1>;
def: OpR_RR_pat<C2_orn, Not2<Or>, i1, I1>;
// op(Ps, op(Pt, Pu))
def: AccRRR_pat<C4_and_and, And, Su<And>, I1, I1>;
def: AccRRR_pat<C4_and_or, And, Su<Or>, I1, I1>;
def: AccRRR_pat<C4_or_and, Or, Su<And>, I1, I1>;
def: AccRRR_pat<C4_or_or, Or, Su<Or>, I1, I1>;
// op(Ps, op(Pt, ~Pu))
def: AccRRR_pat<C4_and_andn, And, Su<Not2<And>>, I1, I1>;
def: AccRRR_pat<C4_and_orn, And, Su<Not2<Or>>, I1, I1>;
def: AccRRR_pat<C4_or_andn, Or, Su<Not2<And>>, I1, I1>;
def: AccRRR_pat<C4_or_orn, Or, Su<Not2<Or>>, I1, I1>;
// --(5) Compare ---------------------------------------------------------
//
// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
def: OpR_RI_pat<C2_cmpeqi, seteq, i1, I32, anyimm>;
def: OpR_RI_pat<C2_cmpgti, setgt, i1, I32, anyimm>;
def: OpR_RI_pat<C2_cmpgtui, setugt, i1, I32, anyimm>;
def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
(C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
(C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
(C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
(C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
// that reverse the order of the operands.
class RevCmp<PatFrag F>
: PatFrag<(ops node:$rhs, node:$lhs), F.Fragment, F.PredicateCode,
F.OperandTransform>;
def: OpR_RR_pat<C2_cmpeq, seteq, i1, I32>;
def: OpR_RR_pat<C2_cmpgt, setgt, i1, I32>;
def: OpR_RR_pat<C2_cmpgtu, setugt, i1, I32>;
def: OpR_RR_pat<C2_cmpgt, RevCmp<setlt>, i1, I32>;
def: OpR_RR_pat<C2_cmpgtu, RevCmp<setult>, i1, I32>;
def: OpR_RR_pat<C2_cmpeqp, seteq, i1, I64>;
def: OpR_RR_pat<C2_cmpgtp, setgt, i1, I64>;
def: OpR_RR_pat<C2_cmpgtup, setugt, i1, I64>;
def: OpR_RR_pat<C2_cmpgtp, RevCmp<setlt>, i1, I64>;
def: OpR_RR_pat<C2_cmpgtup, RevCmp<setult>, i1, I64>;
def: OpR_RR_pat<A2_vcmpbeq, seteq, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbeq, seteq, v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, setgt, i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, setgt, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, setugt, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, setugt, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpheq, seteq, i1, V4I16>;
def: OpR_RR_pat<A2_vcmpheq, seteq, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, setgt, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, setgt, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, setugt, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, setugt, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmpweq, seteq, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpweq, seteq, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, setgt, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, setgt, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, setugt, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, setugt, v2i1, V2I32>;
let Predicates = [HasV5T] in {
def: OpR_RR_pat<F2_sfcmpeq, seteq, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, setgt, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, setge, i1, F32>;
def: OpR_RR_pat<F2_sfcmpeq, setoeq, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, setogt, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, setoge, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setolt>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, RevCmp<setole>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setlt>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, RevCmp<setle>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpuo, setuo, i1, F32>;
def: OpR_RR_pat<F2_dfcmpeq, seteq, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, setgt, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, setge, i1, F64>;
def: OpR_RR_pat<F2_dfcmpeq, setoeq, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, setogt, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, setoge, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setolt>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, RevCmp<setole>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setlt>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, RevCmp<setle>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpuo, setuo, i1, F64>;
}
// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setne I32:$Rs, I32:$Rt)),
(C2_not (C2_cmpeq I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setle I32:$Rs, I32:$Rt)),
(C2_not (C2_cmpgt I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setule I32:$Rs, I32:$Rt)),
(C2_not (C2_cmpgtu I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setge I32:$Rs, I32:$Rt)),
(C2_not (C2_cmpgt I32:$Rt, I32:$Rs))>;
def: Pat<(i1 (setuge I32:$Rs, I32:$Rt)),
(C2_not (C2_cmpgtu I32:$Rt, I32:$Rs))>;
def: Pat<(i1 (setle I64:$Rs, I64:$Rt)),
(C2_not (C2_cmpgtp I64:$Rs, I64:$Rt))>;
def: Pat<(i1 (setne I64:$Rs, I64:$Rt)),
(C2_not (C2_cmpeqp I64:$Rs, I64:$Rt))>;
def: Pat<(i1 (setge I64:$Rs, I64:$Rt)),
(C2_not (C2_cmpgtp I64:$Rt, I64:$Rs))>;
def: Pat<(i1 (setuge I64:$Rs, I64:$Rt)),
(C2_not (C2_cmpgtup I64:$Rt, I64:$Rs))>;
def: Pat<(i1 (setule I64:$Rs, I64:$Rt)),
(C2_not (C2_cmpgtup I64:$Rs, I64:$Rt))>;
let AddedComplexity = 100 in {
def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
(A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
(C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
(A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
(C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}
// PatFrag for AsserZext which takes the original type as a parameter.
def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(MI I32:$Rs, imm:$I)>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(MI I32:$Rs, imm:$I)>;
}
multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(C2_not (MI I32:$Rs, imm:$I))>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(C2_not (MI I32:$Rs, imm:$I))>;
}
multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
}
let AddedComplexity = 200 in {
defm: Cmpb_pat <A4_cmpbeqi, seteq, AssertZext<i8>, IsUGT<8,31>, 255>;
defm: CmpbN_pat <A4_cmpbeqi, setne, AssertZext<i8>, IsUGT<8,31>, 255>;
defm: Cmpb_pat <A4_cmpbgtui, setugt, AssertZext<i8>, IsUGT<32,31>, 255>;
defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>, IsUGT<32,31>, 255>;
defm: Cmpb_pat <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>, IsUGT<32,32>, 255>;
defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
}
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
(A4_rcmpeq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
(A4_rcmpneq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
(A4_rcmpeqi I32:$Rs, imm:$s8)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
(A4_rcmpneqi I32:$Rs, imm:$s8)>;
def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),
(C2_xor I1:$Ps, I1:$Pt)>;
def: Pat<(i1 (seteq V4I8:$Rs, V4I8:$Rt)),
(A2_vcmpbeq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V4I8:$Rs, V4I8:$Rt)),
(A4_vcmpbgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V4I8:$Rs, V4I8:$Rt)),
(A2_vcmpbgtu (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (seteq V2I16:$Rs, V2I16:$Rt)),
(A2_vcmpheq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V2I16:$Rs, V2I16:$Rt)),
(A2_vcmphgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V2I16:$Rs, V2I16:$Rt)),
(A2_vcmphgtu (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(v2i1 (setne V2I32:$Rs, V2I32:$Rt)),
(C2_not (v2i1 (A2_vcmpbeq V2I32:$Rs, V2I32:$Rt)))>;
// Floating-point comparisons with checks for ordered/unordered status.
class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
: OutPatFrag<(ops node:$Rs, node:$Rt),
(MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
PatFrag RsPred, PatFrag RtPred = RsPred>
: Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
(Output RsPred:$Rs, RtPred:$Rt)>;
class Cmpuf<InstHexagon MI>: T3<C2_or, F2_sfcmpuo, MI>;
class Cmpud<InstHexagon MI>: T3<C2_or, F2_dfcmpuo, MI>;
class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
let Predicates = [HasV5T] in {
def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>, setueq, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, setuge, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, setugt, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, RevCmp<setule>, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, RevCmp<setult>, i1, F32>;
def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune, i1, F32>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>, setueq, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, setuge, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, setugt, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, RevCmp<setule>, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, RevCmp<setult>, i1, F64>;
def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune, i1, F64>;
}
class Outn<InstHexagon MI>
: OutPatFrag<(ops node:$Rs, node:$Rt),
(C2_not (MI $Rs, $Rt))>;
let Predicates = [HasV5T] in {
def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne, i1, F32>;
def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne, i1, F64>;
def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto, i1, F32>;
def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto, i1, F64>;
}
// --(6) Select ----------------------------------------------------------
//
def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
(C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
(C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
(C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
(C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
(C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
(C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
(C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
(C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
let Predicates = [HasV5T] in {
def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
(C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
(C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
(C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
(C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
(C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
(C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
(C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
}
def: Pat<(select I1:$Pu, V4I8:$Rs, V4I8:$Rt),
(LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I16:$Rs, V2I16:$Rt),
(LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I32:$Rs, V2I32:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
(C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
(C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
(C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
class HvxSel_pat<InstHexagon MI, PatFrag RegPred>
: Pat<(select I1:$Pu, RegPred:$Vs, RegPred:$Vt),
(MI I1:$Pu, RegPred:$Vs, RegPred:$Vt)>;
let Predicates = [HasV60T,UseHVX] in {
def: HvxSel_pat<PS_vselect, HVI8>;
def: HvxSel_pat<PS_vselect, HVI16>;
def: HvxSel_pat<PS_vselect, HVI32>;
def: HvxSel_pat<PS_vselect, HVI64>;
def: HvxSel_pat<PS_wselect, HWI8>;
def: HvxSel_pat<PS_wselect, HWI16>;
def: HvxSel_pat<PS_wselect, HWI32>;
def: HvxSel_pat<PS_wselect, HWI64>;
}
// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
(C2_or (C2_and I1:$Pu, I1:$Pv),
(C2_andn I1:$Pw, I1:$Pu))>;
def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
return isPositiveHalfWord(N);
}]>;
multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
InstHexagon InstB> {
def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
(InstA IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
(InstB IntRegs:$Rs, IntRegs:$Rt)>;
}
let AddedComplexity = 200 in {
defm: SelMinMax16_pats<setge, A2_max, A2_min>;
defm: SelMinMax16_pats<setgt, A2_max, A2_min>;
defm: SelMinMax16_pats<setle, A2_min, A2_max>;
defm: SelMinMax16_pats<setlt, A2_min, A2_max>;
defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
}
let AddedComplexity = 200 in {
defm: SelMinMax_pats<setge, I32, A2_max, A2_min>;
defm: SelMinMax_pats<setgt, I32, A2_max, A2_min>;
defm: SelMinMax_pats<setle, I32, A2_min, A2_max>;
defm: SelMinMax_pats<setlt, I32, A2_min, A2_max>;
defm: SelMinMax_pats<setuge, I32, A2_maxu, A2_minu>;
defm: SelMinMax_pats<setugt, I32, A2_maxu, A2_minu>;
defm: SelMinMax_pats<setule, I32, A2_minu, A2_maxu>;
defm: SelMinMax_pats<setult, I32, A2_minu, A2_maxu>;
defm: SelMinMax_pats<setge, I64, A2_maxp, A2_minp>;
defm: SelMinMax_pats<setgt, I64, A2_maxp, A2_minp>;
defm: SelMinMax_pats<setle, I64, A2_minp, A2_maxp>;
defm: SelMinMax_pats<setlt, I64, A2_minp, A2_maxp>;
defm: SelMinMax_pats<setuge, I64, A2_maxup, A2_minup>;
defm: SelMinMax_pats<setugt, I64, A2_maxup, A2_minup>;
defm: SelMinMax_pats<setule, I64, A2_minup, A2_maxup>;
defm: SelMinMax_pats<setult, I64, A2_minup, A2_maxup>;
}
let AddedComplexity = 100, Predicates = [HasV5T] in {
defm: SelMinMax_pats<setolt, F32, F2_sfmin, F2_sfmax>;
defm: SelMinMax_pats<setole, F32, F2_sfmin, F2_sfmax>;
defm: SelMinMax_pats<setogt, F32, F2_sfmax, F2_sfmin>;
defm: SelMinMax_pats<setoge, F32, F2_sfmax, F2_sfmin>;
}
// --(7) Insert/extract --------------------------------------------------
//
def SDTHexagonINSERT:
SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
def SDTHexagonINSERTRP:
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisVT<3, i64>]>;
def HexagonINSERT: SDNode<"HexagonISD::INSERT", SDTHexagonINSERT>;
def HexagonINSERTRP: SDNode<"HexagonISD::INSERTRP", SDTHexagonINSERTRP>;
def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
(S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
(S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
def: Pat<(HexagonINSERTRP I32:$Rs, I32:$Rt, I64:$Ru),
(S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>;
def: Pat<(HexagonINSERTRP I64:$Rs, I64:$Rt, I64:$Ru),
(S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>;
def SDTHexagonEXTRACTU
: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDTHexagonEXTRACTURP
: SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
SDTCisVT<2, i64>]>;
def HexagonEXTRACTU: SDNode<"HexagonISD::EXTRACTU", SDTHexagonEXTRACTU>;
def HexagonEXTRACTURP: SDNode<"HexagonISD::EXTRACTURP", SDTHexagonEXTRACTURP>;
def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
(S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
(S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
def: Pat<(HexagonEXTRACTURP I32:$Rs, I64:$Rt),
(S2_extractu_rp I32:$Rs, I64:$Rt)>;
def: Pat<(HexagonEXTRACTURP I64:$Rs, I64:$Rt),
(S2_extractup_rp I64:$Rs, I64:$Rt)>;
def SDTHexagonVSPLAT:
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;
def: Pat<(v4i8 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
(A2_combineii imm:$s8, imm:$s8)>;
def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
// --(8) Shift/permute ---------------------------------------------------
//
def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def SDTHexagonVCOMBINE: SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>,
SDTCisSubVecOfVec<1, 0>]>;
def SDTHexagonVPACK: SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>, SDTCisVec<1>]>;
def HexagonPACKHL: SDNode<"HexagonISD::PACKHL", SDTHexagonI64I32I32>;
def HexagonCOMBINE: SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
def HexagonVCOMBINE: SDNode<"HexagonISD::VCOMBINE", SDTHexagonVCOMBINE>;
def HexagonVPACKE: SDNode<"HexagonISD::VPACKE", SDTHexagonVPACK>;
def HexagonVPACKO: SDNode<"HexagonISD::VPACKO", SDTHexagonVPACK>;
def: OpR_RR_pat<S2_packhl, pf2<HexagonPACKHL>, i64, I32>;
def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
(A4_combineri IntRegs:$Rs, imm:$s8)>;
def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
(A4_combineir imm:$s8, IntRegs:$Rs)>;
}
// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in {
def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
(A4_combineii imm:$s8, imm:$u6)>;
def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
(A2_combineii imm:$s8, imm:$S8)>;
}
let Predicates = [UseHVX] in {
def: OpR_RR_pat<V6_vcombine, pf2<HexagonVCOMBINE>, VecPI32, HVI32>;
def: OpR_RR_pat<V6_vpackeb, pf2<HexagonVPACKE>, VecI8, HVI8>;
def: OpR_RR_pat<V6_vpackob, pf2<HexagonVPACKO>, VecI8, HVI8>;
def: OpR_RR_pat<V6_vpackeh, pf2<HexagonVPACKE>, VecI16, HVI16>;
def: OpR_RR_pat<V6_vpackoh, pf2<HexagonVPACKO>, VecI16, HVI16>;
}
def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>;
def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
(A2_swiz (HiReg $Rss)))>;
def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt), (S4_lsli imm:$s6, I32:$Rt)>;
def: Pat<(shl I32:$Rs, (i32 16)), (A2_aslh I32:$Rs)>;
def: Pat<(sra I32:$Rs, (i32 16)), (A2_asrh I32:$Rs)>;
def: OpR_RI_pat<S2_asr_i_r, Sra, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_r, Srl, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_r, Shl, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_p, Sra, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_p, Srl, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_p, Shl, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
(S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
(S2_asr_i_p_rnd I64:$Rs, imm:$u6)>, Requires<[HasV5T]>;
// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
let AddedComplexity = 120 in
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
(S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
let AddedComplexity = 100 in {
def: AccRRI_pat<S2_asr_i_r_acc, Add, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_nac, Sub, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_and, And, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_or, Or, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_acc, Add, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_nac, Sub, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_and, And, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_or, Or, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_acc, Add, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_nac, Sub, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_and, And, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_or, Or, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_xacc, Xor, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_acc, Add, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_nac, Sub, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_and, And, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_or, Or, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_xacc, Xor, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_acc, Add, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_nac, Sub, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_and, And, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_or, Or, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_xacc, Xor, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_acc, Add, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_nac, Sub, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_and, And, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_or, Or, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_xacc, Xor, Su<Shl>, I64, u6_0ImmPred>;
}
let AddedComplexity = 100 in {
def: AccRRR_pat<S2_asr_r_r_acc, Add, Su<Sra>, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_nac, Sub, Su<Sra>, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_and, And, Su<Sra>, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_or, Or, Su<Sra>, I32, I32>;
def: AccRRR_pat<S2_asr_r_p_acc, Add, Su<Sra>, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_nac, Sub, Su<Sra>, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_and, And, Su<Sra>, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_or, Or, Su<Sra>, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_xor, Xor, Su<Sra>, I64, I32>;
def: AccRRR_pat<S2_lsr_r_r_acc, Add, Su<Srl>, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_nac, Sub, Su<Srl>, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_and, And, Su<Srl>, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_or, Or, Su<Srl>, I32, I32>;
def: AccRRR_pat<S2_lsr_r_p_acc, Add, Su<Srl>, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_nac, Sub, Su<Srl>, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_and, And, Su<Srl>, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_or, Or, Su<Srl>, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_xor, Xor, Su<Srl>, I64, I32>;
def: AccRRR_pat<S2_asl_r_r_acc, Add, Su<Shl>, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_nac, Sub, Su<Shl>, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_and, And, Su<Shl>, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_or, Or, Su<Shl>, I32, I32>;
def: AccRRR_pat<S2_asl_r_p_acc, Add, Su<Shl>, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_nac, Sub, Su<Shl>, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_and, And, Su<Shl>, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_or, Or, Su<Shl>, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_xor, Xor, Su<Shl>, I64, I32>;
}
class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
(MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
let AddedComplexity = 200 in {
def: OpshIRI_pat<S4_addi_asl_ri, Add, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_addi_lsr_ri, Add, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_subi_asl_ri, Sub, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_subi_lsr_ri, Sub, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_andi_asl_ri, And, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_andi_lsr_ri, And, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_ori_asl_ri, Or, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_ori_lsr_ri, Or, Su<Srl>, I32, u5_0ImmPred>;
}
// Prefer this pattern to S2_asl_i_p_or for the special case of joining
// two 32-bit words into a 64-bit word.
let AddedComplexity = 200 in
def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
(Combinew I32:$a, I32:$b)>;
def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
(Zext64 (and I32:$a, (i32 65535)))),
(shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
(shl (Aext64 I32:$d), (i32 48))),
(Combinew (A2_combine_ll I32:$d, I32:$c),
(A2_combine_ll I32:$b, I32:$a))>;
def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add I32:$b, 3))),
(i32 8)),
(i32 (zextloadi8 (add I32:$b, 2)))),
(i32 16)),
(shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
(zextloadi8 I32:$b)),
(A2_swiz (L2_loadri_io IntRegs:$b, 0))>;
def SDTHexagonVShift
: SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_asr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_lsr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_asl_i_vw V2I32:$b, imm:$c)>;
def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_asr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_lsr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_asl_i_vh V4I16:$b, imm:$c)>;
// --(9) Arithmetic/bitwise ----------------------------------------------
//
def: Pat<(abs I32:$Rs), (A2_abs I32:$Rs)>;
def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>;
def: Pat<(not I64:$Rs), (A2_notp I64:$Rs)>;
let Predicates = [HasV5T] in {
def: Pat<(fabs F32:$Rs), (S2_clrbit_i F32:$Rs, 31)>;
def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
def: Pat<(fabs F64:$Rs),
(Combinew (S2_clrbit_i (HiReg $Rs), 31),
(i32 (LoReg $Rs)))>;
def: Pat<(fneg F64:$Rs),
(Combinew (S2_togglebit_i (HiReg $Rs), 31),
(i32 (LoReg $Rs)))>;
}
let AddedComplexity = 50 in
def: Pat<(xor (add (sra I32:$Rs, (i32 31)),
I32:$Rs),
(sra I32:$Rs, (i32 31))),
(A2_abs I32:$Rs)>;
def: Pat<(add I32:$Rs, anyimm:$s16), (A2_addi I32:$Rs, imm:$s16)>;
def: Pat<(or I32:$Rs, anyimm:$s10), (A2_orir I32:$Rs, imm:$s10)>;
def: Pat<(and I32:$Rs, anyimm:$s10), (A2_andir I32:$Rs, imm:$s10)>;
def: Pat<(sub anyimm:$s10, I32:$Rs), (A2_subri imm:$s10, I32:$Rs)>;
def: OpR_RR_pat<A2_add, Add, i32, I32>;
def: OpR_RR_pat<A2_sub, Sub, i32, I32>;
def: OpR_RR_pat<A2_and, And, i32, I32>;
def: OpR_RR_pat<A2_or, Or, i32, I32>;
def: OpR_RR_pat<A2_xor, Xor, i32, I32>;
def: OpR_RR_pat<A2_addp, Add, i64, I64>;
def: OpR_RR_pat<A2_subp, Sub, i64, I64>;
def: OpR_RR_pat<A2_andp, And, i64, I64>;
def: OpR_RR_pat<A2_orp, Or, i64, I64>;
def: OpR_RR_pat<A2_xorp, Xor, i64, I64>;
def: OpR_RR_pat<A4_andnp, Not2<And>, i64, I64>;
def: OpR_RR_pat<A4_ornp, Not2<Or>, i64, I64>;
def: OpR_RR_pat<A2_svaddh, Add, v2i16, V2I16>;
def: OpR_RR_pat<A2_svsubh, Sub, v2i16, V2I16>;
def: OpR_RR_pat<A2_vaddub, Add, v8i8, V8I8>;
def: OpR_RR_pat<A2_vaddh, Add, v4i16, V4I16>;
def: OpR_RR_pat<A2_vaddw, Add, v2i32, V2I32>;
def: OpR_RR_pat<A2_vsubub, Sub, v8i8, V8I8>;
def: OpR_RR_pat<A2_vsubh, Sub, v4i16, V4I16>;
def: OpR_RR_pat<A2_vsubw, Sub, v2i32, V2I32>;
def: OpR_RR_pat<A2_and, And, v2i16, V2I16>;
def: OpR_RR_pat<A2_xor, Xor, v2i16, V2I16>;
def: OpR_RR_pat<A2_or, Or, v2i16, V2I16>;
def: OpR_RR_pat<A2_andp, And, v8i8, V8I8>;
def: OpR_RR_pat<A2_andp, And, v4i16, V4I16>;
def: OpR_RR_pat<A2_andp, And, v2i32, V2I32>;
def: OpR_RR_pat<A2_orp, Or, v8i8, V8I8>;
def: OpR_RR_pat<A2_orp, Or, v4i16, V4I16>;
def: OpR_RR_pat<A2_orp, Or, v2i32, V2I32>;
def: OpR_RR_pat<A2_xorp, Xor, v8i8, V8I8>;
def: OpR_RR_pat<A2_xorp, Xor, v4i16, V4I16>;
def: OpR_RR_pat<A2_xorp, Xor, v2i32, V2I32>;
def: OpR_RR_pat<M2_mpyi, Mul, i32, I32>;
def: OpR_RR_pat<M2_mpy_up, pf2<mulhs>, i32, I32>;
def: OpR_RR_pat<M2_mpyu_up, pf2<mulhu>, i32, I32>;
def: OpR_RI_pat<M2_mpysip, Mul, i32, I32, u32_0ImmPred>;
def: OpR_RI_pat<M2_mpysmi, Mul, i32, I32, s32_0ImmPred>;
// Arithmetic on predicates.
def: OpR_RR_pat<C2_xor, Add, i1, I1>;
def: OpR_RR_pat<C2_xor, Add, v2i1, V2I1>;
def: OpR_RR_pat<C2_xor, Add, v4i1, V4I1>;
def: OpR_RR_pat<C2_xor, Add, v8i1, V8I1>;
def: OpR_RR_pat<C2_xor, Sub, i1, I1>;
def: OpR_RR_pat<C2_xor, Sub, v2i1, V2I1>;
def: OpR_RR_pat<C2_xor, Sub, v4i1, V4I1>;
def: OpR_RR_pat<C2_xor, Sub, v8i1, V8I1>;
def: OpR_RR_pat<C2_and, Mul, i1, I1>;
def: OpR_RR_pat<C2_and, Mul, v2i1, V2I1>;
def: OpR_RR_pat<C2_and, Mul, v4i1, V4I1>;
def: OpR_RR_pat<C2_and, Mul, v8i1, V8I1>;
let Predicates = [HasV5T] in {
def: OpR_RR_pat<F2_sfadd, pf2<fadd>, f32, F32>;
def: OpR_RR_pat<F2_sfsub, pf2<fsub>, f32, F32>;
def: OpR_RR_pat<F2_sfmpy, pf2<fmul>, f32, F32>;
def: OpR_RR_pat<F2_sfmin, pf2<fminnum>, f32, F32>;
def: OpR_RR_pat<F2_sfmax, pf2<fmaxnum>, f32, F32>;
}
// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
// over add-add with individual multiplies as inputs.
let AddedComplexity = 10 in {
def: AccRRI_pat<M2_macsip, Add, Su<Mul>, I32, u32_0ImmPred>;
def: AccRRI_pat<M2_macsin, Sub, Su<Mul>, I32, u32_0ImmPred>;
def: AccRRR_pat<M2_maci, Add, Su<Mul>, I32, I32>;
}
def: AccRRI_pat<M2_naccii, Sub, Su<Add>, I32, s32_0ImmPred>;
def: AccRRI_pat<M2_accii, Add, Su<Add>, I32, s32_0ImmPred>;
def: AccRRR_pat<M2_acci, Add, Su<Add>, I32, I32>;
def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
(M2_mpysin IntRegs:$Rs, imm:$u8)>;
def n8_0ImmPred: PatLeaf<(i32 imm), [{
int64_t V = N->getSExtValue();
return -255 <= V && V <= 0;
}]>;
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
(M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
def: Pat<(add Sext64:$Rs, I64:$Rt),
(A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
def: AccRRR_pat<M4_and_and, And, Su<And>, I32, I32>;
def: AccRRR_pat<M4_and_or, And, Su<Or>, I32, I32>;
def: AccRRR_pat<M4_and_xor, And, Su<Xor>, I32, I32>;
def: AccRRR_pat<M4_or_and, Or, Su<And>, I32, I32>;
def: AccRRR_pat<M4_or_or, Or, Su<Or>, I32, I32>;
def: AccRRR_pat<M4_or_xor, Or, Su<Xor>, I32, I32>;
def: AccRRR_pat<M4_xor_and, Xor, Su<And>, I32, I32>;
def: AccRRR_pat<M4_xor_or, Xor, Su<Or>, I32, I32>;
def: AccRRR_pat<M2_xor_xacc, Xor, Su<Xor>, I32, I32>;
def: AccRRR_pat<M4_xor_xacc, Xor, Su<Xor>, I64, I64>;
// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
// one argument matches the patterns below, and with the other argument
// matches S2_asl_r_r_or, etc, prefer the patterns below.
let AddedComplexity = 110 in { // greater than S2_asl_r_r_and/or/xor.
def: AccRRR_pat<M4_and_andn, And, Su<Not2<And>>, I32, I32>;
def: AccRRR_pat<M4_or_andn, Or, Su<Not2<And>>, I32, I32>;
def: AccRRR_pat<M4_xor_andn, Xor, Su<Not2<And>>, I32, I32>;
}
// S4_addaddi and S4_subaddi don't have tied operands, so give them
// a bit of preference.
let AddedComplexity = 30 in {
def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
(S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
(S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
}
def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
(S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
(S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
(S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
(M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
(M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
(M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
(M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
(M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
(M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
(M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
(M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
(M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
(M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
(M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
// Add halfword.
def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
(A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
(A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
(A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
// Subtract halfword.
def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
(A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
(A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
(A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(mul I64:$Rss, I64:$Rtt),
(Combinew
(M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
(LoReg $Rss),
(HiReg $Rtt)),
(LoReg $Rtt),
(HiReg $Rss)),
(i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
(A2_addp
(M2_dpmpyuu_acc_s0
(S2_lsr_i_p
(A2_addp
(M2_dpmpyuu_acc_s0
(S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
(HiReg $Rss),
(LoReg $Rtt)),
(A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
32),
(HiReg $Rss),
(HiReg $Rtt)),
(S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
// Multiply 64-bit signed and use upper result.
//
// For two signed 64-bit integers A and B, let A' and B' denote A and B
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
// sign bit of A (and identically for B). With this notation, the signed
// product A*B can be written as:
// AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
// = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
// = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
// = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
// Clear the sign bit in a 64-bit register.
def ClearSign : OutPatFrag<(ops node:$Rss),
(Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
def : Pat <(mulhs I64:$Rss, I64:$Rtt),
(A2_subp
(MulHU $Rss, $Rtt),
(A2_addp
(A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
(A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
// will put the immediate addend into a register, while these instructions will
// use it directly. Such a construct does not appear in the middle of a gep,
// where M2_macsip would be preferable.
let AddedComplexity = 20 in {
def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
(M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
(M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
}
// Keep these instructions less preferable to M2_macsip/M2_macsin.
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
(M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
(M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
(M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
let Predicates = [HasV5T] in {
def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
(F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
(F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
(F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
}
def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
(PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
(PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
// we use the double add v8i8, and use only the low part of the result.
def: Pat<(add V4I8:$Rs, V4I8:$Rt),
(LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
(LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>;
// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
// half-words, and saturates the result to a 32-bit value, except the
// saturation never happens (it can only occur with scaling).
def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
(LoReg (S2_vtrunewh (A2_combineii 0, 0),
(M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
(S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
(M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
// Multiplies two v4i8 vectors.
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
(S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>,
Requires<[HasV5T]>;
// Multiplies two v8i8 vectors.
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
(Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
(S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>,
Requires<[HasV5T]>;
// --(10) Bit ------------------------------------------------------------
//
// Count leading zeros.
def: Pat<(ctlz I32:$Rs), (S2_cl0 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;
// Count trailing zeros.
def: Pat<(cttz I32:$Rs), (S2_ct0 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>;
// Count leading ones.
def: Pat<(ctlz (not I32:$Rs)), (S2_cl1 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
// Count trailing ones.
def: Pat<(cttz (not I32:$Rs)), (S2_ct1 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>;
def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>;
def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>;
def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>;
def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>;
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I32:$Rs, IsNPow2_32:$V),
(S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
def: Pat<(or I32:$Rs, IsPow2_32:$V),
(S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(xor I32:$Rs, IsPow2_32:$V),
(S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
(S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
(S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
(S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}
// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
(Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
(i32 (LoReg $Rss)))>;
def: Pat<(or I64:$Rss, IsPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
def: Pat<(or I64:$Rss, IsPow2_64H:$V),
(Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
(i32 (LoReg $Rss)))>;
def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
(Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
(i32 (LoReg $Rss)))>;
}
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
(S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
(S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (trunc I32:$Rs)),
(S2_tstbit_i IntRegs:$Rs, 0)>;
def: Pat<(i1 (trunc I64:$Rs)),
(S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
}
let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
(C2_bitsclri IntRegs:$Rs, imm:$u6)>;
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
(C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}
let AddedComplexity = 10 in // Complexity greater than compare reg-reg.
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
(C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
(S4_ntstbit_i I32:$Rs, imm:$u5)>;
def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
(S4_ntstbit_r I32:$Rs, I32:$Rt)>;
}
// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
// if ([!]tstbit(...)) jump ...
let AddedComplexity = 100 in
def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
(S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
let AddedComplexity = 100 in
def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
(S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
(C4_nbitsclri I32:$Rs, imm:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
(C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
(C4_nbitsset I32:$Rs, I32:$Rt)>;
// Special patterns to address certain cases where the "top-down" matching
// algorithm would cause suboptimal selection.
let AddedComplexity = 100 in {
// Avoid A4_rcmp[n]eqi in these cases:
def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
(I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
(I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
}
// --(11) Load -----------------------------------------------------------
//
def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
// Patterns to select load-indexed: Rs + Off.
// - frameindex [+ imm],
multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (MI AddrFI:$fi, imm:$Off))>;
def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (MI AddrFI:$fi, imm:$Off))>;
def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
}
// Patterns to select load-indexed: Rs + Off.
// - base reg [+ imm]
multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
(VT (MI IntRegs:$Rs, imm:$Off))>;
def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
(VT (MI IntRegs:$Rs, imm:$Off))>;
def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
}
// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - frameindex [+ imm]
multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - base reg [+ imm]
multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
(VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
(VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// Combines Loadxfim + Loadxgim.
multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
}
// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<0.
class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
(VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
(VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
// Don't match for u2==0, instead use reg+imm for those cases.
class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
: Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
(VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
(VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
// Pattern to select load absolute.
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
// Pattern to select load absolute with value modifier.
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
let AddedComplexity = 20 in {
defm: Loadxi_pat<extloadi1, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<extloadi8, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<extloadi16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<extloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>;
defm: Loadxi_pat<extloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<sextloadi8, i32, anyimm0, L2_loadrb_io>;
defm: Loadxi_pat<sextloadi16, i32, anyimm1, L2_loadrh_io>;
defm: Loadxi_pat<sextloadv2i8, v2i16, anyimm1, L2_loadbsw2_io>;
defm: Loadxi_pat<sextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<zextloadi1, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<zextloadi8, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<zextloadi16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<zextloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>;
defm: Loadxi_pat<zextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<load, i32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, i64, anyimm3, L2_loadrd_io>;
defm: Loadxi_pat<load, f32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, f64, anyimm3, L2_loadrd_io>;
// No sextloadi1.
defm: Loadxi_pat<atomic_load_8 , i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<atomic_load_16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<atomic_load_32, i32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<atomic_load_64, i64, anyimm3, L2_loadrd_io>;
}
let AddedComplexity = 30 in {
defm: Loadxim_pat<extloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<extloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<extloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>;
defm: Loadxim_pat<extloadi32, i64, ToZext64, anyimm2, L2_loadri_io>;
defm: Loadxim_pat<zextloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<zextloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<zextloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>;
defm: Loadxim_pat<zextloadi32, i64, ToZext64, anyimm2, L2_loadri_io>;
defm: Loadxim_pat<sextloadi8, i64, ToSext64, anyimm0, L2_loadrb_io>;
defm: Loadxim_pat<sextloadi16, i64, ToSext64, anyimm1, L2_loadrh_io>;
defm: Loadxim_pat<sextloadi32, i64, ToSext64, anyimm2, L2_loadri_io>;
}
let AddedComplexity = 60 in {
def: Loadxu_pat<extloadi8, i32, anyimm0, L4_loadrub_ur>;
def: Loadxu_pat<extloadi16, i32, anyimm1, L4_loadruh_ur>;
def: Loadxu_pat<extloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
def: Loadxu_pat<extloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<sextloadi8, i32, anyimm0, L4_loadrb_ur>;
def: Loadxu_pat<sextloadi16, i32, anyimm1, L4_loadrh_ur>;
def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<zextloadi8, i32, anyimm0, L4_loadrub_ur>;
def: Loadxu_pat<zextloadi16, i32, anyimm1, L4_loadruh_ur>;
def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<load, f32, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, f64, anyimm3, L4_loadrd_ur>;
def: Loadxu_pat<load, i32, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, i64, anyimm3, L4_loadrd_ur>;
def: Loadxum_pat<sextloadi8, i64, anyimm0, ToSext64, L4_loadrb_ur>;
def: Loadxum_pat<zextloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>;
def: Loadxum_pat<extloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>;
def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
def: Loadxum_pat<extloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
def: Loadxum_pat<extloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
}
let AddedComplexity = 40 in {
def: Loadxr_shl_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxr_shl_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxr_shl_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxr_shl_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxr_shl_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxr_shl_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxr_shl_pat<load, i32, L4_loadri_rr>;
def: Loadxr_shl_pat<load, i64, L4_loadrd_rr>;
def: Loadxr_shl_pat<load, f32, L4_loadri_rr>;
def: Loadxr_shl_pat<load, f64, L4_loadrd_rr>;
}
let AddedComplexity = 20 in {
def: Loadxr_add_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxr_add_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxr_add_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxr_add_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxr_add_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxr_add_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxr_add_pat<load, i32, L4_loadri_rr>;
def: Loadxr_add_pat<load, i64, L4_loadrd_rr>;
def: Loadxr_add_pat<load, f32, L4_loadri_rr>;
def: Loadxr_add_pat<load, f64, L4_loadrd_rr>;
}
let AddedComplexity = 40 in {
def: Loadxrm_shl_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_shl_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_shl_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>;
def: Loadxrm_shl_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_shl_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_shl_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>;
def: Loadxrm_shl_pat<extloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_shl_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_shl_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>;
}
let AddedComplexity = 20 in {
def: Loadxrm_add_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_add_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_add_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>;
def: Loadxrm_add_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_add_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_add_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>;
def: Loadxrm_add_pat<extloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_add_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_add_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>;
}
// Absolute address
let AddedComplexity = 60 in {
def: Loada_pat<zextloadi1, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<sextloadi8, i32, anyimm0, PS_loadrbabs>;
def: Loada_pat<extloadi8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<zextloadi8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<sextloadi16, i32, anyimm1, PS_loadrhabs>;
def: Loada_pat<extloadi16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<zextloadi16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<load, i32, anyimm2, PS_loadriabs>;
def: Loada_pat<load, i64, anyimm3, PS_loadrdabs>;
def: Loada_pat<load, f32, anyimm2, PS_loadriabs>;
def: Loada_pat<load, f64, anyimm3, PS_loadrdabs>;
def: Loada_pat<atomic_load_8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<atomic_load_16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<atomic_load_32, i32, anyimm2, PS_loadriabs>;
def: Loada_pat<atomic_load_64, i64, anyimm3, PS_loadrdabs>;
}
let AddedComplexity = 30 in {
def: Loadam_pat<extloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>;
def: Loadam_pat<sextloadi8, i64, anyimm0, ToSext64, PS_loadrbabs>;
def: Loadam_pat<zextloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>;
def: Loadam_pat<extloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>;
def: Loadam_pat<sextloadi16, i64, anyimm1, ToSext64, PS_loadrhabs>;
def: Loadam_pat<zextloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>;
def: Loadam_pat<extloadi32, i64, anyimm2, ToZext64, PS_loadriabs>;
def: Loadam_pat<sextloadi32, i64, anyimm2, ToSext64, PS_loadriabs>;
def: Loadam_pat<zextloadi32, i64, anyimm2, ToZext64, PS_loadriabs>;
def: Loadam_pat<load, i1, anyimm0, I32toI1, PS_loadrubabs>;
def: Loadam_pat<zextloadi1, i64, anyimm0, ToZext64, PS_loadrubabs>;
}
// GP-relative address
let AddedComplexity = 100 in {
def: Loada_pat<extloadi1, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<zextloadi1, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<extloadi8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<sextloadi8, i32, addrgp, L2_loadrbgp>;
def: Loada_pat<zextloadi8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<extloadi16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<sextloadi16, i32, addrgp, L2_loadrhgp>;
def: Loada_pat<zextloadi16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<load, i32, addrgp, L2_loadrigp>;
def: Loada_pat<load, i64, addrgp, L2_loadrdgp>;
def: Loada_pat<load, f32, addrgp, L2_loadrigp>;
def: Loada_pat<load, f64, addrgp, L2_loadrdgp>;
def: Loada_pat<atomic_load_8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>;
def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>;
}
let AddedComplexity = 70 in {
def: Loadam_pat<extloadi8, i64, addrgp, ToZext64, L2_loadrubgp>;
def: Loadam_pat<sextloadi8, i64, addrgp, ToSext64, L2_loadrbgp>;
def: Loadam_pat<zextloadi8, i64, addrgp, ToZext64, L2_loadrubgp>;
def: Loadam_pat<extloadi16, i64, addrgp, ToZext64, L2_loadruhgp>;
def: Loadam_pat<sextloadi16, i64, addrgp, ToSext64, L2_loadrhgp>;
def: Loadam_pat<zextloadi16, i64, addrgp, ToZext64, L2_loadruhgp>;
def: Loadam_pat<extloadi32, i64, addrgp, ToZext64, L2_loadrigp>;
def: Loadam_pat<sextloadi32, i64, addrgp, ToSext64, L2_loadrigp>;
def: Loadam_pat<zextloadi32, i64, addrgp, ToZext64, L2_loadrigp>;
def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>;
def: Loadam_pat<zextloadi1, i64, addrgp, ToZext64, L2_loadrubgp>;
}
// Sign-extending loads of i1 need to replicate the lowest bit throughout
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
// do the trick.
let AddedComplexity = 20 in
def: Pat<(i32 (sextloadi1 I32:$Rs)),
(A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
// Patterns for loads of i1:
def: Pat<(i1 (load AddrFI:$fi)),
(C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
(C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
def: Pat<(i1 (load I32:$Rs)),
(C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
// HVX loads
multiclass HvxLd_pat<InstHexagon MI, PatFrag Load, ValueType VT,
PatFrag ImmPred> {
def: Pat<(VT (Load I32:$Rt)), (MI I32:$Rt, 0)>;
def: Pat<(VT (Load (add I32:$Rt, ImmPred:$s))), (MI I32:$Rt, imm:$s)>;
}
let Predicates = [UseHVX] in {
multiclass HvxLdVs_pat<InstHexagon MI, PatFrag Load> {
defm: HvxLd_pat<MI, Load, VecI8, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecI16, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecI32, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecI64, IsVecOff>;
}
defm: HvxLdVs_pat<V6_vL32b_nt_ai, alignednontemporalload>;
defm: HvxLdVs_pat<V6_vL32b_ai, alignedload>;
defm: HvxLdVs_pat<V6_vL32Ub_ai, unalignedload>;
multiclass HvxLdWs_pat<InstHexagon MI, PatFrag Load> {
defm: HvxLd_pat<MI, Load, VecPI8, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecPI16, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecPI32, IsVecOff>;
defm: HvxLd_pat<MI, Load, VecPI64, IsVecOff>;
}
defm: HvxLdWs_pat<PS_vloadrw_nt_ai, alignednontemporalload>;
defm: HvxLdWs_pat<PS_vloadrw_ai, alignedload>;
defm: HvxLdWs_pat<PS_vloadrwu_ai, unalignedload>;
}
// --(12) Store ----------------------------------------------------------
//
class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
(MI I32:$Rx, imm:$s4, Value:$Rt)>;
def: Storepi_pat<post_truncsti8, I32, s4_0ImmPred, S2_storerb_pi>;
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
def: Storepi_pat<post_store, I32, s4_2ImmPred, S2_storeri_pi>;
def: Storepi_pat<post_store, I64, s4_3ImmPred, S2_storerd_pi>;
// Patterns for generating stores, where the address takes different forms:
// - frameindex,
// - frameindex + offset,
// - base + offset,
// - simple (base address without offset).
// These would usually be used together (via Storexi_pat defined below), but
// in some cases one may want to apply different properties (such as
// AddedComplexity) to the individual patterns.
class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
InstHexagon MI> {
def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
}
multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
InstHexagon MI> {
def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
}
class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rs),
(MI IntRegs:$Rs, 0, Value:$Rt)>;
// Patterns for generating stores, where the address takes different forms,
// and where the value being stored is transformed through the value modifier
// ValueMod. The address forms are same as above.
class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$Rs, AddrFI:$fi),
(MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
PatFrag ValueMod, InstHexagon MI> {
def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
}
multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
PatFrag ValueMod, InstHexagon MI> {
def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
}
class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rs),
(MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
InstHexagon MI> {
defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
def: Storexi_fi_pat <Store, Value, MI>;
defm: Storexi_add_pat <Store, Value, ImmPred, MI>;
}
multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
PatFrag ValueMod, InstHexagon MI> {
defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
def: Storexim_fi_pat <Store, Value, ValueMod, MI>;
defm: Storexim_add_pat <Store, Value, ImmPred, ValueMod, MI>;
}
// Reg<<S + Imm
class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
: Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
(MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
// Reg<<S + Reg
class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
(MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
// Reg + Reg
class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
(MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr),
(MI Addr:$addr, (ValueMod Value:$val))>;
// Regular stores in the DAG have two operands: value and address.
// Atomic stores also have two, but they are reversed: address, value.
// To use atomic stores with the patterns, they need to have their operands
// swapped. This relies on the knowledge that the F.Fragment uses names
// "ptr" and "val".
class SwapSt<PatFrag F>
: PatFrag<(ops node:$val, node:$ptr), F.Fragment, F.PredicateCode,
F.OperandTransform>;
def IMM_BYTE : SDNodeXForm<imm, [{
// -1 can be represented as 255, etc.
// assigning to a byte restores our desired signed value.
int8_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_HALF : SDNodeXForm<imm, [{
// -1 can be represented as 65535, etc.
// assigning to a short restores our desired signed value.
int16_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_WORD : SDNodeXForm<imm, [{
// -1 can be represented as 4294967295, etc.
// Currently, it's not doing this. But some optimization
// might convert -1 to a large +ve number.
// assigning to a word restores our desired signed value.
int32_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
// Even though the offset is not extendable in the store-immediate, we
// can still generate the fi# in the base address. If the final offset
// is not valid for the instruction, we will replace it with a scratch
// register.
class SmallStackStore<PatFrag Store>
: PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
return isSmallStackStore(cast<StoreSDNode>(N));
}]>;
// This is the complement of SmallStackStore.
class LargeStackStore<PatFrag Store>
: PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
return !isSmallStackStore(cast<StoreSDNode>(N));
}]>;
// Preferred addressing modes for various combinations of stored value
// and address computation.
// For stores where the address and value are both immediates, prefer
// store-immediate. The reason is that the constant-extender optimization
// can replace store-immediate with a store-register, but there is nothing
// to generate a store-immediate out of a store-register.
//
// C R F F+C R+C R+R R<<S+C R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C | imm | imm | imm | imm | imm | rr | ur | rr
// R | abs* | io | io | io | io | rr | ur | rr
//
// (*) Absolute or GP-relative.
//
// Note that any expression can be matched by Reg. In particular, an immediate
// can always be placed in a register, so patterns checking for Imm should
// have a higher priority than the ones involving Reg that could also match.
// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
// Reg alone.
//
// The order in which the different combinations are tried:
//
// C F R F+C R+C R+R R<<S+C R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C | 1 | 6 | - | 5 | 9 | - | - | -
// R | 2 | 8 | 12 | 7 | 10 | 11 | 3 | 4
// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
// a store where the offset Imm4 is a multiple of 4, but not of 8. This
// implies that Reg is also a proper multiple of 4. To still generate a
// doubleword store, add 4 to Reg, and subtract 4 from the offset.
def s30_2ProperPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
}]>;
def RoundTo8 : SDNodeXForm<imm, [{
int32_t Imm = N->getSExtValue();
return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
}]>;
let AddedComplexity = 150 in
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
(S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$val, anyimm:$addr),
(MI (ToI32 $addr), 0, Value:$val)>;
class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$val, anyimm:$addr),
(MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
let AddedComplexity = 140 in {
def: Storexim_abs_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_abs_pat<store, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_abs_pat<truncstorei8, anyimm, S4_storeirb_io>;
def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
def: Storexi_abs_pat<store, anyimm, S4_storeiri_io>;
}
// GP-relative address
let AddedComplexity = 120 in {
def: Storea_pat<truncstorei8, I32, addrgp, S2_storerbgp>;
def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>;
def: Storea_pat<store, I32, addrgp, S2_storerigp>;
def: Storea_pat<store, I64, addrgp, S2_storerdgp>;
def: Storea_pat<store, F32, addrgp, S2_storerigp>;
def: Storea_pat<store, F64, addrgp, S2_storerdgp>;
def: Storea_pat<SwapSt<atomic_store_8>, I32, addrgp, S2_storerbgp>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhgp>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storerigp>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdgp>;
def: Stoream_pat<truncstorei8, I64, addrgp, LoReg, S2_storerbgp>;
def: Stoream_pat<truncstorei16, I64, addrgp, LoReg, S2_storerhgp>;
def: Stoream_pat<truncstorei32, I64, addrgp, LoReg, S2_storerigp>;
def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>;
}
// Absolute address
let AddedComplexity = 110 in {
def: Storea_pat<truncstorei8, I32, anyimm0, PS_storerbabs>;
def: Storea_pat<truncstorei16, I32, anyimm1, PS_storerhabs>;
def: Storea_pat<store, I32, anyimm2, PS_storeriabs>;
def: Storea_pat<store, I64, anyimm3, PS_storerdabs>;
def: Storea_pat<store, F32, anyimm2, PS_storeriabs>;
def: Storea_pat<store, F64, anyimm3, PS_storerdabs>;
def: Storea_pat<SwapSt<atomic_store_8>, I32, anyimm0, PS_storerbabs>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, anyimm1, PS_storerhabs>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, anyimm2, PS_storeriabs>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, anyimm3, PS_storerdabs>;
def: Stoream_pat<truncstorei8, I64, anyimm0, LoReg, PS_storerbabs>;
def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg, PS_storerhabs>;
def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg, PS_storeriabs>;
def: Stoream_pat<store, I1, anyimm0, I1toI32, PS_storerbabs>;
}
// Reg<<S + Imm
let AddedComplexity = 100 in {
def: Storexu_shl_pat<truncstorei8, I32, anyimm0, S4_storerb_ur>;
def: Storexu_shl_pat<truncstorei16, I32, anyimm1, S4_storerh_ur>;
def: Storexu_shl_pat<store, I32, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, I64, anyimm3, S4_storerd_ur>;
def: Storexu_shl_pat<store, F32, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, F64, anyimm3, S4_storerd_ur>;
def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
(S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
}
// Reg<<S + Reg
let AddedComplexity = 90 in {
def: Storexr_shl_pat<truncstorei8, I32, S4_storerb_rr>;
def: Storexr_shl_pat<truncstorei16, I32, S4_storerh_rr>;
def: Storexr_shl_pat<store, I32, S4_storeri_rr>;
def: Storexr_shl_pat<store, I64, S4_storerd_rr>;
def: Storexr_shl_pat<store, F32, S4_storeri_rr>;
def: Storexr_shl_pat<store, F64, S4_storerd_rr>;
def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
(S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
}
class SS_<PatFrag F> : SmallStackStore<F>;
class LS_<PatFrag F> : LargeStackStore<F>;
multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
defm: Storexim_fi_add_pat<S, V, O, M, I>;
}
multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
defm: Storexi_fi_add_pat<S, V, O, I>;
}
// Fi+Imm, store-immediate
let AddedComplexity = 80 in {
defm: IMFA_<SS_<truncstorei8>, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
defm: IMFA_<SS_<store>, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
defm: IFA_<SS_<truncstorei8>, anyimm, u6_0ImmPred, S4_storeirb_io>;
defm: IFA_<SS_<truncstorei16>, anyimm, u6_1ImmPred, S4_storeirh_io>;
defm: IFA_<SS_<store>, anyimm, u6_2ImmPred, S4_storeiri_io>;
// For large-stack stores, generate store-register (prefer explicit Fi
// in the address).
defm: IMFA_<LS_<truncstorei8>, anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
defm: IMFA_<LS_<truncstorei16>, anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
defm: IMFA_<LS_<store>, anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
}
// Fi, store-immediate
let AddedComplexity = 70 in {
def: Storexim_fi_pat<SS_<truncstorei8>, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_fi_pat<SS_<store>, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_fi_pat<SS_<truncstorei8>, anyimm, S4_storeirb_io>;
def: Storexi_fi_pat<SS_<truncstorei16>, anyimm, S4_storeirh_io>;
def: Storexi_fi_pat<SS_<store>, anyimm, S4_storeiri_io>;
// For large-stack stores, generate store-register (prefer explicit Fi
// in the address).
def: Storexim_fi_pat<LS_<truncstorei8>, anyimm, ToI32, S2_storerb_io>;
def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
def: Storexim_fi_pat<LS_<store>, anyimm, ToI32, S2_storeri_io>;
}
// Fi+Imm, Fi, store-register
let AddedComplexity = 60 in {
defm: Storexi_fi_add_pat<truncstorei8, I32, anyimm, S2_storerb_io>;
defm: Storexi_fi_add_pat<truncstorei16, I32, anyimm, S2_storerh_io>;
defm: Storexi_fi_add_pat<store, I32, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, I64, anyimm, S2_storerd_io>;
defm: Storexi_fi_add_pat<store, F32, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, F64, anyimm, S2_storerd_io>;
defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
def: Storexi_fi_pat<truncstorei8, I32, S2_storerb_io>;
def: Storexi_fi_pat<truncstorei16, I32, S2_storerh_io>;
def: Storexi_fi_pat<store, I32, S2_storeri_io>;
def: Storexi_fi_pat<store, I64, S2_storerd_io>;
def: Storexi_fi_pat<store, F32, S2_storeri_io>;
def: Storexi_fi_pat<store, F64, S2_storerd_io>;
def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
}
multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
defm: Storexim_add_pat<S, V, O, M, I>;
}
multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
defm: Storexi_add_pat<S, V, O, I>;
}
// Reg+Imm, store-immediate
let AddedComplexity = 50 in {
defm: IMRA_<truncstorei8, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
defm: IMRA_<truncstorei16, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
defm: IMRA_<store, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
defm: IRA_<truncstorei8, anyimm, u6_0ImmPred, S4_storeirb_io>;
defm: IRA_<truncstorei16, anyimm, u6_1ImmPred, S4_storeirh_io>;
defm: IRA_<store, anyimm, u6_2ImmPred, S4_storeiri_io>;
}
// Reg+Imm, store-register
let AddedComplexity = 40 in {
defm: Storexi_pat<truncstorei8, I32, anyimm0, S2_storerb_io>;
defm: Storexi_pat<truncstorei16, I32, anyimm1, S2_storerh_io>;
defm: Storexi_pat<store, I32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, I64, anyimm3, S2_storerd_io>;
defm: Storexi_pat<store, F32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, F64, anyimm3, S2_storerd_io>;
defm: Storexim_pat<truncstorei8, I64, anyimm0, LoReg, S2_storerb_io>;
defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg, S2_storerh_io>;
defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg, S2_storeri_io>;
defm: Storexim_pat<store, I1, anyimm0, I1toI32, S2_storerb_io>;
defm: Storexi_pat<SwapSt<atomic_store_8>, I32, anyimm0, S2_storerb_io>;
defm: Storexi_pat<SwapSt<atomic_store_16>, I32, anyimm1, S2_storerh_io>;
defm: Storexi_pat<SwapSt<atomic_store_32>, I32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<SwapSt<atomic_store_64>, I64, anyimm3, S2_storerd_io>;
}
// Reg+Reg
let AddedComplexity = 30 in {
def: Storexr_add_pat<truncstorei8, I32, S4_storerb_rr>;
def: Storexr_add_pat<truncstorei16, I32, S4_storerh_rr>;
def: Storexr_add_pat<store, I32, S4_storeri_rr>;
def: Storexr_add_pat<store, I64, S4_storerd_rr>;
def: Storexr_add_pat<store, F32, S4_storeri_rr>;
def: Storexr_add_pat<store, F64, S4_storerd_rr>;
def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
(S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
}
// Reg, store-immediate
let AddedComplexity = 20 in {
def: Storexim_base_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_base_pat<store, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_base_pat<truncstorei8, anyimm, S4_storeirb_io>;
def: Storexi_base_pat<truncstorei16, anyimm, S4_storeirh_io>;
def: Storexi_base_pat<store, anyimm, S4_storeiri_io>;
}
// Reg, store-register
let AddedComplexity = 10 in {
def: Storexi_base_pat<truncstorei8, I32, S2_storerb_io>;
def: Storexi_base_pat<truncstorei16, I32, S2_storerh_io>;
def: Storexi_base_pat<store, I32, S2_storeri_io>;
def: Storexi_base_pat<store, I64, S2_storerd_io>;
def: Storexi_base_pat<store, F32, S2_storeri_io>;
def: Storexi_base_pat<store, F64, S2_storerd_io>;
def: Storexim_base_pat<truncstorei8, I64, LoReg, S2_storerb_io>;
def: Storexim_base_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
def: Storexim_base_pat<truncstorei32, I64, LoReg, S2_storeri_io>;
def: Storexim_base_pat<store, I1, I1toI32, S2_storerb_io>;
def: Storexi_base_pat<SwapSt<atomic_store_8>, I32, S2_storerb_io>;
def: Storexi_base_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>;
def: Storexi_base_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>;
def: Storexi_base_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>;
}
// HVX stores
multiclass HvxSt_pat<InstHexagon MI, PatFrag Store, PatFrag ImmPred,
PatFrag Value> {
def: Pat<(Store Value:$Vs, I32:$Rt),
(MI I32:$Rt, 0, Value:$Vs)>;
def: Pat<(Store Value:$Vs, (add I32:$Rt, ImmPred:$s)),
(MI I32:$Rt, imm:$s, Value:$Vs)>;
}
let Predicates = [UseHVX] in {
multiclass HvxStVs_pat<InstHexagon MI, PatFrag Store> {
defm: HvxSt_pat<MI, Store, IsVecOff, HVI8>;
defm: HvxSt_pat<MI, Store, IsVecOff, HVI16>;
defm: HvxSt_pat<MI, Store, IsVecOff, HVI32>;
defm: HvxSt_pat<MI, Store, IsVecOff, HVI64>;
}
defm: HvxStVs_pat<V6_vS32b_nt_ai, alignednontemporalstore>;
defm: HvxStVs_pat<V6_vS32b_ai, alignedstore>;
defm: HvxStVs_pat<V6_vS32Ub_ai, unalignedstore>;
multiclass HvxStWs_pat<InstHexagon MI, PatFrag Store> {
defm: HvxSt_pat<MI, Store, IsVecOff, HWI8>;
defm: HvxSt_pat<MI, Store, IsVecOff, HWI16>;
defm: HvxSt_pat<MI, Store, IsVecOff, HWI32>;
defm: HvxSt_pat<MI, Store, IsVecOff, HWI64>;
}
defm: HvxStWs_pat<PS_vstorerw_nt_ai, alignednontemporalstore>;
defm: HvxStWs_pat<PS_vstorerw_ai, alignedstore>;
defm: HvxStWs_pat<PS_vstorerwu_ai, unalignedstore>;
}
// --(13) Memop ----------------------------------------------------------
//
def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
int8_t V = N->getSExtValue();
return -32 < V && V <= -1;
}]>;
def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
int16_t V = N->getSExtValue();
return -32 < V && V <= -1;
}]>;
def m5_0ImmPred : PatLeaf<(i32 imm), [{
int64_t V = N->getSExtValue();
return -31 <= V && V <= -1;
}]>;
def IsNPow2_8 : PatLeaf<(i32 imm), [{
uint8_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def IsNPow2_16 : PatLeaf<(i32 imm), [{
uint16_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def Log2_8 : SDNodeXForm<imm, [{
uint8_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def Log2_16 : SDNodeXForm<imm, [{
uint16_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def LogN2_8 : SDNodeXForm<imm, [{
uint8_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_16 : SDNodeXForm<imm, [{
uint16_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
(MI I32:$Rs, 0, I32:$A)>;
// Addr: fi
def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
(MI AddrFI:$Rs, 0, I32:$A)>;
}
multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
(add I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, I32:$A)>;
def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
(IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, I32:$A)>;
// Addr: fi
def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
(add AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, I32:$A)>;
def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
(IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, I32:$A)>;
}
multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, InstHexagon MI> {
defm: Memopxr_base_pat <Load, Store, Oper, MI>;
defm: Memopxr_add_pat <Load, Store, ImmPred, Oper, MI>;
}
let AddedComplexity = 200 in {
// add reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
/*anyext*/ L4_add_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
/*sext*/ L4_add_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
/*zext*/ L4_add_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
/*anyext*/ L4_add_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
/*sext*/ L4_add_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
/*zext*/ L4_add_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
// sub reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
/*anyext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
/*sext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
/*zext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
/*anyext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
/*sext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
/*zext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
// and reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
/*anyext*/ L4_and_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
/*sext*/ L4_and_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
/*zext*/ L4_and_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
/*anyext*/ L4_and_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
/*sext*/ L4_and_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
/*zext*/ L4_and_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
// or reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
/*anyext*/ L4_or_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
/*sext*/ L4_or_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
/*zext*/ L4_or_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
/*anyext*/ L4_or_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
/*sext*/ L4_or_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
/*zext*/ L4_or_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
}
multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
(MI I32:$Rs, 0, (ArgMod Arg:$A))>;
// Addr: fi
def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
(MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
}
multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
(add I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
(IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
// Addr: fi
def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
(add AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
(IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
}
multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
InstHexagon MI> {
defm: Memopxi_base_pat <Load, Store, Oper, Arg, ArgMod, MI>;
defm: Memopxi_add_pat <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
}
let AddedComplexity = 220 in {
// add imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*anyext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*sext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*zext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*anyext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*sext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*zext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
L4_iadd_memopw_io>;
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*anyext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*sext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*zext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*anyext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*sext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*zext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
L4_iadd_memopw_io>;
// sub imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*anyext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*sext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*zext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*anyext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*sext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*zext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
L4_isub_memopw_io>;
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*anyext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*sext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*zext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*anyext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*sext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*zext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
L4_isub_memopw_io>;
// clrbit imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*anyext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*sext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*zext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*anyext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*sext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*zext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
LogN2_32, L4_iand_memopw_io>;
// setbit imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*anyext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*sext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*zext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*anyext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*sext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*zext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
Log2_32, L4_ior_memopw_io>;
}
// --(14) PIC ------------------------------------------------------------
//
def SDT_HexagonAtGot
: SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
(L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
(A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
(C4_addipc imm:$addr)>;
// --(15) Call -----------------------------------------------------------
//
// Pseudo instructions.
def SDT_SPCallSeqStart
: SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_SPCallSeqEnd
: SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end: SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def: Pat<(callseq_start timm:$amt, timm:$amt2),
(ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
(ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
def: Pat<(HexagonTCRet tglobaladdr:$dst), (PS_tailcall_i tglobaladdr:$dst)>;
def: Pat<(HexagonTCRet texternalsym:$dst), (PS_tailcall_i texternalsym:$dst)>;
def: Pat<(HexagonTCRet I32:$dst), (PS_tailcall_r I32:$dst)>;
def: Pat<(callv3 I32:$dst), (J2_callr I32:$dst)>;
def: Pat<(callv3 tglobaladdr:$dst), (J2_call tglobaladdr:$dst)>;
def: Pat<(callv3 texternalsym:$dst), (J2_call texternalsym:$dst)>;
def: Pat<(callv3 tglobaltlsaddr:$dst), (J2_call tglobaltlsaddr:$dst)>;
def: Pat<(callv3nr I32:$dst), (PS_callr_nr I32:$dst)>;
def: Pat<(callv3nr tglobaladdr:$dst), (PS_call_nr tglobaladdr:$dst)>;
def: Pat<(callv3nr texternalsym:$dst), (PS_call_nr texternalsym:$dst)>;
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
def: Pat<(retflag), (PS_jmpret (i32 R31))>;
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
// --(16) Branch ---------------------------------------------------------
//
def: Pat<(br bb:$dst), (J2_jump b30_2Imm:$dst)>;
def: Pat<(brind I32:$dst), (J2_jumpr I32:$dst)>;
def: Pat<(brcond I1:$Pu, bb:$dst),
(J2_jumpt I1:$Pu, bb:$dst)>;
def: Pat<(brcond (not I1:$Pu), bb:$dst),
(J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
(J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
(J2_jumpt I1:$Pu, bb:$dst)>;
// --(17) Misc -----------------------------------------------------------
// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
// biasing the expression by 48. We are depending on the representation of
// the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
//
// For the C code:
// retval = (c >= '0' && c <= '9') ? 1 : 0;
// The code is transformed upstream of llvm into
// retval = (c-48) < 10 ? 1 : 0;
def u7_0PosImmPred : ImmLeaf<i32, [{
// True if the immediate fits in an 7-bit unsigned field and is positive.
return Imm > 0 && isUInt<7>(Imm);
}]>;
let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
(C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
let AddedComplexity = 100 in
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
(i32 (extloadi8 (add I32:$b, 3))),
24, 8),
(i32 16)),
(shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
(zextloadi8 I32:$b)),
(A2_swiz (L2_loadri_io I32:$b, 0))>;
// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
[SDNPHasChain]>;
def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
(Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
(Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def SDTHexagonALLOCA
: SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def HexagonALLOCA
: SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
(PS_alloca IntRegs:$Rs, imm:$A)>;
def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
def: Pat<(HexagonBARRIER), (Y2_barrier)>;
// Read cycle counter.
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
[SDNPHasChain]>;
def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;