blob: a817c62c98579a3e0a7f982447cce3854108cedb [file] [log] [blame]
//===- MIRPrinter.cpp - MIR serialization format printer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that prints out the LLVM IR and machine
// functions using the MIR serialization format.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MIRPrinter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<bool> SimplifyMIR("simplify-mir",
cl::desc("Leave out unnecessary information when printing MIR"));
namespace {
/// This structure describes how to print out stack object references.
struct FrameIndexOperand {
std::string Name;
unsigned ID;
bool IsFixed;
FrameIndexOperand(StringRef Name, unsigned ID, bool IsFixed)
: Name(Name.str()), ID(ID), IsFixed(IsFixed) {}
/// Return an ordinary stack object reference.
static FrameIndexOperand create(StringRef Name, unsigned ID) {
return FrameIndexOperand(Name, ID, /*IsFixed=*/false);
}
/// Return a fixed stack object reference.
static FrameIndexOperand createFixed(unsigned ID) {
return FrameIndexOperand("", ID, /*IsFixed=*/true);
}
};
} // end anonymous namespace
namespace llvm {
/// This class prints out the machine functions using the MIR serialization
/// format.
class MIRPrinter {
raw_ostream &OS;
DenseMap<const uint32_t *, unsigned> RegisterMaskIds;
/// Maps from stack object indices to operand indices which will be used when
/// printing frame index machine operands.
DenseMap<int, FrameIndexOperand> StackObjectOperandMapping;
public:
MIRPrinter(raw_ostream &OS) : OS(OS) {}
void print(const MachineFunction &MF);
void convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI);
void convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI,
const MachineFrameInfo &MFI);
void convert(yaml::MachineFunction &MF,
const MachineConstantPool &ConstantPool);
void convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI,
const MachineJumpTableInfo &JTI);
void convertStackObjects(yaml::MachineFunction &YMF,
const MachineFunction &MF, ModuleSlotTracker &MST);
private:
void initRegisterMaskIds(const MachineFunction &MF);
};
/// This class prints out the machine instructions using the MIR serialization
/// format.
class MIPrinter {
raw_ostream &OS;
ModuleSlotTracker &MST;
const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds;
const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping;
/// Synchronization scope names registered with LLVMContext.
SmallVector<StringRef, 8> SSNs;
bool canPredictBranchProbabilities(const MachineBasicBlock &MBB) const;
bool canPredictSuccessors(const MachineBasicBlock &MBB) const;
public:
MIPrinter(raw_ostream &OS, ModuleSlotTracker &MST,
const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds,
const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping)
: OS(OS), MST(MST), RegisterMaskIds(RegisterMaskIds),
StackObjectOperandMapping(StackObjectOperandMapping) {}
void print(const MachineBasicBlock &MBB);
void print(const MachineInstr &MI);
void printMBBReference(const MachineBasicBlock &MBB);
void printIRBlockReference(const BasicBlock &BB);
void printIRValueReference(const Value &V);
void printStackObjectReference(int FrameIndex);
void printOffset(int64_t Offset);
void printTargetFlags(const MachineOperand &Op);
void print(const MachineInstr &MI, unsigned OpIdx,
const TargetRegisterInfo *TRI, bool ShouldPrintRegisterTies,
LLT TypeToPrint, bool IsDef = false);
void print(const LLVMContext &Context, const TargetInstrInfo &TII,
const MachineMemOperand &Op);
void printSyncScope(const LLVMContext &Context, SyncScope::ID SSID);
void print(const MCCFIInstruction &CFI, const TargetRegisterInfo *TRI);
};
} // end namespace llvm
namespace llvm {
namespace yaml {
/// This struct serializes the LLVM IR module.
template <> struct BlockScalarTraits<Module> {
static void output(const Module &Mod, void *Ctxt, raw_ostream &OS) {
Mod.print(OS, nullptr);
}
static StringRef input(StringRef Str, void *Ctxt, Module &Mod) {
llvm_unreachable("LLVM Module is supposed to be parsed separately");
return "";
}
};
} // end namespace yaml
} // end namespace llvm
static void printReg(unsigned Reg, raw_ostream &OS,
const TargetRegisterInfo *TRI) {
// TODO: Print Stack Slots.
if (!Reg)
OS << '_';
else if (TargetRegisterInfo::isVirtualRegister(Reg))
OS << '%' << TargetRegisterInfo::virtReg2Index(Reg);
else if (Reg < TRI->getNumRegs())
OS << '%' << StringRef(TRI->getName(Reg)).lower();
else
llvm_unreachable("Can't print this kind of register yet");
}
static void printReg(unsigned Reg, yaml::StringValue &Dest,
const TargetRegisterInfo *TRI) {
raw_string_ostream OS(Dest.Value);
printReg(Reg, OS, TRI);
}
void MIRPrinter::print(const MachineFunction &MF) {
initRegisterMaskIds(MF);
yaml::MachineFunction YamlMF;
YamlMF.Name = MF.getName();
YamlMF.Alignment = MF.getAlignment();
YamlMF.ExposesReturnsTwice = MF.exposesReturnsTwice();
YamlMF.Legalized = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized);
YamlMF.RegBankSelected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::RegBankSelected);
YamlMF.Selected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected);
convert(YamlMF, MF.getRegInfo(), MF.getSubtarget().getRegisterInfo());
ModuleSlotTracker MST(MF.getFunction()->getParent());
MST.incorporateFunction(*MF.getFunction());
convert(MST, YamlMF.FrameInfo, MF.getFrameInfo());
convertStackObjects(YamlMF, MF, MST);
if (const auto *ConstantPool = MF.getConstantPool())
convert(YamlMF, *ConstantPool);
if (const auto *JumpTableInfo = MF.getJumpTableInfo())
convert(MST, YamlMF.JumpTableInfo, *JumpTableInfo);
raw_string_ostream StrOS(YamlMF.Body.Value.Value);
bool IsNewlineNeeded = false;
for (const auto &MBB : MF) {
if (IsNewlineNeeded)
StrOS << "\n";
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.print(MBB);
IsNewlineNeeded = true;
}
StrOS.flush();
yaml::Output Out(OS);
if (!SimplifyMIR)
Out.setWriteDefaultValues(true);
Out << YamlMF;
}
static void printCustomRegMask(const uint32_t *RegMask, raw_ostream &OS,
const TargetRegisterInfo *TRI) {
assert(RegMask && "Can't print an empty register mask");
OS << StringRef("CustomRegMask(");
bool IsRegInRegMaskFound = false;
for (int I = 0, E = TRI->getNumRegs(); I < E; I++) {
// Check whether the register is asserted in regmask.
if (RegMask[I / 32] & (1u << (I % 32))) {
if (IsRegInRegMaskFound)
OS << ',';
printReg(I, OS, TRI);
IsRegInRegMaskFound = true;
}
}
OS << ')';
}
static void printRegClassOrBank(unsigned Reg, raw_ostream &OS,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
if (RegInfo.getRegClassOrNull(Reg))
OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
else if (RegInfo.getRegBankOrNull(Reg))
OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
else {
OS << "_";
assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
"Generic registers must have a valid type");
}
}
static void printRegClassOrBank(unsigned Reg, yaml::StringValue &Dest,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
raw_string_ostream OS(Dest.Value);
printRegClassOrBank(Reg, OS, RegInfo, TRI);
}
void MIRPrinter::convert(yaml::MachineFunction &MF,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
MF.TracksRegLiveness = RegInfo.tracksLiveness();
// Print the virtual register definitions.
for (unsigned I = 0, E = RegInfo.getNumVirtRegs(); I < E; ++I) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
yaml::VirtualRegisterDefinition VReg;
VReg.ID = I;
printRegClassOrBank(Reg, VReg.Class, RegInfo, TRI);
unsigned PreferredReg = RegInfo.getSimpleHint(Reg);
if (PreferredReg)
printReg(PreferredReg, VReg.PreferredRegister, TRI);
MF.VirtualRegisters.push_back(VReg);
}
// Print the live ins.
for (std::pair<unsigned, unsigned> LI : RegInfo.liveins()) {
yaml::MachineFunctionLiveIn LiveIn;
printReg(LI.first, LiveIn.Register, TRI);
if (LI.second)
printReg(LI.second, LiveIn.VirtualRegister, TRI);
MF.LiveIns.push_back(LiveIn);
}
// Prints the callee saved registers.
if (RegInfo.isUpdatedCSRsInitialized()) {
const MCPhysReg *CalleeSavedRegs = RegInfo.getCalleeSavedRegs();
std::vector<yaml::FlowStringValue> CalleeSavedRegisters;
for (const MCPhysReg *I = CalleeSavedRegs; *I; ++I) {
yaml::FlowStringValue Reg;
printReg(*I, Reg, TRI);
CalleeSavedRegisters.push_back(Reg);
}
MF.CalleeSavedRegisters = CalleeSavedRegisters;
}
}
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineFrameInfo &YamlMFI,
const MachineFrameInfo &MFI) {
YamlMFI.IsFrameAddressTaken = MFI.isFrameAddressTaken();
YamlMFI.IsReturnAddressTaken = MFI.isReturnAddressTaken();
YamlMFI.HasStackMap = MFI.hasStackMap();
YamlMFI.HasPatchPoint = MFI.hasPatchPoint();
YamlMFI.StackSize = MFI.getStackSize();
YamlMFI.OffsetAdjustment = MFI.getOffsetAdjustment();
YamlMFI.MaxAlignment = MFI.getMaxAlignment();
YamlMFI.AdjustsStack = MFI.adjustsStack();
YamlMFI.HasCalls = MFI.hasCalls();
YamlMFI.MaxCallFrameSize = MFI.isMaxCallFrameSizeComputed()
? MFI.getMaxCallFrameSize() : ~0u;
YamlMFI.HasOpaqueSPAdjustment = MFI.hasOpaqueSPAdjustment();
YamlMFI.HasVAStart = MFI.hasVAStart();
YamlMFI.HasMustTailInVarArgFunc = MFI.hasMustTailInVarArgFunc();
if (MFI.getSavePoint()) {
raw_string_ostream StrOS(YamlMFI.SavePoint.Value);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printMBBReference(*MFI.getSavePoint());
}
if (MFI.getRestorePoint()) {
raw_string_ostream StrOS(YamlMFI.RestorePoint.Value);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printMBBReference(*MFI.getRestorePoint());
}
}
void MIRPrinter::convertStackObjects(yaml::MachineFunction &YMF,
const MachineFunction &MF,
ModuleSlotTracker &MST) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Process fixed stack objects.
unsigned ID = 0;
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
if (MFI.isDeadObjectIndex(I))
continue;
yaml::FixedMachineStackObject YamlObject;
YamlObject.ID = ID;
YamlObject.Type = MFI.isSpillSlotObjectIndex(I)
? yaml::FixedMachineStackObject::SpillSlot
: yaml::FixedMachineStackObject::DefaultType;
YamlObject.Offset = MFI.getObjectOffset(I);
YamlObject.Size = MFI.getObjectSize(I);
YamlObject.Alignment = MFI.getObjectAlignment(I);
YamlObject.StackID = MFI.getStackID(I);
YamlObject.IsImmutable = MFI.isImmutableObjectIndex(I);
YamlObject.IsAliased = MFI.isAliasedObjectIndex(I);
YMF.FixedStackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(
std::make_pair(I, FrameIndexOperand::createFixed(ID++)));
}
// Process ordinary stack objects.
ID = 0;
for (int I = 0, E = MFI.getObjectIndexEnd(); I < E; ++I) {
if (MFI.isDeadObjectIndex(I))
continue;
yaml::MachineStackObject YamlObject;
YamlObject.ID = ID;
if (const auto *Alloca = MFI.getObjectAllocation(I))
YamlObject.Name.Value =
Alloca->hasName() ? Alloca->getName() : "<unnamed alloca>";
YamlObject.Type = MFI.isSpillSlotObjectIndex(I)
? yaml::MachineStackObject::SpillSlot
: MFI.isVariableSizedObjectIndex(I)
? yaml::MachineStackObject::VariableSized
: yaml::MachineStackObject::DefaultType;
YamlObject.Offset = MFI.getObjectOffset(I);
YamlObject.Size = MFI.getObjectSize(I);
YamlObject.Alignment = MFI.getObjectAlignment(I);
YamlObject.StackID = MFI.getStackID(I);
YMF.StackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(std::make_pair(
I, FrameIndexOperand::create(YamlObject.Name.Value, ID++)));
}
for (const auto &CSInfo : MFI.getCalleeSavedInfo()) {
yaml::StringValue Reg;
printReg(CSInfo.getReg(), Reg, TRI);
auto StackObjectInfo = StackObjectOperandMapping.find(CSInfo.getFrameIdx());
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
if (StackObject.IsFixed) {
YMF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg;
YMF.FixedStackObjects[StackObject.ID].CalleeSavedRestored =
CSInfo.isRestored();
} else {
YMF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg;
YMF.StackObjects[StackObject.ID].CalleeSavedRestored =
CSInfo.isRestored();
}
}
for (unsigned I = 0, E = MFI.getLocalFrameObjectCount(); I < E; ++I) {
auto LocalObject = MFI.getLocalFrameObjectMap(I);
auto StackObjectInfo = StackObjectOperandMapping.find(LocalObject.first);
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a locally mapped stack object");
YMF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second;
}
// Print the stack object references in the frame information class after
// converting the stack objects.
if (MFI.hasStackProtectorIndex()) {
raw_string_ostream StrOS(YMF.FrameInfo.StackProtector.Value);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printStackObjectReference(MFI.getStackProtectorIndex());
}
// Print the debug variable information.
for (const MachineFunction::VariableDbgInfo &DebugVar :
MF.getVariableDbgInfo()) {
auto StackObjectInfo = StackObjectOperandMapping.find(DebugVar.Slot);
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a non-fixed stack object");
auto &Object = YMF.StackObjects[StackObject.ID];
{
raw_string_ostream StrOS(Object.DebugVar.Value);
DebugVar.Var->printAsOperand(StrOS, MST);
}
{
raw_string_ostream StrOS(Object.DebugExpr.Value);
DebugVar.Expr->printAsOperand(StrOS, MST);
}
{
raw_string_ostream StrOS(Object.DebugLoc.Value);
DebugVar.Loc->printAsOperand(StrOS, MST);
}
}
}
void MIRPrinter::convert(yaml::MachineFunction &MF,
const MachineConstantPool &ConstantPool) {
unsigned ID = 0;
for (const MachineConstantPoolEntry &Constant : ConstantPool.getConstants()) {
std::string Str;
raw_string_ostream StrOS(Str);
if (Constant.isMachineConstantPoolEntry()) {
Constant.Val.MachineCPVal->print(StrOS);
} else {
Constant.Val.ConstVal->printAsOperand(StrOS);
}
yaml::MachineConstantPoolValue YamlConstant;
YamlConstant.ID = ID++;
YamlConstant.Value = StrOS.str();
YamlConstant.Alignment = Constant.getAlignment();
YamlConstant.IsTargetSpecific = Constant.isMachineConstantPoolEntry();
MF.Constants.push_back(YamlConstant);
}
}
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineJumpTable &YamlJTI,
const MachineJumpTableInfo &JTI) {
YamlJTI.Kind = JTI.getEntryKind();
unsigned ID = 0;
for (const auto &Table : JTI.getJumpTables()) {
std::string Str;
yaml::MachineJumpTable::Entry Entry;
Entry.ID = ID++;
for (const auto *MBB : Table.MBBs) {
raw_string_ostream StrOS(Str);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printMBBReference(*MBB);
Entry.Blocks.push_back(StrOS.str());
Str.clear();
}
YamlJTI.Entries.push_back(Entry);
}
}
void MIRPrinter::initRegisterMaskIds(const MachineFunction &MF) {
const auto *TRI = MF.getSubtarget().getRegisterInfo();
unsigned I = 0;
for (const uint32_t *Mask : TRI->getRegMasks())
RegisterMaskIds.insert(std::make_pair(Mask, I++));
}
void llvm::guessSuccessors(const MachineBasicBlock &MBB,
SmallVectorImpl<MachineBasicBlock*> &Result,
bool &IsFallthrough) {
SmallPtrSet<MachineBasicBlock*,8> Seen;
for (const MachineInstr &MI : MBB) {
if (MI.isPHI())
continue;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isMBB())
continue;
MachineBasicBlock *Succ = MO.getMBB();
auto RP = Seen.insert(Succ);
if (RP.second)
Result.push_back(Succ);
}
}
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
IsFallthrough = I == MBB.end() || !I->isBarrier();
}
bool
MIPrinter::canPredictBranchProbabilities(const MachineBasicBlock &MBB) const {
if (MBB.succ_size() <= 1)
return true;
if (!MBB.hasSuccessorProbabilities())
return true;
SmallVector<BranchProbability,8> Normalized(MBB.Probs.begin(),
MBB.Probs.end());
BranchProbability::normalizeProbabilities(Normalized.begin(),
Normalized.end());
SmallVector<BranchProbability,8> Equal(Normalized.size());
BranchProbability::normalizeProbabilities(Equal.begin(), Equal.end());
return std::equal(Normalized.begin(), Normalized.end(), Equal.begin());
}
bool MIPrinter::canPredictSuccessors(const MachineBasicBlock &MBB) const {
SmallVector<MachineBasicBlock*,8> GuessedSuccs;
bool GuessedFallthrough;
guessSuccessors(MBB, GuessedSuccs, GuessedFallthrough);
if (GuessedFallthrough) {
const MachineFunction &MF = *MBB.getParent();
MachineFunction::const_iterator NextI = std::next(MBB.getIterator());
if (NextI != MF.end()) {
MachineBasicBlock *Next = const_cast<MachineBasicBlock*>(&*NextI);
if (!is_contained(GuessedSuccs, Next))
GuessedSuccs.push_back(Next);
}
}
if (GuessedSuccs.size() != MBB.succ_size())
return false;
return std::equal(MBB.succ_begin(), MBB.succ_end(), GuessedSuccs.begin());
}
void MIPrinter::print(const MachineBasicBlock &MBB) {
assert(MBB.getNumber() >= 0 && "Invalid MBB number");
OS << "bb." << MBB.getNumber();
bool HasAttributes = false;
if (const auto *BB = MBB.getBasicBlock()) {
if (BB->hasName()) {
OS << "." << BB->getName();
} else {
HasAttributes = true;
OS << " (";
int Slot = MST.getLocalSlot(BB);
if (Slot == -1)
OS << "<ir-block badref>";
else
OS << (Twine("%ir-block.") + Twine(Slot)).str();
}
}
if (MBB.hasAddressTaken()) {
OS << (HasAttributes ? ", " : " (");
OS << "address-taken";
HasAttributes = true;
}
if (MBB.isEHPad()) {
OS << (HasAttributes ? ", " : " (");
OS << "landing-pad";
HasAttributes = true;
}
if (MBB.getAlignment()) {
OS << (HasAttributes ? ", " : " (");
OS << "align " << MBB.getAlignment();
HasAttributes = true;
}
if (HasAttributes)
OS << ")";
OS << ":\n";
bool HasLineAttributes = false;
// Print the successors
bool canPredictProbs = canPredictBranchProbabilities(MBB);
// Even if the list of successors is empty, if we cannot guess it,
// we need to print it to tell the parser that the list is empty.
// This is needed, because MI model unreachable as empty blocks
// with an empty successor list. If the parser would see that
// without the successor list, it would guess the code would
// fallthrough.
if ((!MBB.succ_empty() && !SimplifyMIR) || !canPredictProbs ||
!canPredictSuccessors(MBB)) {
OS.indent(2) << "successors: ";
for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) {
if (I != MBB.succ_begin())
OS << ", ";
printMBBReference(**I);
if (!SimplifyMIR || !canPredictProbs)
OS << '('
<< format("0x%08" PRIx32, MBB.getSuccProbability(I).getNumerator())
<< ')';
}
OS << "\n";
HasLineAttributes = true;
}
// Print the live in registers.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
if (MRI.tracksLiveness() && !MBB.livein_empty()) {
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
OS.indent(2) << "liveins: ";
bool First = true;
for (const auto &LI : MBB.liveins()) {
if (!First)
OS << ", ";
First = false;
printReg(LI.PhysReg, OS, &TRI);
if (!LI.LaneMask.all())
OS << ":0x" << PrintLaneMask(LI.LaneMask);
}
OS << "\n";
HasLineAttributes = true;
}
if (HasLineAttributes)
OS << "\n";
bool IsInBundle = false;
for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) {
const MachineInstr &MI = *I;
if (IsInBundle && !MI.isInsideBundle()) {
OS.indent(2) << "}\n";
IsInBundle = false;
}
OS.indent(IsInBundle ? 4 : 2);
print(MI);
if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
OS << " {";
IsInBundle = true;
}
OS << "\n";
}
if (IsInBundle)
OS.indent(2) << "}\n";
}
/// Return true when an instruction has tied register that can't be determined
/// by the instruction's descriptor.
static bool hasComplexRegisterTies(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
const auto &Operand = MI.getOperand(I);
if (!Operand.isReg() || Operand.isDef())
// Ignore the defined registers as MCID marks only the uses as tied.
continue;
int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
int TiedIdx = Operand.isTied() ? int(MI.findTiedOperandIdx(I)) : -1;
if (ExpectedTiedIdx != TiedIdx)
return true;
}
return false;
}
static LLT getTypeToPrint(const MachineInstr &MI, unsigned OpIdx,
SmallBitVector &PrintedTypes,
const MachineRegisterInfo &MRI) {
const MachineOperand &Op = MI.getOperand(OpIdx);
if (!Op.isReg())
return LLT{};
if (MI.isVariadic() || OpIdx >= MI.getNumExplicitOperands())
return MRI.getType(Op.getReg());
auto &OpInfo = MI.getDesc().OpInfo[OpIdx];
if (!OpInfo.isGenericType())
return MRI.getType(Op.getReg());
if (PrintedTypes[OpInfo.getGenericTypeIndex()])
return LLT{};
PrintedTypes.set(OpInfo.getGenericTypeIndex());
return MRI.getType(Op.getReg());
}
void MIPrinter::print(const MachineInstr &MI) {
const auto *MF = MI.getMF();
const auto &MRI = MF->getRegInfo();
const auto &SubTarget = MF->getSubtarget();
const auto *TRI = SubTarget.getRegisterInfo();
assert(TRI && "Expected target register info");
const auto *TII = SubTarget.getInstrInfo();
assert(TII && "Expected target instruction info");
if (MI.isCFIInstruction())
assert(MI.getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
SmallBitVector PrintedTypes(8);
bool ShouldPrintRegisterTies = hasComplexRegisterTies(MI);
unsigned I = 0, E = MI.getNumOperands();
for (; I < E && MI.getOperand(I).isReg() && MI.getOperand(I).isDef() &&
!MI.getOperand(I).isImplicit();
++I) {
if (I)
OS << ", ";
print(MI, I, TRI, ShouldPrintRegisterTies,
getTypeToPrint(MI, I, PrintedTypes, MRI),
/*IsDef=*/true);
}
if (I)
OS << " = ";
if (MI.getFlag(MachineInstr::FrameSetup))
OS << "frame-setup ";
OS << TII->getName(MI.getOpcode());
if (I < E)
OS << ' ';
bool NeedComma = false;
for (; I < E; ++I) {
if (NeedComma)
OS << ", ";
print(MI, I, TRI, ShouldPrintRegisterTies,
getTypeToPrint(MI, I, PrintedTypes, MRI));
NeedComma = true;
}
if (MI.getDebugLoc()) {
if (NeedComma)
OS << ',';
OS << " debug-location ";
MI.getDebugLoc()->printAsOperand(OS, MST);
}
if (!MI.memoperands_empty()) {
OS << " :: ";
const LLVMContext &Context = MF->getFunction()->getContext();
bool NeedComma = false;
for (const auto *Op : MI.memoperands()) {
if (NeedComma)
OS << ", ";
print(Context, *TII, *Op);
NeedComma = true;
}
}
}
void MIPrinter::printMBBReference(const MachineBasicBlock &MBB) {
OS << "%bb." << MBB.getNumber();
if (const auto *BB = MBB.getBasicBlock()) {
if (BB->hasName())
OS << '.' << BB->getName();
}
}
static void printIRSlotNumber(raw_ostream &OS, int Slot) {
if (Slot == -1)
OS << "<badref>";
else
OS << Slot;
}
void MIPrinter::printIRBlockReference(const BasicBlock &BB) {
OS << "%ir-block.";
if (BB.hasName()) {
printLLVMNameWithoutPrefix(OS, BB.getName());
return;
}
const Function *F = BB.getParent();
int Slot;
if (F == MST.getCurrentFunction()) {
Slot = MST.getLocalSlot(&BB);
} else {
ModuleSlotTracker CustomMST(F->getParent(),
/*ShouldInitializeAllMetadata=*/false);
CustomMST.incorporateFunction(*F);
Slot = CustomMST.getLocalSlot(&BB);
}
printIRSlotNumber(OS, Slot);
}
void MIPrinter::printIRValueReference(const Value &V) {
if (isa<GlobalValue>(V)) {
V.printAsOperand(OS, /*PrintType=*/false, MST);
return;
}
if (isa<Constant>(V)) {
// Machine memory operands can load/store to/from constant value pointers.
OS << '`';
V.printAsOperand(OS, /*PrintType=*/true, MST);
OS << '`';
return;
}
OS << "%ir.";
if (V.hasName()) {
printLLVMNameWithoutPrefix(OS, V.getName());
return;
}
printIRSlotNumber(OS, MST.getLocalSlot(&V));
}
void MIPrinter::printStackObjectReference(int FrameIndex) {
auto ObjectInfo = StackObjectOperandMapping.find(FrameIndex);
assert(ObjectInfo != StackObjectOperandMapping.end() &&
"Invalid frame index");
const FrameIndexOperand &Operand = ObjectInfo->second;
if (Operand.IsFixed) {
OS << "%fixed-stack." << Operand.ID;
return;
}
OS << "%stack." << Operand.ID;
if (!Operand.Name.empty())
OS << '.' << Operand.Name;
}
void MIPrinter::printOffset(int64_t Offset) {
if (Offset == 0)
return;
if (Offset < 0) {
OS << " - " << -Offset;
return;
}
OS << " + " << Offset;
}
static const char *getTargetFlagName(const TargetInstrInfo *TII, unsigned TF) {
auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
for (const auto &I : Flags) {
if (I.first == TF) {
return I.second;
}
}
return nullptr;
}
void MIPrinter::printTargetFlags(const MachineOperand &Op) {
if (!Op.getTargetFlags())
return;
const auto *TII = Op.getParent()->getMF()->getSubtarget().getInstrInfo();
assert(TII && "expected instruction info");
auto Flags = TII->decomposeMachineOperandsTargetFlags(Op.getTargetFlags());
OS << "target-flags(";
const bool HasDirectFlags = Flags.first;
const bool HasBitmaskFlags = Flags.second;
if (!HasDirectFlags && !HasBitmaskFlags) {
OS << "<unknown>) ";
return;
}
if (HasDirectFlags) {
if (const auto *Name = getTargetFlagName(TII, Flags.first))
OS << Name;
else
OS << "<unknown target flag>";
}
if (!HasBitmaskFlags) {
OS << ") ";
return;
}
bool IsCommaNeeded = HasDirectFlags;
unsigned BitMask = Flags.second;
auto BitMasks = TII->getSerializableBitmaskMachineOperandTargetFlags();
for (const auto &Mask : BitMasks) {
// Check if the flag's bitmask has the bits of the current mask set.
if ((BitMask & Mask.first) == Mask.first) {
if (IsCommaNeeded)
OS << ", ";
IsCommaNeeded = true;
OS << Mask.second;
// Clear the bits which were serialized from the flag's bitmask.
BitMask &= ~(Mask.first);
}
}
if (BitMask) {
// When the resulting flag's bitmask isn't zero, we know that we didn't
// serialize all of the bit flags.
if (IsCommaNeeded)
OS << ", ";
OS << "<unknown bitmask target flag>";
}
OS << ") ";
}
static const char *getTargetIndexName(const MachineFunction &MF, int Index) {
const auto *TII = MF.getSubtarget().getInstrInfo();
assert(TII && "expected instruction info");
auto Indices = TII->getSerializableTargetIndices();
for (const auto &I : Indices) {
if (I.first == Index) {
return I.second;
}
}
return nullptr;
}
void MIPrinter::print(const MachineInstr &MI, unsigned OpIdx,
const TargetRegisterInfo *TRI,
bool ShouldPrintRegisterTies, LLT TypeToPrint,
bool IsDef) {
const MachineOperand &Op = MI.getOperand(OpIdx);
printTargetFlags(Op);
switch (Op.getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = Op.getReg();
if (Op.isImplicit())
OS << (Op.isDef() ? "implicit-def " : "implicit ");
else if (!IsDef && Op.isDef())
// Print the 'def' flag only when the operand is defined after '='.
OS << "def ";
if (Op.isInternalRead())
OS << "internal ";
if (Op.isDead())
OS << "dead ";
if (Op.isKill())
OS << "killed ";
if (Op.isUndef())
OS << "undef ";
if (Op.isEarlyClobber())
OS << "early-clobber ";
if (Op.isDebug())
OS << "debug-use ";
printReg(Reg, OS, TRI);
// Print the sub register.
if (Op.getSubReg() != 0)
OS << '.' << TRI->getSubRegIndexName(Op.getSubReg());
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
const MachineRegisterInfo &MRI = Op.getParent()->getMF()->getRegInfo();
if (IsDef || MRI.def_empty(Reg)) {
OS << ':';
printRegClassOrBank(Reg, OS, MRI, TRI);
}
}
if (ShouldPrintRegisterTies && Op.isTied() && !Op.isDef())
OS << "(tied-def " << Op.getParent()->findTiedOperandIdx(OpIdx) << ")";
if (TypeToPrint.isValid())
OS << '(' << TypeToPrint << ')';
break;
}
case MachineOperand::MO_Immediate:
if (MI.isOperandSubregIdx(OpIdx))
OS << "%subreg." << TRI->getSubRegIndexName(Op.getImm());
else
OS << Op.getImm();
break;
case MachineOperand::MO_CImmediate:
Op.getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
break;
case MachineOperand::MO_FPImmediate:
Op.getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST);
break;
case MachineOperand::MO_MachineBasicBlock:
printMBBReference(*Op.getMBB());
break;
case MachineOperand::MO_FrameIndex:
printStackObjectReference(Op.getIndex());
break;
case MachineOperand::MO_ConstantPoolIndex:
OS << "%const." << Op.getIndex();
printOffset(Op.getOffset());
break;
case MachineOperand::MO_TargetIndex:
OS << "target-index(";
if (const auto *Name =
getTargetIndexName(*Op.getParent()->getMF(), Op.getIndex()))
OS << Name;
else
OS << "<unknown>";
OS << ')';
printOffset(Op.getOffset());
break;
case MachineOperand::MO_JumpTableIndex:
OS << "%jump-table." << Op.getIndex();
break;
case MachineOperand::MO_ExternalSymbol: {
StringRef Name = Op.getSymbolName();
OS << '$';
if (Name.empty()) {
OS << "\"\"";
} else {
printLLVMNameWithoutPrefix(OS, Name);
}
printOffset(Op.getOffset());
break;
}
case MachineOperand::MO_GlobalAddress:
Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
printOffset(Op.getOffset());
break;
case MachineOperand::MO_BlockAddress:
OS << "blockaddress(";
Op.getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false,
MST);
OS << ", ";
printIRBlockReference(*Op.getBlockAddress()->getBasicBlock());
OS << ')';
printOffset(Op.getOffset());
break;
case MachineOperand::MO_RegisterMask: {
auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
if (RegMaskInfo != RegisterMaskIds.end())
OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
else
printCustomRegMask(Op.getRegMask(), OS, TRI);
break;
}
case MachineOperand::MO_RegisterLiveOut: {
const uint32_t *RegMask = Op.getRegLiveOut();
OS << "liveout(";
bool IsCommaNeeded = false;
for (unsigned Reg = 0, E = TRI->getNumRegs(); Reg < E; ++Reg) {
if (RegMask[Reg / 32] & (1U << (Reg % 32))) {
if (IsCommaNeeded)
OS << ", ";
printReg(Reg, OS, TRI);
IsCommaNeeded = true;
}
}
OS << ")";
break;
}
case MachineOperand::MO_Metadata:
Op.getMetadata()->printAsOperand(OS, MST);
break;
case MachineOperand::MO_MCSymbol:
OS << "<mcsymbol " << *Op.getMCSymbol() << ">";
break;
case MachineOperand::MO_CFIIndex: {
const MachineFunction &MF = *Op.getParent()->getMF();
print(MF.getFrameInstructions()[Op.getCFIIndex()], TRI);
break;
}
case MachineOperand::MO_IntrinsicID: {
Intrinsic::ID ID = Op.getIntrinsicID();
if (ID < Intrinsic::num_intrinsics)
OS << "intrinsic(@" << Intrinsic::getName(ID, None) << ')';
else {
const MachineFunction &MF = *Op.getParent()->getMF();
const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
OS << "intrinsic(@" << TII->getName(ID) << ')';
}
break;
}
case MachineOperand::MO_Predicate: {
auto Pred = static_cast<CmpInst::Predicate>(Op.getPredicate());
OS << (CmpInst::isIntPredicate(Pred) ? "int" : "float") << "pred("
<< CmpInst::getPredicateName(Pred) << ')';
break;
}
}
}
static const char *getTargetMMOFlagName(const TargetInstrInfo &TII,
unsigned TMMOFlag) {
auto Flags = TII.getSerializableMachineMemOperandTargetFlags();
for (const auto &I : Flags) {
if (I.first == TMMOFlag) {
return I.second;
}
}
return nullptr;
}
void MIPrinter::print(const LLVMContext &Context, const TargetInstrInfo &TII,
const MachineMemOperand &Op) {
OS << '(';
if (Op.isVolatile())
OS << "volatile ";
if (Op.isNonTemporal())
OS << "non-temporal ";
if (Op.isDereferenceable())
OS << "dereferenceable ";
if (Op.isInvariant())
OS << "invariant ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag1)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag1)
<< "\" ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag2)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag2)
<< "\" ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag3)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag3)
<< "\" ";
if (Op.isLoad())
OS << "load ";
else {
assert(Op.isStore() && "Non load machine operand must be a store");
OS << "store ";
}
printSyncScope(Context, Op.getSyncScopeID());
if (Op.getOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(Op.getOrdering()) << ' ';
if (Op.getFailureOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(Op.getFailureOrdering()) << ' ';
OS << Op.getSize();
if (const Value *Val = Op.getValue()) {
OS << (Op.isLoad() ? " from " : " into ");
printIRValueReference(*Val);
} else if (const PseudoSourceValue *PVal = Op.getPseudoValue()) {
OS << (Op.isLoad() ? " from " : " into ");
assert(PVal && "Expected a pseudo source value");
switch (PVal->kind()) {
case PseudoSourceValue::Stack:
OS << "stack";
break;
case PseudoSourceValue::GOT:
OS << "got";
break;
case PseudoSourceValue::JumpTable:
OS << "jump-table";
break;
case PseudoSourceValue::ConstantPool:
OS << "constant-pool";
break;
case PseudoSourceValue::FixedStack:
printStackObjectReference(
cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex());
break;
case PseudoSourceValue::GlobalValueCallEntry:
OS << "call-entry ";
cast<GlobalValuePseudoSourceValue>(PVal)->getValue()->printAsOperand(
OS, /*PrintType=*/false, MST);
break;
case PseudoSourceValue::ExternalSymbolCallEntry:
OS << "call-entry $";
printLLVMNameWithoutPrefix(
OS, cast<ExternalSymbolPseudoSourceValue>(PVal)->getSymbol());
break;
case PseudoSourceValue::TargetCustom:
llvm_unreachable("TargetCustom pseudo source values are not supported");
break;
}
}
printOffset(Op.getOffset());
if (Op.getBaseAlignment() != Op.getSize())
OS << ", align " << Op.getBaseAlignment();
auto AAInfo = Op.getAAInfo();
if (AAInfo.TBAA) {
OS << ", !tbaa ";
AAInfo.TBAA->printAsOperand(OS, MST);
}
if (AAInfo.Scope) {
OS << ", !alias.scope ";
AAInfo.Scope->printAsOperand(OS, MST);
}
if (AAInfo.NoAlias) {
OS << ", !noalias ";
AAInfo.NoAlias->printAsOperand(OS, MST);
}
if (Op.getRanges()) {
OS << ", !range ";
Op.getRanges()->printAsOperand(OS, MST);
}
OS << ')';
}
void MIPrinter::printSyncScope(const LLVMContext &Context, SyncScope::ID SSID) {
switch (SSID) {
case SyncScope::System: {
break;
}
default: {
if (SSNs.empty())
Context.getSyncScopeNames(SSNs);
OS << "syncscope(\"";
PrintEscapedString(SSNs[SSID], OS);
OS << "\") ";
break;
}
}
}
static void printCFIRegister(unsigned DwarfReg, raw_ostream &OS,
const TargetRegisterInfo *TRI) {
int Reg = TRI->getLLVMRegNum(DwarfReg, true);
if (Reg == -1) {
OS << "<badreg>";
return;
}
printReg(Reg, OS, TRI);
}
void MIPrinter::print(const MCCFIInstruction &CFI,
const TargetRegisterInfo *TRI) {
switch (CFI.getOperation()) {
case MCCFIInstruction::OpSameValue:
OS << "same_value ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpOffset:
OS << "offset ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfaRegister:
OS << "def_cfa_register ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpDefCfaOffset:
OS << "def_cfa_offset ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
OS << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfa:
OS << "def_cfa ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpRestore:
OS << "restore ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
default:
// TODO: Print the other CFI Operations.
OS << "<unserializable cfi operation>";
break;
}
}
void llvm::printMIR(raw_ostream &OS, const Module &M) {
yaml::Output Out(OS);
Out << const_cast<Module &>(M);
}
void llvm::printMIR(raw_ostream &OS, const MachineFunction &MF) {
MIRPrinter Printer(OS);
Printer.print(MF);
}