blob: 0bdb38bfcbec86f42f6fe1f2bbc7951205bf3303 [file] [log] [blame]
//===- CodeGen/MachineValueType.h - Machine-Level types ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of machine-level target independent types which
// legal values in the code generator use.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEVALUETYPE_H
#define LLVM_CODEGEN_MACHINEVALUETYPE_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
class Type;
/// Machine Value Type. Every type that is supported natively by some
/// processor targeted by LLVM occurs here. This means that any legal value
/// type can be represented by an MVT.
class MVT {
public:
enum SimpleValueType : uint8_t {
// Simple value types that aren't explicitly part of this enumeration
// are considered extended value types.
INVALID_SIMPLE_VALUE_TYPE = 0,
// If you change this numbering, you must change the values in
// ValueTypes.td as well!
Other = 1, // This is a non-standard value
i1 = 2, // This is a 1 bit integer value
i8 = 3, // This is an 8 bit integer value
i16 = 4, // This is a 16 bit integer value
i32 = 5, // This is a 32 bit integer value
i64 = 6, // This is a 64 bit integer value
i128 = 7, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f16 = 8, // This is a 16 bit floating point value
f32 = 9, // This is a 32 bit floating point value
f64 = 10, // This is a 64 bit floating point value
f80 = 11, // This is a 80 bit floating point value
f128 = 12, // This is a 128 bit floating point value
ppcf128 = 13, // This is a PPC 128-bit floating point value
FIRST_FP_VALUETYPE = f16,
LAST_FP_VALUETYPE = ppcf128,
v1i1 = 14, // 1 x i1
v2i1 = 15, // 2 x i1
v4i1 = 16, // 4 x i1
v8i1 = 17, // 8 x i1
v16i1 = 18, // 16 x i1
v32i1 = 19, // 32 x i1
v64i1 = 20, // 64 x i1
v512i1 = 21, // 512 x i1
v1024i1 = 22, // 1024 x i1
v1i8 = 23, // 1 x i8
v2i8 = 24, // 2 x i8
v4i8 = 25, // 4 x i8
v8i8 = 26, // 8 x i8
v16i8 = 27, // 16 x i8
v32i8 = 28, // 32 x i8
v64i8 = 29, // 64 x i8
v128i8 = 30, //128 x i8
v256i8 = 31, //256 x i8
v1i16 = 32, // 1 x i16
v2i16 = 33, // 2 x i16
v4i16 = 34, // 4 x i16
v8i16 = 35, // 8 x i16
v16i16 = 36, // 16 x i16
v32i16 = 37, // 32 x i16
v64i16 = 38, // 64 x i16
v128i16 = 39, //128 x i16
v1i32 = 40, // 1 x i32
v2i32 = 41, // 2 x i32
v4i32 = 42, // 4 x i32
v8i32 = 43, // 8 x i32
v16i32 = 44, // 16 x i32
v32i32 = 45, // 32 x i32
v64i32 = 46, // 64 x i32
v1i64 = 47, // 1 x i64
v2i64 = 48, // 2 x i64
v4i64 = 49, // 4 x i64
v8i64 = 50, // 8 x i64
v16i64 = 51, // 16 x i64
v32i64 = 52, // 32 x i64
v1i128 = 53, // 1 x i128
// Scalable integer types
nxv1i1 = 54, // n x 1 x i1
nxv2i1 = 55, // n x 2 x i1
nxv4i1 = 56, // n x 4 x i1
nxv8i1 = 57, // n x 8 x i1
nxv16i1 = 58, // n x 16 x i1
nxv32i1 = 59, // n x 32 x i1
nxv1i8 = 60, // n x 1 x i8
nxv2i8 = 61, // n x 2 x i8
nxv4i8 = 62, // n x 4 x i8
nxv8i8 = 63, // n x 8 x i8
nxv16i8 = 64, // n x 16 x i8
nxv32i8 = 65, // n x 32 x i8
nxv1i16 = 66, // n x 1 x i16
nxv2i16 = 67, // n x 2 x i16
nxv4i16 = 68, // n x 4 x i16
nxv8i16 = 69, // n x 8 x i16
nxv16i16 = 70, // n x 16 x i16
nxv32i16 = 71, // n x 32 x i16
nxv1i32 = 72, // n x 1 x i32
nxv2i32 = 73, // n x 2 x i32
nxv4i32 = 74, // n x 4 x i32
nxv8i32 = 75, // n x 8 x i32
nxv16i32 = 76, // n x 16 x i32
nxv32i32 = 77, // n x 32 x i32
nxv1i64 = 78, // n x 1 x i64
nxv2i64 = 79, // n x 2 x i64
nxv4i64 = 80, // n x 4 x i64
nxv8i64 = 81, // n x 8 x i64
nxv16i64 = 82, // n x 16 x i64
nxv32i64 = 83, // n x 32 x i64
FIRST_INTEGER_VECTOR_VALUETYPE = v1i1,
LAST_INTEGER_VECTOR_VALUETYPE = nxv32i64,
FIRST_INTEGER_SCALABLE_VALUETYPE = nxv1i1,
LAST_INTEGER_SCALABLE_VALUETYPE = nxv32i64,
v2f16 = 84, // 2 x f16
v4f16 = 85, // 4 x f16
v8f16 = 86, // 8 x f16
v1f32 = 87, // 1 x f32
v2f32 = 88, // 2 x f32
v4f32 = 89, // 4 x f32
v8f32 = 90, // 8 x f32
v16f32 = 91, // 16 x f32
v1f64 = 92, // 1 x f64
v2f64 = 93, // 2 x f64
v4f64 = 94, // 4 x f64
v8f64 = 95, // 8 x f64
nxv2f16 = 96, // n x 2 x f16
nxv4f16 = 97, // n x 4 x f16
nxv8f16 = 98, // n x 8 x f16
nxv1f32 = 99, // n x 1 x f32
nxv2f32 = 100, // n x 2 x f32
nxv4f32 = 101, // n x 4 x f32
nxv8f32 = 102, // n x 8 x f32
nxv16f32 = 103, // n x 16 x f32
nxv1f64 = 104, // n x 1 x f64
nxv2f64 = 105, // n x 2 x f64
nxv4f64 = 106, // n x 4 x f64
nxv8f64 = 107, // n x 8 x f64
FIRST_FP_VECTOR_VALUETYPE = v2f16,
LAST_FP_VECTOR_VALUETYPE = nxv8f64,
FIRST_FP_SCALABLE_VALUETYPE = nxv2f16,
LAST_FP_SCALABLE_VALUETYPE = nxv8f64,
FIRST_VECTOR_VALUETYPE = v1i1,
LAST_VECTOR_VALUETYPE = nxv8f64,
x86mmx = 108, // This is an X86 MMX value
Glue = 109, // This glues nodes together during pre-RA sched
isVoid = 110, // This has no value
Untyped = 111, // This value takes a register, but has
// unspecified type. The register class
// will be determined by the opcode.
FIRST_VALUETYPE = 1, // This is always the beginning of the list.
LAST_VALUETYPE = 112, // This always remains at the end of the list.
// This is the current maximum for LAST_VALUETYPE.
// MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
// This value must be a multiple of 32.
MAX_ALLOWED_VALUETYPE = 128,
// A value of type llvm::TokenTy
token = 248,
// This is MDNode or MDString.
Metadata = 249,
// An int value the size of the pointer of the current
// target to any address space. This must only be used internal to
// tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
iPTRAny = 250,
// A vector with any length and element size. This is used
// for intrinsics that have overloadings based on vector types.
// This is only for tblgen's consumption!
vAny = 251,
// Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 252,
// An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 253,
// An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 254,
// Any type. This is used for intrinsics that have overloadings.
// This is only for tblgen's consumption!
Any = 255
};
SimpleValueType SimpleTy = INVALID_SIMPLE_VALUE_TYPE;
// A class to represent the number of elements in a vector
//
// For fixed-length vectors, the total number of elements is equal to 'Min'
// For scalable vectors, the total number of elements is a multiple of 'Min'
class ElementCount {
public:
unsigned Min;
bool Scalable;
ElementCount(unsigned Min, bool Scalable)
: Min(Min), Scalable(Scalable) {}
ElementCount operator*(unsigned RHS) {
return { Min * RHS, Scalable };
}
ElementCount& operator*=(unsigned RHS) {
Min *= RHS;
return *this;
}
ElementCount operator/(unsigned RHS) {
return { Min / RHS, Scalable };
}
ElementCount& operator/=(unsigned RHS) {
Min /= RHS;
return *this;
}
bool operator==(const ElementCount& RHS) {
return Min == RHS.Min && Scalable == RHS.Scalable;
}
};
constexpr MVT() = default;
constexpr MVT(SimpleValueType SVT) : SimpleTy(SVT) {}
bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; }
bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; }
bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
/// Return true if this is a valid simple valuetype.
bool isValid() const {
return (SimpleTy >= MVT::FIRST_VALUETYPE &&
SimpleTy < MVT::LAST_VALUETYPE);
}
/// Return true if this is a FP or a vector FP type.
bool isFloatingPoint() const {
return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE));
}
/// Return true if this is an integer or a vector integer type.
bool isInteger() const {
return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE));
}
/// Return true if this is an integer, not including vectors.
bool isScalarInteger() const {
return (SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VALUETYPE);
}
/// Return true if this is a vector value type.
bool isVector() const {
return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
}
/// Return true if this is a vector value type where the
/// runtime length is machine dependent
bool isScalableVector() const {
return ((SimpleTy >= MVT::FIRST_INTEGER_SCALABLE_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_SCALABLE_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_FP_SCALABLE_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_SCALABLE_VALUETYPE));
}
/// Return true if this is a 16-bit vector type.
bool is16BitVector() const {
return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 ||
SimpleTy == MVT::v16i1);
}
/// Return true if this is a 32-bit vector type.
bool is32BitVector() const {
return (SimpleTy == MVT::v32i1 || SimpleTy == MVT::v4i8 ||
SimpleTy == MVT::v2i16 || SimpleTy == MVT::v1i32 ||
SimpleTy == MVT::v2f16 || SimpleTy == MVT::v1f32);
}
/// Return true if this is a 64-bit vector type.
bool is64BitVector() const {
return (SimpleTy == MVT::v64i1 || SimpleTy == MVT::v8i8 ||
SimpleTy == MVT::v4i16 || SimpleTy == MVT::v2i32 ||
SimpleTy == MVT::v1i64 || SimpleTy == MVT::v4f16 ||
SimpleTy == MVT::v2f32 || SimpleTy == MVT::v1f64);
}
/// Return true if this is a 128-bit vector type.
bool is128BitVector() const {
return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 ||
SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 ||
SimpleTy == MVT::v1i128 || SimpleTy == MVT::v8f16 ||
SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64);
}
/// Return true if this is a 256-bit vector type.
bool is256BitVector() const {
return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 ||
SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 ||
SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64);
}
/// Return true if this is a 512-bit vector type.
bool is512BitVector() const {
return (SimpleTy == MVT::v16f32 || SimpleTy == MVT::v8f64 ||
SimpleTy == MVT::v512i1 || SimpleTy == MVT::v64i8 ||
SimpleTy == MVT::v32i16 || SimpleTy == MVT::v16i32 ||
SimpleTy == MVT::v8i64);
}
/// Return true if this is a 1024-bit vector type.
bool is1024BitVector() const {
return (SimpleTy == MVT::v1024i1 || SimpleTy == MVT::v128i8 ||
SimpleTy == MVT::v64i16 || SimpleTy == MVT::v32i32 ||
SimpleTy == MVT::v16i64);
}
/// Return true if this is a 1024-bit vector type.
bool is2048BitVector() const {
return (SimpleTy == MVT::v256i8 || SimpleTy == MVT::v128i16 ||
SimpleTy == MVT::v64i32 || SimpleTy == MVT::v32i64);
}
/// Return true if this is an overloaded type for TableGen.
bool isOverloaded() const {
return (SimpleTy==MVT::Any ||
SimpleTy==MVT::iAny || SimpleTy==MVT::fAny ||
SimpleTy==MVT::vAny || SimpleTy==MVT::iPTRAny);
}
/// Returns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// Widens the length of the given vector MVT up to the nearest power of 2
/// and returns that type.
MVT getPow2VectorType() const {
if (isPow2VectorType())
return *this;
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
}
/// If this is a vector, return the element type, otherwise return this.
MVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
MVT getVectorElementType() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v1i1:
case v2i1:
case v4i1:
case v8i1:
case v16i1:
case v32i1:
case v64i1:
case v512i1:
case v1024i1:
case nxv1i1:
case nxv2i1:
case nxv4i1:
case nxv8i1:
case nxv16i1:
case nxv32i1: return i1;
case v1i8:
case v2i8:
case v4i8:
case v8i8:
case v16i8:
case v32i8:
case v64i8:
case v128i8:
case v256i8:
case nxv1i8:
case nxv2i8:
case nxv4i8:
case nxv8i8:
case nxv16i8:
case nxv32i8: return i8;
case v1i16:
case v2i16:
case v4i16:
case v8i16:
case v16i16:
case v32i16:
case v64i16:
case v128i16:
case nxv1i16:
case nxv2i16:
case nxv4i16:
case nxv8i16:
case nxv16i16:
case nxv32i16: return i16;
case v1i32:
case v2i32:
case v4i32:
case v8i32:
case v16i32:
case v32i32:
case v64i32:
case nxv1i32:
case nxv2i32:
case nxv4i32:
case nxv8i32:
case nxv16i32:
case nxv32i32: return i32;
case v1i64:
case v2i64:
case v4i64:
case v8i64:
case v16i64:
case v32i64:
case nxv1i64:
case nxv2i64:
case nxv4i64:
case nxv8i64:
case nxv16i64:
case nxv32i64: return i64;
case v1i128: return i128;
case v2f16:
case v4f16:
case v8f16:
case nxv2f16:
case nxv4f16:
case nxv8f16: return f16;
case v1f32:
case v2f32:
case v4f32:
case v8f32:
case v16f32:
case nxv1f32:
case nxv2f32:
case nxv4f32:
case nxv8f32:
case nxv16f32: return f32;
case v1f64:
case v2f64:
case v4f64:
case v8f64:
case nxv1f64:
case nxv2f64:
case nxv4f64:
case nxv8f64: return f64;
}
}
unsigned getVectorNumElements() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v1024i1: return 1024;
case v512i1: return 512;
case v256i8: return 256;
case v128i8:
case v128i16: return 128;
case v64i1:
case v64i8:
case v64i16:
case v64i32: return 64;
case v32i1:
case v32i8:
case v32i16:
case v32i32:
case v32i64:
case nxv32i1:
case nxv32i8:
case nxv32i16:
case nxv32i32:
case nxv32i64: return 32;
case v16i1:
case v16i8:
case v16i16:
case v16i32:
case v16i64:
case v16f32:
case nxv16i1:
case nxv16i8:
case nxv16i16:
case nxv16i32:
case nxv16i64:
case nxv16f32: return 16;
case v8i1:
case v8i8:
case v8i16:
case v8i32:
case v8i64:
case v8f16:
case v8f32:
case v8f64:
case nxv8i1:
case nxv8i8:
case nxv8i16:
case nxv8i32:
case nxv8i64:
case nxv8f16:
case nxv8f32:
case nxv8f64: return 8;
case v4i1:
case v4i8:
case v4i16:
case v4i32:
case v4i64:
case v4f16:
case v4f32:
case v4f64:
case nxv4i1:
case nxv4i8:
case nxv4i16:
case nxv4i32:
case nxv4i64:
case nxv4f16:
case nxv4f32:
case nxv4f64: return 4;
case v2i1:
case v2i8:
case v2i16:
case v2i32:
case v2i64:
case v2f16:
case v2f32:
case v2f64:
case nxv2i1:
case nxv2i8:
case nxv2i16:
case nxv2i32:
case nxv2i64:
case nxv2f16:
case nxv2f32:
case nxv2f64: return 2;
case v1i1:
case v1i8:
case v1i16:
case v1i32:
case v1i64:
case v1i128:
case v1f32:
case v1f64:
case nxv1i1:
case nxv1i8:
case nxv1i16:
case nxv1i32:
case nxv1i64:
case nxv1f32:
case nxv1f64: return 1;
}
}
MVT::ElementCount getVectorElementCount() const {
return { getVectorNumElements(), isScalableVector() };
}
unsigned getSizeInBits() const {
switch (SimpleTy) {
default:
llvm_unreachable("getSizeInBits called on extended MVT.");
case Other:
llvm_unreachable("Value type is non-standard value, Other.");
case iPTR:
llvm_unreachable("Value type size is target-dependent. Ask TLI.");
case iPTRAny:
case iAny:
case fAny:
case vAny:
case Any:
llvm_unreachable("Value type is overloaded.");
case token:
llvm_unreachable("Token type is a sentinel that cannot be used "
"in codegen and has no size");
case Metadata:
llvm_unreachable("Value type is metadata.");
case i1:
case v1i1:
case nxv1i1: return 1;
case v2i1:
case nxv2i1: return 2;
case v4i1:
case nxv4i1: return 4;
case i8 :
case v1i8:
case v8i1:
case nxv1i8:
case nxv8i1: return 8;
case i16 :
case f16:
case v16i1:
case v2i8:
case v1i16:
case nxv16i1:
case nxv2i8:
case nxv1i16: return 16;
case f32 :
case i32 :
case v32i1:
case v4i8:
case v2i16:
case v2f16:
case v1f32:
case v1i32:
case nxv32i1:
case nxv4i8:
case nxv2i16:
case nxv1i32:
case nxv2f16:
case nxv1f32: return 32;
case x86mmx:
case f64 :
case i64 :
case v64i1:
case v8i8:
case v4i16:
case v2i32:
case v1i64:
case v4f16:
case v2f32:
case v1f64:
case nxv8i8:
case nxv4i16:
case nxv2i32:
case nxv1i64:
case nxv4f16:
case nxv2f32:
case nxv1f64: return 64;
case f80 : return 80;
case f128:
case ppcf128:
case i128:
case v16i8:
case v8i16:
case v4i32:
case v2i64:
case v1i128:
case v8f16:
case v4f32:
case v2f64:
case nxv16i8:
case nxv8i16:
case nxv4i32:
case nxv2i64:
case nxv8f16:
case nxv4f32:
case nxv2f64: return 128;
case v32i8:
case v16i16:
case v8i32:
case v4i64:
case v8f32:
case v4f64:
case nxv32i8:
case nxv16i16:
case nxv8i32:
case nxv4i64:
case nxv8f32:
case nxv4f64: return 256;
case v512i1:
case v64i8:
case v32i16:
case v16i32:
case v8i64:
case v16f32:
case v8f64:
case nxv32i16:
case nxv16i32:
case nxv8i64:
case nxv16f32:
case nxv8f64: return 512;
case v1024i1:
case v128i8:
case v64i16:
case v32i32:
case v16i64:
case nxv32i32:
case nxv16i64: return 1024;
case v256i8:
case v128i16:
case v64i32:
case v32i64:
case nxv32i64: return 2048;
}
}
unsigned getScalarSizeInBits() const {
return getScalarType().getSizeInBits();
}
/// Return the number of bytes overwritten by a store of the specified value
/// type.
unsigned getStoreSize() const {
return (getSizeInBits() + 7) / 8;
}
/// Return the number of bits overwritten by a store of the specified value
/// type.
unsigned getStoreSizeInBits() const {
return getStoreSize() * 8;
}
/// Return true if this has more bits than VT.
bool bitsGT(MVT VT) const {
return getSizeInBits() > VT.getSizeInBits();
}
/// Return true if this has no less bits than VT.
bool bitsGE(MVT VT) const {
return getSizeInBits() >= VT.getSizeInBits();
}
/// Return true if this has less bits than VT.
bool bitsLT(MVT VT) const {
return getSizeInBits() < VT.getSizeInBits();
}
/// Return true if this has no more bits than VT.
bool bitsLE(MVT VT) const {
return getSizeInBits() <= VT.getSizeInBits();
}
static MVT getFloatingPointVT(unsigned BitWidth) {
switch (BitWidth) {
default:
llvm_unreachable("Bad bit width!");
case 16:
return MVT::f16;
case 32:
return MVT::f32;
case 64:
return MVT::f64;
case 80:
return MVT::f80;
case 128:
return MVT::f128;
}
}
static MVT getIntegerVT(unsigned BitWidth) {
switch (BitWidth) {
default:
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case 1:
return MVT::i1;
case 8:
return MVT::i8;
case 16:
return MVT::i16;
case 32:
return MVT::i32;
case 64:
return MVT::i64;
case 128:
return MVT::i128;
}
}
static MVT getVectorVT(MVT VT, unsigned NumElements) {
switch (VT.SimpleTy) {
default:
break;
case MVT::i1:
if (NumElements == 1) return MVT::v1i1;
if (NumElements == 2) return MVT::v2i1;
if (NumElements == 4) return MVT::v4i1;
if (NumElements == 8) return MVT::v8i1;
if (NumElements == 16) return MVT::v16i1;
if (NumElements == 32) return MVT::v32i1;
if (NumElements == 64) return MVT::v64i1;
if (NumElements == 512) return MVT::v512i1;
if (NumElements == 1024) return MVT::v1024i1;
break;
case MVT::i8:
if (NumElements == 1) return MVT::v1i8;
if (NumElements == 2) return MVT::v2i8;
if (NumElements == 4) return MVT::v4i8;
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
if (NumElements == 32) return MVT::v32i8;
if (NumElements == 64) return MVT::v64i8;
if (NumElements == 128) return MVT::v128i8;
if (NumElements == 256) return MVT::v256i8;
break;
case MVT::i16:
if (NumElements == 1) return MVT::v1i16;
if (NumElements == 2) return MVT::v2i16;
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
if (NumElements == 16) return MVT::v16i16;
if (NumElements == 32) return MVT::v32i16;
if (NumElements == 64) return MVT::v64i16;
if (NumElements == 128) return MVT::v128i16;
break;
case MVT::i32:
if (NumElements == 1) return MVT::v1i32;
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 4) return MVT::v4i32;
if (NumElements == 8) return MVT::v8i32;
if (NumElements == 16) return MVT::v16i32;
if (NumElements == 32) return MVT::v32i32;
if (NumElements == 64) return MVT::v64i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
if (NumElements == 4) return MVT::v4i64;
if (NumElements == 8) return MVT::v8i64;
if (NumElements == 16) return MVT::v16i64;
if (NumElements == 32) return MVT::v32i64;
break;
case MVT::i128:
if (NumElements == 1) return MVT::v1i128;
break;
case MVT::f16:
if (NumElements == 2) return MVT::v2f16;
if (NumElements == 4) return MVT::v4f16;
if (NumElements == 8) return MVT::v8f16;
break;
case MVT::f32:
if (NumElements == 1) return MVT::v1f32;
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 4) return MVT::v4f32;
if (NumElements == 8) return MVT::v8f32;
if (NumElements == 16) return MVT::v16f32;
break;
case MVT::f64:
if (NumElements == 1) return MVT::v1f64;
if (NumElements == 2) return MVT::v2f64;
if (NumElements == 4) return MVT::v4f64;
if (NumElements == 8) return MVT::v8f64;
break;
}
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
static MVT getScalableVectorVT(MVT VT, unsigned NumElements) {
switch(VT.SimpleTy) {
default:
break;
case MVT::i1:
if (NumElements == 1) return MVT::nxv1i1;
if (NumElements == 2) return MVT::nxv2i1;
if (NumElements == 4) return MVT::nxv4i1;
if (NumElements == 8) return MVT::nxv8i1;
if (NumElements == 16) return MVT::nxv16i1;
if (NumElements == 32) return MVT::nxv32i1;
break;
case MVT::i8:
if (NumElements == 1) return MVT::nxv1i8;
if (NumElements == 2) return MVT::nxv2i8;
if (NumElements == 4) return MVT::nxv4i8;
if (NumElements == 8) return MVT::nxv8i8;
if (NumElements == 16) return MVT::nxv16i8;
if (NumElements == 32) return MVT::nxv32i8;
break;
case MVT::i16:
if (NumElements == 1) return MVT::nxv1i16;
if (NumElements == 2) return MVT::nxv2i16;
if (NumElements == 4) return MVT::nxv4i16;
if (NumElements == 8) return MVT::nxv8i16;
if (NumElements == 16) return MVT::nxv16i16;
if (NumElements == 32) return MVT::nxv32i16;
break;
case MVT::i32:
if (NumElements == 1) return MVT::nxv1i32;
if (NumElements == 2) return MVT::nxv2i32;
if (NumElements == 4) return MVT::nxv4i32;
if (NumElements == 8) return MVT::nxv8i32;
if (NumElements == 16) return MVT::nxv16i32;
if (NumElements == 32) return MVT::nxv32i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::nxv1i64;
if (NumElements == 2) return MVT::nxv2i64;
if (NumElements == 4) return MVT::nxv4i64;
if (NumElements == 8) return MVT::nxv8i64;
if (NumElements == 16) return MVT::nxv16i64;
if (NumElements == 32) return MVT::nxv32i64;
break;
case MVT::f16:
if (NumElements == 2) return MVT::nxv2f16;
if (NumElements == 4) return MVT::nxv4f16;
if (NumElements == 8) return MVT::nxv8f16;
break;
case MVT::f32:
if (NumElements == 1) return MVT::nxv1f32;
if (NumElements == 2) return MVT::nxv2f32;
if (NumElements == 4) return MVT::nxv4f32;
if (NumElements == 8) return MVT::nxv8f32;
if (NumElements == 16) return MVT::nxv16f32;
break;
case MVT::f64:
if (NumElements == 1) return MVT::nxv1f64;
if (NumElements == 2) return MVT::nxv2f64;
if (NumElements == 4) return MVT::nxv4f64;
if (NumElements == 8) return MVT::nxv8f64;
break;
}
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
static MVT getVectorVT(MVT VT, unsigned NumElements, bool IsScalable) {
if (IsScalable)
return getScalableVectorVT(VT, NumElements);
return getVectorVT(VT, NumElements);
}
static MVT getVectorVT(MVT VT, MVT::ElementCount EC) {
if (EC.Scalable)
return getScalableVectorVT(VT, EC.Min);
return getVectorVT(VT, EC.Min);
}
/// Return the value type corresponding to the specified type. This returns
/// all pointers as iPTR. If HandleUnknown is true, unknown types are
/// returned as Other, otherwise they are invalid.
static MVT getVT(Type *Ty, bool HandleUnknown = false);
private:
/// A simple iterator over the MVT::SimpleValueType enum.
struct mvt_iterator {
SimpleValueType VT;
mvt_iterator(SimpleValueType VT) : VT(VT) {}
MVT operator*() const { return VT; }
bool operator!=(const mvt_iterator &LHS) const { return VT != LHS.VT; }
mvt_iterator& operator++() {
VT = (MVT::SimpleValueType)((int)VT + 1);
assert((int)VT <= MVT::MAX_ALLOWED_VALUETYPE &&
"MVT iterator overflowed.");
return *this;
}
};
/// A range of the MVT::SimpleValueType enum.
using mvt_range = iterator_range<mvt_iterator>;
public:
/// SimpleValueType Iteration
/// @{
static mvt_range all_valuetypes() {
return mvt_range(MVT::FIRST_VALUETYPE, MVT::LAST_VALUETYPE);
}
static mvt_range integer_valuetypes() {
return mvt_range(MVT::FIRST_INTEGER_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_INTEGER_VALUETYPE + 1));
}
static mvt_range fp_valuetypes() {
return mvt_range(MVT::FIRST_FP_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_FP_VALUETYPE + 1));
}
static mvt_range vector_valuetypes() {
return mvt_range(MVT::FIRST_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_VECTOR_VALUETYPE + 1));
}
static mvt_range integer_vector_valuetypes() {
return mvt_range(
MVT::FIRST_INTEGER_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_INTEGER_VECTOR_VALUETYPE + 1));
}
static mvt_range fp_vector_valuetypes() {
return mvt_range(
MVT::FIRST_FP_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_FP_VECTOR_VALUETYPE + 1));
}
static mvt_range integer_scalable_vector_valuetypes() {
return mvt_range(MVT::FIRST_INTEGER_SCALABLE_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_INTEGER_SCALABLE_VALUETYPE + 1));
}
static mvt_range fp_scalable_vector_valuetypes() {
return mvt_range(MVT::FIRST_FP_SCALABLE_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_FP_SCALABLE_VALUETYPE + 1));
}
/// @}
};
} // end namespace llvm
#endif // LLVM_CODEGEN_MACHINEVALUETYPE_H