blob: bd8dd0d0ede56c9469086f984425155ff175e225 [file] [log] [blame]
//===- DWARFDebugLine.cpp -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFRelocMap.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <utility>
using namespace llvm;
using namespace dwarf;
using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
namespace {
struct ContentDescriptor {
dwarf::LineNumberEntryFormat Type;
dwarf::Form Form;
};
using ContentDescriptors = SmallVector<ContentDescriptor, 4>;
} // end anonmyous namespace
DWARFDebugLine::Prologue::Prologue() { clear(); }
void DWARFDebugLine::Prologue::clear() {
TotalLength = PrologueLength = 0;
SegSelectorSize = 0;
MinInstLength = MaxOpsPerInst = DefaultIsStmt = LineBase = LineRange = 0;
OpcodeBase = 0;
FormParams = DWARFFormParams({0, 0, DWARF32});
StandardOpcodeLengths.clear();
IncludeDirectories.clear();
FileNames.clear();
}
void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const {
OS << "Line table prologue:\n"
<< format(" total_length: 0x%8.8" PRIx64 "\n", TotalLength)
<< format(" version: %u\n", getVersion());
if (getVersion() >= 5)
OS << format(" address_size: %u\n", getAddressSize())
<< format(" seg_select_size: %u\n", SegSelectorSize);
OS << format(" prologue_length: 0x%8.8" PRIx64 "\n", PrologueLength)
<< format(" min_inst_length: %u\n", MinInstLength)
<< format(getVersion() >= 4 ? "max_ops_per_inst: %u\n" : "", MaxOpsPerInst)
<< format(" default_is_stmt: %u\n", DefaultIsStmt)
<< format(" line_base: %i\n", LineBase)
<< format(" line_range: %u\n", LineRange)
<< format(" opcode_base: %u\n", OpcodeBase);
for (uint32_t I = 0; I != StandardOpcodeLengths.size(); ++I)
OS << format("standard_opcode_lengths[%s] = %u\n",
LNStandardString(I + 1).data(), StandardOpcodeLengths[I]);
if (!IncludeDirectories.empty())
for (uint32_t I = 0; I != IncludeDirectories.size(); ++I)
OS << format("include_directories[%3u] = '", I + 1)
<< IncludeDirectories[I] << "'\n";
if (!FileNames.empty()) {
OS << " Dir Mod Time File Len File Name\n"
<< " ---- ---------- ---------- -----------"
"----------------\n";
for (uint32_t I = 0; I != FileNames.size(); ++I) {
const FileNameEntry &FileEntry = FileNames[I];
OS << format("file_names[%3u] %4" PRIu64 " ", I + 1, FileEntry.DirIdx)
<< format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ", FileEntry.ModTime,
FileEntry.Length)
<< FileEntry.Name << '\n';
}
}
}
// Parse v2-v4 directory and file tables.
static void
parseV2DirFileTables(const DWARFDataExtractor &DebugLineData,
uint32_t *OffsetPtr, uint64_t EndPrologueOffset,
std::vector<StringRef> &IncludeDirectories,
std::vector<DWARFDebugLine::FileNameEntry> &FileNames) {
while (*OffsetPtr < EndPrologueOffset) {
StringRef S = DebugLineData.getCStrRef(OffsetPtr);
if (S.empty())
break;
IncludeDirectories.push_back(S);
}
while (*OffsetPtr < EndPrologueOffset) {
StringRef Name = DebugLineData.getCStrRef(OffsetPtr);
if (Name.empty())
break;
DWARFDebugLine::FileNameEntry FileEntry;
FileEntry.Name = Name;
FileEntry.DirIdx = DebugLineData.getULEB128(OffsetPtr);
FileEntry.ModTime = DebugLineData.getULEB128(OffsetPtr);
FileEntry.Length = DebugLineData.getULEB128(OffsetPtr);
FileNames.push_back(FileEntry);
}
}
// Parse v5 directory/file entry content descriptions.
// Returns the descriptors, or an empty vector if we did not find a path or
// ran off the end of the prologue.
static ContentDescriptors
parseV5EntryFormat(const DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr,
uint64_t EndPrologueOffset) {
ContentDescriptors Descriptors;
int FormatCount = DebugLineData.getU8(OffsetPtr);
bool HasPath = false;
for (int I = 0; I != FormatCount; ++I) {
if (*OffsetPtr >= EndPrologueOffset)
return ContentDescriptors();
ContentDescriptor Descriptor;
Descriptor.Type =
dwarf::LineNumberEntryFormat(DebugLineData.getULEB128(OffsetPtr));
Descriptor.Form = dwarf::Form(DebugLineData.getULEB128(OffsetPtr));
if (Descriptor.Type == dwarf::DW_LNCT_path)
HasPath = true;
Descriptors.push_back(Descriptor);
}
return HasPath ? Descriptors : ContentDescriptors();
}
static bool
parseV5DirFileTables(const DWARFDataExtractor &DebugLineData,
uint32_t *OffsetPtr, uint64_t EndPrologueOffset,
const DWARFFormParams &FormParams,
std::vector<StringRef> &IncludeDirectories,
std::vector<DWARFDebugLine::FileNameEntry> &FileNames) {
// Get the directory entry description.
ContentDescriptors DirDescriptors =
parseV5EntryFormat(DebugLineData, OffsetPtr, EndPrologueOffset);
if (DirDescriptors.empty())
return false;
// Get the directory entries, according to the format described above.
int DirEntryCount = DebugLineData.getU8(OffsetPtr);
for (int I = 0; I != DirEntryCount; ++I) {
if (*OffsetPtr >= EndPrologueOffset)
return false;
for (auto Descriptor : DirDescriptors) {
DWARFFormValue Value(Descriptor.Form);
switch (Descriptor.Type) {
case DW_LNCT_path:
if (!Value.extractValue(DebugLineData, OffsetPtr, nullptr))
return false;
IncludeDirectories.push_back(Value.getAsCString().getValue());
break;
default:
if (!Value.skipValue(DebugLineData, OffsetPtr, FormParams))
return false;
}
}
}
// Get the file entry description.
ContentDescriptors FileDescriptors =
parseV5EntryFormat(DebugLineData, OffsetPtr, EndPrologueOffset);
if (FileDescriptors.empty())
return false;
// Get the file entries, according to the format described above.
int FileEntryCount = DebugLineData.getU8(OffsetPtr);
for (int I = 0; I != FileEntryCount; ++I) {
if (*OffsetPtr >= EndPrologueOffset)
return false;
DWARFDebugLine::FileNameEntry FileEntry;
for (auto Descriptor : FileDescriptors) {
DWARFFormValue Value(Descriptor.Form);
if (!Value.extractValue(DebugLineData, OffsetPtr, nullptr))
return false;
switch (Descriptor.Type) {
case DW_LNCT_path:
FileEntry.Name = Value.getAsCString().getValue();
break;
case DW_LNCT_directory_index:
FileEntry.DirIdx = Value.getAsUnsignedConstant().getValue();
break;
case DW_LNCT_timestamp:
FileEntry.ModTime = Value.getAsUnsignedConstant().getValue();
break;
case DW_LNCT_size:
FileEntry.Length = Value.getAsUnsignedConstant().getValue();
break;
// FIXME: Add MD5
default:
break;
}
}
FileNames.push_back(FileEntry);
}
return true;
}
bool DWARFDebugLine::Prologue::parse(const DWARFDataExtractor &DebugLineData,
uint32_t *OffsetPtr) {
const uint64_t PrologueOffset = *OffsetPtr;
clear();
TotalLength = DebugLineData.getU32(OffsetPtr);
if (TotalLength == UINT32_MAX) {
FormParams.Format = dwarf::DWARF64;
TotalLength = DebugLineData.getU64(OffsetPtr);
} else if (TotalLength >= 0xffffff00) {
return false;
}
FormParams.Version = DebugLineData.getU16(OffsetPtr);
if (getVersion() < 2)
return false;
if (getVersion() >= 5) {
FormParams.AddrSize = DebugLineData.getU8(OffsetPtr);
assert(getAddressSize() == DebugLineData.getAddressSize() &&
"Line table header and data extractor disagree");
SegSelectorSize = DebugLineData.getU8(OffsetPtr);
}
PrologueLength = DebugLineData.getUnsigned(OffsetPtr, sizeofPrologueLength());
const uint64_t EndPrologueOffset = PrologueLength + *OffsetPtr;
MinInstLength = DebugLineData.getU8(OffsetPtr);
if (getVersion() >= 4)
MaxOpsPerInst = DebugLineData.getU8(OffsetPtr);
DefaultIsStmt = DebugLineData.getU8(OffsetPtr);
LineBase = DebugLineData.getU8(OffsetPtr);
LineRange = DebugLineData.getU8(OffsetPtr);
OpcodeBase = DebugLineData.getU8(OffsetPtr);
StandardOpcodeLengths.reserve(OpcodeBase - 1);
for (uint32_t I = 1; I < OpcodeBase; ++I) {
uint8_t OpLen = DebugLineData.getU8(OffsetPtr);
StandardOpcodeLengths.push_back(OpLen);
}
if (getVersion() >= 5) {
if (!parseV5DirFileTables(DebugLineData, OffsetPtr, EndPrologueOffset,
getFormParams(), IncludeDirectories, FileNames)) {
fprintf(stderr,
"warning: parsing line table prologue at 0x%8.8" PRIx64
" found an invalid directory or file table description at"
" 0x%8.8" PRIx64 "\n", PrologueOffset, (uint64_t)*OffsetPtr);
return false;
}
} else
parseV2DirFileTables(DebugLineData, OffsetPtr, EndPrologueOffset,
IncludeDirectories, FileNames);
if (*OffsetPtr != EndPrologueOffset) {
fprintf(stderr,
"warning: parsing line table prologue at 0x%8.8" PRIx64
" should have ended at 0x%8.8" PRIx64
" but it ended at 0x%8.8" PRIx64 "\n",
PrologueOffset, EndPrologueOffset, (uint64_t)*OffsetPtr);
return false;
}
return true;
}
DWARFDebugLine::Row::Row(bool DefaultIsStmt) { reset(DefaultIsStmt); }
void DWARFDebugLine::Row::postAppend() {
BasicBlock = false;
PrologueEnd = false;
EpilogueBegin = false;
}
void DWARFDebugLine::Row::reset(bool DefaultIsStmt) {
Address = 0;
Line = 1;
Column = 0;
File = 1;
Isa = 0;
Discriminator = 0;
IsStmt = DefaultIsStmt;
BasicBlock = false;
EndSequence = false;
PrologueEnd = false;
EpilogueBegin = false;
}
void DWARFDebugLine::Row::dumpTableHeader(raw_ostream &OS) {
OS << "Address Line Column File ISA Discriminator Flags\n"
<< "------------------ ------ ------ ------ --- ------------- "
"-------------\n";
}
void DWARFDebugLine::Row::dump(raw_ostream &OS) const {
OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column)
<< format(" %6u %3u %13u ", File, Isa, Discriminator)
<< (IsStmt ? " is_stmt" : "") << (BasicBlock ? " basic_block" : "")
<< (PrologueEnd ? " prologue_end" : "")
<< (EpilogueBegin ? " epilogue_begin" : "")
<< (EndSequence ? " end_sequence" : "") << '\n';
}
DWARFDebugLine::Sequence::Sequence() { reset(); }
void DWARFDebugLine::Sequence::reset() {
LowPC = 0;
HighPC = 0;
FirstRowIndex = 0;
LastRowIndex = 0;
Empty = true;
}
DWARFDebugLine::LineTable::LineTable() { clear(); }
void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const {
Prologue.dump(OS);
OS << '\n';
if (!Rows.empty()) {
Row::dumpTableHeader(OS);
for (const Row &R : Rows) {
R.dump(OS);
}
}
}
void DWARFDebugLine::LineTable::clear() {
Prologue.clear();
Rows.clear();
Sequences.clear();
}
DWARFDebugLine::ParsingState::ParsingState(struct LineTable *LT)
: LineTable(LT) {
resetRowAndSequence();
}
void DWARFDebugLine::ParsingState::resetRowAndSequence() {
Row.reset(LineTable->Prologue.DefaultIsStmt);
Sequence.reset();
}
void DWARFDebugLine::ParsingState::appendRowToMatrix(uint32_t Offset) {
if (Sequence.Empty) {
// Record the beginning of instruction sequence.
Sequence.Empty = false;
Sequence.LowPC = Row.Address;
Sequence.FirstRowIndex = RowNumber;
}
++RowNumber;
LineTable->appendRow(Row);
if (Row.EndSequence) {
// Record the end of instruction sequence.
Sequence.HighPC = Row.Address;
Sequence.LastRowIndex = RowNumber;
if (Sequence.isValid())
LineTable->appendSequence(Sequence);
Sequence.reset();
}
Row.postAppend();
}
const DWARFDebugLine::LineTable *
DWARFDebugLine::getLineTable(uint32_t Offset) const {
LineTableConstIter Pos = LineTableMap.find(Offset);
if (Pos != LineTableMap.end())
return &Pos->second;
return nullptr;
}
const DWARFDebugLine::LineTable *
DWARFDebugLine::getOrParseLineTable(const DWARFDataExtractor &DebugLineData,
uint32_t Offset) {
std::pair<LineTableIter, bool> Pos =
LineTableMap.insert(LineTableMapTy::value_type(Offset, LineTable()));
LineTable *LT = &Pos.first->second;
if (Pos.second) {
if (!LT->parse(DebugLineData, &Offset))
return nullptr;
}
return LT;
}
bool DWARFDebugLine::LineTable::parse(const DWARFDataExtractor &DebugLineData,
uint32_t *OffsetPtr, raw_ostream *OS) {
const uint32_t DebugLineOffset = *OffsetPtr;
clear();
if (!Prologue.parse(DebugLineData, OffsetPtr)) {
// Restore our offset and return false to indicate failure!
*OffsetPtr = DebugLineOffset;
return false;
}
if (OS)
Prologue.dump(*OS);
const uint32_t EndOffset =
DebugLineOffset + Prologue.TotalLength + Prologue.sizeofTotalLength();
ParsingState State(this);
while (*OffsetPtr < EndOffset) {
if (OS)
*OS << format("0x%08.08" PRIx32 ": ", *OffsetPtr);
uint8_t Opcode = DebugLineData.getU8(OffsetPtr);
if (OS)
*OS << format("%02.02" PRIx8 " ", Opcode);
if (Opcode == 0) {
// Extended Opcodes always start with a zero opcode followed by
// a uleb128 length so you can skip ones you don't know about
uint32_t ExtOffset = *OffsetPtr;
uint64_t Len = DebugLineData.getULEB128(OffsetPtr);
uint32_t ArgSize = Len - (*OffsetPtr - ExtOffset);
uint8_t SubOpcode = DebugLineData.getU8(OffsetPtr);
if (OS)
*OS << LNExtendedString(SubOpcode);
switch (SubOpcode) {
case DW_LNE_end_sequence:
// Set the end_sequence register of the state machine to true and
// append a row to the matrix using the current values of the
// state-machine registers. Then reset the registers to the initial
// values specified above. Every statement program sequence must end
// with a DW_LNE_end_sequence instruction which creates a row whose
// address is that of the byte after the last target machine instruction
// of the sequence.
State.Row.EndSequence = true;
State.appendRowToMatrix(*OffsetPtr);
if (OS) {
*OS << "\n";
OS->indent(12);
State.Row.dump(*OS);
}
State.resetRowAndSequence();
break;
case DW_LNE_set_address:
// Takes a single relocatable address as an operand. The size of the
// operand is the size appropriate to hold an address on the target
// machine. Set the address register to the value given by the
// relocatable address. All of the other statement program opcodes
// that affect the address register add a delta to it. This instruction
// stores a relocatable value into it instead.
State.Row.Address = DebugLineData.getRelocatedAddress(OffsetPtr);
if (OS)
*OS << format(" (0x%16.16" PRIx64 ")", State.Row.Address);
break;
case DW_LNE_define_file:
// Takes 4 arguments. The first is a null terminated string containing
// a source file name. The second is an unsigned LEB128 number
// representing the directory index of the directory in which the file
// was found. The third is an unsigned LEB128 number representing the
// time of last modification of the file. The fourth is an unsigned
// LEB128 number representing the length in bytes of the file. The time
// and length fields may contain LEB128(0) if the information is not
// available.
//
// The directory index represents an entry in the include_directories
// section of the statement program prologue. The index is LEB128(0)
// if the file was found in the current directory of the compilation,
// LEB128(1) if it was found in the first directory in the
// include_directories section, and so on. The directory index is
// ignored for file names that represent full path names.
//
// The files are numbered, starting at 1, in the order in which they
// appear; the names in the prologue come before names defined by
// the DW_LNE_define_file instruction. These numbers are used in the
// the file register of the state machine.
{
FileNameEntry FileEntry;
FileEntry.Name = DebugLineData.getCStr(OffsetPtr);
FileEntry.DirIdx = DebugLineData.getULEB128(OffsetPtr);
FileEntry.ModTime = DebugLineData.getULEB128(OffsetPtr);
FileEntry.Length = DebugLineData.getULEB128(OffsetPtr);
Prologue.FileNames.push_back(FileEntry);
if (OS)
*OS << " (" << FileEntry.Name.str()
<< ", dir=" << FileEntry.DirIdx << ", mod_time="
<< format("(0x%16.16" PRIx64 ")", FileEntry.ModTime)
<< ", length=" << FileEntry.Length << ")";
}
break;
case DW_LNE_set_discriminator:
State.Row.Discriminator = DebugLineData.getULEB128(OffsetPtr);
if (OS)
*OS << " (" << State.Row.Discriminator << ")";
break;
default:
// Length doesn't include the zero opcode byte or the length itself, but
// it does include the sub_opcode, so we have to adjust for that below
(*OffsetPtr) += ArgSize;
break;
}
} else if (Opcode < Prologue.OpcodeBase) {
if (OS)
*OS << LNStandardString(Opcode);
switch (Opcode) {
// Standard Opcodes
case DW_LNS_copy:
// Takes no arguments. Append a row to the matrix using the
// current values of the state-machine registers. Then set
// the basic_block register to false.
State.appendRowToMatrix(*OffsetPtr);
if (OS) {
*OS << "\n";
OS->indent(12);
State.Row.dump(*OS);
*OS << "\n";
}
break;
case DW_LNS_advance_pc:
// Takes a single unsigned LEB128 operand, multiplies it by the
// min_inst_length field of the prologue, and adds the
// result to the address register of the state machine.
{
uint64_t AddrOffset =
DebugLineData.getULEB128(OffsetPtr) * Prologue.MinInstLength;
State.Row.Address += AddrOffset;
if (OS)
*OS << " (" << AddrOffset << ")";
}
break;
case DW_LNS_advance_line:
// Takes a single signed LEB128 operand and adds that value to
// the line register of the state machine.
State.Row.Line += DebugLineData.getSLEB128(OffsetPtr);
if (OS)
*OS << " (" << State.Row.Line << ")";
break;
case DW_LNS_set_file:
// Takes a single unsigned LEB128 operand and stores it in the file
// register of the state machine.
State.Row.File = DebugLineData.getULEB128(OffsetPtr);
if (OS)
*OS << " (" << State.Row.File << ")";
break;
case DW_LNS_set_column:
// Takes a single unsigned LEB128 operand and stores it in the
// column register of the state machine.
State.Row.Column = DebugLineData.getULEB128(OffsetPtr);
if (OS)
*OS << " (" << State.Row.Column << ")";
break;
case DW_LNS_negate_stmt:
// Takes no arguments. Set the is_stmt register of the state
// machine to the logical negation of its current value.
State.Row.IsStmt = !State.Row.IsStmt;
break;
case DW_LNS_set_basic_block:
// Takes no arguments. Set the basic_block register of the
// state machine to true
State.Row.BasicBlock = true;
break;
case DW_LNS_const_add_pc:
// Takes no arguments. Add to the address register of the state
// machine the address increment value corresponding to special
// opcode 255. The motivation for DW_LNS_const_add_pc is this:
// when the statement program needs to advance the address by a
// small amount, it can use a single special opcode, which occupies
// a single byte. When it needs to advance the address by up to
// twice the range of the last special opcode, it can use
// DW_LNS_const_add_pc followed by a special opcode, for a total
// of two bytes. Only if it needs to advance the address by more
// than twice that range will it need to use both DW_LNS_advance_pc
// and a special opcode, requiring three or more bytes.
{
uint8_t AdjustOpcode = 255 - Prologue.OpcodeBase;
uint64_t AddrOffset =
(AdjustOpcode / Prologue.LineRange) * Prologue.MinInstLength;
State.Row.Address += AddrOffset;
if (OS)
*OS
<< format(" (0x%16.16" PRIx64 ")", AddrOffset);
}
break;
case DW_LNS_fixed_advance_pc:
// Takes a single uhalf operand. Add to the address register of
// the state machine the value of the (unencoded) operand. This
// is the only extended opcode that takes an argument that is not
// a variable length number. The motivation for DW_LNS_fixed_advance_pc
// is this: existing assemblers cannot emit DW_LNS_advance_pc or
// special opcodes because they cannot encode LEB128 numbers or
// judge when the computation of a special opcode overflows and
// requires the use of DW_LNS_advance_pc. Such assemblers, however,
// can use DW_LNS_fixed_advance_pc instead, sacrificing compression.
{
uint16_t PCOffset = DebugLineData.getU16(OffsetPtr);
State.Row.Address += PCOffset;
if (OS)
*OS
<< format(" (0x%16.16" PRIx64 ")", PCOffset);
}
break;
case DW_LNS_set_prologue_end:
// Takes no arguments. Set the prologue_end register of the
// state machine to true
State.Row.PrologueEnd = true;
break;
case DW_LNS_set_epilogue_begin:
// Takes no arguments. Set the basic_block register of the
// state machine to true
State.Row.EpilogueBegin = true;
break;
case DW_LNS_set_isa:
// Takes a single unsigned LEB128 operand and stores it in the
// column register of the state machine.
State.Row.Isa = DebugLineData.getULEB128(OffsetPtr);
if (OS)
*OS << " (" << State.Row.Isa << ")";
break;
default:
// Handle any unknown standard opcodes here. We know the lengths
// of such opcodes because they are specified in the prologue
// as a multiple of LEB128 operands for each opcode.
{
assert(Opcode - 1U < Prologue.StandardOpcodeLengths.size());
uint8_t OpcodeLength = Prologue.StandardOpcodeLengths[Opcode - 1];
for (uint8_t I = 0; I < OpcodeLength; ++I) {
uint64_t Value = DebugLineData.getULEB128(OffsetPtr);
if (OS)
*OS << format("Skipping ULEB128 value: 0x%16.16" PRIx64 ")\n",
Value);
}
}
break;
}
} else {
// Special Opcodes
// A special opcode value is chosen based on the amount that needs
// to be added to the line and address registers. The maximum line
// increment for a special opcode is the value of the line_base
// field in the header, plus the value of the line_range field,
// minus 1 (line base + line range - 1). If the desired line
// increment is greater than the maximum line increment, a standard
// opcode must be used instead of a special opcode. The "address
// advance" is calculated by dividing the desired address increment
// by the minimum_instruction_length field from the header. The
// special opcode is then calculated using the following formula:
//
// opcode = (desired line increment - line_base) +
// (line_range * address advance) + opcode_base
//
// If the resulting opcode is greater than 255, a standard opcode
// must be used instead.
//
// To decode a special opcode, subtract the opcode_base from the
// opcode itself to give the adjusted opcode. The amount to
// increment the address register is the result of the adjusted
// opcode divided by the line_range multiplied by the
// minimum_instruction_length field from the header. That is:
//
// address increment = (adjusted opcode / line_range) *
// minimum_instruction_length
//
// The amount to increment the line register is the line_base plus
// the result of the adjusted opcode modulo the line_range. That is:
//
// line increment = line_base + (adjusted opcode % line_range)
uint8_t AdjustOpcode = Opcode - Prologue.OpcodeBase;
uint64_t AddrOffset =
(AdjustOpcode / Prologue.LineRange) * Prologue.MinInstLength;
int32_t LineOffset =
Prologue.LineBase + (AdjustOpcode % Prologue.LineRange);
State.Row.Line += LineOffset;
State.Row.Address += AddrOffset;
if (OS) {
*OS << "address += " << ((uint32_t)AdjustOpcode)
<< ", line += " << LineOffset << "\n";
OS->indent(12);
State.Row.dump(*OS);
}
State.appendRowToMatrix(*OffsetPtr);
// Reset discriminator to 0.
State.Row.Discriminator = 0;
}
if(OS)
*OS << "\n";
}
if (!State.Sequence.Empty) {
fprintf(stderr, "warning: last sequence in debug line table is not"
"terminated!\n");
}
// Sort all sequences so that address lookup will work faster.
if (!Sequences.empty()) {
std::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC);
// Note: actually, instruction address ranges of sequences should not
// overlap (in shared objects and executables). If they do, the address
// lookup would still work, though, but result would be ambiguous.
// We don't report warning in this case. For example,
// sometimes .so compiled from multiple object files contains a few
// rudimentary sequences for address ranges [0x0, 0xsomething).
}
return EndOffset;
}
uint32_t
DWARFDebugLine::LineTable::findRowInSeq(const DWARFDebugLine::Sequence &Seq,
uint64_t Address) const {
if (!Seq.containsPC(Address))
return UnknownRowIndex;
// Search for instruction address in the rows describing the sequence.
// Rows are stored in a vector, so we may use arithmetical operations with
// iterators.
DWARFDebugLine::Row Row;
Row.Address = Address;
RowIter FirstRow = Rows.begin() + Seq.FirstRowIndex;
RowIter LastRow = Rows.begin() + Seq.LastRowIndex;
LineTable::RowIter RowPos = std::lower_bound(
FirstRow, LastRow, Row, DWARFDebugLine::Row::orderByAddress);
if (RowPos == LastRow) {
return Seq.LastRowIndex - 1;
}
uint32_t Index = Seq.FirstRowIndex + (RowPos - FirstRow);
if (RowPos->Address > Address) {
if (RowPos == FirstRow)
return UnknownRowIndex;
else
Index--;
}
return Index;
}
uint32_t DWARFDebugLine::LineTable::lookupAddress(uint64_t Address) const {
if (Sequences.empty())
return UnknownRowIndex;
// First, find an instruction sequence containing the given address.
DWARFDebugLine::Sequence Sequence;
Sequence.LowPC = Address;
SequenceIter FirstSeq = Sequences.begin();
SequenceIter LastSeq = Sequences.end();
SequenceIter SeqPos = std::lower_bound(
FirstSeq, LastSeq, Sequence, DWARFDebugLine::Sequence::orderByLowPC);
DWARFDebugLine::Sequence FoundSeq;
if (SeqPos == LastSeq) {
FoundSeq = Sequences.back();
} else if (SeqPos->LowPC == Address) {
FoundSeq = *SeqPos;
} else {
if (SeqPos == FirstSeq)
return UnknownRowIndex;
FoundSeq = *(SeqPos - 1);
}
return findRowInSeq(FoundSeq, Address);
}
bool DWARFDebugLine::LineTable::lookupAddressRange(
uint64_t Address, uint64_t Size, std::vector<uint32_t> &Result) const {
if (Sequences.empty())
return false;
uint64_t EndAddr = Address + Size;
// First, find an instruction sequence containing the given address.
DWARFDebugLine::Sequence Sequence;
Sequence.LowPC = Address;
SequenceIter FirstSeq = Sequences.begin();
SequenceIter LastSeq = Sequences.end();
SequenceIter SeqPos = std::lower_bound(
FirstSeq, LastSeq, Sequence, DWARFDebugLine::Sequence::orderByLowPC);
if (SeqPos == LastSeq || SeqPos->LowPC != Address) {
if (SeqPos == FirstSeq)
return false;
SeqPos--;
}
if (!SeqPos->containsPC(Address))
return false;
SequenceIter StartPos = SeqPos;
// Add the rows from the first sequence to the vector, starting with the
// index we just calculated
while (SeqPos != LastSeq && SeqPos->LowPC < EndAddr) {
const DWARFDebugLine::Sequence &CurSeq = *SeqPos;
// For the first sequence, we need to find which row in the sequence is the
// first in our range.
uint32_t FirstRowIndex = CurSeq.FirstRowIndex;
if (SeqPos == StartPos)
FirstRowIndex = findRowInSeq(CurSeq, Address);
// Figure out the last row in the range.
uint32_t LastRowIndex = findRowInSeq(CurSeq, EndAddr - 1);
if (LastRowIndex == UnknownRowIndex)
LastRowIndex = CurSeq.LastRowIndex - 1;
assert(FirstRowIndex != UnknownRowIndex);
assert(LastRowIndex != UnknownRowIndex);
for (uint32_t I = FirstRowIndex; I <= LastRowIndex; ++I) {
Result.push_back(I);
}
++SeqPos;
}
return true;
}
bool DWARFDebugLine::LineTable::hasFileAtIndex(uint64_t FileIndex) const {
return FileIndex != 0 && FileIndex <= Prologue.FileNames.size();
}
bool DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
const char *CompDir,
FileLineInfoKind Kind,
std::string &Result) const {
if (Kind == FileLineInfoKind::None || !hasFileAtIndex(FileIndex))
return false;
const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1];
StringRef FileName = Entry.Name;
if (Kind != FileLineInfoKind::AbsoluteFilePath ||
sys::path::is_absolute(FileName)) {
Result = FileName;
return true;
}
SmallString<16> FilePath;
uint64_t IncludeDirIndex = Entry.DirIdx;
StringRef IncludeDir;
// Be defensive about the contents of Entry.
if (IncludeDirIndex > 0 &&
IncludeDirIndex <= Prologue.IncludeDirectories.size())
IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
// We may still need to append compilation directory of compile unit.
// We know that FileName is not absolute, the only way to have an
// absolute path at this point would be if IncludeDir is absolute.
if (CompDir && Kind == FileLineInfoKind::AbsoluteFilePath &&
sys::path::is_relative(IncludeDir))
sys::path::append(FilePath, CompDir);
// sys::path::append skips empty strings.
sys::path::append(FilePath, IncludeDir, FileName);
Result = FilePath.str();
return true;
}
bool DWARFDebugLine::LineTable::getFileLineInfoForAddress(
uint64_t Address, const char *CompDir, FileLineInfoKind Kind,
DILineInfo &Result) const {
// Get the index of row we're looking for in the line table.
uint32_t RowIndex = lookupAddress(Address);
if (RowIndex == -1U)
return false;
// Take file number and line/column from the row.
const auto &Row = Rows[RowIndex];
if (!getFileNameByIndex(Row.File, CompDir, Kind, Result.FileName))
return false;
Result.Line = Row.Line;
Result.Column = Row.Column;
Result.Discriminator = Row.Discriminator;
return true;
}