blob: 3312da67804b5c8ab9115ac9225f0dd02fd548c8 [file] [log] [blame]
//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <string>
#include <vector>
using namespace llvm;
using namespace dwarf;
/// \brief Abstract frame entry defining the common interface concrete
/// entries implement.
class llvm::FrameEntry {
public:
enum FrameKind {FK_CIE, FK_FDE};
FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length)
: Kind(K), Offset(Offset), Length(Length) {}
virtual ~FrameEntry() = default;
FrameKind getKind() const { return Kind; }
virtual uint64_t getOffset() const { return Offset; }
/// Parse and store a sequence of CFI instructions from Data,
/// starting at *Offset and ending at EndOffset. If everything
/// goes well, *Offset should be equal to EndOffset when this method
/// returns. Otherwise, an error occurred.
virtual void parseInstructions(DataExtractor Data, uint32_t *Offset,
uint32_t EndOffset);
/// Dump the entry header to the given output stream.
virtual void dumpHeader(raw_ostream &OS) const = 0;
/// Dump the entry's instructions to the given output stream.
virtual void dumpInstructions(raw_ostream &OS) const;
/// Dump the entire entry to the given output stream.
void dump(raw_ostream &OS) const {
dumpHeader(OS);
dumpInstructions(OS);
OS << "\n";
}
protected:
const FrameKind Kind;
/// \brief Offset of this entry in the section.
uint64_t Offset;
/// \brief Entry length as specified in DWARF.
uint64_t Length;
/// An entry may contain CFI instructions. An instruction consists of an
/// opcode and an optional sequence of operands.
using Operands = std::vector<uint64_t>;
struct Instruction {
Instruction(uint8_t Opcode)
: Opcode(Opcode)
{}
uint8_t Opcode;
Operands Ops;
};
std::vector<Instruction> Instructions;
/// Convenience methods to add a new instruction with the given opcode and
/// operands to the Instructions vector.
void addInstruction(uint8_t Opcode) {
Instructions.push_back(Instruction(Opcode));
}
void addInstruction(uint8_t Opcode, uint64_t Operand1) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
}
void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
Instructions.back().Ops.push_back(Operand2);
}
};
// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset,
uint32_t EndOffset) {
while (*Offset < EndOffset) {
uint8_t Opcode = Data.getU8(Offset);
// Some instructions have a primary opcode encoded in the top bits.
uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
if (Primary) {
// If it's a primary opcode, the first operand is encoded in the bottom
// bits of the opcode itself.
uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
switch (Primary) {
default: llvm_unreachable("Impossible primary CFI opcode");
case DW_CFA_advance_loc:
case DW_CFA_restore:
addInstruction(Primary, Op1);
break;
case DW_CFA_offset:
addInstruction(Primary, Op1, Data.getULEB128(Offset));
break;
}
} else {
// Extended opcode - its value is Opcode itself.
switch (Opcode) {
default: llvm_unreachable("Invalid extended CFI opcode");
case DW_CFA_nop:
case DW_CFA_remember_state:
case DW_CFA_restore_state:
case DW_CFA_GNU_window_save:
// No operands
addInstruction(Opcode);
break;
case DW_CFA_set_loc:
// Operands: Address
addInstruction(Opcode, Data.getAddress(Offset));
break;
case DW_CFA_advance_loc1:
// Operands: 1-byte delta
addInstruction(Opcode, Data.getU8(Offset));
break;
case DW_CFA_advance_loc2:
// Operands: 2-byte delta
addInstruction(Opcode, Data.getU16(Offset));
break;
case DW_CFA_advance_loc4:
// Operands: 4-byte delta
addInstruction(Opcode, Data.getU32(Offset));
break;
case DW_CFA_restore_extended:
case DW_CFA_undefined:
case DW_CFA_same_value:
case DW_CFA_def_cfa_register:
case DW_CFA_def_cfa_offset:
case DW_CFA_GNU_args_size:
// Operands: ULEB128
addInstruction(Opcode, Data.getULEB128(Offset));
break;
case DW_CFA_def_cfa_offset_sf:
// Operands: SLEB128
addInstruction(Opcode, Data.getSLEB128(Offset));
break;
case DW_CFA_offset_extended:
case DW_CFA_register:
case DW_CFA_def_cfa:
case DW_CFA_val_offset: {
// Operands: ULEB128, ULEB128
// Note: We can not embed getULEB128 directly into function
// argument list. getULEB128 changes Offset and order of evaluation
// for arguments is unspecified.
auto op1 = Data.getULEB128(Offset);
auto op2 = Data.getULEB128(Offset);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_offset_extended_sf:
case DW_CFA_def_cfa_sf:
case DW_CFA_val_offset_sf: {
// Operands: ULEB128, SLEB128
// Note: see comment for the previous case
auto op1 = Data.getULEB128(Offset);
auto op2 = (uint64_t)Data.getSLEB128(Offset);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_def_cfa_expression:
// FIXME: Parse the actual instruction.
*Offset += Data.getULEB128(Offset);
break;
case DW_CFA_expression:
case DW_CFA_val_expression: {
// FIXME: Parse the actual instruction.
Data.getULEB128(Offset);
*Offset += Data.getULEB128(Offset);
break;
}
}
}
}
}
namespace {
/// \brief DWARF Common Information Entry (CIE)
class CIE : public FrameEntry {
public:
// CIEs (and FDEs) are simply container classes, so the only sensible way to
// create them is by providing the full parsed contents in the constructor.
CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
SmallString<8> Augmentation, uint8_t AddressSize,
uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
uint32_t LSDAPointerEncoding)
: FrameEntry(FK_CIE, Offset, Length), Version(Version),
Augmentation(std::move(Augmentation)), AddressSize(AddressSize),
SegmentDescriptorSize(SegmentDescriptorSize),
CodeAlignmentFactor(CodeAlignmentFactor),
DataAlignmentFactor(DataAlignmentFactor),
ReturnAddressRegister(ReturnAddressRegister),
AugmentationData(std::move(AugmentationData)),
FDEPointerEncoding(FDEPointerEncoding),
LSDAPointerEncoding(LSDAPointerEncoding) {}
~CIE() override = default;
StringRef getAugmentationString() const { return Augmentation; }
uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
uint32_t getFDEPointerEncoding() const {
return FDEPointerEncoding;
}
uint32_t getLSDAPointerEncoding() const {
return LSDAPointerEncoding;
}
void dumpHeader(raw_ostream &OS) const override {
OS << format("%08x %08x %08x CIE",
(uint32_t)Offset, (uint32_t)Length, DW_CIE_ID)
<< "\n";
OS << format(" Version: %d\n", Version);
OS << " Augmentation: \"" << Augmentation << "\"\n";
if (Version >= 4) {
OS << format(" Address size: %u\n",
(uint32_t)AddressSize);
OS << format(" Segment desc size: %u\n",
(uint32_t)SegmentDescriptorSize);
}
OS << format(" Code alignment factor: %u\n",
(uint32_t)CodeAlignmentFactor);
OS << format(" Data alignment factor: %d\n",
(int32_t)DataAlignmentFactor);
OS << format(" Return address column: %d\n",
(int32_t)ReturnAddressRegister);
if (!AugmentationData.empty()) {
OS << " Augmentation data: ";
for (uint8_t Byte : AugmentationData)
OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
OS << "\n";
}
OS << "\n";
}
static bool classof(const FrameEntry *FE) {
return FE->getKind() == FK_CIE;
}
private:
/// The following fields are defined in section 6.4.1 of the DWARF standard v4
uint8_t Version;
SmallString<8> Augmentation;
uint8_t AddressSize;
uint8_t SegmentDescriptorSize;
uint64_t CodeAlignmentFactor;
int64_t DataAlignmentFactor;
uint64_t ReturnAddressRegister;
// The following are used when the CIE represents an EH frame entry.
SmallString<8> AugmentationData;
uint32_t FDEPointerEncoding;
uint32_t LSDAPointerEncoding;
};
/// \brief DWARF Frame Description Entry (FDE)
class FDE : public FrameEntry {
public:
// Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
// an offset to the CIE (provided by parsing the FDE header). The CIE itself
// is obtained lazily once it's actually required.
FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
uint64_t InitialLocation, uint64_t AddressRange,
CIE *Cie)
: FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset),
InitialLocation(InitialLocation), AddressRange(AddressRange),
LinkedCIE(Cie) {}
~FDE() override = default;
CIE *getLinkedCIE() const { return LinkedCIE; }
void dumpHeader(raw_ostream &OS) const override {
OS << format("%08x %08x %08x FDE ",
(uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset);
OS << format("cie=%08x pc=%08x...%08x\n",
(int32_t)LinkedCIEOffset,
(uint32_t)InitialLocation,
(uint32_t)InitialLocation + (uint32_t)AddressRange);
}
static bool classof(const FrameEntry *FE) {
return FE->getKind() == FK_FDE;
}
private:
/// The following fields are defined in section 6.4.1 of the DWARF standard v3
uint64_t LinkedCIEOffset;
uint64_t InitialLocation;
uint64_t AddressRange;
CIE *LinkedCIE;
};
/// \brief Types of operands to CF instructions.
enum OperandType {
OT_Unset,
OT_None,
OT_Address,
OT_Offset,
OT_FactoredCodeOffset,
OT_SignedFactDataOffset,
OT_UnsignedFactDataOffset,
OT_Register,
OT_Expression
};
} // end anonymous namespace
/// \brief Initialize the array describing the types of operands.
static ArrayRef<OperandType[2]> getOperandTypes() {
static OperandType OpTypes[DW_CFA_restore+1][2];
#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
do { \
OpTypes[OP][0] = OPTYPE0; \
OpTypes[OP][1] = OPTYPE1; \
} while (false)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
DECLARE_OP1(DW_CFA_set_loc, OT_Address);
DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
DECLARE_OP1(DW_CFA_undefined, OT_Register);
DECLARE_OP1(DW_CFA_same_value, OT_Register);
DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
DECLARE_OP1(DW_CFA_restore, OT_Register);
DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
DECLARE_OP0(DW_CFA_remember_state);
DECLARE_OP0(DW_CFA_restore_state);
DECLARE_OP0(DW_CFA_GNU_window_save);
DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
DECLARE_OP0(DW_CFA_nop);
#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2
return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
}
static ArrayRef<OperandType[2]> OpTypes = getOperandTypes();
/// \brief Print \p Opcode's operand number \p OperandIdx which has
/// value \p Operand.
static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx,
uint64_t Operand, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor) {
assert(OperandIdx < 2);
OperandType Type = OpTypes[Opcode][OperandIdx];
switch (Type) {
case OT_Unset: {
OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
auto OpcodeName = CallFrameString(Opcode);
if (!OpcodeName.empty())
OS << " " << OpcodeName;
else
OS << format(" Opcode %x", Opcode);
break;
}
case OT_None:
break;
case OT_Address:
OS << format(" %" PRIx64, Operand);
break;
case OT_Offset:
// The offsets are all encoded in a unsigned form, but in practice
// consumers use them signed. It's most certainly legacy due to
// the lack of signed variants in the first Dwarf standards.
OS << format(" %+" PRId64, int64_t(Operand));
break;
case OT_FactoredCodeOffset: // Always Unsigned
if (CodeAlignmentFactor)
OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
else
OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
break;
case OT_SignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
break;
case OT_UnsignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, Operand * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
break;
case OT_Register:
OS << format(" reg%" PRId64, Operand);
break;
case OT_Expression:
OS << " expression";
break;
}
}
void FrameEntry::dumpInstructions(raw_ostream &OS) const {
uint64_t CodeAlignmentFactor = 0;
int64_t DataAlignmentFactor = 0;
const CIE *Cie = dyn_cast<CIE>(this);
if (!Cie)
Cie = cast<FDE>(this)->getLinkedCIE();
if (Cie) {
CodeAlignmentFactor = Cie->getCodeAlignmentFactor();
DataAlignmentFactor = Cie->getDataAlignmentFactor();
}
for (const auto &Instr : Instructions) {
uint8_t Opcode = Instr.Opcode;
if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
OS << " " << CallFrameString(Opcode) << ":";
for (unsigned i = 0; i < Instr.Ops.size(); ++i)
printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor,
DataAlignmentFactor);
OS << '\n';
}
}
DWARFDebugFrame::DWARFDebugFrame(bool IsEH) : IsEH(IsEH) {}
DWARFDebugFrame::~DWARFDebugFrame() = default;
static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
uint32_t Offset, int Length) {
errs() << "DUMP: ";
for (int i = 0; i < Length; ++i) {
uint8_t c = Data.getU8(&Offset);
errs().write_hex(c); errs() << " ";
}
errs() << "\n";
}
static unsigned getSizeForEncoding(const DataExtractor &Data,
unsigned symbolEncoding) {
unsigned format = symbolEncoding & 0x0f;
switch (format) {
default: llvm_unreachable("Unknown Encoding");
case DW_EH_PE_absptr:
case DW_EH_PE_signed:
return Data.getAddressSize();
case DW_EH_PE_udata2:
case DW_EH_PE_sdata2:
return 2;
case DW_EH_PE_udata4:
case DW_EH_PE_sdata4:
return 4;
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
return 8;
}
}
static uint64_t readPointer(const DataExtractor &Data, uint32_t &Offset,
unsigned Encoding) {
switch (getSizeForEncoding(Data, Encoding)) {
case 2:
return Data.getU16(&Offset);
case 4:
return Data.getU32(&Offset);
case 8:
return Data.getU64(&Offset);
default:
llvm_unreachable("Illegal data size");
}
}
// This is a workaround for old compilers which do not allow
// noreturn attribute usage in lambdas. Once the support for those
// compilers are phased out, we can remove this and return back to
// a ReportError lambda: [StartOffset](const char *ErrorMsg).
static void LLVM_ATTRIBUTE_NORETURN ReportError(uint32_t StartOffset,
const char *ErrorMsg) {
std::string Str;
raw_string_ostream OS(Str);
OS << format(ErrorMsg, StartOffset);
OS.flush();
report_fatal_error(Str);
}
void DWARFDebugFrame::parse(DataExtractor Data) {
uint32_t Offset = 0;
DenseMap<uint32_t, CIE *> CIEs;
while (Data.isValidOffset(Offset)) {
uint32_t StartOffset = Offset;
bool IsDWARF64 = false;
uint64_t Length = Data.getU32(&Offset);
uint64_t Id;
if (Length == UINT32_MAX) {
// DWARF-64 is distinguished by the first 32 bits of the initial length
// field being 0xffffffff. Then, the next 64 bits are the actual entry
// length.
IsDWARF64 = true;
Length = Data.getU64(&Offset);
}
// At this point, Offset points to the next field after Length.
// Length is the structure size excluding itself. Compute an offset one
// past the end of the structure (needed to know how many instructions to
// read).
// TODO: For honest DWARF64 support, DataExtractor will have to treat
// offset_ptr as uint64_t*
uint32_t StartStructureOffset = Offset;
uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
// The Id field's size depends on the DWARF format
Id = Data.getUnsigned(&Offset, (IsDWARF64 && !IsEH) ? 8 : 4);
bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) ||
Id == DW_CIE_ID ||
(IsEH && !Id));
if (IsCIE) {
uint8_t Version = Data.getU8(&Offset);
const char *Augmentation = Data.getCStr(&Offset);
StringRef AugmentationString(Augmentation ? Augmentation : "");
uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
Data.getU8(&Offset);
Data.setAddressSize(AddressSize);
uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
// Parse the augmentation data for EH CIEs
StringRef AugmentationData("");
uint32_t FDEPointerEncoding = DW_EH_PE_omit;
uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
if (IsEH) {
Optional<uint32_t> PersonalityEncoding;
Optional<uint64_t> Personality;
Optional<uint64_t> AugmentationLength;
uint32_t StartAugmentationOffset;
uint32_t EndAugmentationOffset;
// Walk the augmentation string to get all the augmentation data.
for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
switch (AugmentationString[i]) {
default:
ReportError(StartOffset,
"Unknown augmentation character in entry at %lx");
case 'L':
LSDAPointerEncoding = Data.getU8(&Offset);
break;
case 'P': {
if (Personality)
ReportError(StartOffset,
"Duplicate personality in entry at %lx");
PersonalityEncoding = Data.getU8(&Offset);
Personality = readPointer(Data, Offset, *PersonalityEncoding);
break;
}
case 'R':
FDEPointerEncoding = Data.getU8(&Offset);
break;
case 'z':
if (i)
ReportError(StartOffset,
"'z' must be the first character at %lx");
// Parse the augmentation length first. We only parse it if
// the string contains a 'z'.
AugmentationLength = Data.getULEB128(&Offset);
StartAugmentationOffset = Offset;
EndAugmentationOffset = Offset +
static_cast<uint32_t>(*AugmentationLength);
}
}
if (AugmentationLength.hasValue()) {
if (Offset != EndAugmentationOffset)
ReportError(StartOffset, "Parsing augmentation data at %lx failed");
AugmentationData = Data.getData().slice(StartAugmentationOffset,
EndAugmentationOffset);
}
}
auto Cie = llvm::make_unique<CIE>(StartOffset, Length, Version,
AugmentationString, AddressSize,
SegmentDescriptorSize,
CodeAlignmentFactor,
DataAlignmentFactor,
ReturnAddressRegister,
AugmentationData, FDEPointerEncoding,
LSDAPointerEncoding);
CIEs[StartOffset] = Cie.get();
Entries.emplace_back(std::move(Cie));
} else {
// FDE
uint64_t CIEPointer = Id;
uint64_t InitialLocation = 0;
uint64_t AddressRange = 0;
CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
if (IsEH) {
// The address size is encoded in the CIE we reference.
if (!Cie)
ReportError(StartOffset,
"Parsing FDE data at %lx failed due to missing CIE");
InitialLocation = readPointer(Data, Offset,
Cie->getFDEPointerEncoding());
AddressRange = readPointer(Data, Offset,
Cie->getFDEPointerEncoding());
StringRef AugmentationString = Cie->getAugmentationString();
if (!AugmentationString.empty()) {
// Parse the augmentation length and data for this FDE.
uint64_t AugmentationLength = Data.getULEB128(&Offset);
uint32_t EndAugmentationOffset =
Offset + static_cast<uint32_t>(AugmentationLength);
// Decode the LSDA if the CIE augmentation string said we should.
if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit)
readPointer(Data, Offset, Cie->getLSDAPointerEncoding());
if (Offset != EndAugmentationOffset)
ReportError(StartOffset, "Parsing augmentation data at %lx failed");
}
} else {
InitialLocation = Data.getAddress(&Offset);
AddressRange = Data.getAddress(&Offset);
}
Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
InitialLocation, AddressRange,
Cie));
}
Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset);
if (Offset != EndStructureOffset)
ReportError(StartOffset, "Parsing entry instructions at %lx failed");
}
}
FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
auto It =
std::lower_bound(Entries.begin(), Entries.end(), Offset,
[](const std::unique_ptr<FrameEntry> &E,
uint64_t Offset) { return E->getOffset() < Offset; });
if (It != Entries.end() && (*It)->getOffset() == Offset)
return It->get();
return nullptr;
}
void DWARFDebugFrame::dump(raw_ostream &OS, Optional<uint64_t> Offset) const {
if (Offset) {
if (auto *Entry = getEntryAtOffset(*Offset))
Entry->dump(OS);
return;
}
OS << "\n";
for (const auto &Entry : Entries)
Entry->dump(OS);
}