blob: f3175668fc74bdfb58f81938d698e111fc8ada7e [file] [log] [blame]
//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple wrapper around the LLVM Execution Engines,
// which allow the direct execution of LLVM programs through a Just-In-Time
// compiler, or through an interpreter if no JIT is available for this platform.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lli"
#include "llvm/IR/LLVMContext.h"
#include "RemoteMemoryManager.h"
#include "RemoteTarget.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeBuilder.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include <cerrno>
#ifdef __CYGWIN__
#include <cygwin/version.h>
#if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
#define DO_NOTHING_ATEXIT 1
#endif
#endif
using namespace llvm;
namespace {
cl::opt<std::string>
InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> ForceInterpreter("force-interpreter",
cl::desc("Force interpretation: disable JIT"),
cl::init(false));
cl::opt<bool> UseMCJIT(
"use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"),
cl::init(false));
cl::opt<bool> DebugIR(
"debug-ir", cl::desc("Generate debug information to allow debugging IR."),
cl::init(false));
// The MCJIT supports building for a target address space separate from
// the JIT compilation process. Use a forked process and a copying
// memory manager with IPC to execute using this functionality.
cl::opt<bool> RemoteMCJIT("remote-mcjit",
cl::desc("Execute MCJIT'ed code in a separate process."),
cl::init(false));
// Manually specify the child process for remote execution. This overrides
// the simulated remote execution that allocates address space for child
// execution. The child process will be executed and will communicate with
// lli via stdin/stdout pipes.
cl::opt<std::string>
MCJITRemoteProcess("mcjit-remote-process",
cl::desc("Specify the filename of the process to launch "
"for remote MCJIT execution. If none is specified,"
"\n\tremote execution will be simulated in-process."),
cl::value_desc("filename"),
cl::init(""));
// Determine optimization level.
cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init(' '));
cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
cl::opt<std::string>
MArch("march",
cl::desc("Architecture to generate assembly for (see --version)"));
cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
cl::list<std::string>
MAttrs("mattr",
cl::CommaSeparated,
cl::desc("Target specific attributes (-mattr=help for details)"),
cl::value_desc("a1,+a2,-a3,..."));
cl::opt<std::string>
EntryFunc("entry-function",
cl::desc("Specify the entry function (default = 'main') "
"of the executable"),
cl::value_desc("function"),
cl::init("main"));
cl::list<std::string>
ExtraModules("extra-module",
cl::desc("Extra modules to be loaded"),
cl::value_desc("input bitcode"));
cl::opt<std::string>
FakeArgv0("fake-argv0",
cl::desc("Override the 'argv[0]' value passed into the executing"
" program"), cl::value_desc("executable"));
cl::opt<bool>
DisableCoreFiles("disable-core-files", cl::Hidden,
cl::desc("Disable emission of core files if possible"));
cl::opt<bool>
NoLazyCompilation("disable-lazy-compilation",
cl::desc("Disable JIT lazy compilation"),
cl::init(false));
cl::opt<Reloc::Model>
RelocModel("relocation-model",
cl::desc("Choose relocation model"),
cl::init(Reloc::Default),
cl::values(
clEnumValN(Reloc::Default, "default",
"Target default relocation model"),
clEnumValN(Reloc::Static, "static",
"Non-relocatable code"),
clEnumValN(Reloc::PIC_, "pic",
"Fully relocatable, position independent code"),
clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic",
"Relocatable external references, non-relocatable code"),
clEnumValEnd));
cl::opt<llvm::CodeModel::Model>
CMModel("code-model",
cl::desc("Choose code model"),
cl::init(CodeModel::JITDefault),
cl::values(clEnumValN(CodeModel::JITDefault, "default",
"Target default JIT code model"),
clEnumValN(CodeModel::Small, "small",
"Small code model"),
clEnumValN(CodeModel::Kernel, "kernel",
"Kernel code model"),
clEnumValN(CodeModel::Medium, "medium",
"Medium code model"),
clEnumValN(CodeModel::Large, "large",
"Large code model"),
clEnumValEnd));
cl::opt<bool>
GenerateSoftFloatCalls("soft-float",
cl::desc("Generate software floating point library calls"),
cl::init(false));
cl::opt<llvm::FloatABI::ABIType>
FloatABIForCalls("float-abi",
cl::desc("Choose float ABI type"),
cl::init(FloatABI::Default),
cl::values(
clEnumValN(FloatABI::Default, "default",
"Target default float ABI type"),
clEnumValN(FloatABI::Soft, "soft",
"Soft float ABI (implied by -soft-float)"),
clEnumValN(FloatABI::Hard, "hard",
"Hard float ABI (uses FP registers)"),
clEnumValEnd));
cl::opt<bool>
// In debug builds, make this default to true.
#ifdef NDEBUG
#define EMIT_DEBUG false
#else
#define EMIT_DEBUG true
#endif
EmitJitDebugInfo("jit-emit-debug",
cl::desc("Emit debug information to debugger"),
cl::init(EMIT_DEBUG));
#undef EMIT_DEBUG
static cl::opt<bool>
EmitJitDebugInfoToDisk("jit-emit-debug-to-disk",
cl::Hidden,
cl::desc("Emit debug info objfiles to disk"),
cl::init(false));
}
static ExecutionEngine *EE = 0;
static void do_shutdown() {
// Cygwin-1.5 invokes DLL's dtors before atexit handler.
#ifndef DO_NOTHING_ATEXIT
delete EE;
llvm_shutdown();
#endif
}
// On Mingw and Cygwin, an external symbol named '__main' is called from the
// generated 'main' function to allow static intialization. To avoid linking
// problems with remote targets (because lli's remote target support does not
// currently handle external linking) we add a secondary module which defines
// an empty '__main' function.
static void addCygMingExtraModule(ExecutionEngine *EE,
LLVMContext &Context,
StringRef TargetTripleStr) {
IRBuilder<> Builder(Context);
Triple TargetTriple(TargetTripleStr);
// Create a new module.
Module *M = new Module("CygMingHelper", Context);
M->setTargetTriple(TargetTripleStr);
// Create an empty function named "__main".
Function *Result;
if (TargetTriple.isArch64Bit()) {
Result = Function::Create(
TypeBuilder<int64_t(void), false>::get(Context),
GlobalValue::ExternalLinkage, "__main", M);
} else {
Result = Function::Create(
TypeBuilder<int32_t(void), false>::get(Context),
GlobalValue::ExternalLinkage, "__main", M);
}
BasicBlock *BB = BasicBlock::Create(Context, "__main", Result);
Builder.SetInsertPoint(BB);
Value *ReturnVal;
if (TargetTriple.isArch64Bit())
ReturnVal = ConstantInt::get(Context, APInt(64, 0));
else
ReturnVal = ConstantInt::get(Context, APInt(32, 0));
Builder.CreateRet(ReturnVal);
// Add this new module to the ExecutionEngine.
EE->addModule(M);
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv, char * const *envp) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
LLVMContext &Context = getGlobalContext();
atexit(do_shutdown); // Call llvm_shutdown() on exit.
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
cl::ParseCommandLineOptions(argc, argv,
"llvm interpreter & dynamic compiler\n");
// If the user doesn't want core files, disable them.
if (DisableCoreFiles)
sys::Process::PreventCoreFiles();
// Load the bitcode...
SMDiagnostic Err;
Module *Mod = ParseIRFile(InputFile, Err, Context);
if (!Mod) {
Err.print(argv[0], errs());
return 1;
}
// If not jitting lazily, load the whole bitcode file eagerly too.
std::string ErrorMsg;
if (NoLazyCompilation) {
if (Mod->MaterializeAllPermanently(&ErrorMsg)) {
errs() << argv[0] << ": bitcode didn't read correctly.\n";
errs() << "Reason: " << ErrorMsg << "\n";
exit(1);
}
}
if (DebugIR) {
if (!UseMCJIT) {
errs() << "warning: -debug-ir used without -use-mcjit. Only partial debug"
<< " information will be emitted by the non-MC JIT engine. To see full"
<< " source debug information, enable the flag '-use-mcjit'.\n";
}
ModulePass *DebugIRPass = createDebugIRPass();
DebugIRPass->runOnModule(*Mod);
}
EngineBuilder builder(Mod);
builder.setMArch(MArch);
builder.setMCPU(MCPU);
builder.setMAttrs(MAttrs);
builder.setRelocationModel(RelocModel);
builder.setCodeModel(CMModel);
builder.setErrorStr(&ErrorMsg);
builder.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT);
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
Mod->setTargetTriple(Triple::normalize(TargetTriple));
// Enable MCJIT if desired.
RTDyldMemoryManager *RTDyldMM = 0;
if (UseMCJIT && !ForceInterpreter) {
builder.setUseMCJIT(true);
if (RemoteMCJIT)
RTDyldMM = new RemoteMemoryManager();
else
RTDyldMM = new SectionMemoryManager();
builder.setMCJITMemoryManager(RTDyldMM);
} else {
if (RemoteMCJIT) {
errs() << "error: Remote process execution requires -use-mcjit\n";
exit(1);
}
builder.setJITMemoryManager(ForceInterpreter ? 0 :
JITMemoryManager::CreateDefaultMemManager());
}
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
builder.setOptLevel(OLvl);
TargetOptions Options;
Options.UseSoftFloat = GenerateSoftFloatCalls;
if (FloatABIForCalls != FloatABI::Default)
Options.FloatABIType = FloatABIForCalls;
if (GenerateSoftFloatCalls)
FloatABIForCalls = FloatABI::Soft;
// Remote target execution doesn't handle EH or debug registration.
if (!RemoteMCJIT) {
Options.JITEmitDebugInfo = EmitJitDebugInfo;
Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk;
}
builder.setTargetOptions(Options);
EE = builder.create();
if (!EE) {
if (!ErrorMsg.empty())
errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";
else
errs() << argv[0] << ": unknown error creating EE!\n";
exit(1);
}
// Load any additional modules specified on the command line.
for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
Module *XMod = ParseIRFile(ExtraModules[i], Err, Context);
if (!XMod) {
Err.print(argv[0], errs());
return 1;
}
EE->addModule(XMod);
}
// If the target is Cygwin/MingW and we are generating remote code, we
// need an extra module to help out with linking.
if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) {
addCygMingExtraModule(EE, Context, Mod->getTargetTriple());
}
// The following functions have no effect if their respective profiling
// support wasn't enabled in the build configuration.
EE->RegisterJITEventListener(
JITEventListener::createOProfileJITEventListener());
EE->RegisterJITEventListener(
JITEventListener::createIntelJITEventListener());
if (!NoLazyCompilation && RemoteMCJIT) {
errs() << "warning: remote mcjit does not support lazy compilation\n";
NoLazyCompilation = true;
}
EE->DisableLazyCompilation(NoLazyCompilation);
// If the user specifically requested an argv[0] to pass into the program,
// do it now.
if (!FakeArgv0.empty()) {
InputFile = FakeArgv0;
} else {
// Otherwise, if there is a .bc suffix on the executable strip it off, it
// might confuse the program.
if (StringRef(InputFile).endswith(".bc"))
InputFile.erase(InputFile.length() - 3);
}
// Add the module's name to the start of the vector of arguments to main().
InputArgv.insert(InputArgv.begin(), InputFile);
// Call the main function from M as if its signature were:
// int main (int argc, char **argv, const char **envp)
// using the contents of Args to determine argc & argv, and the contents of
// EnvVars to determine envp.
//
Function *EntryFn = Mod->getFunction(EntryFunc);
if (!EntryFn) {
errs() << '\'' << EntryFunc << "\' function not found in module.\n";
return -1;
}
// Reset errno to zero on entry to main.
errno = 0;
int Result;
if (!RemoteMCJIT) {
// If the program doesn't explicitly call exit, we will need the Exit
// function later on to make an explicit call, so get the function now.
Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context),
Type::getInt32Ty(Context),
NULL);
// Run static constructors.
if (UseMCJIT && !ForceInterpreter) {
// Give MCJIT a chance to apply relocations and set page permissions.
EE->finalizeObject();
}
EE->runStaticConstructorsDestructors(false);
if (!UseMCJIT && NoLazyCompilation) {
for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) {
Function *Fn = &*I;
if (Fn != EntryFn && !Fn->isDeclaration())
EE->getPointerToFunction(Fn);
}
}
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE->getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (RTDyldMM)
static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
// Run main.
Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
// Run static destructors.
EE->runStaticConstructorsDestructors(true);
// If the program didn't call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function *ExitF = dyn_cast<Function>(Exit)) {
std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE->runFunction(ExitF, Args);
errs() << "ERROR: exit(" << Result << ") returned!\n";
abort();
} else {
errs() << "ERROR: exit defined with wrong prototype!\n";
abort();
}
} else {
// else == "if (RemoteMCJIT)"
// Remote target MCJIT doesn't (yet) support static constructors. No reason
// it couldn't. This is a limitation of the LLI implemantation, not the
// MCJIT itself. FIXME.
//
RemoteMemoryManager *MM = static_cast<RemoteMemoryManager*>(RTDyldMM);
// Everything is prepared now, so lay out our program for the target
// address space, assign the section addresses to resolve any relocations,
// and send it to the target.
OwningPtr<RemoteTarget> Target;
if (!MCJITRemoteProcess.empty()) { // Remote execution on a child process
if (!RemoteTarget::hostSupportsExternalRemoteTarget()) {
errs() << "Warning: host does not support external remote targets.\n"
<< " Defaulting to simulated remote execution\n";
Target.reset(RemoteTarget::createRemoteTarget());
} else {
std::string ChildEXE = sys::FindProgramByName(MCJITRemoteProcess);
if (ChildEXE == "") {
errs() << "Unable to find child target: '\''" << MCJITRemoteProcess << "\'\n";
return -1;
}
Target.reset(RemoteTarget::createExternalRemoteTarget(ChildEXE));
}
} else {
// No child process name provided, use simulated remote execution.
Target.reset(RemoteTarget::createRemoteTarget());
}
// Give the memory manager a pointer to our remote target interface object.
MM->setRemoteTarget(Target.get());
// Create the remote target.
Target->create();
// Since we're executing in a (at least simulated) remote address space,
// we can't use the ExecutionEngine::runFunctionAsMain(). We have to
// grab the function address directly here and tell the remote target
// to execute the function.
//
// Our memory manager will map generated code into the remote address
// space as it is loaded and copy the bits over during the finalizeMemory
// operation.
//
// FIXME: argv and envp handling.
uint64_t Entry = EE->getFunctionAddress(EntryFn->getName().str());
DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
<< format("%llx", Entry) << "\n");
if (Target->executeCode(Entry, Result))
errs() << "ERROR: " << Target->getErrorMsg() << "\n";
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.
// Stop the remote target
Target->stop();
}
return Result;
}